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ABSTRACT

Three multiaxial isothermal continuum damage mechanics model for creep,
fatigue, and creep/fatigue interaction of a unidirectional metal matrix composite
volume element are presented, only one of which will be discussed in depth. Each

model is phenomenological and stress based, with varying degrees of complexity to
accurately predict the initiation and propagation of intergranular and transgranular
defects over a wide range of loading conditions. The development of these models
are founded on the definition of an initially transversely isotropic fatigue limit
surface, static fracture surface, normalized stress amplitude function and isochronous

creep damage failure surface, from which both fatigue and creep damage evolutionary
laws can be obtained. The anisotropy of each model is defined through physically
meaningful invariants reflecting the local stress and material orientation. All three
transversely isotropic models have been shown, when taken to their isotropic limit, to
directly simplify to previously developed and validated creep and fatigue continuum
damage theories.

Results of a nondimensional parametric study illustrate i) the flexibility of the
present formulation when attempting to characterize a large class of composite
materials and ii)its ability to predict anticipated qualitative trends in the fatigue
behavior of unidirectional metal matrix composites. Additionally, the potential for

the inclusion of various micromechanical effects (e.g. fiber/matrix bond strength,
fiber volume fraction, etc.), into the phenomenological anisotropic parameters are
noted, as well as a detailed discussion regarding the necessary exploratory and
characterization experiments needed to utilize the featured damage theories.

1.0 INTRODUCTION

In recent years, due to advances in scanning electron microscopy, acoustic

emission techniques as well as other nondestructive testing methods, a consensus has

emerged that the nonlinear response of solids and ultimately their mechanical strength

are dependent not only on the basic structure of the material but also on the type,

distribution, size and orientation of the defects in its structure. As a result a



relatively new branch of continuum mechanics,known as Continuum Damage
Mechanics(CDM), has emerged. Like Continuum Mechanics,which allows one to

describe (over an appropriate representativevolume element) the heterogeneous

microprocessesinvolved during the straining of materials and structures at the

macroscale;CDM allows one to describe the material's progressivedeterioration

(damage) from the virgin state (no damage) to the final state, corresponding

generally to macro-crack initiation (or the "breaking up" of the representative volume
element). Therefore, CDM allows one to predict the life limiting macroscopic

properties such as rupture strength, fatigue life, or creep rupture lifetime of the
material.

The tracking, or description, of the evolution of damage is accomplishedthrough

the introduction of special thermodynamic (internal) field variables representing in an

appropriate statistical sense,the distribution and density of defects locally.

Numerousdamage theories, both micromechanical[1-611and phenomenological[7-11],

for example, have been proposedand discussedin the literature. The reasonbehind

such diversity in the mathematical nature of the damagevariable(s) (e.g., scalar

[7,12,13],vectors [14,15] and tensors [12,16,17])and thus the damage theories, stems

from the difficulty associatedwith directly measuring "damage" macroscopicallyand
the degreeof approximation with which the internal variables describe the salient

aspectsof the macroscopiceffects of the micro-defect kinematics. For a number of

excellent review articles and books on this subject the reader is referred to references

[7,12,18-24].

In this paper a CDM isothermal transversely isotropic creep, fatigue, and

creep/fatigue model, with a scalar damage internal variable, oriented toward

unidirectional metallic composites, will be described. These models are extensions of

previously developed and validated models, developed at ONERA (Office Nationale

d'Etudes et de Recherches Aerospatiales), [10,11,18,19,25,26,27,28] for isotropic

monolithic metals. As a result, the paper begins with a brief review of CDM in

general, and in particular, the work undertaken by Chaboche and his colleagues at

ONERA, so as to provide a foundation to describe the extension of the ONERA

models to transversely isotropic materials (e.g., metal matrix composites).

Subsequent to the multiaxial statement of the transversely isotropic CDM models, a

nondimensional uniaxial parametric study is undertaken to illustrate the various

features and flexibilities of the proposed extensions. The paper then concludes with a

tSquare brackets, i.e. [ ], will indicate suggested references for further reading.



discussionregarding exploratory and characterization experiments required to utilize

and validate the proposed forms.

2.0 MEASURES AND DEFINITIONS OF DAMAGE

Material (lattice) defects can be roughly classified with respect to their

geometry into i) point defects; for example vacancies, interstitial and impurity

atoms, ii) line defects (dislocations), iii) plane defects (slip planes and cracks), and

iv) volume defects (cavities and inclusions). Numerous ways are available to define

the internal variables associated with these defects and damage processes. Each

definition, however, must correspond to some method of measurement and implies a

given approach, either a micromechanical or phenomenological one. Here, four typical

approaches will be briefly stated.

Measurements at the microstructural scale (i.e., density of micro-cracks in

fatigue or the volume fraction of cavities in ductile damage) lead to microscopic

models that can be integrated over the macroscopic volume element to obtain

the properties of the damaged volume element. However, difficulty is

encountered when incorporating these results into life prediction methods.

Measurements of macro physical parameters (such as density, acoustic emission

and resistivity) may lead to some consistent macroscopic definitions of damage

parameters but require the definition of a global model to convert them into

properties which characterize mechanical resistance.

Measures of remaining life are used to account for the cumulative aspects of

damage processes in the life prediction methods but do not directly lead to a

damage constitutive law. They do however, provide insight into interesting

properties of damage, for example in fatigue they indicate that the damage

evolution equations must be non--separable relative to the damage and loading

variables [29].

Measurements of variations in the macro mechanical behavior (i.e., modification

of elastic, plastic or viscoplastic properties) are the most appropriate from a

phenomenological point of view. These measurements are easier to interpret in

terms of damage variables using the concept of effective stress [12,28] with an



equivalencein strain, Fig. 1. This is the approach that will be followed

throughout the remainder of this report.

The effective stress (_) concept, with an equivalence in strain as put forth by

Lemaitre and Chaboche [12] states that a damaged volume of material under the

applied stress (¢) shows the same strain response (whether the behavior is elastic,

plastic, or viscoplastic) as the undamaged one submitted to the effective stress (a).

In mathematical form

" A a
= -.- a = (1)

A

where A = A-A D and the damage D represents the loss of effective area (AD/A)

taking into account decohesions and local stress concentrations. This definition has

been supported by the results of homogenization techniques [30] and damage measures

utilizing this concept have been demonstrated under various situations, for example,

in the case of ductile rupture [31], creep damage [32], and fatigue damage for both

monolithic and composite materials [18,33,34].

3.0 CDM MODELS FOR INITIALLY ISOTROPIC MATERIALS

Different damage variables are associated with different damage processes, such

as creep, fatigue, ductile and brittle damage, and have been discussed in the

literature extensively as noted above. Here we will confine ourselves to the modeling

of creep, fatigue and creep/fatigue damage using a scalar damage measure in

monolithic metals and then extend this discussion, in subsequent sections, to metal

matrix composites by allowing the anisotropic evolution of this measure. Figure 2

clearly illustrates the damage mechanisms for the three cases of interest, i.e., creep,

fatigue and creep/fatigue interaction.

3.1 Creep Damage

In Fig. 2a the two primary damage mechanisms [35,36], nucleation and growth

of intergranular defects (typically by a diffusion process) are illustrated schematically

when the material is subjected to a pure creep loading condition. Recently, Hayhurst

[37] has shown that it is possible to make some connection between the equations



obtained from a materials scienceapproachand the more macroscopicones developed
under the framework of CDM.

