
PROJECTS I N AN EXPERT SYSTEM CLASS

George M. Whitson

Computer Science Department
The University of Texas at Tyler
Tyler, Texas 75701

Abstract. Many universities now teach courses in expert systems. In
these courses students study the architecture of an expert system,
knowledge acquisition techniques, methods of implementing expert systems
and verification and validation techniques. A ma jot component of any such
course is a class project consisting of the design and implementation of
an expert system. This paper discusses a number of techniques that we
have used at The University of Texas at Tyler to develop meaningful
projects that could be completed in a semester course.

HISTORY

As expert systems theory became a major subset of Artificial
Intelligence, many universities introduced courses on his subject.
Initially, there were few texts in the field and little software
that was available for classroom use. Today there are many texts
and inexpensive software systems to support classroom instruction.
A problem in the teaching of expert systems, since such courses
have been offered, is designing classroom projects that are both
meaningful and that can be done in a one semester period. This
paper discusses a number of projects that I have assigned over the
past few years. The type of project assigned depends on the
emphasis of the expert systems course, as we will illustrate in the
next two sections. For those courses based on a high level shell,
like CLIPS, we feel we have developed a very good method for having
class projects that are both meaningful and do-able.

TYPES OF EXPERT SYSTEMS COURSES

Although the expert system field is quite young there have been a
number of different types of expert systems courses. Until I
started using CLIPS two years ago we tried a lot of different
approaches to teaching expert systems. At our university I have
taught the course with each of the following emphasis:

1. In our first expert systems course, taught in 1984, we
emphasized artificial intelligence and discussed all aspects
of the theory of expert systems in terms of artificial
intelligence. For example, we did not look at fact

https://ntrs.nasa.gov/search.jsp?R=19920007364 2020-03-17T12:54:35+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42814392?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

representation until we had done a complete coverage of
knowledge representation.
2. In our second approach to teaching expert systems we gave
a quick introduction to artificial intelligence, a solid
coverage of all of the different implementation languages
that were in use, including LISP, PROLOG and GOLDWORKS.
3 . In our third major revision of the expert systems course
we gave a brief introduction to artificial intelligence, an
introduction to logic programming and spent the remainder of
the course looking at techniques for implementing expert
systems in PROLOG.
4. In our fourth approach to teaching expert systems we
expanded the definition of an expert system to include many
systems that were not rule-based. In particular, we spent a
good deal of time looking at artificial neural systems and how
they were related to rule-based expert systems.
5. In our final and current approach to teaching an expert
systems course we quickly introduce the ideas of a rule-based
expert system, get the students started on a major project and
then lecture on other important topics, like fuzzy logic and
artificial neural systems.

EXPERT SYSTEM PROJECTS

In each of the different types of expert systems courses we used
different types of projects. It is interesting to consider how
these projects have changed as the course content has changed. A
sketch of the projects we gave in each of the above types of
courses is:

1. When we stressed artificial intelligence we alway gavs
a project to develop an expert system shell in LISP. The
sketch given in [Winston, 19891 the approach we usually used.
The projects were interesting from the systems point of view,
but, as one can well imagine, the students spent all their
time developing the shell and little time using it.
2. When we stressed a comparison of the different languages
and shells used to develop expert systems, we found that we
would always take a simple project so that we could implement
it in several shells. Each student did the same problem in
two different ways. All projects were presented to the class
and then a test covering all approaches was given. As one
could easily guess, we spent most of our time learning the
syntax of the different tools.
3. When we based our expert systems course on PROLOG we were
able to develop a fairly complex project, but fond that much
explanation of logic programming was needed. Some of the
specific techniques of PROLOG, especially unification,
required a lot of explaining as well. While we still use
PROLOG occasionally as a tool, we still find that we cannot
spend as much time as we want on the real topics of expert
systems, like knowledge acquisition, because of the need to
explain programming language details.
4. When we emphasized artificial neural systems in our

expert systems course, the project consisted of developing an
artificial neural system and an expert system to solve the
same problem. While it was interesting to compare the two
techniques, we realized at the end of the project that the
rule-based system was not as complex as desired. This
resulted from our desire to be sure we had selected a problem
that had a solution in both technologies.
5. When we based our expert systems course on a shell for the
project we found that with a little work we were able to
develop a fairly complicated project in a single semester.
While all of our previous methods of teaching the course were
successful, we feel that the current approach is ideal for
today in that the students spend all of their time developing
and testing a real expert system rather than doing other
things.

