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Abstract. The Expert Systems Validation Associate (EVA) is a validation system which was developed
at the Lockheed Software Technology Center and Artificial Intelligence Center between 1986 and 1990.
EVA is an integrated set of generic tools to validate any knowledge-based system written in any expert
system shell such as CLIPS, ART, OPS5, KEE and others. Many validation tools have been built in
the EVA system. In this paper, we describe the testing results of applying the EVA validation tools to
the Manned Maneuvering Unit (MMU) Fault Diagnosis, Isolation, and Reconfiguration (FDIR) expert
system, written in C Language Integrated Production System (CLIPS), obtained from the NASA John-
son Space Center.

INTRODUCTION

The Expert Systems Validation Associate (EVA) is a validation system developed at the
Lockheed Software Technology Center and Artificial Intelligence Center. Its goal was to
develop generic and flexible tools to validate any knowledge-based system written in any ex-
pert system shell such as CLIPS, ART, OPS5, KEE and others. We achieved this goal by us-
ing the metaknowledge approach. Metaknowledge, or knowledge about knowledge, describes
constraints on the knowledge that can be used for checking redundancy, completeness, con-
sistency, and correctness of a knowledge base. We realized that we can not standardize valida-
tion criteria for all applications. Each application has its own statements to be validated, but
they can be represented by means of the metapredicates.

From 1986 to 1990, we implemented many different checkers (Stachowitz et al.
1987,1991, Chang et al. 1988,1989,1990, McGuire et al. 1990) for checking different types of
errors in a knowledge base. In order to see if the checkers were sufficient to detect anomalies
and errors, we tested them on a real expert system, the Manned Maneuvering Unit (MMU)
Fault Diagnosis, Isolation, and Reconfiguration (FDIR) expert system, written in C Language
Integrated Production System (CLIPS), we obtained from the NASA Johnson Space Center.
To validate the FDIR expert system, we implemented a CLIPS translator to convert FDIR's
CLIPS rules into the internal knowledge representations in Prolog used by our checkers. EVA
only requires a new translator for a new shell because its checkers were built to be indepen-
dent of any particular expert system shell. This paper describes the testing results of applying
the EVA validation tools to the FDIR expert system.

MMU FDIR AUTOMATION TASK

The MMU FDIR automation task is described in (Lawler and Williams 1988). The primary
objectives of the task were to investigate the potential of automating the fault diagnosis, isola-
tion and reconfiguration (FDIR) function of the MMU currently performed by the MMU pilot.
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The problem of this task is to determine the types of all possible failure scenarios, appropriate
instrumentation for monitoring the MMU state and supporting diagnosis, and appropriate ac-
tuators for executing the failure recovery.

The MMU system is represented by a three-level architectural diagram. At level 0, MMU is a
black box whose inputs and outputs are:

Inputs of MMU:
MMU Torques
Automatic Attitude Hold (AAH) Select
Gyro Power
Control-Electronic-Assembly-A (CEA-A) Power
Control-Electronic-Assembly-B (CEA-B) Power
CEA-A Isolate
CEA-B Isolate
Translation Commands
Rotation Commands
Xfeed Valves

Outputs of MMU:
Tank-A Pressure (Gas Flow Rate)
Tank-B Pressure (Gas Flow Rate)
Thruster-A Firings
Thruster-B Firings

At level 1, MMU is decomposed into 3 components, namely, Gyros, CEA Assembly (CEA-A
and CEA-B), and Tank/Thruster Assembly (A and B Thrusters). Their inputs and outputs are:

Inputs of Gyros:
MMU Torques
Gyro Power

Outputs of Gyros:
Gyro Rotation Commands

Inputs of CEA Assembly:
Automatic Attitude Hold (AAH) Select
Control-Electronic-Assembly-A (CEA-A) Power
Control-Electronic-Assembly-B (CEA-B) Power
Translation Commands
Rotation Commands
Gyro Rotation Commands

Outputs of CEA Assembly:
Valve-Drive-Amplifier-A Commands
Valve-Drive-Amplifier-B Commands

Inputs of Tank/Thruster Assembly: J

CEA-A Isolate
CEA-B Isolate
Xfeed Valves
Valve-Drive-Amplifier-A Commands
Valve-Drive-Amplifier-B Commands

Outputs of Tank/Thruster Assembly:
Tank-A Pressure (Gas Flow Rate)
Tank-B Pressure (Gas Row Rate)
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Thruster-A Firings
Thruster-B Firings

At level 2, the CEA Assembly is further decomposed into CEA-A and CEA-B each of which
knows about the power status of the other. Similarly, the Tank/Thruster Assembly is broken
down into the components of side A and side B coupled through the crossfeed valves.