CDM was first developedfor the caseof creep damageby Kachanov [38] and,

Rabotnov [23], since then the concept of effective stress has been shown to predict

tertiary creep curves as well as changesin creep ductility [39]. Leckie and Hayhurst

[8,13,40,41]have generalizedthe classical [23,38] uniaxial creep damageequations to
multiaxial stress conditions by describing isodamagesurfaces(or isochronoussurfaces)

defined in terms of three stress invariants i) the octahedral shear stress J2(a), which

is related to the effects of shear, ii) the hydrostatic stress ,_(a), which greatly

affects the growth of cavities; and iii) the maximum principal stress J0(a) = area x,

which opens the micro-cracks and causes them to grow. The equivalent stress is

then defined through a linear combination of these invariants :

x(a) = a c J0 (a) + _c_l (a) + (1-ac-fl c) J2 (a) (2)

here a c and _c are coefficients dependent upon the material. The form of the

resulting creep damage model is given in Table I. Note that here the exponent k is

taken to be a constant, thus implying linear accumulation of creep damage even

though the evolution of damage may be nonlinear.

Furthermore, the results of creep-like cyclic tests (e.g., high frequency-low

amplitude or high amplitude-low frequency) have shown the need to include some

factor relating the response time of the material versus that of the rate of loading.

For example, when a material is subjected to a high frequency loading with a mean

stress equal to zero, the material damage induced by creep is negligible, thereby

leading to the case of "pure" fatigue damage. However, when the material is

subjected to a high frequency and a low or medium amplitude with a high mean

stress, the damage induced by creep is dominant. Therefore a new material

(T) and a "delayed" stress (adj)_ were introduced into the formulation, soparameter

as to account for the lag time between load application and material response [26].

As a result, given a high frequency load history, the delayed stress is equal to the

mean stress while for a low frequency load history the delayed stress is the real (or

applied) stress.
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3.2 Fatigue Damage

In Fig. 2b, the fatigue crack initiation and growth process is illustrated

schematically, with the damage (D) being associated , macroscopically, with the

initiation and propagation of transgranular defects (e.g., slip bands and micro-cracks).

For example the micro-crack measurements made by Cailletaud and Levaillant [42],

Hua and Socie [43], and Socie et. al. [44], have shown the possible equivalence

between the definition of D by the effective stress concept, the definition of D in

terms of the remaining life concept, and the quantification of physical damage in

terms of micro--cracking. A number of fatigue damage models have been proposed in

the past [12,18,21]. A general form, depending upon one's choice for a (the exponent

which may also be a function of stress), as indicated by Chaudonneret and Chaboche

[45], that leads to rules considered earlier by various authors [10,25,26,46,47,48] is

given by:

[ ]8
dD = Da_ am,_) dN (3)

where a m and _ are, respectively, the maximum and mean stress within a cycle N.

In the case of fatigue, several aspects need to be considered when developing a

phenomenological model:

a)

b)

c)

d)

e)

the existence of micro-initiation and micro-propagation stages,

the existence of a fatigue or endurance limit and its marked decrease

after prior damage,

the existence of a static limit (ultimate stress level),

the effect of mean-stress on the fatigue limit or the S-N curves

themselves, and

the typical nonlinear-cumulative effects for two level tests or

block-program loading conditions.

Three CDM fatigue models, developed at ONERA, which to varying degrees

accurately predict the above observations, are given in multiaxial form in Table II

and uniaxial form in Table III. Note that these models are obtained from

equation (3) (predominantly developed from a remaining life concept) and



incorporated into a CDM model utilizing the effective stress concept, by a convenient

change of variable (i.e., D ), that is :

D = 1 - (1 - D*) 1+_ (4)

The ability of equation (3), and therefore those fatigue models in Table II and

III, to represent the required nonlinear accumulation during a two level or

block-program loading test is directly linked to the dependency of o_ on a m and _ ;

thus rendering the equations non-separable. It is this nonseparability and not the

nonlinearity of the damage evolution equation that permits the modeling of a

nonlinear accumulation of damage [29]. Model I, was proposed in 1974 [49] and has

since been exercised for a number of different applications and materials [50-52].

Results indicate good predictive capabilities under varying fatigue cycles, even though

a single scalar state variable D represents both micro-initiation and

micro-propagation periods. However, due to this lack of separation, a deficiency in

Model I was observed when analyzing fatigue loading histories with prior creep or

creep like (e.g., high cycle, low amplitude fatigue cycles) loading histories.

Furthermore microstructural observations have indicated that fatigue damage can be

divided into two periods, [53,54] the initiation period (corresponding to the creation

of micro--cracks) and the propagation period (which is characterized by the inward

growth in the material of a few micre--cracks).

Therefore in Model II a separation between the micro-crack initiation and

propagation stages was introduced. Note that in Model II, a is assumed to be

constant, thereby producing only linear damage accumulation (Miner's rule) during

the propagation stage. This does not, however, imply that the damage D (i.e., D =

Dinitiation + Dpropagation) is restricted to only linear accumulation, as the damage

accumulation can be shifted by an increase or decrease in the number of cycles for

crack initiation. As a result model II can be shown to give the Manson Double

Linear Damage Rule (OLDR). Additionally, in model II, the initiation of

microcracks are influenced by the frequency (v) of the applied loading due to the fact

that differences in the experimental results were observed when varying the frequency

of loading, particularly when at low frequency (e.g., 0 < _ < 10 Hz) levels.

Model III has been recently suggested as a compromise between Models I and

II, in that it has the simplicity of Model I (no separation between initiation and



propagation is assumed)yet gives rise to a non evanescentfatigue limit by the

introduction of a term representingthe fatigue limit of propagation (alp).

3.3 Creep-Fatigue Interaction

In Fig. 2c the interaction of intergranular and transgranular defects is depicted

schematically. It is surmised, within the pertinent domain where creep-fatigue

interaction is applicable, that the presence of cavities allow for easier crack propaga-

tion and that the increase in stress intensity at a crack tip causes an increase in the

nucleation and coalescence of voids.

Analytically this interaction is represented using the effective stress concept, by

assuming that the mechanical effects of creep and fatigue damage can be directly

added, i.e.,

dD= dD c +dD F

= fc(a,W,D,...) dt + fF(am,a,W,D,...) dN (5)

where fc and fF represent the characteristic functions of creep and fatigue respectively

as described above and D=Dc+D F. Thus the two functions (fc and fF) can be

determined independently from pure tensile creep tests and pure high frequency

fatigue tests. The conditions under which accumulation of both macroscopic effects

would take place (e.g., low frequency or loadings with hold times) are then predicted

by integrating numerically the above equations. This approach has been shown to

give reasonable results for several materials [12,49,50].

It is primarily in this context (creep/fatigue interaction) that the main

distinctions between models I, II and III of Table II can be observed. For example

utilizing the creep model of Table I (as will be the case henceforth) and the fatigue

model I or III of Table II for the functions fc and fF' respectively, one can

immediately see that interaction between the two damage measures occurs from the

outset. However if the function fF is comprised of Model II, interaction between

creep and fatigue damage measures does not occur until crack initiation has occurred.

4.0 CDM MODELS FOR INITIALLY ANISOTROPIC MATERIALS

The Continuum Damage Mechanics approach, which supports the above

described global measure of fatigue damage in monolithic isotropic materials, presents
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two deficiencieswhich are inconsistent with a continuum approach. They are, i) the

surface character of fatigue damage and ii) the fact that during the propagation stage

the number of large defects is small. Interestingly enough, however, these deficiencies

do not appear to have diminished the correct description of many experimental

results in terms of cumulative fatigue damage.

It is the authors contention that these two theoretical deficiencies will be

removed when one establishes a representative volume element (RVE) on the

mesostructural scale of a composite material; since now the surface character of

fatigue will transcend to the interface region of each constituent (or phase) and the

number of large defects occurring during the propagation period will similarly

increase. This hypothesis is borne out by experimental observation [55,56] under

specific thermal and mechanical loading histories. Although, there are a number of

surface and environmental effects which will not necessarily transcend to the fibers,

for example those effects which are associated with oxidation in the SiC/Ti 15-3

system [57]. A nonrigorous definition of an RVE for a given composite material is

given in Fig. 3 and in short insists upon the inclusion of a sufficient number of unit

cells within the RVE to allow (statistically) the homogenization of the heterogeneous

nature of the material.

