
A CLIPS-BASED TOOL FOR AIRCRAFT PILOT-VEHICLE
INTERFACE DESIGN'

Thomas D. Fowler ^ 1 O 6 Q 5
California State Polytechnic University, San Luis Obispo

Steven P. Rogers, Ph.D.
Anacapa Sciences, Inc., Santa Barbara, California

Abstract

The Pilot-Vehicle Interface of modern aircraft is the cognitive, sensory, and psycbomotor link
between the pilot, the avionics modules, and all other systems on board the aircraft. To assist
Pilot-Vehicle Interface designers a CLIPS-Based tool has been developed that allows design
information to be stored in a table that can be modified by rules representing design knowledge.
Developed for the Apple Macintosh®, the tool allows users without any CLIPS programming
experience to form simple rules using a point-and-click interface.

INTRODUCTION

Development of the Pilot-Vehicle Interface (PVI) is one of the most challenging aspects
of advanced aircraft programs. The PVI is the cognitive, sensory, and psychomotor link
between the pilot, the avionics modules, and all other systems on board the aircraft. To
reduce the pilot's workload while maximizing his situation awareness, the PVI must
optimize the flow of information between the pilot and the hardware/software systems,
respond smoothly to his immediate needs, and present the required information elements
using the most readily comprehensible methods.

It is tempting to believe that advancing technology must have made the PVI of
modern aircraft better than ever before. In fact, according to many pilots, the opposite is
true. Although modern military aircraft have better weapons, better sensors, better
computers, and better displays than in years past, the barrage of information from all the
cockpit systems is nearly overwhelming, the data from various systems are not integrated
to support the pilot's tasks, and the display types and formats are often ill-chosen. To
acquire the information necessary for a given task, the pilot may have to extract data
from several different systems and mentally translate or manipulate the data, while
simultaneously dealing with the unrelenting workload imposed by aviation, navigation,
and communication tasks.

The general requirements for an intelligent PVI for an advanced aircraft are that it
be capable of filtering out information that is not currently useful, prioritizing the most
useful information, prompting the pilot to examine the most important information, and
integrating the functionally related data into an easily comprehended presentation. In
order to determine the best presentation, the PVI must rapidly perform a layered series of

"This work is supported by an Army Small Business Innovation Research Contract (No.
NAS213391) administered by the Aeroflightdynamics Directorate, NASA-Ames
Research Center, Moffet Field, California. Dr. Edward M. Huff is the Contracting
Officer's Technical Representative.

407

https://ntrs.nasa.gov/search.jsp?R=19920007387 2020-03-17T12:54:09+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42814369?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

information presentation choices to select the best display modality, location, and format
for the pilot's current activity.

In order to meet these general requirements for the PVI, it is necessary to base the
system design on the pilot's functions and information requirements, rather than focusing
on the technology of the aircraft systems. Taking such an information requirements
approach, however, requires that thorough, systematic analyses be performed to identify
the specific information elements necessary to perform each pilot function and to
determine the various attributes of these elements. Next a set of rules must be developed
to select the best display modalities, locations, and formats for integrating and presenting
the information given the specific information elements and their attributes.

The necessity of a database of information elements, and rules linking the
information elements to optimal presentation methods, strongly suggested that an expert
system be developed to manage and guide the display method selection process. Such an
expert system must be designed to organize the extensive collections of analytical
information, document the controlled growth of the rules for information display, and
manage the application of the rules to the database for selection of display methods in a
methodical, consistent, and easily understood manner.

To assist in the development of such an expert system, a CLIPS-Based tool has
been developed that allows the information elements and their attributes to be stored in a
table that can be modified by rules representing design knowledge. The tool allows the
user to create rules incrementally using a simple point-and-click interface. The following
sections describe the tool from the user's perspective and discuss the use of CLIPS
(NASA 1991) on the Macintosh for its implementation.

USER LEVEL VIEW

The tool presents the user with a table contained in a window that has horizontal and
vertical scrolling capabilities. Rows and columns can be manipulated using cut, copy,
and paste commands available from the menu bar. Entries in the table can be selected by
clicking on them with the mouse or by using the arrow keys on the keyboard.

