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Executive Summary

This report covers the results of activities of NASA
Grant NAG3-1106, and extensions: "Analysis of Radiative and
Phase-Change Phenomena with Application to Space Based
Thermal Energy Storage". The simplified geometry for this
analysis is an infinite, axis symmetric annulus with a
specified solar flux at the outer radius. The inner radius
is either adiabatic (modeling Flight Experiment conditions),
or convective (modeling Solar Dynamic conditions). Liquid
LiF either contacts the outer wall (modeling ground-based
testing), or faces a void gap at the outer wall (modeling
possible Space-based conditions).

The analysis is presented in three parts representing
sequential stages of development: Part III, the initial
interim report, considers an adiabatic inner wall and
linearized radiation equations; Part II adds effects of
convection at the inner wall; and Part I includes the effect
of the void gap, as well as the previous effects, and
develops the radiation model further. Although the results
of Parts II and III are preliminary, and constitute
background material for Part I, they are nevertheless
included here for reference, and because they contain
details not found in Part I, which concurrently with this
report is submitted as a journal publication.

The original scope of the grant was to investigate
analytically the effects of internal radiation upon the
phase change processes in monocrystalline LiF, with
extension to effects of polycrystalline structure. However,
consultations with D. Namkoong during the summer of 1990,
indicated that the presence of a void gap could have a much
stronger radiative effect than the change in properties
represented by a polycrystalline structure. This, indeed,
turns out to be the case as examination of the results in
Part I will show.

The question of the structure of LiF solidifying in
vacuum under microgravity conditions is moot. Visual
observation at room temperature of the eutectic, LiF-CaFz,
solidified in canisters under 1l-g conditions, show a
partially transparent (translucent) optical property for the
visible spectrum. However, recent experiments and analyses
of radiation in clear and cloudy ice, indicate a relatively
small effect of the crystal structure on the overall phase
change effect. For LiF "cloudy"”" properties are not
available and it is felt that using the thin film data of
Palik and Hunter is the most accurate approach at present.




The main result from the analysis is the considerable
differences in melting behavior which can occur between
ground based 1-g experiments and the microgravity Flight
Experiments. In the ground based tests, under axial 1l-g
conditions, melted PCM will always contact the outer wall
having the heat flux source, thus providing conductance
from this source to the phase change front; for this case,
melting was found to occur primarily from the outer wall,
with radiative effects causing a small amount of melting
from the inner wall. 1In Space based tests and applications
under microgravity conditions, where a void gap may likely
form during solidification, the situation is reversed:
radiation is now the only mode of heat transfer (under the
axis symmetric conditions of this analysis) and the majority
of melting takes place from the inner wall. Concurrently
there is a large temperature excursion in the outer wall
facing the void gap. However, in both cases, complete
melting occurs in about the same time, for the adiabatic
inner wall condition (which is well approximated in the
Flight Experiments).

Another major result is the difference between
adiabatic and non-adiabatic boundary conditions. When there
is convection at the inner wall, it was found that non-
melted, partially melted, and fully melted conditions exist
depending upon the level of the source flux at the outer
wall. 1Indeed, the flux level for the planned Flight tests
would produce no melting at all if the Space Station
"Freedom” convective conditions were applied. Therefore,
results from the Flight Experiments can not be extended
directly to applications with convection, nor can ground
based test results be directly extended to the microgravity
environment.

Overall, the results of this analysis support the
requirement for interpretive analytical/numerical models in
conjunction with flight experiments, and it is hoped that
they provide useful fundamental information and insight.
However, difficulties associated with void formation and its
prediction are (perhaps) better addressed with redesign,
rather than too extensive numerical modeling. For example,
incorporation of ribbed surfaces on the canister interior
walls (similar to heat-pipe groves) would provide
conductance to the PCM, even in the presence of voids; such
surfaces are currently being investigated under ESA programs
in Germany. Even more promising is the concept of
introducing a capillary mesh, or matrix, within the canister
volume; not only does this provide void control, but it
enhances the effective PCM conductivity, as well;
preliminary analyses at UC-San Diego, and experiments at
local industry, indicate potential for vastly improved
operation and weight reduction. For future and ongoing
Solar Dynamic receiver development, it is recommended that
such redesign efforts receive a high priority.
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ABSTRACT

A one-dimensional thermal model is developed to evaluate the
effect of radiation on the phase change of LiF in an annular
canister under gravitational and microgravitational conditions.
Specified heat flux at the outer wall of the canister models
focussed solar flux, or electrically simulated flux; adiabatic
and convective conditions are considered for the inner wall.

A two-band radiation model is used for the combined-mode
heat transfer within the canister, and LiF optical properties
relate metal surface properties in vacuum to those in LiF. For
axial gravitational conditions the liquid LiF remains in contact
with the two bounding walls, whereas a void gap is used at the
outer wall to model possible micro-gravitational conditions.

With outer-wall initial conditions at the melting temperature,
and with the specified flux condition, it is shown that the
phase-change process is quasi-steady, leading to a simplified,
but nonlinear system of equations.

For the adiabatic cases exact integrals are obtained for the
time required for complete melting of the LiF. Melting was found
to occur primarily from the outer wall in the 1-g model, whereas
it occurred primarily from the inner wall in the ﬁ-g model. For
the convective cases partially melted steady-state conditions,
and fully melted conditions, are determined to depend on the
Source flux level, with radiation e#tending the melting times.

It is concluded from this study that radiation is an important
effect to include, and that fundamentally different behaviors

may occur for different gravitational and boundary conditions.




NOMENCLATURE

A designates adiabatic wall-2, area [m2]
B designates Biot-type (convective) wall-2
c designates liquid contact at wall-1l
c specific heat [J/kg K]

radiation function (from Appendix A)
G designates void gap at wall-l
ds scaled heat flux source (=ggn/€on)
gsm  Scaled heat flux source (=qs/on4)
h heat transfer coefficient [W/m2?K)
H heat of fusion [&/kg]
I radiation integral (from Appendix A)
K scaled linearized radiation conductance
k conductivity [W/m K]
N radiation/conduction number (=¢qgpNp)
Nnm radiation/conduction number (=aTm3Ar/keL)
N radiation/conduction number (=NK,)
P radiation exchange function (from Appendix A)
Q rate of heat transfer (W]
dg heat flux source [W/mz]
R thermal resistance [K/W, K%/W]
r radius [m]
Ar PCM overall thickness (=rj-r2)
T absolute temperature [K]
t time [s]
te time constant [s] (=p,Hg,AT2/ke,Tp)
4,v  logarithmic functions
w width (thickness) of wall [m]
Greek:

2 4
.q

XY R

ﬂ"‘
—
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o wall energy storage ratio (=wjpyuCyTpA()o, Hgy)

B Biot number (=hj;Ar/kg,)

35 outer scaled liquid thickness (=(rj-rjm)/Ar)

3o inner scaled liquid thickness (=(rpp-rp)/Ar)

€ emissivity

@ flux index

r radius ratio (=r2/rj)

K conductivity ratio (kegg/key)

A l1~-T = Ar/r;

u radiation parameter (=0.163)

P density [kg/m3]

v Stefan-Boltzmann constant (=5.67 ¥ 10”8 w/m2K#4)

T scaled time (=t/t.)

T! scaled time for adiabatic wall-2 (=Nggr=tqg/sr Hg,Ar)
" scaled time for conv. wall-2 (=(1-wf)r=tkL(Tm-Tf)/pLHs¢Ar2)
] scaled temperature defect (=(v¥-1)/Ngg)

v temperature ratio, (=T/Tm)

Subscripts:

0 vacuum, initial conditions

1 wall-1 (outer wall)

2 wall-2 (inner wall)

3 surface-3 (at gap facing outer wall)
a a-band (transparent band) of épectrum
b b-band (optically thick band)

e effective

f fluid boundary

fm fully melted

h convective

e = e - o+ g - e



i surface index (= j or 2)

j surface index (= 1 or 3)

k conduction

L liquid

m melting condition or temperature
r radiative

solid, source
storage

wall
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1. INTRODUCTION

The behavior of phase transition is central to the understanding
of phase change thermal energy storage for development of Solar
Dynamic Space Power [e.g., Labus et al. 1989]. Therefore, ground
tests have been conducted {Strumpf and Coombs 1990], Space
Shuttle flight experiments have been planned ([Namkoong 1989a,
1989b], and numerical analyses have been performed to determine
two and three dimensional effects of the phase transition process
[Kerslake and Ibrahim 1990, Wichner et al. 1988]). These analyses
and experlments utilize an annular canister containing the phase
change material (PCM) , where a solar heat flux (or electrically
simulated flux) is impressed on the outer wall of the canlster
(radius r; in Flgure 1); the inner wall (radius r,) either is
convective, or is nearly adiabatic during the hea% addition.

In application to heat receivers the PCM's are hlgh-temperature
salts, such as lithium-fluoride (L1F) with a melting temperature
of 1120 K (1556 F) [or the eutectic LiF-CaF2 which melts at 1040
K (1412 F)]. At these temperatures radiative transport can be a
51gn1f1cant part of the overall heat transfer processes within
the canisters. 1In the previous two-dimensional model [Kerslake
and Ibrahim 1990)] radiation was not included, and in the
three-dimensional model [Wichner et al. 1988] the effect of
radiation is obscured by the complexity of the numerical
computatlons, in the flight experiments [Namkoong 1989]
radiation will occur naturally, but the radiative effect cannot
be determined directly and must be deduced from canister surface
temperatures. There is, thus, a need for basic models and
solutions for the high-temperature enclosure with PCM and
radiation; to this end a one-dimensional analysis is here
presented.

The hlgh temperature salts exhibit considerable contraction upon
solidification, which can lead to void formation at the outer
wall under microgravity conditions in Space. Hence, in this
case, radiation is the dominant mode of heat transfer, in
contrast to axial 1-g conditions where liquid PCM contacts the
wall and conduction 1s dominant. Four cases are considered here
which model behaviors for adiabatic and convective inner wall
conditions, and under axial 1-g and g-g conditions.

Radiation within the canister enclosure follows conventional
spectral exchange between surfaces, except that the intervening
medium, LiF, has spectral properties which differ from those of
vacuum. Therefore, accurate appllcatlon requires spectral
integrations; these are presented in Appendix A where metal
surface propertles in vacuum are related to those in the presence
of the LiF medium. Following Williams [1988], and Song and
Viskanta [1990], a two-band approx1matlon is made utilizing

iggg?t measurements of LiF optical properties [Palik and Hunter

A two-surface thermal model is developed in Section 2 for
adiabatic and convective boundary conditions at the inner radius,
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and imposed heat flux at the outer radius. This differs from the
usual Stefan problem where the temperature at a boundary is
suddenly changed [e.g., Yao and Prusa 1989, Burmeister 1983, or
Solomon 1981], resulting in a boundary layer growing in time as
the error function [e.g., Arpaci and Larsen 1984]. However, as
shown in Appendix B, with the presently imposed heat flux
boundary condition, this layer does not develop, with the result
that PCM temperatures change only slowly in a quasi-steady
fashion, as was previously observed [Song and Viskanta 1990].

For the liquid PCM it is assumed that the conduction limit
applies, such that natural convection boundary layers do not
develop significantly and such that the phase-change boundary
remains axially uniform. This is valid for Rayleigh numbers
below 1700, for rectangular enclosures [Incropera and DeWitt
1985, p. 401], but has also been demonstrated experimentally for
much larger Rayleigh numbers with a heat flux boundary and an
aspect ratio of 4.5 [Zhang and Bejan 1989]. This is considered
an excellent approximation under 1-g axial gravitational
acceleration; under microgravity conditions the magnitude of
natural convection is suppressed, although some convection
effects can be present [Bayazitoglu and Lam 1987, Arnold et al.
1990].