Figure 4 depicts, the extension of the previously described creep, fatigue and

creep/fatigue damage mechanisms of Fig. 2 to the mesostructural scale, in which the

surface or interface of a constituent (the fiber) plays the role (on the mesostructural

scale) of a grain (and therefore grain boundary) on the microscopic scale. Here

similar damage mechanisms are postulated to occur on the mesostructural scale as

those on the microstructural scale, and due to the internal structure of the material,

a sufficient number of defects will be present to allow a theoretically consistent

continuum representation of creep and fatigue damage.

In addition to the matrix cracking and formation of micro--cracks around the

fibers, other damage modes must be included such as fiber breaking, fiber/matrix

debonding and interlaminar cracks. It has been noted that damage occurs in the

form of different multiple cracking modes and that there is no isolated single crack

that dominates the development of damage. Similarly in composite laminates damage

develops along preferred orientations, for example, matrix cracks in off axis plies

typically are channeled by the fibers in those plies and interlaminar planar cracks

grow along fibers in the neighboring plies [58].

These direction oriented damage modes suggest the need for some direction

dependent damage variable (e.g., a vector or tensor representation). It is assumed in

9



the present work that the damagemeasureis a _scalar but that the damage evolution

is anisotropic. This is believed to be justified based on the strong initial anisotropy

of the composite. Furthermore, as discussed earlier the definition of effective stress

and the concept of remaining life will be utilized to measure and interpret damage.

4.1 Transversely Isottopic Creep Damage

Figure 4a is the mesostructural counter part to Fig. 2a and recently Robinson

et al. [59] extended the creep damage model proposed by Leckie [40,41] and Leckie

and Hayhurst [8,13] to metallic composites. This extension was accomplished by

introducing into the isochronous damage function appropriate stress invariants that

correspond to the local maximum transverse tension (stress normal to the local fiber

direction) and longitudinal shear (shear stress on planes containing the fibers and in

a direction along the fibers) within a unidirectional metallic composite. These

invariants are included based on the anticipation that the associated stress may

strongly influence void growth at the fiber-matrix interface (as this interface is

postulated to play a role, on the mesostructural scale, analogous to that of grain

boundaries on the microstructural scale and interfacial degradation); and, consequently

may correlate with a creep rupture mechanism based on interfacial degradation

through diffusion related void growth [56,60].

The physically meaningful invariants I1, 12 and I3, representing the maximum

transverse shear stress, longitudinal shear stress and the maximum normal stress in

the fiber direction, respectively, are defined as (cf. [61,62]);

^ 1

I1 = J2 - I + _ 13

12= I - 13 (6)

13 = 12

in which

10



1

J2 - 2 Sij Sij

I = Dij Sij

= Dij Sjk Ski

D.. = d.d.
1j 1 j

Sij = aij-]- akk 6ij

and d i 0=1,2,3) are the components of a unit vector denoting the local fiber

direction. An additional invariant is required for the present formulation (i.e., the

maximum transverse tensile stress) and is given in [59] as:

1

Jr= < _ (a t - _2) + S > (7)

where •

< f> I = 0iff< 0

[ =fiff>0

Jl = aii

fl_ = Dij aji

S =_/ I
1

Thus the isochronous failure surface (A) is assumed [59] to be a linear function of

the two invariants _,¥and _, i.e.,

where •

1

zx _ % (8)

11



 =4I 2

in which a c is a material constant and a o is a normalizing reference stress. An

alternative isochronous failure surface (A), assumed here, can be written as;

A - a 0 (]_c_ -I- 3(1-_c-]_c) S -I- ac oi) (9)

in which the hydrostatic state of stress, maximum transverse shear and longitudinal

shear stress are assumed to be the dominant damage measures. Note that the two

isochronous surfaces defined in equations (8) and (9) are similar, provided tic is taken

to be zero, since S is related to the maximum transverse stress JY(cf. eq.(7)), i.e.,

1

s = (4 -

The specific functional form for A must be determined experimentally as discussed by

Robinson et. al. [59] and Leckie [40,41].

The damage evolutionary law [8,40], extended now (through the isochronous

failure surface) to account for initially transversely isotropic material symmetry, is

taken as :

dD
c

d t - C A r (1- Dc)-m (I0)

in which "

( )_--i )
C-

n A t o

and n, r, A and t o are material constants, as specified in [40,59]. For instance A is

often referred to as the creep damage tolerance and measures the ability of the metal

to withstand local straining at points of high strain concentration in a structure.

12



For further information regarding the characterization of this growth law the reader

is referred to [59].

If one assumes the isotropic limit, i.e., Dij = I/3 6ij , since Dii = l; then,
1

I = _ Sii = 0

(11)

^ 1

I = _- Sij Sij

and thus

1 1

$2 = I1 = 6 Sij Sij = 3 J2

1

2 = i2 = -3 Sij Sij = _ J2

13=0

and

1 1

= _ aii + -_" J4_2

thereby indicating that equation (8) does not reduce to the equation put forth by

Leckie and Hayhurst, that is,

1

A - 3 a 0 [ '_i + (l+ac/2")1 J2 l (12)

while equation (9) does reduce to the previous equation [8,40], if a c = O, such that,

1 [flc'_ + (1-flc)J--_2 ] (13)A- ao

as seen by comparing _in table I to the above.
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4.2 Multiaxial Transversely Isotropic Fatigue DamageModel

Figure 4b is the extension of Fig. 2b and illustrates the damage,i.e., the micro

and mesocracks, one might encounter on the mesostructural scale when a composite

material is subjected to fatigue type loading. The approach taken to model this

damage will be the stress based approach discussed earlier. Extension of these

previous models (Table II) is accomplished, once again by introducing anisotropic

damage surfaces with appropriate invariants [59,61,62] that represent stress states that

are likely to strongly influence the various damage modes in metallic composites.

For instance, we assume that i) the transverse shear stress (I1) and thus implicitly

the transverse normal stress, will dictate matrix cracking; ii) the longitudinal shear

stress (I2) dictates interracial degradation; and iii) the maximum normal stress (I3)

in the fiber direction will dictate fiber breakage. In this way, it is believed that the

following fatigue limit and static fracture surface contain the most pertinent damage

producing stress measures. Similarly, a normalized stress amplitude measure can be

defined. That is, let

F() = { ( 40, )--1 ) I

-1)

2 I2+9/4 I3} (14)
1 + _()

where the fatigue limit surface 2 is defined as ;

. 1

Fff - 1 = _- max max F(ff)(a i (t) - aij(t 0t t j ))- 1 (15)
0

the static fracture surface is;

1 - F u = 1 - maxt F(u)(aij(t)) (16)

2The authors acknowledge that not all monolithic materials exhibit a maked fatigue o
endurance limit, e.g., nonferrous alloys, however it is: assumed (based on experimental

evidence [63]) that a sufficiantly large class of composite materials will posses such a
limit. Furthemore, we assert that fatigue lives beyound some specified value, say

107, can be considered infinite for most practical design puposes and thereby allow

the assumption of an endurance limit.

14



and the normalized stress amplitude is;

^ ^ 1

F m = Fm(aij ) = _ max max [F(m)(aij(t ) - aij(t0))] (17)
t t o

wherein the (.) in eq.(14) is to be replaced by either fl, u, or m

with

% : : 'ft = uL: %L' : U#Uw'
UU ---- TUL/TU w ' mL = ML ' Wm = ML/MT and _]m = vmL/Vm T

being material parameters, some of them varying with the mean stress, that describe

the initial anisotropy of the surfaces and m L is defined by equation (40). Note that

the subscripts L and T denote, respectively, the longitudinal (in the fiber) and

transverse (normal to the fiber) directions. Now with these two surfaces and

normalized stress amplitude it is a straight forward task to extend the models of

Table II to account for materials which posses initial transversely isotropic material

symmetry. The new multiaxial representations are now given in Table IV.