Figure 1. Information Element Table

The first row in the table is used to identify the type, name, and attributes of each
information element Figure 1 shows a table consisting of six information elements each
having the attributes X, Y, Modality, Location, and Format

408

Columns entries that are set by the user are tagged as "input" columns, while
those set as the result of rule execution are designated "output" columns. In figure 1,
columns X and Y are input columns with entries that the user is responsible for setting.
The Modality, Location, and Format columns are output columns. Associated with each
column is a list of value options from which each entry is selected. Figure 2 shows the
input of a list of value options for column X and its designation as an input column.

®Input O Output

Uolue Option*

Figure 2. Column settings dialog

Once the list of value options has been set for a column, the dialog shown in
Figure 3 is used to set the values of its entries. In this case, the value of the attribute X
for the Wind_Speed information element is being set to Medium. The information type
and attribute for the entry is indicated at the top of the dialog. If an entry already
contains a value, then it is displayed in the box below the type and attribute indicators.

Figure 3. Attribute entry dialog

A list of value options must also specified for the Modality, Location, and Format
columns for use by the rules which set them. Restricting the values of entries in this
manner guarantees correctness of input and insures the consistent usage of symbols by
user-created rules.

409
PAGE IS

OF POOR QUALITY

Adding Rules To The Table

Rules can be formed that have left-hand side (LHS) patterns that match values in input
and output columns, and right-hand side (RHS) clauses that set values in output columns.
Rule creation is facilitated by the dialog shown in Figure 4(a). Here, a rule with name
"Rulel" has been formed that will apply to information elements that have attribute X set
to Low and attribute Y set to Red. The consequence of Rulel's execution is to set the
attributes Modality, Location, and Format to Visual, Display 1, and Iconic, respectively.
Figures 4(b) and 4(c) show the formation of additional rules.

nil Ubi«

fll«M_PlM
WMIOT

\\nkJL\tamM |X |t

Hull N«m« |»ul»l

Rllrlbultt
lnfa_Ilement

V
Hodolltg
locitlon
Fomn«t

5

I [S«u«](nomouo)(Quit

Operator Ualue«

V-Bod
TMfN
Modality -> MUuol
locitlon » Ol<pl«yl
fenn«l » Iconic

Figure 4(a). Rulel

TMIN
ModcUly -> IH««al
l«c«t
renaal -> NwMtlc

Figure 4(b). Rule2

ORIGINAL PAGE I
OF POOS QUALIT

410

FligM-PIM

MnraA

|Forro

o I

Figure 4(c). RuleS

Figures 4(a)-(c). Rule input dialog

LHS rule patterns are composed of an attribute, an operator, and a value. The list
of attributes, displayed in the Attributes list-box, consists of the names of all input and
output columns from the first row of the table. Displayed in the Values list-box is the list
of value options that correspond to the selected attribute. LHS side patterns are formed
by selecting an attribute, an operator (via the Operator radio buttons), and a value. The
resulting pattern is displayed at the selected line in the rule display.

RHS rule clauses are composed of an attribute, the assertion operator (=>) and a
value. When a RHS clause is being formed, only the names of output columns appear in
the Attributes list-box and the Operator radio buttons are not applicable.

New LHS patterns and RHS clauses can be inserted into the rule by pressing the
Insert button and deleted by pressing the Clear button. The Save button allows newly
created rules to be saved while the Remove button deletes pre-existing ones.

Rule Execution

A single rule can fire multiple times to set attribute values for different information
elements. However, rules are applied to the table in a row-wise manner. That is, the
LHS and RHS parts of rule can only apply to one row at a time. Figure 5(a) shows the
state of table after Rulel [Figure 4(a)] has executed. Rulel's LHS patterns are satisfied
by the values of attributes X and Y for information elements TimeJEstimates and
Oil.Pressure. Rulel will fire once for each of these information elements, resulting in
their Modality, Location, and Format attributes being set to Visual, Displayl, and Iconic,
respectively. Rule2 [Figure 4(b)] includes a LHS pattern that matches if "X >=
Medium." This is permissible because an order relationship is established on the list of
value options. Thus, the relationship (Low < Medium < High) holds for the value
options for the attribute X.