The architectural diagram provides a simple description of the causal effect of MMU.
To implement the recovery procedures, MMU provides one or more of the recovery options:
do nothing and continue mission, turn on/off CEA-A or CEA-B, turn on/off gyro power, turn
on/off AAH, open/close crossfeed valves, or abort mission (return to orbiter or call for res-
cue).

Measurements and switch settings of different parts/components in MMU are taken by
instruments to assess the state of the MMU system and components. Each measurement is
analyzed for the amount of diagnostic capacity it contributes to the FDIR system. The meas-
urements and switch settings are processed and converted into symbolic information represent-
ed by a set of initial facts in CLIPS. The initial facts are processed by CLIPS rules in the
FDIR expert system to generate diagnosis and recovery actions.

CLIPS TRANSLATOR

We implemented a CLIPS translator to convert FDIR's CLIPS rules into the internal Prolog
representations used by the EVA checkers. The CLIPS translator needs to handle many spe-
cial CLIPS constructs such as multifield variables, nested AND/OR, variable assignments,
if...then...else, while...do. Since Prolog does not support these constructs, the CLIPS translator
needs to perform normalizations and semantic translations. Therefore, it is possible that a
CLIPS rule may be translated into many Prolog Horn clauses. For example, the CLIPS rule:

(defrule pull-block-c
?s <- (stack $?stack-l c $?stack-2)
=>
(assert (stack $?stack-l $?stack-2))
(retract $s))

where $?stack-l and $?stack-2 are multifield variables is translated into

rule('pull-block-c',
[stack(X),
append(Stack_l, [c I Stack 2], X),
append(Stack 1, Stack_2, "2)],

[assert(stack(Z5),
retract(stack(X))]).

rule('append-0',
U,
[append([ ]JUL)]).

rulefappend-r,
[append(T,L,R)L
[append([HlT],L,[HlR])]).

VALIDATION OF THE FDIR EXPERT SYSTEM

The FDIR expert system consists of 104 CLIPS rules. The CLIPS translator converted these
CLIPS rules into 357 normalized internal rules which were then checked by the EVA check-
ers. The goal of our experiments was to detect if redundancy, incompleteness, inconsistency,
or incorrectness is present in FDIR's CLIPS rules. The following were the results we found:
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Redundancy

There are indeed redundancies in FDIR's CLIPS rules. The redundancy checker detected
redundancies in the following 5 CLIPS rules:

;;improper CEA behavior

;logic for (no aah) or (no gyro movement)and(aah on) - prime mode

(defrule cea-test-input-null
(or (aah off) (and (gyro on)(gyro movement none none)))
(rhc roll none pitch none yaw none)
(the x none y none z none)
(vda ?side ?thrust on)

=>
(assert (failure cea))
(printout crlf "failure - vda signal was sent to " crlf)
(printout "thrusters without intended command "crlf)

;2
;pos roll gyro input
(defrule cea-a-gyro-input-roll-pos-6

(aah off) (gyro on)
(gyro movement roll pos)
(side a on)
(side b on)
(rhc roll none pitch none yaw none)
(the x none y none z none)
(vda a ?m on)

(assert (failure cea))
(assert (suspect a))
(printout crlf "aah failed to correct pos roll")

;3
(defrule cea-b-gyro-input-roll-pos-6

(aah off) (gyro on)
(gyro movement roll pos)
(side a on)
(side b on)
(rhc roll none pitch none yaw none)
(the x none y none z none)
(or
(vda b r4 off)
(vda b 11 off)
(vda b ?n&"r4&"ll on)
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=>
(assert (failure cea))
(assert (suspect b))
(printout crlf "aah failed to correct pos roll")

;4
;pos roll gyro input
(defrule gyro-input-roll-pos-backup-a-6

(aah off) (gyro on)
(gyro movement roll pos)
(not (checking thrusters))
(side a on)
(side b off)
(rhc roll none pitch none yaw none)
(the x none y none z none)
(or
(vda a r4 off)
(vda a 11 off)
(vda a ?n&fr4&~ll on)
)