One additional modification, besides the inclusion of a preferred direction, has

been introduced into the fatigue models of Table IV and that is a hydrostatic stress

measure (P) that combines both the Sines [64] and Crossland [65] criteria, i.e.,

P = _ aHmax + (1 - _) aHavg" (18)

This alternate hydrostatic measure (P) is felt to be required since a judgment as to

the most applicable criteria is unavailable due to the lack of experimental data on

metallic composites. In Table II, only the Sine's criteria was considered, i.e., _ - 0.

Finally, if one assumes that the ratios wf$ _f/, Wu, _]u' Wm' _?m' all are equal to one

then the isotropic models given in Table II are easily recovered with only a slight

modification to the coefficient 'a' in models I and III and C O in model II.

15



4.2.1 Uniaxial Simplification of Model I

Due to the similarity in structure of models I, II and III and the fact that

model I is the simplest to describe, only this model will be considered subsequently.

Considering a uniaxial stress state (a) and a fiber direction oriented in the X-Y

plane at an angle 0 from the X axis, i.e., d i = (cos0, sin0, 0). The following

simplification of model I, cf. Table IV, is obtained;

2

J2- 3

i2 1 2
= _- (2 cos20 - sin20) 2 a (19)

1

I = _- (4 cos20 ÷ sin20) a 2

with

2
I 1 = a A 1

12 = a 2 A 2
(20)

4 2
13 = -_ a A 3

such that

= ama x--a'--]fl
dD F [1-(1-DF)_+I]a (CCm)fl/2 [( I_DF)j dN

(21)

with
a= l_a/ <_/CCf/ (amax--_')--l>]

< 1--_]C--C u amax>

(22)
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where

CC
m

1

M_--- {(4Wm_-l)A1 +

2-1)(4w m

_m
A 2 + A 3}

1

2

CCff aflL
{(4w}tr-1) A 1 ÷

(4w}t--l)

2 A 2 ÷ A 3} (23)

CC -
U ff

1 (4w_--1)

A 2 + A 3}---v-- {(4w_-l) A l + 'u
u L

AI- 3

4 1 1

9 c°s20 - 9" sin20 + _ (2 cos20 - sin20) 2

4 1 1

A 2 = _- cos20 + _- sin20 - _- (2 cos20 - sin20) 2 (24)

1

A 3 = _- (2 cos20- sin20) 2

and henceforth,

< f> I = 0 iff< 0

[ =fiff> 0

with ML(P), aft(P), auL(P ) and the w and 7? ratios are independent of a H since the

modification factor cancels. Note once again that if w() and 77() are equal to 1 (i.e.,

isotropy) then equations (21) and (22) become.

--O"ama x

dDF = [1-(1-DF)_+l]a [ML ( 1--DF )]8 dN
(25)

17



_nd _ _-1_ _ ("m_x-" _I(-_) ) (26)

au--amax>

with af/(a) = af/(O)+(1- b aft(O)) a

and

which are identical in form to the uniaxial ONERA model I of Table III.

Integrating equation (21) for N cycles, where ama x and _ are held fixed leads

to "

[ 1--(1--DF)_+1] (l--a)

N - (l+f_) (l--a) [c_fC-Cm (amax- a-)]-_ (27)

If we cycle the material to failure (NF) , which is defined to occur when D F = 1, we

find that

NF = (1+3) (l--a) [C_-_m(_rmax--_)]-3
or (28)

NF=
(i+#)

[c¢C-_m(%_- _)]-_

Now rewriting equation (27), an expression describing the accumulation of

damage, for a given loading cycle, in terms of the remaining life ratio can be

obtained, that is •

D F = 1 - [I - (NINF)II(I-a)] II(I+_) (29)

Note that the accumulation of damage is nonlinear and is also a function of fiber

orientation, as is the number of cycles to failure.

18



Similarly if a two-level loading test is considered,one obtains, by integrating

equation (21) in two steps, the sameexpressionas in the caseof isotropic materials

i.e;

N2]NF2 = 1 - (N1]NF1)p p = (1 - a2)/(1 - al) (30)

Except here al, a2, NF1 and NF2 are all dependent upon the orientation of the

fibers (or conversely the load). Note that NF1 and NF2 are the failure lives (on the

S-N curve) for the first and second loading conditions, respectively; while N 1 is the

number of cycles applied at the first loading level and N 2 is the remaining life at

the second level.

4.2.2 Nondimensional Uniaxial Parametric Study

In order to conveniently examine the behavior of this fatigue model in detail

for a variety of composite systems the following dimensionless form has been taken.

Here both the maximum and mean stress have been normalized relative to the

ultimate, static, fracture, stress (aUL) in the fiber direction, i.e.,

and

£r
max

S -
max

u L

(7

O"

u L

(31)

, respectively. Equations (21) and (22) can then be rewritten as:

dD F (32)
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with

Ol = 1 - a _[ _/_'_'fI (Smax ---_)-I ]_[ 1--_/_'_ u Sma x]

where

_'_m- J_- {(4_m_-1) AI + 2

7}m
A 2 + A 3}

(33)

_l- :_" {(4c#_CI) A1 + 2 A 2 + A 3} (34)

A 2 + A 3}
_u = {(4Wu-l) A1 + _ u

M L

¢g-

u L
(35)

afl L

u L

and A1, A 2 and A 3 are those defined previously. Again integrating equation (32) one

obtains expressions relating, i) the number of cycles to failure relative to the applied

normalized stress,

NF - a . [ 1--.,/'-_'_uS m a x ] _(36)

and ii) the damage accumulation relative to the ratio of remaining life:

D F = 1 - [1 - (N/NF)I/(1-a)] 11(1+_) (37)
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4.2.2.1 Direction Independent Parameters

First, considering an isotropic material, i.e., w() = r/() = 1, the effect of

varying the parameters 9_ ,,_ /_, a, and the mean stress (_ on the S-N curve will

be examined. To simplify and yet not limit the study, the parameters afl and M L

will be taken to be independent of hydrostatic stress, that is to say b and b' (given

in Table IV) are zero. The baseline values assumed are those corresponding to 304

stainless steel (see Table V and Fig. 5) and have been obtained from Lemaitre and

Chaboche [12]. Due to the assumption of material isotropy, equation (36) can be

simplified to:

1 [Sm_.x--'_'t-_ / ...... [ 1--Smax] _ ) (38)
NF = (1+/3) a [Smax--(_+_) ]

Now as suggested by equation (38), if either the mean stress (_) or fatigue

ratio (_) are modified, the load level at which an endurance limit is reached is also

changed. This is clearly shown in Figs. 6 and 7, where mean stress values of,

g = 0.0, 0.2, 0.4 and 0.6 and fatigue ratio values of _ = 0.1, 0.25, 0.4, 0.55 and

0.7 are considered, respectively, while all other parameters are held fixed at the

baseline values given in Table V. In both cases, as the value is increased so is the

endurance level.

Translation of the S-N curve is achieved, as indicated by equation (38), by

varying the parameter ,_ (i.e., ¢g = 1.125, 2.25, 4.5 and 9.0) and 'a' (i.e., a = 0.01,

0.1, 0.5, 1.0, and 2.0) as shown in Figs. 8 and 9, respectively; while again holding all

other parameters fixed. It is clear that increasing _¢_ shifts the S-N curve to the

right (increases the number of cycles to failure at a given load) while increasing 'a'

shifts the S-N curve to the left (decreases the number of cycles to failure at a given

load). Thus only the product (a ¢g-fl), and not the individual values of a and _¢_

is important in determining the life at a given load level. However, the actual value

of 'a' does strongly affect the damage accumulation and therefore if any other type

of damage (e.g. creep) is present, both parameters ,,¢t' and 'a' need to be determined

explicitly.
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Finally, equation (38) indicates that modifying the parameter 8 will both
translate the S-N curve and affect the abruptness of the transition from infinite life

to immediate failure. Clearly, 8 equal to zero is the lower limit and will give the

most abrupt S-N curve for a fixed set of material parameters. Figure 10 illustrates

the effect of varying 8, were 8 = 0.5, 1.0, 3.0, 5.0 and 7.0 are considered.