2. PROBLEM FORMULATION

The thermal model is for a solid region surrounded by liquid
at either or both radii ri, and ry,, as indicated in Figure 1,
and (in some cases) having a narrow void gap near r;. The gap
models microgravity conditions where the PCM could completely
solidify, radially outwards, without making contact with the
outer wall. Under axial 1-g conditions, there will be contact
with the wall by liquid filling the annular gap. In these
annular liquid gaps convection will be driven by the
gravitational and temperature fields, but without feedback to the
thermal process for small Rayleigh numbers and long aspect annuli
[Arpaci and Larsen 1984]. In the following, four cases of
analysis are considered: A and B referring respectively to
adiabatic and convective boundary conditions at wall 2, and C and
G referring respectively to contact and gap conditions at wall 1.

The heat transfer processes shown in Figure 1 constitute a
combined radiation and conduction network. Radiation occurs
between walls 1 and 2 in the transparent spectral band of the PCM
(the a-band), and to a lesser extent between surfaces 1 and 3 in
the optically thick band of the spectrum (the b-band), as shown
in Appendix A. In each case considered, the initial condition is
fully solidified PCM at wall 1 (or surface 3), and at the melting
temperature, T,,. Under this condition the sensible heat terms
do not enter tge problem, and the quasi-steady network indicated
in Figure 1 provides the whole solution, as shown in Appendix B.

With reference to Figure 1, the conduction heat transfer
from surface i to im (i = jor 2 , j = 1 or 3) is given by:

2
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Ei___zlm | (2.1)

Qki =
o Ryi
where resistances are
tn(ry/Tyn) . n(rom/ro)
s = = ; = 2 . 2 3

and the effective liquid conductivity is kg,. Similarly

- Iym = Tom . . tn(rym/Trom) . .
Qks Rys ¢ Rgsg 27Kkag , J=1,3 (2.4,5)
Qnho = thz(Tz - Tf) ; Qst1 = (pC) AW, dTl/dt (2.6,7)

Energy balances yield, respectively, on surface 1

Qky 7 C - - contact

= 2.8
Qs = Qra * ( Qrp + Qst1 7 G = - gap ( )
on surface 2
Qx> ;~A - - adiabatic
= R 09
Qra { Qh2 - Qs 7 B - - convection (2-9)

and on surface 3

Qrp = QK3 (2.10)

The radiative heat rates are related to temperatures as

Qra = 2xr€ondTp? Pa(v¥y.,¥2) (2.11)

Qrp = 27T1€ oudTp? #Pp(¥1,¥3) (2.12)
where, from Appendix A,

Py = ¥1%°5 I1(¥q,¥5) - ¥3%°3 I5(vq,¥2) (2.13)

Pp = ¥1% - vat (2.14)

and ¢ = 0.163 is a small parameter.

At the phase boundaries the heat added results in the
movement of the boundaries through Hg,, the latent heat:

dr4 .
Qxj = Qks = = 2w Hgy rjm_E%m , 3=1,3 (2.15)
drom
Qk2 + Qg = + 2mp,Hg, Top It (2.16)
3
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In scaled, nondimensional terms the above relations are

combined and summarized as follows,

Wall 1:
— (Wl - 1)/V1 r C
Ngg = NP + ¢ NPy, + ad¢q/dr , G
wall 2:

Y21 4 gr(v, - vg) = NP,

uj
{ tn{l + AB,/T}/A , A

Y3 =N g - A85)/T}/KA , B

Surface jm (3 = 1 or 3):

(1 - Aaj):ij = *év; L_y0%-A
vy = n{l/(1 - Abj))/A
Surface 2m:
(r + Abz}g%2 = NP, , A
Surface 3:

¥a-1_ np,, G
V3

Here, the radiation/conduction number is
EnmUTm3(rj - _rs)
Kee

the Biot number is

= € omNm

N =

o ho(ry - rH)
Kee
the liquid thickness ratios are

B

5. = E3 — Tim 5, = F2m = T2
J o ry-r; ' "2 ry-r

TmKes
- __jkL_1[ = Ism
g = -
S €om?Tp €om

(1 - wz)/uj + B

o ey

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26,27)

(2.28)

(2.29)
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(2.30)
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3. RESULTS

3.1 Case C=A:

Under axial 1-g conditions with liquid contacting wall 1
("c"-cases), the energy storage in the canister walls is
negligible and the impressed heat flux effectively acts directly
on the PCM. With an adiabatic wall-2, conservation of energy
requires all of the energy to go into phase change; this results
in a closed form solution of the system, (2.17) to (2.32),
obtained from the sum of (2.20) and (2.23):

5, - A8,2/2 + T3y + A332/2 = Ngg7 = 7! (3.1)

In particular, for complete melting when rpp = Iy (37 + 32 = 1),
the scaled time is obtained from (3.1) as

or, in dimensional variables, the fully melted time is
2 2
(Y - r psH
teg = (rq - 2°)psHey (3.3)

Thus, for case C-A the time to melt the PCM is the Phase-change
heat content, divided by the input heat transfer rate.

Because of the liquid contact with the canister walls, the
wall temperatures do not depart strongly from Ty; therefore, for
the “"C" cases, it is adequate to use the linearized radiation
exchange, P,(¥3,¥3) = Ka(¥1 = ¥5), where the constant is
Ky = 4.5 f0c(1}, and fyc is from Figure A-2 of Appendix A.

For the parallel plate limit (A ---> 0, ' =7-> 1) the
adiabatic, linearized system has the exact solutions:

{2 + N'7") 7' N'7'

f1=3 |1 +n7") "’ 2 = 3 [1 + N'T'] (3-4,5)
r{2 + N'7'] 1 + (1+N'7')2

6 = —_— *

1 4 (1 + N'7!] (1 + N'T')z (3.6)

r 1 2

r'12 + N'7! N'T!

b2 =1+ N [1 + N'r'] (3.7)

where N' = NK,, 7' = Ngg7 and 6 = (¥ - 1)/Ngg.

These solutions clearly show the double surface phase-change
phenomenon (as also indicated in Figure 2-1,A). It is seen in
eguations (3.6,7) that &, grows linearly with 7' for small N'T7!
(i.e., initially), whereas 5; grows quadratically; the initially
linear phase boundary growth has been observed previously in the
absence of radiation [Evans et al. 1950].
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: Wall temperatures are determined in this analysis, rather

" than specified. The gradual increase in the wall temperatures in
(3.4,5) shows the absence of thermal boundary layers, as proved
in Appendix B. From (3.4) the maximum wall temperature increase

at complete melting when 7' =1 is ¥; payxy - 1 = NggJ in physical
terms T3 pax — Ty, = dg(r1-r2)/keys: or’'about 25 K above 1120 K,
which vailaates Tinearization o? the radiation term.

In the case of an annulus with finite radii (ry/ry =T # 1),

equations (2.17) to (2.22) were solved by numerical” integration,
with results as shown in Figure 2, for I' = 0.5. The initially

linear and quadratic growth of the two phase fronts is evident;
complete melting occurred at v'gy = 0.75, as predicted by (3.2).

3.2 Case C-B:

With the convection heat sink at the inner wall, the
possibility exists that gg may not be sufficient to cause any
melting at all. This is seen from the combination of (2.17) to
(2.20) which yields

ds
(1 - Abl)a—rl = Ngg - BT (¥ = V¥g) (3.8)

where the initial slope must be positive for 3; to grow; thus,
Ngg must be greater than the minimum

N' + 1/110
N' + 1/u° + BT

Nggo = BT (¥20 - ¥£) = BT (1 - vg) (3.9)

where from (2.19) ug = 4n{1/T}/KA, and v¥39 = ¥2(0) is obtained
from (2.18). In dimensional variables with hyy = €gp?Tp Ky, the
limiting minimum heat flux for phase change to occur 1s

Ty = T¢
= .1
90 = F . £ (3.10)

hzrz hrlrl + ks/llb{rl/rz}

which is the initial overall temperature difference over the
total thermal resistance. Similarly, there is a critical heat
flux for which the PCM just becomes 100% melted and at steady
state with zero slope at &, = 1; this is given by (3.8) as:

Ngg1 = Br(1 - "’f) s O, ds1 = hZ(Tm - Tf)rz/rl (3.11,12)

Partially melted, and unmelted, conditions have also been
observed experimentally [Strumpf and Coombs 1990]. Finally,
tpgre is a limiting flux above which melting occurs from both
sides,
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1
Nggy = Nggy(1 + (3.13)

N' 1
el

however, for small N', this is a high flux which is usually not
encountered.

To summarize, gg < ggg results in no phase change, ggg < gg
< ggj results in a sgeady state with only partial melting, gg; <
gs < dgz results in 100% melting in finite time from wali-1i, and
ds 2 ggz results in 100% melting in finite time from both walls.

The numerical integration of the system equations for the
partially melted case is shown in Figure 3, where the scaled heat
flux was taken as

gs = #ggy + (1 - ¢)gso ry 0 <9 <1 (3.14)

For the parallel plate limit the partially melted steady-state
condition can be obtained analytically as

N' + k + 8
1,58 ™ ® Ry K + 28 + (1-9) (k-1)N" (3.15)

For gg > ggy, the pase-change front grows rapidly to complete
melting, as shown in Figure 4, where the applied flux was taken

as dg = ¢gsl < gSZ'

3.3 Case G-A:

Under microgravity conditions where a void gap may form
between the PCM and the outer wall ("G"~-cases), there is only
radiative transport between the outer wall and the PCM. This
will cause considerable temperature increase in wall-1l, and
some energy storage in the wall.

There are no further simplifications possible to the system
(2.17) to (2.23). Nevertheless, for an adiabatic wall-2, it
possesses the exact integral:

a(¥y = 1) + 83 - A332/2 + I'sy, + A3,2/2 = Ngg7 = 1° (3.16)
which, for the fully melted condition, 3, + 33 = 1, reduces to
T'em = (1 + )/2 + a(¥y,gp - 1) (3.17)
By comparison with (3.1) and (3.2), these results represent the
sum of the energies stored in the PCM and in wall-1. Exact
calculation of the melting time from (3.17) is not immediate

because the original system must be solved to determine wall
temperature, ¥1, at any time; however, the ratio of wall

8
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capacitance to phase-change capacitance is a small quantity,
@ = 0(0.1), so that melting times are only slightly longer than
for liquid contacting wall-l.

A numerical integration of system (2.17) to (2.23) for
' =0.5, ggp = 0.1, @ = 0.1, and for radiation functions from
Figure A-1, is shown in Fiqure 5. In contrast to case C-A, most
of the melting takes place from the inner wall, and only a slight
amount near the outer wall; otherwise the melting is completed in
about the same time as previously because of the small value of
a.

The corresponding wall temperature variations are shown in
Figure 6, where there is a dramatic sudden increase in the outer
wall temperature, in contrast to the liquid contact case where
this temperature increased only slightly and gradually.
Asymptotic analysis shows this initial temperature "Jump" to be
approximated by

1/4.5
¥1,outer(0) = (1 + gsm/QOmeg(l)] /

(3.18)

The effect of the emissivity on vy, is evident in both (3.18) and
Figure 6, whereas there is a smaller effect on ¥2: the interface
temperature, v3, increased only slightly from 1. Clearly from
(3.18), an increase in the applied flux, ggn, would cause a
further increase in the outer wall temperagure.

3.4 Case G=-B:

With the gap at the outer wall, and convection at the inner
wall, the flux limit definitions for gso, (3.9), and ggq, (3.11),
apply as previously; however, ¥o must now be calculatea from the
nonlinear equations. Because «“is a small quantity it is found
for the steady-state limit that y 0 =1 - 0(«N), such that ggg =
9s1{1 - 0(x)}: that is, for any pﬁase change to occur at all, dg
must be very near the limit, ggy- Above this limit, ds2 = 9g1(1
+ 0(x)}, so that melting will occur from wall-2 for gg Just
slightly above dgi -

An example of this behavior is shown in Figure 7, where gg =
#gg1: for ¢ = 1 there is only slight melting from surface 3, and
no melting at surface 2; for ¢ = 1.5 the melting rates are about
the same from both surfaces, but a long time is required for
complete melting; for ¢ > 2 the melting rate is greater from
surface 2, the inner wall, and complete melting was attained for
the times, 7", shown in the figure. Comparison with the
adiabatic cases in Figure 4 shows that a longer melting time is
needed with convective heat transfer, as expected.