Figure 5(b) shows the state of the table after the Rule2 and RuleS have executed.
Notice that because RuleS's RHS does not set the Location attribute, it has not been set
for the information elements Altitudes and FueLRemaining.

PAGE IS
OF POCM QUALITY

411

Figure 5(a). Table after Rulel executes

Figure 5(b). Table after Rule2 executes

Figures 5(a) and (b). Effects of rule execution

Once a rule has been entered it will apply to any new information elements that
are added to the table. Figure 6 shows the addition of the information element
Planned_Speeds in the third row of the table and the setting of its Y attribute to Red.
After the Y attribute has been set to Red, RuleS [Figure 4(c>] will execute and the
Modality, and Format attributes will be set accordingly (Figure 7).

The effects of modifying an existing rule are immediately reflected in the state of
the table. Figure 8 shows Rule2 modified so that it sets the attribute Location to
Displays instead of Display2. After the modified Rule2 has executed, the Location
attribute for information elements Wind_Speed and Visibility will be set to Displays
(Figure 9).

412 PAGE IS
OF POO& QUALITY

Figure 6. Addition of new information element

IMug

OM-Pnmn

Ml* RM

TtrM
Dl.,1.,2

Figure 7. Table after addition of a new information element

Conflicting Rules

A rule conflict is defined as two or more rules attempting to set the same table entry. A
conflict situation arises when the PVI designer has entered two or more rules that apply
to the same output attribute(s) of an information element A more subtle conflict
situation presents itself when a change in the value of a table entry brings two or more
previously non-conflicting rules into conflict

The tool allows conflicting rules to be entered. However, when multiple rules
attempt to set the value of the same table entry, the symbol "CONFLICT" is placed into
the entry. The user can then request that a list of all rules that caused the conflict be
generated and modify the appropriate rule(s) to resolve the conflict The resolution of
conflicting rules is an important feature of the tool that insures the consistency of the
design knowledge.

ORIGINAL PAGE IS
OF POO?? QUALITY 413

nt«M_fiM

*** I *«»>M[««mg

MttribaUt Operator U«lu«»

If
N >- Median
V - Nut
THIN
Medtlllu •> Ultutl

formal -> Numeric

Figure 8. Modification of Rule2

fh»r>t_p|.«
OlfllUPlu
WotMr

TtlM^stlimtn

Audlttry

J_L

Figure 9. Table after modified Rule2 has executed

Column and Value Option Deletion

The deletion of a column or one of its value options is problematic in that rules that
reference the column or value will no longer apply. For example, if the column
representing attribute X were deleted from the table, then any rules that reference X will
no longer fire. Similarly, if a value option for a column is deleted, any rules referencing
that value will no longer execute.

There are several alternatives for handling this situation. One is to remove all
rules that make reference to deleted columns or values. This has the dangerous
consequence that a large number rules could potentially be removed due to a single
operation by the user. A second alternative is to modify the rule set by removing all
clauses that make reference to the deleted column or value option. While less severe
than the first alternative, a large scale modification of the rule set could occur. A third
alternative is to simply alert the user that a number of rules have been invalidated. A
query can then be performed over the rule set to locate all invalidated rules. The user
then has the option of modifying or deleting these rules as appropriate.

Since Invalidated rules are no longer applicable they are "unfired" by clearing all
table entries that were set as a consequence of their execution. When a value option is

414

G-3
ORIGINAL PAGE IS
OF POOf? QUALITY

removed from a column, all entries in the column with that value are cleared. The
clearing of table entries in this manner can result in the LHS patterns of previously
executed rules to longer be satisfied. These rules must also be "unfired" to maintain the
consistency of the information in the table. The resolution of conflicts, as described
above, has not yet been fully implemented. Currently, The truth-maintenance facility of
CLIPS Version 5.0 is being considered for use.