PROJECTS IN A CLIPS BASED COURSE

There are many techniques used to develop a project in an expert
systems course. The one we most often hear presented at meetings
is to simply require each student to develop a project on their
own. The instructor provides guidance and controls the quality of
the project, but the student selects the topic and finds the domain
expert. While this is fine for students who are domain experts, we
don't think it works very well for those who are not. We have
developed a method for selecting projects that we feel is very
good. This method has resulted in our developing several nice
prototypes as a part of the class and has been enthusiastically
received by our students. We now list some of the key components
of our method of doing projects in an expert system course.

1. We define a high level tool that everyone will use
to do their project. For the past two years we have used
CLIPS and plan to continue to use CLIPS in the future. CLIPS
is easy to use and has all the features we really want in our
expert system shell. In addition, students can do much of
their development work at home. We have also used GOLDWORKS
and EXSYS, but prefer CLIPS.
2. I select a single project for the entire class and line
up some domain experts who have an interest in developing an
expert system. So far we have found domain experts who would
participate in our project in several ways. In one case we
found that we had four personal computer repair people in a
class, in another we found several Biologists we wanted to see
a diagnostic expert system for plant disease developed, and in
another we found a local manager who needed to have his
knowledge built into a system.
3. The class is divided into teams of about five students
each. This division is dictated by our access to experts.
Each team selects people to acquire the knowledge, code the
system, test the system and develop the system documentation.
All students are responsible for all phases of the
development, but selected students are leaders in certain
parts (like knowledge acquisition.)

4 . The class project is described early and students begin
developing the system shortly after the first week of class.
This means that the expert systems theory about topics like
knowledge acquisition and system verification are often
covered in the lecture after students have practiced some of
the ideas in their own system.
5. A major emphasis of our course is on knowledge
acquisition via the traditional techniques of observation,
interviewing and becoming a pseudo-expert. We spend several
weeks each semester on knowledge acquisition and cover several
automated techniques as well as the traditional methods.
6. Each team develops a complete prototype system. The
systems are usually similar since I work with each team and
present an overall suggested system design at the start of the
course. But each project always has its own unique flavor.
Members of the team do both verification and validation of the
system as well as developing a user's manual. These
prototypes have often been developed into full systems after
the course is finished. At the end of the course each team
demonstrates their system to the class and all systems are
discussed and evaluated by the class as a whole.

SUMMARY

As one teaches an expert systems course with different emphases,
projects take on different forms. Some projects develop expert
system tools, some survey the current tools and some concentrate on
the art of building real expert systems. After experimenting with
many different types of course and projects, I have come to the
conclusion that it is best to teach an expert systems course that
concentrates on developing a real system. For such a course I have
found that a single class project implemented by teams is best.

REFERENCES

Giarantano and Riley (1989). Expert Systems: Principles and
Programming, PWS-KENT, Boston.

Hayes-Roth, Waterman and Lenat (1983). Building Expert Systems,
Addison-Wesley, Reading, Mass.

Malpas, John (1987). PROLOG: A Relational Language and its
Applications, Prentice-Hall, Englewood Cliffs, New Jersey.

Waterman, Donald (1985). A Guide to Expert Systems, Addison-
Wesley, Reading, Mass.

Winston and Horn (1989). LISP, 3rd Edition, Addison-Wesley,
Reading, Mass.