) Corresponding temperatures are shown in Figure 8: after the
initial jump, these remain essentially constant during the
melting process. With the initial condition of & (0) =0

(¢3(0) = 1), ¥4(0) is greater than 1, approximateiy as given by
(3.18), and ¥2(0) is slightly less than 1, as shown.

9
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CONCLUSION

Four analytical cases have been considered for the melting
of Lithium-Fluoride in an annulus with impressed heat flux at one
boundary, including the effect of internal radiation heat
transfer. It was found that this process is quasi-steady when
the solid LiF near the outer wall is initially at the melting
temperature. Radiation was found to be an important effect,
especially in the presence of void gaps near the outer wall.

For the adiabatic inner wall condition, the time for
complete melting is a fixed quantity which depends only slightly
on voids. However, the location of the phase boundaries is
strongly influenced by the void gap, with melting occurring
primarily form the outer wall when there is liquid contact, and
primarily from the inner wall when there is a void gap at wall 1.
Wall temperatures remained close to the melting temperature with
liquid PCM contacting wall 1; but, the wall-1l temperature has a
large and sudden increase above the melting temperature when a
void gap is present at wall-1l.

For the convective inner wall conditions there may, or may
not, be complete melting, depending on the level of impressed
heat flux, relative to the fluid temperature and other problem
parameters. For liquid PCM contacting wall 1, melting occurred
only from wall 1 for moderate heat fluxes, and steady-state
partially melted conditions were determined; for a void gap at
wall -1, conditions for partial melting almost did not exist, and
a substantially high heat flux is required in order to cause any
melting at all.

In summary, the results show fundamentally different
behaviors depending on the boundary conditions employed. Thus,
experimental results from the flight experiments, where the inner
wall is essentially adiabatic, can not be used directly for
convection applications, without interpretive
analytical/numerical modeling; nor can ground-based results,
under 1l~-g acceleration, be used directly in microgravity
applications.
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APPENDIX A
RADIATION MODEL

Experimental data for Lithium Fluoride indicate a near
perfect transparency for wavelengths below 5.5 um, and optically
thick properties for wavelengths above about 7 um [Palik and
Hunter 1985]. Therefore, a two-band radiation model is
considered where the LiF is transparent for wavelengths below
5.5 um (the a-band), and optically thick for wavelengths above
this value (the b-band). (This model obviously neglects
processes in a narrow band where the LiF is neither transparent
nor optically thick.)

In the a-band there is radiation exchange between the two
bounding metal walls, and spectral variations of properties of
the walls, and of the LiF with index of refraction n, are
included. 1In the vicinity of T, = 1120 K most of the emitted
radiation is in this transparen% band. In the b-band, there is
a minor radiative addition to the LiF conductivity and, in the
prescence of a void, minor radiation between wall-1 and the LiF
surface.

Wall Emissivity:

Spectral emission in to a medium with refractive index n is
given by the Planck formula and the spectral emissivity [e.g.
Sparrow and Cess 1978}:

e, = €yep, = n%¢ e = €rep (A.1)

where { = co/n\T = v/vg, vg = coT/Cca, Cg = 3x108 n/s,
Cy = 14,388 um K, and where

15 ¢4 3

®bt Ty, & -1 (A.2)

Here ¢, represents emission into the medium relative to blackbody
emission into the medium, and ¢, represents emission into the
medium relative to blackbody emission into vacuum; the latter can
be greater than 1 whenever n is greater than 1.

For a number of metal surfaces at the high temperatures
under consideration, experiments have shown that the normal
spectral emissivity varies with wavelength to the -1/2 power,
even into the visible part of the spectrum [Seban 1965,
Touloukian 1970}); therefore, consistent with electromagnetic
theory, we take

Ix ' ‘c ' '
- - A _ i
€, = €, =N €,¢ oy =N €xc o (A.3)

where €,, is the best-fit emissivity for n = 1 at wavelength L
and where {. = c3/)\.T. For emission into vacuum this model

1l

S

Gl e



yields the total normal emissivity

m 3.5

_ €3 15 ] ¢3-5dr 1 _ey¢

Eot = -2 pu G (A.4)
= et -1 C
N 0 4 Ntg'
where c, = »4/(15x12.27) = 0.529. For example, for Nickel at
1390 K with the experimental value ¢, = 0.25 at 3o = 1 um [Seban
1965}, the model yields €gy = 0.147; or féc = 0.08 at xg =9 um
a h

it yields €g¢ = 0.141, which indicates goo greement wi
experimentag measurements for this material at this temperature.

Now combining (A.1), (A.2) and (A.4), the effective spectral
emissivity for emission into medium n is given by

Ec = C4n3fot\l { (A.S)

Thus, if the total normal (hemispherical) emissivity function

€ ot (T/Tp) for emission into vacuum is known in the vicinity of
T, then (A.5) yields an approximate spectral normal
(Eemispherical) emissivity for emission into medium n. For
example, with €g¢ = 0.147 from the above calculation, the
emissivity at » = 1 ¢m for emission into LiF (n = 1.4), is 0.58.

A-Band Radiation Exchange:

Application of radiosity microbalance to the phases and
surfaces indicated in Figure 1 yields the spectral flux at wall
1 [e.g. Siegel and Howell 1981]}:

_ enhr1 — enro
91 1 1/Fq5 (A.6)
+ - 7Te
€ra €¢2

where the effective interface transmittance is
Te = (1 = 203)/(1 - p3) = 73 = 0.98. Thus, the a-band total
radiative flux is

[« <] @
da1 = J, @18 = vo J, @1k (A.7)
a a
Combining (A.2) with (A.5) to (A.7) results in

= 4.5 - 4.5
€ om’ T V1 I, Vo I, (A.8)

where
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1 ¢3-5/(ef - 1) a¢

I;

12.27 ,r——“ \I !
Enm ¥ + EomN ¥o _ c460m73\r;;?ﬂ

¢
al ny3 €op(vy) © Fiz ny3 €ot(¥a)

(A.9)

and {aj = {am/¥is {am = ©€2¥a/<0Tms ¥i = Ti/Tms €om = €ot(1)-

In (A.9), n; = n(¥1{) and ny; = n(¥y{) for LiF contact with
both walls, whereas np =1 in the prescence of a void gap at
wall-1l; for the region considered, the LiF spectral refraction
index data of Palik and Hunter [1985] may be represented as a
function of wave number, as follows:

n(¥<) = 1.38 + 7.79x10~4 y¢ - 2.3 e~1-87 ¥¢ (A.10)

A closed-form 1ntegratlon of (A.9) is not possible; however,
it may be evaluated in the vicinity of Tp by use of Taylor series
expansions about this temperature. Since wall temperatures, on

an absolute scale, do not depart strongly from T this is a
valid procedure, which yields for LiF contact w1¥h wall 1 and 2,

Ii,c = focl¥i)

+ [va-1 + w’—l]{[e am - %]flc(¢i?n(§)) + fzc(Wi)}

+ €om (Vi-1)f3o(v3) (A.11)
and for a void gap at wall 1,
. _ £' 1 .
Ij,g = fog(¥i) + (wl-l)[;;ﬁm - Ejflg(wi,l)

+ €om73 (Wi'l)fag(wi) (A.12)

where for v = ¢ or g, |

! 14 g(£)dag
Loy (V1) = 1357 Sam/¥i Doy (A.13)

e _ 1 14 )R
f14(¥1im) 12.27 J{ap/¥j Dgy“n (A.14)
3 14 f n'(X) gf)&
f » = ee———— J -
27 (Vi) = 5737 Yam/¥i Dga?n*(X) (2.15)
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cyq/2 Il4 N § g(g)d(

£ . = .16
Here the denominators are
1+ 1/F
] - . 7
Doc “‘;37%712 catomN ¢ (A.17)
1
D =1 + = Cyt A.18
0g Find3(z) o4 om73N ¢ (A.18)
and the numerator function is
(3.5 -
g(t) = ET—:—I (A.19)

which is less than 1% at the computational upper limit of { = 14;
here the apostrophe (') denotes the derivative with respect to
the function argument. A sample evaluation of fg, is shown in
Fig. A-2.

B-Band Radiation Effect:

In the optically thick region of the spectrum, there is
radiation exchange across the wall-1l void gap according to

Ca
e - e B
0 — + — -1
€r1 €3

where €.y is obtained as before, but with n = 1, and €., is
obtaineé from electromagnetic theory as

e - 4n
{27 (n+1)2 + k¢

(A.21)

With the data of Palik and Hunter [1985], evaluation of (A.20)
and (A.21) resulted in

dp1 = #€om?Tpt(¥v14 - v34) (A.22)
where ¢ is a slightly decreasing function of increasing
temperature, with an average value of u = 0.163. Thus, radiation
exchange across the gap is quite small.

Energy absorption in the medium is modeled as Rosseland
conductivity [e.g., Edwards 1981, p. 296; 0zisik 1973, p. 318]:

gy e T e ey . Ty k aidd e " et e L SOV R v



=[5 cA%em g, o3 gpaffa _Lref
*r Ixa 3a, of P T Tlo a(ef 2 ¥ (A.23)

where a, = 4nk/). Evaluation of this function showed but a weak
temperature dependence, and an approximate value of 0.005 W/cm K,
which is an order of magnltude less than the medium thermal

conductivity. Thus, there is only minor b-band radiative effect
on the phase-change heat transfer problem.
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. APPENDIX B
ASYMPTOTIC ANALYSIS OF THE FLUX STEFAN PROBLEM

Consider a Plane layer of liquid pcM initially jn
equilibrium at the melting temperature, Tpm, and having initial
thickness 1, ? it is in contact with the canister wall at X =,
and with so?id PCM at X = Lo. At time tg = 0, heat flux q is

o

suddenly applied at x = + Yielding the llowing boundary value
Problenm:
13T a27
a 3t  ax? , (B.1)
T(X,tp) = TrL(t),t] = T (B.2,3)
oT
-k ax’x=o - d (B.4)
oT dL
-k aXIX=L(t) = PH S (B.5)
L(0) = L, (B.6)

é
Here a = thermal diffusivity, k = conductivity, o, = density, ang
H = latent heat of fusion.

This is a penetration-type boundary layer problem in which
the "disturbance", d, Propagates from X = 0 as the boundary layer
thickness

3(t) =\ 6at (B.7)

to reach the phase-change boundary in time t,, where 3(ty) = Ly

t; = Ly2/6a (B.8)

During this time interval, 0 <t < t;, the wall temperature
increases as

N Tw = Tp + Qo (t)/2k = Tm + Qv/(6at)/2k (B.9)
wit

No changes occur at the phase-change boundary untii t > t;. It
is noted, however, that for arbitrarily thin initjaj liquid
layers (lim{Lo} ==> 0), both t, and 3 (t) approach 2ero, so that
there is Nno temperature increase in this limit, This is the case
when the solig PcM initially contacts the Canister wall.

Two time Scales are evident in the system, (B.1) to (B.s6),
the diffusion time, tg = Lo“/a, and the Phase-change time,
tp = pHLy/q, with tg << tp. This makes the System a classical

spe.T it GE 15
ORIt PAGE 3
oL

PR A et g e g vy g TN e e TPV 0 b




singular perturbation problem in time, which may be solved by
asymptotic expansions or multivariable methods [Nayfeh 1981,
-Smith 1985]; in combination with the integral approximation
[Arpachi and Larsen 1984] this yields to lowest order the
composite expansion

2 L -3a(t-ty)/Ly?
Tw = Ty1 + -E;E(t-tl) + giﬂ[l - et /Lo ] (B.11)

It is seen in (B.12) that there is a discontinuity in wall
temperature as represented by the "inner-time" exponential. But,
again, for Lg --> 0, this singularity is removed and only the
outer, "quasi-steady" solution remains:

2
+I— ¢ (B.12)

Tw,outer = Tn ko H

It is noteworthy that the linear outer-time solution satisfies
the initial condition T,(0) = Tp, in contrast to the conventional
temperature Stefan problem where the initial wall temperature at
tot is not Ty.