IMPLEMENTATION

User
Interface
Kodule

Message
Handler Messages

Embedded
CLIPS
Module

Message
Handler

Figure 10. Tool Architecture

Architecture

The tool is comprised of three main components; a user-interface module, a message
handling facility and an embedded CLIPS module (Figure 10). The user interface
module is responsible for handling all events generated by the user and operating system.
The embedded CLIPS component is responsible for maintaining the table and rule-base.
The message handling component facilitates communication between the user-interface
and CLIPS modules. Whenever the table is modified by the user, a message is sent to
CLIPS by the user-interface. CLIPS handles this message by updating its fact-list and
executing any rules that have become activated. If rules that result in the modification of
the table are executed, then the CLIPS module sends a message to the user-interface
module - which responds by updating the display accordingly. When the user creates
rules, the user-interface module sends a message to CLIPS, which responds by adding the
rule to its environment using the CLIPS Build function.

Developing With CLIPS On The Macintosh

Programming the Macintosh family of computers requires a substantial investment of
time to become familiar with the toolbox routines implemented in ROM. Indispensable
to any serious development effort for the Macintosh is the Inside Macintosh series (Apple
1985). Knowledge of the basics of Pascal records, procedures and functions is helpful
because the toolbox interface is defined in Pascal. Apple's Programmer's Introduction to
the Macintosh Family (Apple 1988) is a good source of information for those
considering a developing for the Macintosh.

Symantec's THINK C compiler was chosen to implement this tool. Since CLIPS
for the Macintosh was developed using THINK C, the task of embedding it into an
application is made easier by using THINK C. In addition, THINK C comes with a class
library that provides an interface to the Macintosh toolbox that can release the
programmer from being concerned with many low-level toolbox details. Because
Symantec's documentation for the THINK C Class Library (Symantec 1989) is extremely

415

terse and includes few coding examples, Dave Mark's Macintosh C Programming Primer
series (Mark and Reed 1989, Mark 1990) is strongly recommended.

CONCLUSIONS AND FUTURE DIRECTIONS

The problem of transferring human knowledge into an expert system is known as the
knowledge acquisition bottleneck (Giarratano 1989). This tool helps reduce this
bottleneck by facilitating the incremental acquisition of design knowledge from its users.
It accomplishes this by allowing users without formal programming experience
to easily create rules while assessing their effects. Using CLIPS to represent these rules
provides a measure of power that is not attainable using other tools such as a spreadsheet
CLIPS' use of the Rete Algorithm (Forgy 1979) results in the execution of only those
rules affected by incremental changes to the table. The pattern matching capabilities of
CLIPS allows rules to be formed that reference table entries via user-defined symbols
rather than positional row/column addresses imposed by the implementation of the table.
This allows rows and columns to be added or rearranged without having to modify any
rules.

Future directions for the tool include allowing the formation of more
sophisticated rules, incorporating meta-rules that can be used to evaluate and examine the
design rules entered by the user, and providing a rule explanation facility.

REFERENCES

Apple Computer, Inc. Inside Macintosh. 6 vols. Addison-Wesley, 1985 - 1991.
Apple Computer, Inc. Programmer's Introduction to the Macintosh Family. Addison-

Wesley, 1988.
Forgy, Charles L. On the Efficient Implementation of Production Systems. Ph.D. Thesis,

Carnegie-Mellon University, 1979.
Giarratano, Joseph, Gary Riley. Expert Systems Principles and Programming. Boston:

PWS-KENT, 1989.
Mark, Dave, Cartwright Reed. Macintosh C Programming Primer Volume I. Addison-

Wesley, 1989.
Mark, Dave. Macintosh C Programming Primer Volume II. Addison-Wesley, 1990.
NASA. CUPS Reference Manual (Version 5.0). Software Technology Branch, Lyndon

B. Johnson Space Center, 1991.
Symantec. THINK C User's Manual. Symantec, 1989.

416