4.2.2.2 Parameters Defining the Initial Transverse Isotropy.

Considering the assumed baseline transversely isotropic material parameters

given in Table V, the modification of the S-N curve with fiber orientation (or

equivalently, load orientation relative to a fixed fiber orientation) is examined in Fig.

11. As one might suspect, (as a composite material is designed to be stronger when

loaded parallel to the fiber direction) both the static fracture strength and fatigue

limit are reduced with an increase in fiber orientation. The amount of decrease in

load carrying ability is clearly dependent upon the "degree" of anisotropy and is

represented in this fatigue damage model by the w and _7 ratios in the ultimate

stress (_'_u) , fatigue limit ( _'_l ) and normalizing stress amplitude ( _'_m)' see

equations (36). Note that in the baseline material parameter set, all three

anisotropic functions are considered to have the same degree of initial anisotropy. In

this section an examination of the impact of perturbing the various anisotropic

measures will be undertaken.

Equations (34-36) and (24) indicate that the angle dependency is manifested

through the functions A1, A2, and A 3 which are associated with the longitudinal

shear, transverse shear and normal stress components, respectively. This angle

dependency is dearly shown in Fig. 12. At 0=0 ° both the longitudinal and

transverse shear components are zero; at 0=45" the longitudinal shear stress

component is a maximum and the transverse shear and longitudinal normal stress are

equal; at 0=57 ° the longitudinal normal stress is zero and at 0=90"the transverse

shear and longitudinal normal stress are equal. Figure 12 clearly indicates that when

0=0 ° , changes in any of the measures of anisotropy (i.e., w's or _7's) will have no

affect since both the A 1 and A 2 expressions are equal to zero. Similarly, when

0=-90 ° , any change in the shear "strength" measures (i.e., _/'s) will not have any

impact in the resulting S-N curves. Thus suggesting, that initial characterization of

material parameters a, b, 8, _ and Jg should be conducted with longitudinally

reinforced and loaded specimens.
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4.2.2.3 Variation of wu, vft and _m"

Figure 13 illustrates the effect of varying the ultimate strength ratio

(Wu=auL/aUT) on the S-N curve corresponding to a fiber orientation of 0=-15 °. The

values of wu are taken to be 2, 4, 5, 8 and 16, while all other parameters are held

fixed at the baseline values given in Table V. As one might expect increasing the

ultimate strength ratio affects only the low cycle fatigue portion of the curve (by

decreasing the static fracture stress) while the endurance limit remains unaffected.

Conversely, increasing the fatigue limit ratio (i.e., wfl = 2, 4, 5, 8 and 16), while

holding all other parameters fixed, decreases the endurance limit while leaving the

ultimate strength unchanged. See Fig. 14 for an example at a fiber orientation of 15

degrees. The impact of changing wu from 5.0 to 3.0 for fiber orientations of 0, 15,

30, 60 and 90 is shown in Fig. 15. Comparing Figs. 11 and 15 one observes a

similar trend (as that observed in Fig. 13) for all angles except 0=0 ° , which remains

unaffected for reasons indicated earlier. Note that although the present model

provides significant flexibility, in that wu and wft can be varied independently; in

reality one would expect a relationship to exist between the ultimate strength and

the endurance limit, thus placing restrictions on the ranges of these parameters.

Furthermore, by varying the normalizing stress ratio Win, a horizontal

translation of the transition portion of the S-N curve can be obtain while the

ultimate stress and fatigue limit remain unchanged. An example is shown in Fig. 16

where wm takes on the values of 2, 4, 5, 8 and 16, assuming a fiber orientation of

15 degrees, while all other parameters once again remain fixed. Clearly, increasing

the ratio shifts the S-N curve to the left (decreasing the number of cycles to failure

for a given load).

Thus, by merely assuming different degrees of anisotropy for the three functions

_'_u' _'_i and _'_m' i) either end of the S-N curve can be modified while leaving

the other end unchanged, or ii) the center portion can be horizontally translated,

while the ultimate and fatigue limit stresses remain unchanged. This suggests that

the model has sufficient flexibility to fit a broad class of materials.

The impact of varying the degree of anisotropy, for example Wu, on the S-N

curve can be seen for all angles of fiber orientation by plotting the functions _/-_--_f/

and _/_'u' _qr-_m" In Fig. 17 only _/_'_u has been shown versus angle of

orientation 0, as the other two functions will have similar behavior, except for being

23



scaled by a multiplying factor. Examining Fig. 17 it is evident that for a specified

ratio cou the function _]$'_'u increases as one increases the angle 0; however,

depending upon the magnitude of wu an angle can be found where this increase is at

a decreasing rate. This explains why, for larger angles, one sees an incrementally

smaller change in the response curve with increasing angle (i.e., variation in the S-N

curve), see Figs. 11 and 15. Finally, one more important point can be discerned

from Fig. 17, and that is the need for the ratio w to always be greater than or

equal to r/ since if co < r/ a minimum occurs in the function at an angle other than

zero, which violates physical reasoning.

4.2.2.4 Variation of flu , t/ft and t/re.

Variation of the shear ratios r/u , r/f/, and r/m has a similar impact on the

overall trends, but not actual magnitudes, of the S-N curve, as did their respective

normal stress ratios. Examples involving the variations of each ratio (for values of

1, 2, 4, and 5) with a fiber orientation of 15 degrees are shown in Figs. 18, 19 and

20, respectively. The interaction between the shear strength and the normal strength

ratio are shown in Fig. 21, for an Wu=5.0 , and in Fig. 22, for an cou=16.0, when the

r/u ratio takes on values of 1, 1.5, 2, 3, 4, and 5 in the case of Fig. 21 and 1.0, 1.5,

2, 4, 8, and 16 in the case of Fig. 22. Note how in both cases (i.e., Wu=5.0 and

Wu=16.0 ) the shape of the function _'_u is greatly affected, particularly for low

values of r/. Also it is clear that when 77=1 a maximum at some intermediate angle

is obtained. The ramification of this intermediate maximum is unknown at this time.

As with the cases involving the normal stress ratios, wu and cofl ' one would expect

that a relationship would exist between r/u and r/fl such that the practical ranges of

these parameters are not independent.

4.2.3 Required Exploration and Characterization Experiments.

Here, the determination of the various material parameters will be discussed.

Fatigue of Isotropic Material

Considering first the case of isotropic materials, it is assumed that S-N curves

(shown schematically in Fig. 23) exist for different stress ratios (R=amin/amax) and

that the ultimate static fracture strength (au) is known. Given this data, one may
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then obtain a plot of fatigue limit (ag) versus mean stress (a-), as shown in Fig. 24,

from which the material parameter b can be easily found. Note that a linear

dependence is assumed in Fig. 24; this, however, may not be sufficient to describe

the material and one might have to consider an alternative representation.