Therefore, for the solid PCM initially contacting the
canister wall, or for small initial liquid layers, there is no
significant boundary layer effect, or effect of the liquid
specific heat, and the outer-time solution provides the whole
solution to the problem. This conclusion is also reached when
the initial temperature profile is different from constant at Ty-
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RADIATION AND PHASE-CHANGE
OF MONOCRYSTALLINE LITHIUM-FLUORIDE
IN AN ANNULAR ENCLOSURE

WITH SPECIFIED HEAT FLUX

by

Kurt 0. Lund
135 Sixth Street
Del Mar, CA 92014

Abstract

A two-band radiation model is utilized for radiation exchange of
LiF contained within an annular canister, and its effect on phase
change is evaluated. Linearization and the quasi steady
approximation leads to simplified one-dimensional heat transfer
models, having a specified heat flux at one boundary and either
an adiabatic or convective condition at the other, and to several
exact solutions.

For the adiabatic case, radiation caused phase-change to occur
from both boundaries, and eliminated the influence of solid
conductivity; for the convective case, partially melted
steady-state conditions, and fully melted conditions were
determined to depend on the heat flux level, with radiation
extending the melting times.

Radiative exchange between the two walls was found to be about
twice as high for the LiF medium as for vacuum, but the overall
effect of radiation was limited to about ten percent of the total
heat transfer rate for practical heat flux levels and annulus
dimensions. Further analysis is required to access the effect of
voids within the enclosure, where radiation may have a stronger
effect. ’
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NOMENCLATURE

bsorption coefficienty 1/(cs)
fitted constants

modified blackbody radiosity (W/cm
radiation constant

emmissive power (w/cmz)

emissivity fractional function
scaled, nondimensional heat flux)
latent heat of fusion (J/g)

heat transfer coefficient (W/cm“K)
extinction coefficient, thermal conductivity (W/cmK)
radiation number

refractive index

heat transfer rate per unit length (W/cm)

heat flux (w/cmz)

radiosity (w/cmz)

radiation or thermal network resistance (cm—z), (em=-K/W)
electrical resistivity (Ohm-cm), radius (cm)

absolute temperature (K)

time minutess)

logarithmic conduction terms

2y

absorptivity

convection Biot number

scaled liquid thickness

emissivity

fraction of limiting heat fluxes
radius ratio

nondimensional surface temperature
ratio of eff. solid to eff. liquid conductivity
wave length

1 -7T

density (g/cm3), reflectivity
stefan-Boltzmann constant (w/cm2K4)
nondimensional time

integration variable

Subscripts

® O m O

pertaining to To

pertaining to transparent upper limit,
blackbody

effective
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Or >» < W % 33

2
1

fluid of convection boundary
convection boundary
surface 1
conduction
liquid
melting or phase-change temperature
normal direction
radiation, reference
solid, source
vacuum
spectral quantity
surfaces 1 and 2
»2 flux limits
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1. INTRODUCTION

The behavior of phase transition is central to the
understanding of Phase-change thermal energy storage for
development of Solar Dynamic Space Power [e.g., Labus et al.
1989] . Therefore, ground tests have been conducted [Strumpf
and Coombs 1990], Space Shuttle flight experiments have been
planned [Namkoong 1989a, 1989b], and numerical analyses have
been performed to determine two and three dimensional
effects of the phase transition process [Kerslake and
Ibrahim 1990, Wichner et al. 1988] . These analyses and
experiments utilize an annular canister containing the phase
change material (PCM), where a solar heat flux (or
electrically simulated flux) is impressed on the outer wall
of the canister (radius r1), and convection at the inner
wall (radius r2). In the Flight Experiments the convection
is simulated by conduction in a rod and subsequent
radiation to space [Lund 1991]; the effect is a near
adiabatic condition at v, during application of the heat
flux at ra.

In application to heat receivers the PCM’s are high-
temperature salts, such as lithium-fluoride (LiF) with a
melting temperature of 1120 K (1556 F), or the eutectic
LiF-CaFz which melts at 1040 K (1412 F). At these
temperatures radiative transport may be a significant part
of the overall heat transfer Processes within the canisters.
In the previous two-dimensional model [Kerslake and Ibrahim
1990] radiation was not included, and in the three-
dimensional model [Wichner et al. 1988] the effect of
radiation is obscured by the complexity of the numerical
computations; in the flight experiments ([Namkoong 1989]
radiation will occur naturally, but the radiative effect
cannot be determined directly as only canister surface
temperatures will be measured. Combined convection and
radiation in vacuum was investigated for a square enclosure
[Yucel et al. 1989], radiation with scattering in an annulus
was considered [Tsai and Ozisik 1990], and plane one-
dimensional combined radiation, conduction and phase change
was investigated for low-temperature ablation {Yuen and
Khatami 1990] and ice removal [song and Viskanta 1990] .
There is, however, a need for basic models and solutions for
the high-temperature enclosure with PCM and radiation; to
this end a one-dimensional analysis is here presented. The
Present analysis is limited to monocrystalline salts in
contact with the canister walls; the Presence of voids
and/or polycrystalline structure will be treated in a
Separate publication.

Although the canisters invariably are finite in length,
and actual heat fluxes may be circumferentially and axially
non-uniform, there are a number of reasons why a one-
dimensional approximation is useful:

N
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a) closed-form or simplified solutions are possible
which illustrate the basic phenomenoclogical
interactions;

b) solutions provide bases against which complex
numerical models may be compared for identical
boundary conditions;

c) solutions provide ready estimation of experimental
behaviors, such as surface temperature-time
variations;

d) the phase-change process is predominantly one-
dimensional in the radial direction for canisters
with larger length-to-thickness aspect ratios.
This was the case even at a lower ratio [Kerslake
and Ibrahim 1990].

Radiation within the canister enclosure follows conventional
exchange between diffuse surfaces, except that the ‘
intervening medium, LiF, has spectral properties which
differ from those of vacuum. Therefore, accurate
application requires spectral integration. Following
Williams [1988], and Song and Viskanta [1990], a two-band
approximation is made utilizing recent measurements of LiF
optical properties [Palik and Hunter 1985]. It is shown in
Section 2 that at the melting temperature, Tm = 1120 K, the
majority of radiation emissive power occurs in the
transparent part of spectrum for LiF. For the smaller part
at longer wavelengths, a "thick-gas" approximation is used
which adds a term to the apparent thermal conductivity.

The emissive properties of the metal canister surfaces is
assumed to follow the Hagen-Rubens relation. With the
spectral properties of LiF this leads to a spectrally
integrated emissivity fractional function which is the ratio
of the average emissivity of the surface contacting LiF to
the emissivity of the surface in vacuum at the same
temperature.

A two-surface thermal model is developed in Section 3 for
adiabatic and convective boundary conditions at the inner
radius, and imposed heat flux at the outer radius. This
differs from the usual Stefan Problem where the temperature
at a boundary is suddenly changed [e.g., Yao and Prusa 1989,
Burmeister 1983, or Solomon 1981], resulting in a boundary
layer growing in time as the error function [e.g., Arpaci
and Larsen 1984]. However, with the Presently imposed heat
flux boundary condition, this layer does not develop, with
the result that surface temperatures change only slowly in a
quasi-steady fashion, as was Previously observed [Song and
Viskanta 1990]; this phenomenon is utilized presently as the
quasi-steady approximation.

Besides the gquasi-steady approximation in the liquid, it is
further assumed that the conduction limit applies, such that
natural convection boundary lavers do not develop
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significantly and such that the Phase-change boundary
remains axially uniform. This is valid for Rayleigh numbers
below 1700, for rectangular enclosures [Incropera and DeWitt

and an aspect ratio of 4.5 [Zhang and Bejan 1989]. This is
considered an excellent approximation under 1-g axial
gravitational acceleration; under microgravity conditions
the magnitude of natural convection is Suppressed, although
some convection effects can be Present [Bayazitoglu and Lam
1987, Arnold et al. 1990] .

The results of the analysis in Section 4 are that, with an
adiabatic inner wall, the rate of melting of the PCM is
independent of radiative and conductive effects within the
annulus, but depends only on the heat flux at the outer

wall, and the volume and heat of fusion of the PCM. The

and inner surfaces; solid conductivity did not enter into
this process. With convection at the inner wall, melting
occurred from the outer wall, only, at practical flux
levels, and a partially melted steady~state condition was
found for moderate fluxes; at a somewhat higher flux,
complete melting is shown, with the required time dependent
on all problem pParameters.

Although the radiative effect in LiF is about twice that in
vacuum, the radiation/conduction number is quite small for

the annulus geometries considered, and the effect on phase-
change remains small compared to conduction. Nevertheless,
the effect is significant, and a simplified radiation model
should be included in analytical and numerical models.
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2. TUWO-BAND RADIATION MODEL

The effect of radiation within the enclosure is determined using
the optical properties of LiF: refractive index, n, and
absorptive index, or extinction coefficient, k. A summary of
recent measurements is shown in figures 2-1 and 2-2 for the
spectral region of interest [Palik and Hunter 1985]; also shown
is the Planck spectral emissive power for the melting
temperature, 1120 K, which shows that emissions whithin the
canister lie primarily between 1 um and 6 um. It is seen that
there is a transparent region of the spectrum near 1 um (where

k --> 0); the refraction index appears relatively constant in
this region, but decreases somewhat with increasing wave length.
In addition to the optical properties of the LiF, the canister
surface properties are required, as will be shown.

2.1 Emissivity and Absorptivity

The assumption is made in this analysis that the metal surfaces
bounding the LiF are diffuse. For spectral emissivity, EK, the
emissive power of the surface is given by [Sparrow and Cess 1978]

« 0 3 3
‘ka da T4 15 n £=dk (2 y
e, = £.e.,dN = T — _— e, .1
~a
where & = czlnkT, Ea = 02/nakaT = c3/T = 1995(K)/T, n’ = dn/dx,

and where c5 is the radiation constant, c, = 14,388 umK. Here,
the index of refraction for LiF is the spectral quantity shown in
figure 2-1, which is approximated as

n=1.39 - 0.002712%2 = a - b)? (2.2)
and the upper limit of integration is taken as ka = 5.5 um.

For the metal surfaces bounding the LiF the Hagen-Rubens relation
is assumed for the spectral normal emissivity [e.g., Sparrow and
Cess 1978]

Bap = 36.5\Jr/k (2.3)

where r is the electrical resistivity in Ohm-cm, and A is the
wavelength in gm. The result in vacuum of spectrally integrating



(2.3) is the total normal emissivity

En,v = 0.576" YTS (2.4)
where Ts is the surface temperature in degrees Kelvin. The form
(2.3) applies well to resistive alloys, such as stainless steel
[Edwards and Bayard de Volo 1975, as quoted in Edwards 1981), and
is assumed here to represent, approximately, other canister
materials such as the Haynes alloy [Strumpf and Coombs 1990] .