=>
(assert (failure cea))
(assert (suspect a))
(printout crlf "cea failure on side a")

;5
(defrule gyro-input-roll-pos-backup-b-6

(aah off) (gyro on)
(gyro movement roll pos)
(not (checking thrusters))
(side a off)
(side b on)
(rhc roll none pitch none yaw none)
(the x none y none z none)
(or
(vda b r4 off)
(vda b 11 off)
(vda b ?n&'r4&"ll on)
)

=>
(assert (failure cea))
(assert (suspect b))
(printout crlf "cea failure on side b")

)

where the last 4 rules contain parts subsumed by the first rule. For example, in the second
rule, cea~a-gyro-inpw-roll-pos-6, the conditions

(aah off)
(rhc roll none pitch none yaw none)
(the x none y none z none)
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(vda a ?m on)
are subsumed by the left hand side (LHS) of the first rule, and both rules have the same ac-
tion, (assert (failure cea)), in the right hand side (RHS). This type of redundancy, which is not
obvious to the naked eye, can be detected only when the rules are normalized.

Incompleteness

An input to the FDIR expert system is a set of initial facts. The requirements that can be used
for checking incompleteness should describe what are all the legal inputs. That is, we want to
verify if every input can be processed by the FDIR expert system. Unfortunately, these re-
quirements are not specified in (Lawler and Williams 1988). We could only manually deduce
from the 6 test cases given in Lawler and Williams' report and from the MMU model given
in the previous section that an input contains one or more instances of each of the following
CLIPS relations:

(defrelation aah
(min-number-of-fields 2)
(max-number-of-fields 2)
(field 2 (type WORD) (allowed-words on off)))

(defrelation fuel-used-a
(min-number-of-fields 2)
(max-number-of-fields 2)
(field 2 (type NUMBER) (range 0 7VARIABLE)))

(defrelation fuel-used-b
(min-number-of-fields 2)
(max-number-of-fields 2)
(field 2 (type NUMBER) (range 0 7VARIABLE)))

(defrelation side
(min-number-of-fields 3)
(max-number-of-fields 3)
(field 2 (type WORD) (allowed-words a b))
(field 3 (type WORD) (allowed-words on off)))

(defrelation xfeed-a
(min-number-of-fields 2)
(max-number-of-fields 2)
(field 2 (type WORD) (allowed-words open closed)))

(defrelation xfeed-b
(min-number-of-fields 2)
(max-number-of-fields 2)
(field 2 (type WORD) (allowed-words open closed)))

(defrelation tank-pressure-current
(min-number-of-fields 3)
(max-number-of-fields 3)
(field 2 (type WORD) (allowed-words a b ab))
(field 3 (type NUMBER) (range 0 7VARIABLE)))

(defrelation tank-pressure-was
(min-number-of-fields 3)
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(max-number-of-fields 3)
(field 2 (type WORD) (allowed-words a b ab))
(field 3 (type NUMBER) (range 0 7VARIABLE)))

(defrelation gyro
(min-number-of-fields 2)
(max-number-of-fields 2)
(field 2 (type WORD) (allowed-words on off)))

(defrelation gyro
(min-number-of-fields 4)
(max-number-of-fields 4)
(field 2 (type WORD) (allowed-words movement))
(field 3 (type WORD) (allowed-words none pitch roll yaw))
(field 4 (type WORD) (allowed-words none pos neg)))

(defrelation vda
(min-number-of-fields 4)
(max-number-of-fields 4)
(field 2 (type WORD) (allowed-words a b))
(field 3 (type WORD) (allowed-words bl b2 b3 b4

f 1 f2 f3 f4
11 12 13 14
rl r2 r3 r4
ul u2 u3 u4
dl d2 d3 d4))

(field 4 (type WORD) (allowed-words on off)))

(defrelation rhc
(min-number-of-fields 7)
(max-number-of-fields 7)
(field 2 (type WORD) (allowed-words roll))
(field 3 (type WORD) (allowed-words none pos neg))
(field 4 (type WORD) (allowed-words pitch))
(field 5 (type WORD) (allowed-words none pos neg))
(field 6 (type WORD) (allowed-words yaw))
(field 7 (type WORD) (allowed-words none pos neg)))