Rewriting the isotropic simplification of equations (23) and (28) and taking the

natural logarithm of both sides, one can obtain the following expression :

In u-----_- N F = In 'a (1+/3) M -/_ - /3 In(am-a--)
(39)

or Y = Y0 - /3 X

Now plotting Y versus X (see Fig. 25) and fitting a straight line through the

data, the material parameter /3 is obtained from the determined slope and the

product (a M-/3) may be determined from the intercept. Similarly solving equations

(23) and (28) for M, i.e.,

M = (am-a) [N F (1+/3) (1-or)] 1//3

(.( a rn---ff)--a f 1_ au ]1//3 (40)or M = (am-a--) [N F (1+/3) a au--a---_ a f l

It becomes apparent that M represents a normalizing factor such that it ensures a

certain life (N_) for a specified stress amplitude, aa=(am-_), see Fig. 26. Clearly,

M is also dependent upon the slope /3 and the material constant a, thus leading one

to the conclusion that the remaining life measurements are insufficient to completely

characterize the damage evolution equation, i.e., the value of 'a'. Only the product

(a M -/3) may be determined directly, by either, using the previous Y intercept (Y0)

of Fig. 25, i.e.;

a M-/3= 1 (41)
Yo

(1+,8) e

or selecting a point on the S-N curve (see Fig. 23 or 26) such that
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aafl <au--am> a f l

a M -_ - (42)

N F (1+/_) <aa--a fl> a u

This indeterminacy (lack of independence between 'a' and M) has been shown

not to be important, as long as only fatigue damage accumulation is considered, even

under complex loading histories. However, in the case, for example, of creep-fatigue

interaction the complete characterization (independent measurement of parameter 'a')

of the model is required.

To accomplish this, an indirect measurement of damage accumulation can be

obtained from the change in the stress-strain response during the fatigue process

using the effective stress concept. One method of experimentally measuring the

damage accumulation is to monitor the change in elastic response (Young's Modulus)

with applied cycles of stress, that is

E

D = 1 E (43)

^

where E is the effective (current) modulus and E is the initial one. A number of

researchers have used this procedure for both metallic and composite materials

[15,31,34] and in fact such measurements have been observed to correlate well with

quantitative micro-crack evaluations as well [42,43]. Now given D as a function of

remaining cycles (N/NF) , all that is required to determine 'a' is to plot the natural

logarithm of D versus that of N/NF, as shown in Fig. 27, calculate the average slope

Z for various stress amplitudes, and solve for 'a', i.e.;

(l+fl) <au--am>
aft (44)

a = Z <aa--a fl> a u

With this, all material parameters, i.e., a, _, b, au, afl and M, have been

determined in the case of isotropic materials.

If model II is selected, the function describing the influence of frequency needs

to be characterized, that is:
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This is accomplishedby plotting semi-logarithmically Ni versus (a m - agl)/(au-_rm)

for a variety of frequencies; where N i is obtained by making use of the empirical

expression put forth by Manson [66], that is,

N i = N F - 14 NF 0'6

Thus the intercept gives C(u) while the slope is -fii" Now plotting C(u) versus u

and rewriting the expression for C(u), for example

C
0

/]Q'= = co -

and plotting C(u) versus C(u)/u 7 we see that Uo7 and C o are the slope and intercept,

respectively, given a value for 7. The point here is to plot a number of curves

corresponding to different 7's and selecting the one that best fits the data. This

procedure is described in greater detail in reference [25].

Fatigue for Transversely Isotropic Materials

For transversely isotropic materials, e.g., hexagonally packed unidirectional

composite materials, the determination of the material properties follow a similar

process, except now additional testing is required both in tension and torsion in the

longitudinal and transverse directions, to define the extent of initial anisotropy, i.e.,

the ratios Wu, _?u' wft _ft_ and Wm, _m" Figure 28 illustrates schematically the

expected S-N curves for a composite material loaded longitudinally (0=0") and trans-

versely (0=90 °) at a given mean--stress. Given such data, as well as the associated

shear S-N curves, the various w and 77 ratios can be determined. Note that in the

present theory fi, a and b are assumed to be independent of fiber orientation (i.e.,

di). This assumption may need to be modified if experimental evidence suggests

otherwise, therefore during the initial exploration and characterization of a class of

composite systems the procedures illustrated by Figs. 24, 25, and 27 should be
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repeated four times, that is for the case of normal and shear type loadings in the

longitudinal as well as transverse directions.

Clearly the above discussion suggests a significant, and potentially quite

expensive, experimental program. This experimental program may however be able

to be reduced and augmented through numerical simulation using a suitable

homogenization technique with periodic boundary conditions. Furthermore utilization

of the homogenization technique should allow micro-mechanical effects (e.g., bond

strength, volume fraction, etc...) to be included in this phenomenological theory,

through the parameters, auL , aflL, Wu, r/u, wfp and r/fg

One important micromechanical aspect which has been intentionally neglected in

this initial formulation is the role of residual stresses (which are expected to be

significant) in the life of metallic composites. However, at this time insufficient

experimental data exist to verify the various extensions of the presently described

models, let alone admit the introduction of further complicating factors. Therefore

this aspect will be addressed in future work.

Creep During Cyclic Loading for Isotropic Materials

A final remark regarding the characterization of the required material

parameters. The parameter r in the rate form of the delay stress equation in Table

I, can be obtained most easily by assuming a sinusoidal loading history. For

example in uniaxial form the required equation set is

c = A sin wt

X = C sin (_ + _o)

dX = (a- X)/ T

W:2_V

and the solution is

X- A

r2w2)[ sin _- "rw cos wt](1 +

An expression relating the maximum delayed stress (Xmax) to the maximum applied

stress (amax) ,
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max

Xmax = (1 + W2T2)0 . 5

and is obtained by finding the stationary point of the above equation. Now

assuming that Xma x = amean at a sufficiently high frequency of loading , an

expression defining r is obtained

1
T = _ { (amax/amean)0"5 - 1.0 }

Clearly, the suitability of this frequency dependence should be examined when the

load history is a fully-reversed one.

4.3 CREEP-FATIGUE INTERACTION

Figure 4c is the extension of Fig. 2c and illustrates schematically the

interaction of intergranular and transgranular defects. As for isotropic models it is

surmised that the presence of cavities allow for easier crack propagation and that the

increase in stress intensity at a crack tip causes an increase in the nucleation and

coalescence of voids.

Analytically this interaction is again represented using the effective stress

concept, by assuming that the mechanical effects of creep and fatigue damage can be

directly added, (see equation (5)). Thus the two functions (fc and fF) can be

determined independently from pure tensile creep tests and pure high frequency

fatigue tests.

It is primarily in this context (creep/fatigue interaction) that the main

distinctions between models I, II and III of Table IV can be observed.

5.0 CONCLUSIONS

Three isothermal multiaxial continuum damage mechanics models for the creep,

fatigue, and creep/fatigue interaction of a unidirectional metal matrix composite

volume element have been presented. The intended applications are reinforced

structures in which the fiber direction may vary throughout but a single fiber

direction can be identified locally (local transverse isotropy) within a given volume

element. Each model is phenomenological, with varying degrees of complexity to
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accurately predict the initiation and propagation of intergranular and transgranular

defects over a wide range of loading conditions.

The development of these models are founded on the definition of an initially

transversely isotropic fatigue limit surface, static fracture surface, normalized stress

amplitude function and isochronous creep damage failure surface, from which both

fatigue and creep damage evolutionary laws can be obtained. The anisotropy of each

model is defined through physically meaningful invariants reflecting the local stress

and material orientation. All three transversely isotropic models have been shown,

when taken to their isotropic limit, to directly simplify to previously developed and

validated creep and fatigue continuum damage theories.

Results of a nondimensional parametric study illustrates i) the flexibility of the

present formulation when attempting to characterize a large class of composite

materials and ii) its ability to predict anticipated qualitative trends in the fatigue

behavior of unidirectional metal matrix composites. Additionally, the potential for

the inclusion of various micromechanical effects (e.g. bond strength, volume fraction,

etc.), into the phenomenological anisotropic parameters have been noted, as well as a

detailed discussion regarding the necessary exploratory and characterization

experiments needed to utilize the featured damage theories.