Let r be proportional to the absolute temperature, then r =

Ts/TO’ where o is the resistivity at temperature To» and where
from (2.4) the total normal vacuum emissivity at this temperature
is EO v- Substitution of these variables into (2.3) results in
the normal (or hemispherical) emissivity ratio

£ 36.5 T
A - “JTs/k = -2 c4\Jnc (2.5)

0,V 0.576To To

£

where Cq4 is the nondimensional number, Cq = 36.5/0. 576J
0.529. Now, substitution of (2.5) into (2.1) vresults in

4 - .
e, = 1 TS[TS/TOJ to.v TealTg) (2.6)

where the emissivity fractional function is defined by

PR 15 n3 - £3dr , )
- (T) =¢c, — —— N nl - 2.7
&a 4 ﬂ4 - n + an?’ e* ~ 1

*a
This function is shown in figure 2-3 for k = 5.5 um, where it is

seen that the effective total emissivity 1s roughly twice that of
the value in vacuum:
) (2.8)

&£ (T

a ) = £0,v (Tg/To) FealT

S S

A completely similar procedure yields the effective absorptivity

foa(Tg) (2.9)
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where Te is the environment (other surface) temperature.

For subsequent calculations, the emissivity function is
approximated as

frg = 2.07(T/T 09278 = 5, (1/7 )3 (2.10)
Although the preceding model is approximate, it nevertheless
incorporates the essential features of emission and absorption of
the surfaces bounding the LiF in its transparent region. In any
event, results cannot be more accurate than Eo,v is known. 1In
the subsequent calculations, To is taken as Tm' such that Eo,v =
Em,v and the above temperature dependence need only be accurate
near the melting temperature, T -

2.2 Thick Gas Approximation

It would appear from figure 2-2 that k is sufficiently small for
the wavelengths of interest that the medium can be considered
perfectly transparent. there is, however, a region at the longer
wavelengths where absorption occurs in the medium, as can be
shown by evaluating the absorption coefficient [Siegel and Howell
1981, p. 427] from the data of Palik and Hunter [1985]:

_ 2nt (2.11)

as shown in figure 2-4. These values may also be read as the
optical thickness for a 1 cm layer of LiF (or as half the optical
thickness for a 2 cm layer). The results are in general
agreement with previous measurements [Amr. Inst. Phys. Handbook
1957];5 thus, the assumption of an optically thick gas above X = 6
or 7 um is supported by the more recent measurements. The net
effect is an additive term to the LiF thermal conductivity
[Williams 1988]:

1670213 T(K) - 320
, = — % 0.02—————— [W/cmK] (2.11a)
3a, 800

Since, as seen in figure 2-1, there is but little radiant energy
at the higher wavelengths, this two-band radiation model is
considered an adequate approximation, especially in view of
uncertainties associated with the canister surface properties.
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2.3 __Radiant Energy Exchange

For each surface, i, in the enclosure the net radiative heat
transfer rate can be expressed as follows,

Q = — (2.12)

where qi+ is the radiosity, where Ci = EiUTi4/ai is the modified
.blackbody radiosity, and where the surface resistance is

R = —— (2.13)

These relations may be combined with formulas for radiosity
between surfaces [e.g., Edwards 1981, p. 117] so that
conventional radiation network solutions may be used with the
modified blackbody surface radiation, and with the surface
resistance given by (2.13). A closed-form analytical solution
is, of course, not possible as o5 depends on the "other-surface"
temperatures, as shown in (2.9); however, an adequate iterative
sclution can be obtained with a weighted average for To. For a
two-surface enclosure, (2.12) and (2.13) yield

Q =-Q = (2.14)

or, with F21 = 1, ¥ = T/Tm, and (2.8) to {(2.10), the radiation
exchange is

4
Q = AluTmp(¢1,¢2) (2.18)

where



(2.16)

¢
A linearization of (2.1&) about T = Tm (¥ = 1) results in

PC¥Y %) = Ky (¥ = %) (2.17)
where
K = >t 28 (2.18)
m - [1 +a78,] -1
fm,v Tem v

Since, as will be shown, wall temperatures differ only
slightly from Tm’ the linearization is valid and within the
accuracy of other approximations made.
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3. HEAT TRANSFER MODEL

The PCM contained by the annular canister in the Flight
Experiment [Namkoong 1989]), as well as in applications with
annular geometry [Strumpf and Coombs 1990], is to cycle between
the charging (heat addition) and discharging (heat removal)
modes. In the first mode heat is added to (impressed upon) the
large—-diameter, outer wall to melt the PCM while some heat
transfer may or may not occur at the small-diameter, inner wall;
in the second mode, heat is transferred from the inner wall to
solidify the PCM while the outside wall is, more or less,
insulated.

We consided the basic charging mode where at time zero the
external heat source is Qs(w/m) and the PCM is 100% solid and at
temperature, T, at the outer wall. Furthermore, to obtain a
basic (or fundamental) solution, an infinitely long cylinder is
assumed together with axis—-symmetric heat input. Additionally,
axial gravitational acceleration is assumed such that any void is
removed to the end region, and such that liquid remains
continuously in contact with the two walls and the phase-change
boundaries.

The above assumptions result in a radially one-dimensional
time-dependent system, as illustrated in figure 3-1. Because of the
transparent part of the LiF spectrum there is radiation from the
outer wall (surface 1) to the inner wall (surface 2), represented
by resistance, R,. Two boundary conditions are considered on the
inner wall: a) adiabatic condition, which is representative of
the Flight Experiment [Namkoong 1989%9], and b) convective
condition, which represents the Space Station [Strumpf and Coombs
1990] (although this application uses the eutectic LiF—CaF2 as
PCM, the preceding optical properties of LiF are used in sample
calculations, as seen in Table 3-1).

In case a the inner wall acts as a refractory or reradiation
surface, such that the energy source, QS, causes phase change at
both melt-surfaces, 1m and 2m, as shown in figure 3~1(a). The
result is that the solid PCM remains at the initial uniform
temperature, T, until complete melting has occured; thus, solid
properties do not enter in to this heat transfer problem

(i.e., Rks = @).

In case b the inner wall act as a heat sink whenever T2 ) Tf;




therefore, T2 will initially be less than Tl(O) = Tm, as shown in
figure 3-1(b). Thus, no initial melting occurs at the inner wall
(i.e., Rko = 0); however, with radiation, a high enough imposed
heat flux can exist for which T, reaches T, before complete
melting. With the convective boundary and initial conditions
there is conduction in the solid, as well as in the liquid.

Finally, the duasi-steady and radiation-linearization
approximations are made. The first of these is permissible
because no temporal, mathematical boundary layers occur with the
heat-flux boundary condition (in contrast to the conventional
Stefan problem with specified temperatures), as will be shown,
and because diffusion in the solid is exceedingly rapid (on the
order of a few seconds) compared to the melting Process; the
effect in case g is to render the inner wall adiabatic, as the
"Plug" wall material rapidly reaches uniform temperature, T s
throughout; in case b the effect is to quickly establish the
initial temperature Profile, with Tl(o) = Tn» from a uniform
condition at fluid temperature, Te¢. Linearization of the
radiation term simplifies the model equations, reduces by one the
number of problem pParameters, and results in some closed~form
analytical solutions; this aPpProximation resulted in less than 3%
error.

Solidification, or discharging, occurs for case b in the reverse
direction, with Qg = 0 and sink temperature, T¢i minor heat loss
from the outer wall is not included. For case a the heat removal
Process has a strong axial component [Lund 1991] and, therefore,
is beyond the Scope of the present formulation; however, the
results of this investigation may assist in future modeling of
that two-dimensional Problem.

Although the above stated problem is quite restrictive from a
Practical view, it nevertheless results in simple equations

and solutions, to which more general numerical solutions may be
compared. Additionally it enhances our basic understanding of
the Phase-change Process when radiation is included.

3.1 Model Equations
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axial gravitational accelerat
Thus, the conduction heat tra
(i =1o0r 2)is given by:

ion [Arpaci and Larsen 1984] .
nsfer from surface i to im

Qu; = i im (3.1)
R, .
ki
where resistances are
5 Qn(r]/r] ) R én(rZE/rZ) (3 2'3)
ki1 < , ’ k2 ~© . <
le'ke‘{)~ Zﬂkeg_
and the effective liquid conductivity is ke&' Similarly
T - T &y, _/ro )
Q¢ = —m—_2m | Rke = im-_ 2m (3.4,5)
R 2k
ks es
Chz = heA (T, - 1) (3.6)
Energy balances on surfaces 1 and 2 vield, respectively
9 = Q1 * Oy s Qg =Qp, ¢ Qh2 (3.7.8)

where er is given by (2.15), and (2.16) or (2.17).

boundaries the heat added resu

boundaries through Hs&’ the latent heat:

: . = o 9im

Qr1 Qs = 2nigHg o "im dt
) dr

U2 * ks =t 2MgHgp Ty dt

3.2 Adiabatic Inner Wall (Case a)

For the adiabatic inner wall, with Rks = Rh = ),
balances and rate equations combine as follows:

n

(1 - Ag—b =1 - N8y - 6,)

-~

TR T MR L e e cmar, e

At the phase

lts in the movement of the

(3.9)

(3.10)

the above energy

(3.11)
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dj
(r+n52);?=o+N(el-ez) (3.12)

6
NCB; - 8,) + =L = 3 (3.13)
v
%2
N(G2 - 91) + = 0 (3.14)
u
where.5l and 52 are the scaled liquid-gap thicknesses,
Yy = T 1 -y, /r
51 = 1 ___1im = e Am’ 1 (3_15)
r - r r5 /Y, = T
52=_2m___2=.2m_.1___ (3.16)
LSRR PN A
the scaled excess temperatures (i = 1,2) are,
Oy = (7; - T /T, (3.17)
the logarithmic terms are,
v = én{l/(l—ﬁél)}/ﬁ, u = 8&{1+A52/F}/h (3.18,19)
the radiation number is,
3
N = UTmKrl(rl - r2)/kea = hrl(rl - r2)/keg (3.20)

where T = t/tr, ' = T, A=1+-T, and where the reference
temperature and time magnitudes, Tr and tr' are determined as

ar(ry - r,) (rq = ro)ipH
ke, A

with 9r = Qg for case a. Typical pParameter values are shown in
Table 3-1. It is noted that the time constant represents the
ratio of the mass of PCM times the latent heat, divided by the
source flux applied at the arithmetic average radius. The

initial conditions for case a are that all Gi(o) = éi(O) = Q.
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For the convective boundary condition on the inner wall, with
sz =.O (T2m =.T2) and T, = Tm ~ T¢s the energy balances and rate
équations combine as followus:

dd )

(1 - Aal);rl =95 - A1+ 6) (3.23)
e q

MO -8+ L ag =5 (3.24)
\" qr

N(<:>2-91)+kW =-M’(1+92) (3.25)

where the additional logarithmic term is
W = 841{(1-/\51 TI/A (3.26)

the effective conductivity ratio is K = kes/keg, the Biot number
is & = he(r, - T2)/kgps and where 9y 1s obtained from (3.21).
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4. RESULTS

4.1 Adiabatic Inner Wall (Case a)

From (3.11) and (3.12) it is seen that their sum is independent
of the radiation number:

ds ds
(1= A8 )—=L+ (I + p5,)=2 = 4 (4.1)
dr ar

which has the exact integral

N | >

¥ Tay -~ (5,2 - 5,2) = 4 (4.2)

In particular for d, + 52 = 1, when the solid is completely
melted, (4.2) yields the maximum T, or scaled melting time

1+T7 v, +r
T, = =12 (4.3)
2 2r1

or, with the definition of the time constant, the time for
charging or melting the PCM in the annulus is obtained as

; 2 _ 2y,
t = — (4.4)

That is, the melting time is Precisely the Phase-change heat
content divided by the total rate of heat input, independent of
radiative and conductive Properties. This, of course, is a
consequence of the energy balance and the adiabatic boundary
condition which restrict the Phase-change Process as the only
sink for the source, Zﬂrlqs.

condition A ~--) ¢ (I' ===> 1) which is the Parallel plate limit.
In this limit, the system (3.11) to (3.14) can be combined as

d(N51) .\ N51
d(1+NT) 1 + NT

=1 (4.5)

which, with (4.2), has the solutions
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. NT 12 + NT i NT NT
2 1 + NT 2 1 + NT
- . 5 -3
2 + NT{ 1 + (1+4NT) 2 + NT NT
N91 = NT 3 s N > = (4.8,9)
4 (1 + NT) 4 1 + NT

These solutions are shown in figures 4-1 and 4-2, where the
double surface Phase-change phenomenon is clearly evident. It is
seen in (4.6,7), and in figure 4~-1, that 61 grows linearly with ¥
for small N7 (i.e., initially), whereas 52 grows quadratically;
moreover, the growth of 52 depends on the radiation number, N, as
seen by the ratio (4.10) of (4.7) to (4.6)

5 NT 8 (NT)2
<= — 22_ > (4.10,11)
N 2 + NT 91 1 + (1+NT)

where 52 -==> 0 for N ---> 0, and 52 -———) 61 for N === ® . That

is, for small radiation number the phase change will occecur
Primarily from side 1, whereas for a large radiation number it
will occur equally from both sides; for N = 1 and the end of the
charging process where in the present case 7 = 1, the ratio of
Phase growths in (4.10) is 1:3. However, depending on the
surface emissivities, N and the radiation effect can be quite
small, as indicated in Table 3-1.