(defrelation the
(min-number-of-fields 7)
(max-number-of-fields 7)
(field 2 (type WORD) (allowed-words x))
(field 3 (type WORD) (allowed-words none pos neg))
(field 4 (type WORD) (allowed-words y))
(field 5 (type WORD) (allowed-words none pos neg))
(field 6 (type WORD) (allowed-words z))
(field 7 (type WORD) (allowed-words none pos neg)))

The types of incompleteness we checked were deadend and unreachable literals. A deadend
literal is a LHS literal of a rule that does not match with all input facts or all RHS literals in
the knowledge base. Obviously, any rule containing a deadend literal will not fire. An un-
reachable literal is a RHS literal of a rule that never appears in the LHS of a rule. In our ex-
periment, we did not find deadend literals. However, we did find 2 unreachable literals, (as-
sert (failure-thrusters-with-xfeed)), and (assert (checking thruster)) in the following rule:
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(defrule xfeed-fuel-reading-test-general
(declare (salience -10))
?x <- (xfeed-a open)
?y <- (xfeed-b open)
(fuel-used-a ?fuel-a)
(fuel-used-b ?fuel-b)
(tank-pressure-was ab ?p-old)
(tank-pressure-current ab ?p-new)
(test (!= (- ?p-old (+ ?fuel-a ?fuel-b)) ?p-new))
(side b on)
(side a on)

=>
(retract ?x ?y)
(assert (xfeed-a closed))
(assert (xfeed-b closed))
(assert (failure-thrusters-with-xfeed))
(printout crlf "failure occurred while executing thruster commands")
(printout crlf crlf "xfeed is open, testing sides after closing xfeed")
(printout crlf crlf)
(assert (checking thruster))

)
It turned out that (assert (checking thruster)) is a typo. The correct one should be (assert
(checking thrusters)).

Inconsistency

In the EVA system, we provide the flexibility of letting the user define his own inconsistency
criteria for his expert system. This is done through specifications of constraints on input facts
and asserted facts. We introduced some new constructs such as dej"ambiguity',
defincompatibility and defimply for this purpose. For example, if we state

(defambiguity (assert ?fact) (retract ?fact))
then an ambiguity will occur when there is a set of input facts that can lead to a situation
where a rule may fire to assert ?fact and another rule may fire to retract ?fact. If we state

(defincompatibility (xfeed-a closed) (xfeed-a open))
then we have an inconsistency when both facts, (xfeed-a closed) and (xfeed-a open), simul-
taneously exist in the short term memory. If we state

(defimply
(gyro movement "none ?v)

=>
(!= ?v none))

then we have to make sure whenever a fact about gyro is asserted, if its third field is not
'none' then its fourth field must not be 'none'. Adhering to EVA standards, we use the same
syntax of CLIPS in this case for constraint specifications so that the user does not have to
learn a new syntax.

Based upon some of the above constraint specifications, our logic checker detected anomalies
where one rule added a fact, followed by the deletion of the same fact by another rule, and in
between these two operations no new operations were performed, as specified by the above
defambiguity statement

Incorrectness

There are two major methods, namely, verification and testing (Chang et al. 1990), for check-
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ing correctness of an expert system. Both these methods assume that requirements on func-
tional behaviors of the system exist. Behavior requirements specify input-output relationships
of the system. Unfortunately, such requirements are not specified in (Lawler and Williams
1988). The approach given in their report is to perform testing of the FDIR expert system
with a few manually created test cases, and then manually evaluate the output produced by
the system.

The EVA system has a prototype tool called test case generator which automatically
generates test cases that satisfy the input specifications given in the previous sections. Howev-
er, we are not in a position to tell what the correct outputs would be for the generated test
cases. The performance for them has to be evaluated by experts in the field.

CONCLUDING REMARKS

We have described the testing results of the validation experiments we performed for the
FDIR expert system. The experiments are very useful. They not only tell us that EVA is a
useful validation system to detect errors/anomalies in a knowledge base, but also reveal to us
what requirements and information EVA needs in order to perform thorough validation of an
expert system. Because of these experiments, we gained better insight on how to build an ex-
pert system development environment that can nicely integrate requirement specification, sys-
tem prototyping/coding, and system verification, validation and testing.
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