Two potential drawbacks to the present formulation are i) the scalar damage

measure employed and ii) the expensive experimental program required. Future work

in this area will include the examination of the utihty of the present formulation to

predict high temperature applications, the initiation of an experimental

characterization and validation program and the numerical implementation into a post

processing life prediction computer code.
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APPENDIX A - NOMENCLATURE

Stresses:

d

aij
d

O"

S° °

lj
S

max

o"

o m

is the Cauchy stress tensor

is the delayed stress tensor

is the uniaxial delayed stress
is the deviatoric stress tensor

is the normalized uniaxial maximum stress

is the normalized uniaxial mean stress

is the uniaxial mean stress

is the uniaxial maximum applied stress

D

a a is the applied stress amplitude, i.e., am-a

aHavg is the uniaxial mean hydrostatic stress

aHmax is the uniaxial maximum hydrostatic stress

a is the uniaxial effective stress

a o is the reference stress

Invariants:

Jo

J2

J2

I 1

12

13

Jf

S

is the stress invariant representing the maximum principal stress

is the first invariant of the total stress (hydrostatic stress)

is the second invariant of the deviatoric stress (expressed for shear)

is the second invariant of the deviatoric stress (expressed for normal

stress)
is the invariant representing transverse shear stress

is the invariant representing longitudinal shear stress

is the invariant representing the maximum normal stress in the fiber

direction

is the invariant representing maximum transverse tensile stress

is the square root of I 1

is the square root of 12

is the invariant representing the total stress in the fiber direction

represents the maximum amplitude in stress

represents the avaraged mean stress

represents the maximum octahedral stress
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Material Parameters:

Creep Damage

ac,fl c are the coefficients indicating the strength of contribution for the Jo and

invariants, respectively.

A c is the creep damage normalizing factor

r,k are the exponents in the creep damage evolution equation
v is related to the response time of the material

Fatigue Damage

¢g
5¢

aft, al
(y

U

M

T
U

%
So/,ao/

Soi,aoi

Sop,aop
_d

m

?7u

7]fl

77m

^

a_ a

b,b',b"

3

0
V

V
0

7

is the ratio of stress amplitude constant to static fracture stress
is the ratio of endurance limit to static fracture stress
is the normal stress endurance limit

is the ultimate normal stress or static fracture stress

is the normalizing stress amplitude
is the ultimate shear stress or static fracture stress

is the shear stress endurance limit

is the uniaxial initiation endurance limit

is the uniaxial propagation endurance limit

are the initial multiaxial and uniaxial endurance limits, respectively

are the initial multiaxial and uniaxial initaition limit stresses, respectively

are the initial multiaxial and uniaxial propagation limits, respectively

is the ratio of longitudinal to transverse normalizing normal stress

amplitude

is the ratio of longitudinal to transverse ultimate normal stress

is the ratio of longitudinal to transverse normal fatigue or endurance

limit stress

is the ratio of longitudinal to transverse shear static fracture stress

is the ratio of longitudinal to transverse shear fatigue limit stress

is the ratio of longitudinal to transverse shear normalizing stress

amplitude

is the scaling factor for the stress dependency in the fatigue damage
exponent

are parameters indicating the effect of mean stress
is the fatigue damage variable exponent which can be a function of stress
is the exponent on the normalized stress amplitude
is the exponent on the normalized stress amplitude during initiation

is the angle between the fibers and coordinate axis

is the frequency of the applied loading cycles
is the reference load frequency

is the exponent of the frequency term
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C o

E

E

is a pre-multiplying parameter in the initiation section of model II

Undamaged Young's Modulus

Damaged Young's Modulus

( )L subscript denotes longitudinal properties

( )T subscript denotes traverse properties

Miscellaneous:

di is the unit vector denoting the local fiber direction

D..= did-j is the second order direction tensor1j

A
D

D
D

C

D F
^

F f/
^

F
U

^

F
m

P

(

N

N F

N.
1

N
P

o)

t
T

< >

H()

A

A

A D

_p

is the Konecker delta function

is the isochronous creep damage failure surface
is the scalar variable representing damage

is an alternate damage variable that can be used interchangably with D
is the creep damage measure

is the fatigue damage measure

is the fatigue limit surface

is the static fracture surface

is the normalized stress amplitude

is the combined hydrostatic mean stress measure
is the parameter in P, weighting the influence of the maximum
hydrostatic stress
is the variable denoting number of cycles
is the number of cycles to failure

is the number of cycles to crack initiation

is the number of cycles for crack propagation

is the frequency of loading
is time

is temperature
are the Maclaurin brackets

is the Heavyside step function
is the isochronous creep damage failure surface perposed by Leckie and
Hayhurst
is the area on a face of a representative volume element

is the effective area on a face of a representative volume element
is the damaged area on the face of a representative volume element

is the phase shift in the sinusoidal load history
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Table I : The Leckie-Hayhurst Creep Damage Model

with

Multiaxial:

dD

dt X ( ad ] 1-Dc)-k

i j) r

Ac (

x(aij) = ac J0(aij ) + _c '_(aij) + (1-ac-/3c) J2(aij )

J0(aij) = m_x aii ; ,_(aij ) = akk ; J2(aij) = S i j S ij

where
akk

Sij = aij 3 _ij

dadj a i j--a dij

dt - r

and aij is replaced by adj in the creep model

Ac, r, k, ac, /_c' and r are material parameters, A c

temperature dependent.

and r are typically taken to be

Uniaxial

dD

dt

ad] r

- [XcJ (1-Dc)-k
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Table II • Fatigue Damage Models (ONERA NLCDM Multiaxial Form)

Model I •

dD F

where

[I_(I_DF)3+I]a [_-_2-_--- ( I_DF )]fldN

<_i-s t(_2 )>
a=l-a

< Cru--_ 3 >

M(_2) = M 0 (1-b ¢_2)

Sl(_2) = SOl (1-b' _2)

Model II •

N i =

C
0

Micro initiation :

[ <"_l--Si ('/_2)>]-3i7 < au__3 >

Si('_(2) = S0i (1-b" ¢£2)

Micro propagation :

dD F = [l_(l_Df)3+l]a [___.$2___- ( I--DF )]3

o_:l-a

Sp(_)= SopO-b'_)

<,_1-Sp(_2)>

< ¢u--_3 >

dN

4O



. Table H (Conclusion)

Modd III •

dD F = [1-(1-DF)_-{-1]a [_--(_.$2---_--- ( I_DF )]/_ H( _gl-Sp(_2) )dN

where a - 1 - a

<_1 -S l ( _'2 )>

<au--_ 3 >

M(_2) = M 0 (1- b._2)

st(_) = s0t (1- b'_)

Sp(_) = Sop(1- b'_)

Note M0, SO/, S0i , SOp , a, b ,b' ,b" , iS, 7 and a u

with a u also taken to be temperature dependent.

are material parameters

For all three models •

1

_1 = 2- max [max (J2[aij(tl)-aij(t2)])]
t 1 t 2

maximum amplitude

_2 = 2" {max ,,_(aij(t))+min fll(aij(t)))
t t

mean stress

_g3 = max J2(aij(t))
t

maximum octhaedral stress

where fl_ and J2 are defined in table I.
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Table HI • ONERA Fatigue Damage Models in Uniaxial Form

Model I •

am--_

dD F = [1--(1-DF)/_+I]a [_(_) ( I_DF)]_ dN

_--1-a

<am--a l (_')>

< au--am>

at(_ = at(0)+(1-bat(0))

M(_--) = M 0 (1-b a-)

Model II :

Micro initiation •

N i =
C o

<am--ali (_)> ]-_i7 < a u--am>

a_(_ - a_(O)+(1-b a_(O))

Micro propagation :

dD
P

m

amma

= [1-(1-Dp )/_+lla [M(a-) ( 1--Dp)]fl

_- 1-a

<am--alp (_)>

< au--am>
dN

M(a-) = M 0 (1-b a-))

where

% = %(o)+(_-b %(o))

N F = Ni+N p
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Table [] (Conclusion)

Model IH :

dD F = [I_(I_DF)_+I]a [lqC_) ( I--DF)]_ HC_m-_tp(_)) dN

< m-a
_= l-a

< _ u--_m>

#l(_ = cl(O)+(1-b _/(0))