In the present formulation, wall temperatures are determined
rather than specified, as in figure 4-2. The gradual increase in
the wall temperatures (absence of thermal boundary layers)
validates the quasi-steady approximation, and with T, = 26.6 K,
the small changes of T1 and T2 from Tn validates linearization of
the radiation term. 1In (4.8,9,11), and in figure 4-2, it is seen
that initially 91 increases linearly with T, but that 62
increases cubically with T.

In the case of an annulus with finite radii (r2/r1 = # 1),
equations (3.19) to (3.22) were solved by numerical integration,
with results as shown in figure 4-3, to the same scale as
Previously, but for I' = 0.5. Here the phase front movements were
calculated for the series of radiation numbers shown, up to the
maximum time Tm = (1+4T)/2 = 3/4. There appears to be no
dependence of N62 on N, and only slight dependence for N51;
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however, the curves are shifted somewhat, relative to the "planar
annulus" result in figure 4-1. Without the N-scaling, the phase
fronts appear as in figure 4-4 for the radius ratio, 0.5.

4.2 Convective Inner Wall (Case b)

With the convection heat sink at the inner wall, the possibility
exists that Qg may not be sufficient to cause any melting at all.
This is seen in (3.23) where the initial slope must be positive
for 51 to grow; thus, gg must be greater than the minimum

N + K/wo

g = &I(1 + 6,,) = &T (4.12)
s0 20 N + K/wy + &I
where 920 is obtained from (3.25) with 910 = Q:
e €,(0) - & (4.13)
20 & "2 TN+ K/wg + T '
where Wg = lim(w) as 51 -=> 0. In dimensional variables with

hr1 = UTmaKrl’ the limiting minimum heat flux for phase change to
occur is

T -7
Ao = u f (4.15)
Y Y
1, 1
hfr2 hrlrl + ks/en{rl/rz}

which is the initial overall temperature difference over the
total thermal resistance.

Similarly, there is a critical heat flux for which the PCM just
becomes 100% melted and at steady state with zero slope at
61 = 1. This is given by (3.23) as:

9g1 = &I (4.16)
which, in dimensional terms, simply is
qsl = hf(Tm - Tf)rz/rl (4.17)

Finally, it may be asked if there is a ds above which melting
also occurs at the inner wall. This limit is given by (3.24) and

(3.25) with 6’2 = 0O:
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1
1+ —
Nwo-

9gp = AT (4.18)

However, for small N as in Table 3-1, this flux limit is quite
high so that (unlike case a) two-surface melting does not
usually occur with the convective boundary condition and

practical flux levels.

To summarize these conditions we have case bo (gS g_gso) which
results in no phase change, bl (gso ¢ g9g < gsl) which results in
a steady state with only partial melting, b2 (g81 £ 9g 5_982)
which results in 100% melting in finite time from the outer
surface only, and b3 (gS > 952) which results in melting from

both surfaces.

The numerical integration of (3.23) to (3.25) for case bl is
shown in figure 4-5, where the scaled heat flux was taken as

6o = #9g; + (L = #)9gg » O L # ¢ 1 (4.19)

The partially melted, steady state condition is evident, as well
as the effect of the surface emissivity. For comparison,
computations were also made with the full nonlinear radiation
term (2.16), but the results differed less than 3% from those in
figure 4-5. Partially melted, and unmelted, conditions have also
been found experimentally [Strumpf and Coombs 1990] .

This steady state condition may also be seen analytically for the
parallel plate limit, A == 0, where the system equations combine

as follows

dx &
_——-—+—-
N

NdT

(N«x)(gsx+N) + KN(1+x)

_ = (4.20)
(N-x)[1 + &(1+x)/N] + K(1+x)

9s

where x = N@l; this is a quadratic form which, with (4.19), has
the steady state solution

N K i
= a M + &) (4.21)

5 =
l,ss #G + N + K + (1-¢)(K=1)N

For case b2 the phase-change front grows rapidly to complete
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melting, as shown figure 4-6, where the applied flux was taken as
8g = %9571 Also shown is the effect of radiation, which may be
compared to other models where the effect of radiation was not
included [Kerslake and Ibrahim 19%0].

The discharge mode, in the Present context, utilizes the same
system equations, (3.23) to (3.25), but with 8¢ = 0. The result
is the decay of 61 to 0, from the melt condition when the applied
flux is turned off, as shown in figure 4-7 for several case b2
conditions.

CONCLUSION

The phase-change behavior of a high-temperature salt enclosed in
an annulus with specified outer-~wall heat flux has been analyzed,
including the effects of radiation within the enclosure and two
inner-wall boundary conditions.

For the adiabatic inner wall condition, radiation resulted in the
melting of solid PCM from two surfaces, and the time to complete
melting is a fixed quantity.

For the convective inner wall condition, melting was found to
occur from the outer wall, only (or not at all), for practical
heat fluxes; partially melted or fully melted conditions were
found depending on the flux level; the effect of radiation is to
"by pass" the melting process and, thus, increase the time for
complete melting.

For both boundary conditions, the imposed flux condition resulted
in gradual changes in the wall temperatures, thus validating the

quasi-steady models. This contrasts with the traditional Stefan

problem with imposed rapid changes of the wall temperatures.

Radiative exchange between the two wallswas found to be about
twice as high fér the LiF medium as for vacuum; however, wall
temperatures differed only slightly from the melting temperature
during the phase-change Processes, and the overall effect of
radiation was about ten percent of the total heat transfer rate
for practical heat fluxes and annuli dimensions. This results
from the assumption of continuous contact of the liquid PCM with
the canister walls; further analysis is required to evaluate the
effect of voids within the canister, where radiation would be

more important.
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Table 3-1. Typical Parameter Magnitudes

Parameter Flight Exp.* Space Station®
Outer Radius, r; [ecm] 3.51 2.11
Inner Radius, r, [em] 1.95 1.19
PCM, Melting Temp., Tm [K] LiF, 1120 LiF-CaFZ, 1040
Latent Heat, Hgp (/4] 1037 816
Liquid Density, iy [g/cm3] 1.79 2.19
Solid Density, ng [g/cms] 2.33 2.59
Liquid Conductivity, kp [W/emK] 0.037 0.017
Solid Conductivity, kg (W/emK] 0.060 0.038
Radiation Cond., k. (W/cmK] 0.020 0.018
Radiation Nr., N (Em,v=0.1/0.3) 0.102/0.365 0.069/0.242
Heat Source, g [W/cm?] (avg./peak) 0.921/--- 0.650/1.05
Fluid Film Coeff., h, [W/cm?K] 0 0.028
Biot Number, & 0 0.81
Fluid Temp., T¢ [K] (min max ) - 800 1000
Temperature Scale, T, [K] 26 .6 240 40
Time Scale, t. [minutes] 52.4 3.0 18
Heat Flux Limits [W/cmZ]
90 (Em,v=0.1/0.3) ‘ 1.75/2.95 .29/.49
Qg1 3.79 .63
Qg2 (Em’v=0.1/0.3) ‘ 45 .5/15.7 7.6/2.6

*x Namkoong 1989; Williams 1988.
# Strumpf and Coombs 1990; Kerslake and Ibrahim 1990.
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Fig. 2-1. Spectral Refractive Index for Lithium Flouride,
and Blackbody Emissive Power at 1120 K.
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Fig. 2-3. Lithium Flouride Emissivity Fractional Function.
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1. INTRODUCTION

transition process (Kerslake 1990, Wichner 1988]) . These
analyses and experiments utilize an annular canister
containing the Phase change material (PcM), where a solar
heat flux is impressed on the outer wall of the canister
(here radius Yi) to melt the PCM, and convection at the

In application to heat receivers the PCM’s are high-
temperature salts, such as lithium-fluoride (LiF) with a
melting temperature of 1121 K (1558 F). At these
temperatures radiative transport is a significant part of
the overall heat transfer Processes within the Canisters.
In the previous two~-dimensional model [Kerslake and Ibrahim
1990) radiation was not included, and in the three-
‘dimensional model [Wichner et al. 1988] the effect of
radiation is obscured by the complexity of the numerical
Computations; in the flight experiments [Namkoong 1989)]
radiation will occur naturally, but the radiative effect
cannot be determined directly as only canister surface
temperatures will be measured; although convection and
radiation in vacuum was investigated recently [Yucel et al -
1989) the combined radiation and Phase change effect is not

interactions;

b) solutions Provide bases against which complex
numerical models bay be compared for identical
boundary conditions;

<) solutions Provide ready estimation of experimental

behaviors, such as surface temperature-time
variations;
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conventional exchange between diffuse surfaces, except that
the intervening medium, LiF, has SPpectral properties which
differ from those of vacuum. Therefore, accurate
application requires Spectral integration. Following
Williams [1988] & two-band aPproximation is made utilizing
reécent measurements of LiF optical Properties [Palik and
Hunter 1985]. 1t is shown in Section 2 that at the melting
temperature, Tm = 1121 K, the majority of radiation emissive

linearized, results in a factor of $.47 in the equivalent

» 85 compared to the
usual factor of 4, a 37% increase over radiation exchange in
vacuum.

The PCM "Basic Charging Mode* is considered in Section
3, where the PCM is initially at temperature, Tm, and a heat
flux is suddenly applied at the canister outer surface,
while the inner surface remains adiabatic. The usual Stefan
Problem is one in which the temperature at a boundary ig

oY Solomon 19817, Tesulting in a boundary layer growing in
time as the error function (e.g., Arpaci and Larsen 1984];
however, Wwith the Presently imposed heat flux boundary

condition, this layer does not develop, with the result that

the surface temperature changes only slowly in a quasi-
Steady fashion.
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W/cm2, the conduction limit in the liquid is considered an

acceleration. Under microgravity conditions the magnitude
of natural convection is sSuppressed, although some

convection effects may be Present [Bayazitoglu and Lam 1987,
Arnold et al. 1990].

Assumptions regarding the second boundary condition (at
rz) are tied in with the radiation model (i.e., without
radiative energy exchange between the two walls, the PCM
would simply melt from the outer surface and the effect
would not appear at the inner surface until the Phase-change
front "arrives"® there). Here, an adiabatic condition is
chosen as representing the best that can be done (as far as
melting the PCM), and also vielding the simplest analytical
results; other conditions, such as convective or thermal-

mass sink would change the Present results somewhat, but not
to a large extent.

The results of the analysis are that, with an adiabatic
inner wall, the rate of melting of the PCM is independent of
radiative and conductive effects within the annulus, but
depends only on the heat flux at the outer wall, and the
volume and heat of fusion of the PCM. The effect of
radiation and liquid conduction is to redistribute energy
and cause melting of the solid PCM at both its outer and
inner surfaces; solid conductivity did not enter into this
Process. It was also found that the wall temperatures
increased smoothly and slowly during the melting, thus
velidating initial assumptions.
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2. TWO-BAND RADIATION MODEL

To determine the effect of radiation within the LiF
enclosure, it is necessary to know the optical properties of LiF,
which differ considerably from vacuum. 1In particular, if the
specular optical constants are known ( refractive index, n, and
absorptive index, or extinction coefficient, k ), other radiative
properties can be obtained. A summary of recent measurements
[Palik and Hunter 1985] is shown in Fig. 2-1. It is seen that
there is a transparent region of the spectrum near 1 im (where
k =-> 0), which is the region of interest for emission near the
melting temperature of 1121 K. The refraction index appears
relatively constant in this region, but decreases somewhat with
increasing wave length. This is shown in Fig. 2-2 where the data
of Palik and Hunter are replotted on a linear scale. Also
plotted is the Planck spectral emissive power for 1121 K, which
shows that emissions whithin the canister lie primarily between 1
tm and 6 um. The corresponding extinction coefficient data are
shown in Fig. 2-3. Thus for most of the relevant spectrum, the
single c .rystal LiF is transparent to radiation. This is also
shown by previous data [Amr. Inst. Physics Handbook 1957], as
reported by Williams [1988].

2.1 Blackbody Emission

For the transparent part of the spectrum, A L 2gs the
blackbody emissive power is given by

cldl

(2.1)

C~o/NnAT
e 2 -1

Yo
n2y>

where ¢, and c, are the radiation constants (based on Co» the
speed of light in vacuum):

c, = 2ﬂhc02 = 3.7415 x 10 1% gml/s
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c, = hco/k = 14,388 umK

The index of refraction for LiF is the spectral quantity shown in
Fig. 2-2, which is here approximated as

n=1.36 - 0.0027132 = a - bx? (2.2)

To evaluate (2.1) the change of variable is made,

r = o
L cz/nXT 2.3
so that
n + a’
dt = =& dx 2.4)
Nna
where n’ = drn/d» = -2b>. Substitution of (2.3) and (2.4) into
(2.1) then yields the expression
~ -r 4
T4 15 n- r-dt (2.5}
e = 7 : e
b n? oo+ oan’ et - 1
k(‘a
Ea = CQ/nakaT = CZ/T = 1995/T (k).

An example of the numerical evaluation (2.5) is shown in

Fig. 2-4 for Ka = 5.5 um, where the upper limit of & = 16 is well
whithin the validity. of (2.2). This may also be written in terms
of an effective index

2 4
e =n 0T (2.6)

2

The effective index, n, =, obtained from the integral inm (2.5)
with g = 5.5 um, has a temperature dependence because of the
spectral dependence of n(}), as shown in Fig. 2-5. This result
is similar to that previously obtained [Williams 1988], except
that previously the effect of n’ (a 10% effect) was not accounted
for and the blackbody fractional function was included in the
effective index.

2.2 Emissivity and Absorptivity

The assumption is made in this analysis that the metal

CRECAL PAGE IS
> OF POUR QUALITY




surfaces bounding the LiF are diffuse. For spectral emissivity,
Eqs the emissive power of the surface is given by

ka X
e, = o bkebkdk

so that with the above change of wvariables

o
L n3 £3dt (2.7)
e = — [ 2.7

!

LB

a

For metals, a recommended formula for the normal spectral
emissivity is [Sparrow and Cess 1978]

= 36.5Nr/% - 464 v/ (2.8)

Fan
where v is the electrical resistivity in Ohm-cm, and 2 is the
wavelength in m. At » = 2.5 um (maximum radiation at 1121K) and
the rather large value r = 10™° cm, the second term is only
2.5% of the first term and therefore neglected. The result in
vacuum of spectrally integrating (2.8) is total normal emissivity

En,v = 0.576"% rTS (2.9)
where Tg is the surface temperature in degrees Kelvin. Let r be
proportional to the absolute temperature, then r = roTs/To, where
™o is the resistivity at temperature To» and where from (2.9) the
total normal vacuum emissivity at this temperature is Eo,v'
Substitution of these variables into (2.8) results in the normal
(or hemispherical) emissivity ratio

£ 36.5 T
- A8 T/h = e c44 n& (2.10)
0,v O.576To To

[

where C4 is the nondimensional number

Cyp = 36.5/0.576" c, = 0.529

Now, substitution of (2.10) into (2.7) results in

2l
Orf;‘q “f{
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4 - .
€a = ¢ TS[TS/TOJ Co,v TealTg) : (2.11)

where the emissivity fractional function is defined by

~M

15 n3 £34¢
fealT) = ¢y = | ——— \[nt ' o—nn
ta 4 pé , Nt oan e* -1 (2.12)
*a

This function is shown in Fig. 2-6 for Ka = 5.5 im, where it is
seen that the effective total emissivity is roughly twice that of
the value in vacuum:

EalTg) = &5\ (Tg/To) Fo(TQ) (2.13)

A completely similar procedure yields the effective absorptivity

ot
i - - s e

where Te is the environment (other surface) temperature.

2.3 Thick Gas Approximation

It would appear from Figs. 2-1 or 2-3 that k is sufficiently
small for the wavelengths of interest that the medium can be
considered perfectly transparent. there is, however, a region
at the longer wavelengths where absorption ocecurs in the medium,
as can be shown by evaluating the absorption coefficient [siegel
and Howell 1981, p 427) from the data of Palik and Hunter [1985]:

8s shown in Fig. 2-7. These values may also be read as the
°ptical thickness for a 1 cm layer of LiF (or as half the optical
thickness for a 2 cm layer ). The results are in general

Bgreement with previous measurements [Amr. Inst. Phys. Handbook
1957); thus, the assumption of an optically thick gas above » = &
oY 7 um is supported by the more recent measurements. Therefore,
following Williams [1988], the two-band approximation can be made
that the LiF is transparent to radiation below wavelengths of
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approximately 5.5 um, and acts as a thick gas above this
wavelength. since, as seen in Fig. 2-2, there is but little
radiant energy at the higher wavelengths, this two-band radiation
model is considered an adequate approximation, especially in view
of uncertainties associated with the canister sur face properties.

2.4 Radiant Energy Exchange

For each surface, 1, in an enclosure we have the net
vradiative flux,

’
-

q = 4q, ~ 9 ' (2.15)
and the vradiosity definition for diffuse, opaque sur faces,
q = &8+ 0.9 (2.16)

where By = UTi4 is the blackbody radiosity (Edwards 1981] .
Eliminating the irradiance, qi', between (2.15) and (2.16) we
have

"

+
q (¢ B, - oql/®
i

i il i i

or

(2.17)

|

where the total heat transfer rate is Q; = ini‘ the modified
blackbody radiosity is Ci = EiBi/ai, and where the surface
resistance is

R = —— (2.18)

additionally, the following relation applies in the transparent
medium,
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N N

g =5 AF (a -a)F= 5 — (
PRI Q)= / 2.19)
j= j=

so that conventional radiation networ k solutions may be used with
the modified plackbody surface vradiation, and with the surface
resistance given by (2.18). A closed-form analytical solution
is, of course, not possible as o depends on the "other—-surface"”
temperatures, as shown in (2.14); however, an adequate jterative
solution can be obtained with a weighted average for Tg-

For a two-surface enclosure, (2.17) to (2.19) yield

¢ - C
1 2
Q =-Q@ = (2.20)
1 2 1 - O 1 - U
1 2
+ + —
A U a F A U
11 1 12 2 2
where, with (2.13) and (2.14),
g(T ) g(T )
4 2 4
c = a T . c = —— 77 (2.21,22)
1 o(T ) 1 2 g(T ) 2
2 1
o(T) = T (T)\i (2.23)
ea

For a jinearization of (2.20), 01 and C, may be expanded in a
Taylor cer ies about the melting temperature, Tm:

c & C¢C + (T -1 ) + (T - T )
2 m

i m 1 m i,im i,2m

with the result that

3
c -¢C iti(4+2Tg’/g)r:TT (T - T (2.24)
1 2 m m m m 1 2
or, with (T7g°/9)y = 0.237 from Fig. 2 .%, €,
Gl RO b
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3
c -¢c =65.47 a7 (7T - 7T ) ) (2.25)
1 2 m 1 2

Thus, the radiant heat transfer rate between two surfaces may be
approximated as

@ =-0 =h aA(T =T (2.26)
1 2 rit1 1 2

where the effective radiation heat transfer coefficient is

5.47 o Tm3
h 11 1 A, 1 (2.27)
Y - QO -
o, Lyl %

since the denominator of (2.27) does not involve differences in
absorptivities it is considered adequate to evaluate 04 and 0o, at
Th- The linearized model (2.26) is utilized subsequently in
obtaining an analytical solution to the two-surface phase change

problem. That is, for oy = o, = Oy s and Tm = 1121 K,

3
5.47 o0 T 2
m 43 .7 W/m°K
h = = (2.28)
rl S - 1 -, -
) } + rl/r2J 1 , -1 + rl/rz_ 1
™ ™
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3. BASIC PCM CHARGING MODE

The LiF PCM contained by the annular canister in the flight
experiment, as well as in applications with annular geometry, is
to cycle between the charging (heat addition) and discharging

( heat removal) modes. 1In the first mode heat is added to
(impressed upon) the large diameter, external wall to melt the
PCM while some heat may or may not be removed from the
small-diameter, internal wall; in the second mode, heat is
removed from the interior wall to solidify the PCM while the
outside wall is, more or less, insulated.

Here is considered the basic charging mode where at time zero the
external heat source is Qs(wlm) and the PCM is 100% solid and at
uniform temperature, T, and where the inside wall remains
adiabatic throughout the charging process. Furthermore, ‘to
obtain a basic (or fundamental) solution to the charging problem,
an infinitely long cylinder is assumed together with axissymetric
heat input.

The above assumptions result in a radially one-dimensional
time-dependent system, as illustrated in Fig. 3-1. because of the
transparent part of the LiF spectrum there is radiation from the
outer wall (surface 1) to the inner wall (surface 2), where the
latter acts as a refractory or reradiation surface, such that the
energy source, OS, causes phase change at bqth melt-surfaces, 1im
and 2m, as shown. Additionally, axial gravitational acceleration
is assumed such that any void is removed to the end region, and
such that liquid remains continuously in contact with the two
walls and the phase-change boundaries.

Although the above stated problem is quite restrictive from a
practical view, it nevertheless results in closed-form solutions
to which more general numerical solutions may be compared.
Additionally it enhances our basic understanding of the PCM
charging process when radiation is included.

3.1 Model Equations

The model considered is for a solid region surrounded by liquid
at both radii rqp and Yo, @S indicated in Fig. 3-1. 1In these
annular liquid gaps convection is described by the general energy
transport equation
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o7 aT T .
T—+u7—+v7—=a¥T (3.1)
ot ox or

where u,x are in the axial direction and v,r are in the radial
direction. However, under the parallel flow assumption for long
cylinders, u = u(t,r), v =0, and T = T(t,r). This means that
the fluid transport terms on the left hand side of (3.1) are zero
and the temperature field is determined entirely by conduction
(including the conductive effect of the thick-gas radiation
absorption), even though there will be convective flow driven by
the Boussinesque temperature term [Arpaci and Larsen 1984]:

v &ru) du
-~ — - — = gi(T - Tg) (3.2)
Yy or ot

Thus, the long-cylinder, parallel flow assumption essentially
uncouples the momentum and energy equations such that the
temperature field is determined by conduction, independent of the
velocity field, and then can be used to determine the velocity
field as in (3.2).