M(_ = M 0 (1-b

_lp = _r_p(O)+(l-bcry(O))"_

[ = 1 if f >_ 0
H(f) I =Oiff<O

where, in the three models M O, _l(O), aa(O), a_p(O), b, a, /9, 7, au are defined

as material properties.
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, Table IV • Multiaxial Transvenmly Isotropic Fatigue Damage Models

Model I •

where

and

F
m

= ]/J dN
dD F [1-{1-DF)_+I]a [(1--DF)

a=l-a

^

<Ff/--l>

< 1--Fu>

aflL = %(0 ) (1-3b' P)

M L (l-3b P)= MOL

Model H :

Macro initiation

and

C o

< I--Fu> J

af/Li = af/Li(0) (1-3b" P)

with

Macro propagation •

aflLp

dDp - a [1-(1-Dp )z+I]

u L

F m <Ff/-1>

et [( I--D P )]8 _.p_
< 1--Fu>

a=l-a

af/Lp = af/Lp(0) (1-3b' P)

M L (1-3b P)
= M0L

dN
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Table IV (Conclusion)

Model III •

^

F
m

dDF = afILP [I-{I-DF)_+I]a [( I--D F )]/_H(Fflp-1) dN

with a = 1 - a

^

<Ffl--l>

^

<I--F >
U

aflL = %(0 ) (1-3b' P)

CffLp = afiLp(0) (1-3b' P)

M L (1-3b P)= MOL

where a, b, b', b," fl, 7, aflL(0), aflLi(0), af/Lp(0), auL, M0L are material

coefficients with aUL being taken to depend on temperature.

Note that •
1

aHavg = _- {max (aii(t))+min (aii(t)) } mean hydrostatic stress
t t

aHmax = max
t

max hydrostatic stress

P = (aHmax+(1-_) aHavg

t - is time during a cycle

(combines

criteria)

the Sines and Crossland
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Table V • Baseline Dimensionless Parameters for Isotropic and Anisotropic Materials

Isotroldc Transversely Isotropic

= 0.25 5_ = 0.25
= 4.5 _ = 4.5

/_ = 3.0 /_ = 3.0
a = 0.1 a = 0.1

= o.o _ = o.0

wm = 1.0 wm = 5.0

wfl = 1.0 wft = 5.0

wu = 1.0 wu = 5.0

rim = 1.0 rlm = 2.0

rifl = 1.0 rift = 2.0

riu = 1.0 riu = 2.0

V_umeeleme_

i 1 t
o" o"

Material

Virgin Damaged Equivalent
virgin

Figure 1 ,--Schematic of effective stress concept and

equivalence in strain.
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(a) Creep damage: coalescence of cavities and
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(c) Creep/fatigue damage: Interaction of intergranular and

transgranular defects.

Figure 2.--Schematic of different damage modes and the associated scale in a monolithic metal.
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Figure 3.--Nondgorous definition of representative volume
element.
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(c) Creep-fatigue: interaction of Intergranular
and transgranular defects.

Figure 4.--Schematic of different damage modes and the associated scale in a metallic composite. Fibers on
mesostructural scale are analogous to grain boundades on microstructural scale.
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Figure 5.mlllustratlon of an S-N curve for the dimensionless
isotropic baseline material parameters of Table V.
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Figure 6.--Illustration of the effect on the S-N curve of vary-
Ing the mean stress S = 0, 0.2, 0.4, 0.6, while holding all
other parameters fixed.
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Figure 7.ulllustratlon of the effect on the S-N curve of vary-
ing the fatigue ratio _. = 0.1, 0.25, 0.4, 0.55, 0.7, while hold-
ing all other parameters fixed.
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Figure 8.mlllustrstlon of the effect on the S-N curve of vary-
ing the parameter • = 1.1 25, 2.25, 4.5, 9.0, while holding
all other parameters fixed.
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Figure 9.--Illustration of the effect on the S-N curve of vary-
Ing the parameter a = 0.01, 0.1, 0.5, 1.0 and 2.0, while hold-
ing all other parameters fixed.
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Figure 10.mlllustmtion of the effect on the S-N curve of vary-
ing the parameter 13= 0.5, 1.0, 3.0, 5.0 and 7.0, while ho4d-
ing all other parameters fixed.

49



E
u_

I X ong.ud,nal 
15

.4 30

.2

(tm_lsvere_)) I I 1 I ] I

0 1 2 3 4 5 6 7 8

log (N)

Figure 11 .--Illustration of the degradation in load-life re-

sponse with variation in fiber orientation, 0 = 0, 15, 30, 60,

and 90 degrees.
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Figure 12.--The angle dependency of the longitudinal shear

(A1), transverse shear (A2) and normal stress (A3) compo-
nents.
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Figure 13.--Illustration of the effect on the S-N curve of vary-

Ing the ratio _u = 2, 4, 5, 8, and 16, at an angle of 15 de-
grees, while holding all other parameters fixed at the base-
line values.
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Figure 14.--IllustraUon of the effect on the S-N curve of vary-

ing the ratio _ft = 2, 4, 5, 8, and 16, at an angle of 15 de-

grees, while holding all other parameters fixed at the base-
line values.
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Figure 15.--Illustration of the effect on the S-N curve of vary-

Ing the angle of fiber orientation 0 = 0, 15, 30, 60, and 90

degrees with the ratio tou = 3 and all other parameters fixed
at the baseline values.
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Figure 16.--Illustration of the effect on the S-N curve of vary-

ing the ratio _om = 2, 4, 5, 8, and 16, at an angle of 15 de-
grees, while holding all other parameters fixed at the base-
line values.
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Figure 17.--Shows _u versus angle of orientation 0, for vary-

ing ratios of ¢Uu, i.e., 1.0, 2.0, 3.0, 5.0, 8.0, and 16.0, when _qu =
2.0 and all other parameters are those In table V.
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Figure 18.mlllustration of the effect on the S-N curve of vary-

ing the ratio "qu = 1,2, 4, and 5, at an angle of 15 degrees,
while holding all other parameters fixed at the baseline
values.
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Figure 19.--Illustration of the effect on the S-N curve of vary-

ing the ratio _lft = 1, 2, 4, and 5, at an angle of 15 degrees,
while holding all other parameters fixed at the baseline
values.
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Figure 20.--Illustration of the effect on the S-N curve of vary-

Ing the ratio _m = 1,2, 4, and 5, at an angle of 15 degrees,

while holding all other parameters fixed at the baseline
values.
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Figure 21 .mVadation of _u with angle of orientation 0, for vary-

ing ratios of _qu, I.e., 1.0, 1.5, 2.0, 3.0, 4.0, and 5.0, when =u = 5.0
and all other parameters are those In table V.
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Rgure 22.mVadation of _u with angle of orientation 0, for vary-

ing ratios of _lu, i.e., 1.0, 1.5, 2.0, 4.0, 8.0, and 16.0, when ¢ou =
16.0 and all other parameters are those in tab4e V.
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Figure 23.--Schematic of typical S-N curve for an Isotroptc

metallic matedal, assumed to be known experimentally.

Assuming R = (_min/(Tma x and the mean stress _ to be held
constant.
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Figure 24.MA plot of fatigue limit ((7_) versus mean

stress (_), from which (7_(0) and b can be obtained.

In _(_m- _ )

In (orm - _)

Figure 25.--A log-log plot of scaled cycles to failure versus

stress amplitude is shown, from which the matedal parameter

can be found.

(7a

log (N_-) log (N)

Figure 26.--A schematic of an S-N curve defining the mean-

ing of the normalizing factor

In D

In (N/NF)

Figure 27.--A log-log plot of damage (D) versus remain-

Ing life (N/N F) for various stress amplitudes.
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Figure 28.--A schematic depicting the expected S-N curves

for a unidirectional metallic composite, when loaded longi-

tudinally (0 = 0.0) and transversely (0 = 90).
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