Because the movement of the phase fronts is much slower than the
liquid response the problem may be regarded as quasi-steady with
known solutions utilized for the temperature distributions.
Thus, the conduction heat transfer from surface i to im for (i =
1 or 2) is given by: ‘

Qk_ = _i____im. (3_3)

where resistances are

én(r]/rj[) Qn(rztlrz)
Rkl = ’ sz = (3-4s5)
Zﬂke@ Zﬂke&

and the effective liquid conductivity is ke&, An energy balance
on surface 1 yields

os = le M er (3.6)

where Q4 is given by (2.26), and for the adiabatic surface 2,

el A
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®r1 = 9, (3.7)

On a flux basis (2.26), (3.3), and (3.4) and (3.6) combine gg

koo(T, = T )
rlén(rl/rlm)

s (3.8)

and (2.26), (3.3), (3.5) and (3.7) combine as

the boundarijes through Hs@’ the latent heat :

(3.11,12)

Now, combining (3.10), (3.11) and (3.12) with the Previous

relations we obtain the differential eqQuations for the phase
boundariesr

(3.13)
-Y 1im dt ’:lé'-HS o
} | dr k_,
fnf-2m ).  Zlop _ _ —& (1 -1y (3.14)
r 2m dt 1 nH 2 m
I 2 HoPgsp

These €quations, together with (3.8) and (3.9), are the nonlinear
System €Quations to be solved for the four unknown functions,
qm(t).rzm(t), T,(t) and To(t).

h-Should be noteg in this derivation that there is no effect of
°°nduction in the solid. This OCCurs because there js
mwse-change at both surfaces 1m and 2m, which are therefore both
3 the melting temperature, and because the initial condition is




Properties (under the assumed
parent/thick—gas radiation model] ), and the solid
PCM remains at the uniform temperature. Tm' as indicated in Fig.

3.2 Scaling of Eguations,

Introduce the followlng Scaling of Variables: ’
T, - r S
51 = 1 Tim = — Im7"1 (3_15)
e - r £
1 2
r - r Voo /Yy = T
by = &m __ T2 _ ~<m”’1 = ! (3.16)

where 51 and 52 are the Scaled liquid—gap thicknesses, I' = rz/rl,

1 ds
(1 - €8 )en|—=n | 99 = £g (3.19)
1 £& dr 1
1
- - - EIP‘ d’:”; ~
(I + 805)8n (1 + 1:02 dQZ-T' = 1;.92 (3.20)

N{%‘l-f,\z)-p-\J-‘\:]_ (3.21)

N(Pz-el),c\kL*:o (3.22)

én{1+552/F}

Ve the radiation Bjet number ig N = hepCry - T2)/Kegrand where the
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reference temperature and time magnitudes are

(ry = vo)igHgp
9s

_aglry = 72) _
T . k ’ tr -
el

It is noted that the time constant represents the ratio of the
mass of PCM times the latent heat, divided by the input flux
applied at the arithmetic average radius. The initial conditions
are that all 91(0) = 51(0) = 0.

3.3 Solutions

The system, (3.19) to (3.22) does not possess a closed-form-
general analytical solution (primarily, because of the curvature
effect represented by the logarithmic terms). However, by
combining (3.19) with (3.21), and (3.20) with (3.22) we obtain
the equations

aé ,
(1 - Eél)d? =1 - N(G1 - 92) (3.23)
~ dl5 -
(I + 502);;; = 0 + N(e1 - 82) (3.24)

such that the sum of (3.23) and (3.24) results in an equation
which is independent of the radiation Biot number and the wall
temperatures:

(1 - £8,)—2 + (T + £8)—= =1 (3.25)
dr d7
which has the exact integral
. €z 2 2"
8+ Top = 2 [8,° - 9, | =7 (3.26)

Although (3.26) does not provide 51(7) or 52(70 individually, it
has the interesting interpretation: the maximum time, .. for
the basic charging process OCCUTrS when all the solid has melted,
or when & + &, = 1. substitution of this condition into (3.26)
results in




S 1+ T _Tptr2
m
2 2r,

(3.27)

Hence, with the definition of the time constant, the time for
charging or melting the PCM in the annulus is obtained as

2 2.,
n(ry To " dipHe o
2ﬂr1qs

m (3.28)

that is, the melting time is precisely the phase-change heat
content divided by the total rate of heat input, independent of
radiative and conductive properties! This is perhaps a
surprising result, but quite reasonable: since in the basic
charging model the phase-change boundaries are the only sinks for
the energy source, 27r 495 the net result must be the melting of
the PCM, with conductive and radiative effects redistributing the
energy input and determining the relative locations of phase
boundaries.

The above behavior can be seen analytically for the limiting
condition & =--=> 0 (I"' ==-> 1) which is the parallel plate limit.
In this limit, the system (3.19) to (3.22) becomes

d3 ds
i—k =9, , b65,—L =8 (3.29,30)
15, 1 257 >
N8 - 65) + 0,78 =1 (3.31)
N(@Z - 91) + 92/52 = 0 (3.32)

Equations (3.31) and (3.32) may be solved for the temperatures in
terms of the phase fronts,

i _ NE, + 1

6 = & - - (3.33)
1 + N5 + N3,

] N&,

) = 5

v2 9 - - (3.34)

such that substitution of (3.33) and (3.34) into (3.29) and
(3.30) yields equations for the phase fronts, only:

A

O PusiN sl

[ 7SR

= T —- - - - |
e e - - Y N . b
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di] - 1 t NS, (3.35)
dr 1+ N&; + N62
da N&

2 - ,‘1 - _ (3.36)
dr 1+ Nol + No2

One solution is obtained from the sum of (3.35) and (3.36), or
from (3.26) with € = 0O:

+ =7 | (3.37)

Ty

1 v 9

Eliminating 52 between (3.37) and (3.35) yields the Euler
equation in 1 + N7,

d(N@l)
+
d( 1+NT) 1 + NT

=1 (3.38)
Thus, the solution to (3.37) and (3.38) is

NT |2 + NT NT NT

NG = — |[——} NG = — |— (3.39,40)
1 2

2 1 + NT 2 1 + NT

It is seen in these equations, and in Fig. 3-2 that 61 grows
linearly with T for small NT (i.e., initially), whereas 52 grows
quadratically; moreover, the growth of 52 depends on the
radiation Biot number, N, as seen by the ratio of (3.40) to

(3.39)

& NT
;2_= — (3.41)
ﬂl 2 + NT

where 52 -==> 0 for N --=> 0, and_&2 -—= 51 for N === ® . That
is, for small radiation Biot number the phase change will occur
primarily from side 1, whereas for a large radiation number it
will occur equally from both sides; for N = 1 and the end of the
charging process where in the present case T = 1, the ratio of
Phase growths in (3.41) is 1:3, or, 75% melted from the outside
surface and 25% from the inside surface. This result contrasts
with other recent models where the effect of radiation was not
included [Kerslake and Ibrahim 1990)]. However, regardless of the
value of N, the PCM is 100% melted when 7 = 1 (for this parallel
Plate limit of the annulus); this is a consequence of the imposed
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heat flux boundary condition arising from actual or electrically
simulated solar irradiation, which differs from the Stephan-type
problem where the bounding temperatures are specified, and from
the assumed adiabatic inner radius.

In the present formulation, wall temperatures are detefmined
rather than specified. Thus, substitution of (3.39) and (3.40)
into (3.33) and (3.34) yields the temperature functions

1+ (1+N702

i 2 + NT ( ;
N&, = NT 3.42

1 4 (1 +nNT)3

-3
2 + NT NT
N@Z = (3.43)
4 1 + NT
and the ratio

. N2
& (NT)
SR - (3.44)

51 1+ (1+N702

Here, and in Fig. 3-3, it is seen that initially 91 increases
linearly with 7, but that 62 increases cubically with T.

In the case of an annulus with finite radius ratio, Y5/, = r,
equations (3.19) to (3.22) were solved by numerical integration,
with results as shown in Fig. 3-4 with the same scale as
previously, but for I' = 0.5. Here the phase front movements were
calculated for the series of radiation numbers shown, up to the
maximum time T = (1+T7')/2 = 3/74. There appears to be no
dependence of N52 on N, and only slight dependence for N51:
however, the curves are shifted somewhat, relative to the "planar
annulus" result in Fig. 3-2. Without the N-scaling, the phase
fronts appear as in Fig. 3-5 for the radius ratio, 0.5.

The results of the present analytical one-dimensional model may
be compared with those of the numerical three-dimensional model,
NORVEX. Such a comparison is shown in Fig. 3-6 using the
following data:

= 3.51 cm, Ty, = 1.95 ¢m, T = 1121 K, H = 1037 J/g,

r
1 m e
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pp = 1.79 g/cm3, g = 2.37 g/em=,

ko = 0,037 W/emk, kg = 0,06 W/cmk (ke=b.037+0.017=0.054)
cp = .45 J/gk, cg = 2.45 J/9k

Oy = 0.3y No= 0.15, hyq = 0.00324 W/cm2ky g = 0.921 W/cm=

where the canister length was &.6 cmy, and where the solid

unmar ked curves are from the analytical model and the marked
curves are from the NORVEX calculations. It is seen that
analytically a smooth increase in outer wall temperature is
predicted, whereas the numerical results show no increase above
the initial melting temperature in the first 40 minutes of
heating. Also, the analytical melting rate. is somewhat higher
than the numerically predicted rate.

These differences are not easily ascribed to three-dimensional
versus one-dimensional effects as only weak axial gradients
occured in the numerical calculations, where the canister aspect
ratio was 4.2. Nor do the differences appear to result from the
adiabatic inner wall of the analytical model versus the solid
conductor-rod of the numerical model, as the rod also showed no
change in temperature over 40 minutes. A more direct comparison
would result for an aspect ratio of, sav, 10 in the numerical
model, together with a program modification allowing an adiabatic
inner wall or & thermal mass in the analvtical model.

Finally it is noted that, for comparison with the flight
experiments, the analytical results are only as accurate as are
the knowledge of the material properties. This is illustrated in
Fig. 3-7 where the annulus surface temperature variations are
shown parametrically with the canister surface absorptivity. It
is seen that there can be substantial changes in the outer wall
temperatures, resulting from changes in the canister surface
properties. Therefore, for best comparison, it is highly
desirable that these properties be known in the experiments.
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NOMENCLATURE

diffusivity (em?/s)
fitted constants
blackbody radiosity (W/em
modified blackbody radiosity (W/cm
radiation constant, specific heat (379K)

speed of light in vacuum (m/s)

emmissive power (W/7em<)

emissivity fractional function .
mass velocity (g/s-cmz)

gravitational acceleration (m/sz)

latent heat of fusion (3/89)

planck’s constant, heat transfer coefficient (w/cmzK)
extinction coefficient, thermal conductivity (W/cmK)
radiation Biot number

refractive index

heat transfer rate per unit length (W/cm)

heat flux (u/cm2)

irradiance (W/cm“)

radiosity (N/cmz)

radiation network resistance (cm
electrical resistivity (ohm-cm), radius (cm)
absolute temperature (K)

time (s)

velocities (ecm/s)

2)
2)

_2)

absorptivity

density (g/cm3), reflectivity
emissivity

integration variable

wave lenath

nondimensional surface temperature
nondimensional time

radius ratio

stefan-Boltzmann constant (N/cmZKA)
volumetric expansion coefficient (K™ %)

subscripts

pertaining to TO
pertaining to transparent upper limit,
blackbody

"effective



P

c 3 37

>

surface 1
surface 1 to surface J
conduction
liquid
melting or phase-change temperature
normal direction
radiation, reference.
solid, source
vacuum '
spectral quantity

T T
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Fig. 2-1. Log-Log Plot of Refractive Index, n , and
Extinction coefficient, k- ~---, for Lithium Flouride
[from Palik and Hunter 1985].
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Fig. 2-3. Extinction Coefficient for Lithium Flouride.

ORIGINAL PAGE |S
OF POOR QUALITY




] ! " )
" /200
/o0
/.6 F -
€y g FO0 -
), &
TT* /.2_ - -
08 .
o r .
| | ] l

o & - re g | 20

4

Fig. 2-4. Numerical Integration of Blackbody Total Emissive
power in Lithium Flouride.
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