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CHAPTER 1

INTRODUCTION

A wind profiling network should be capable of helping scientists and engineers predict the
evolution of the wind profile over Cape Canaveral less than 6 hours before Space Shuttle launch
from November through February. The vertical resolution of the network must allow detection
of vertical wind shears greater than or equal to 1 km. In addition, the network should provide
Kennedy Space Center (KSC) forecasters with real-time estimates of vorticity, divergence and
vertical motion.

Atmospheric motions are composed of many different time and length scales that continu-
ously interact. Therefore, it is not possible to design a single network capable of detecting and
predicting the evolution of weather phenomena on all the possible scales of motion present at a
particular location. In this report we use the climatology of the KSC winds aloft, the perform-
ance of the existing 50 MHz radar located at KSC during the 2 December 1988 shuttle launch,
and the results obtained by the National Oceanic and Atmospheric Administration (NOAA)
Wave Propagation Laboratory (WPL) wind profiling networks to help design the KSC wind pro-
filing network. In addition we suggest strategies that utilize radar network data to forecast verti-

cal wind shear.



CHAPTER 2
DESIGN OF THE WIND PROFILING NETWORK
A. SPATIAL SAMPLING

During winter, air-mass thunderstorms are observed infrequently. Therefore, thunderstorms
occurring during this time should be tied to the advance of mesoscale Vand synoptic-scale weather
systems in the vicinity of KSC. This allows one to increase the station spacing within the net-
work beyond that required to resolve individual thunderstorms (=10 km). This is advantageous
since wind profilers located within 50 km of one another may cause the radars to interfere with
each other. Furthermore, Smith and Rabin (1989) show that divergence estimates from wind
profilers placed 10 km apart can be in error by 42%, whereas errors near 6% are possible using a
100 km separation. Zamora and Shapiro (1989) show that a wind profiler network with an aver-
age station spacing of 150 km was able to resolve the synoptic and mesoscale forcing in the wind
field that prepared the atmosphere for a severe convective outbreak over northeaétem Colorado
on 23 July 1987. Zamora et al. (1987) demonstrated that a wind profiling network with an aver-
age station spacing of 400 km was not capable of resolving mesoscale wind structure in the
vicinity of the jet stream as a strong baroclinic wave passed over the network.

Sampling theory tells us that we must make at least four samples of a given wave to discern
both the phase and the amplitude of the wave. If the wind profiling network station spacing is
100 km, then spatial wavelengths smaller than 400 km are not resolved unambigously and only
scales greater than 400 km are resolved well. The operational rawinsonde network used by the
National Weather Service (NWS) can resolve scales larger than 1600 km. A wind profiling net-
work with stations 100 km apart has four times the resolution of the conventional rawinsonde
network. Winter weather pattems are dominated by large synoptic;scale waves (1600 km) and

embedded short wavelength systems (=400 km). Furthermore, NASA forecasters are interested



in using profiler data to initialize numerical weather prediction models. Kuo and Guo (1989)
show that profiler station spacings smaller than 240 km are needed to provide adequate initializa-
tions for mesoscale forecast models. However, choosing a 240-km separation implies that
weather systems having a length scale of 940 km will be resolved by the network. This
horizontal length scale corresponds to meso-alpha scale weather systems. Smaller mesoscale
systems that produce strong vertical wind shear would be undersampled. Therefore, a 100 km
separation is suggested by the previous wiﬁd profiling network results and the structure of winter
synoptic-scale weather systems. If the weather systems are translating across the network in a
linear fashion, then space-time conversion will be possible. This conversion would allow fore-

casters to examine spatial scales smaller than 400 km.
B. NUMBER OF STATIONS

The wind forecasting requirements at Cape Canaveral require accurate knowledge of the
winds upstream of the range and at the launch site. The range weather prediction group has also
expressed interest in having the éapability to compute vorticity, divergence, and vertical motion
from the wind profiling network data. The minimum number of wind observations needed to
compute the kinematic properties of the wind are three, as shown by Bellamy (1949). Schaefer
and Doswell (1979) and Zamora et al. (1987) demonstrate alternate methods for computing the
kinematic properties of the wind field. This number assumes that the important spatial variations
in the wind field between any two points in the radar network are linear. Most atmospheric flow
fields are nonlinear. Vorticity and divergence computed using three wind profilers may contain
a significant error because the nonlinear part of the wind field must be neglected. If six stations
are operating, then estimation of the nonlinear variation in the wind field at the center of the net-
work is possible using the Taylor series method introduced by Zamora et al. (1987). Doswell

and Caracena (1988) examined this question in detail.



C. ORIENTATION OF THE NETWORK

The orientation of the network should make use of the existing profiler site at KSC and give
the forecasters useful information about changes in the velocity field upstream of KSC. We used
the statistics of the mean wind published in the Cape Canaveral Range Reference Atmosphere
and similar data compiled by the NWS for the Tampa, Florida, rawinsonde station to estimate the
average wind directions found over central Florida during November, December, January, and
February.

According to the Cape Canaveral Range Reference Atmosphere, the average winds aloft in
the layer from 1 to 17 km (MSL) during winter are from the west at an azimuth of 265 degrees
relative to true north. We found similar results for the Tampa observations. Synoptic and
mesoscale weather systems will most likely approach the launch site from this direction. There-
fore, placing the axis of the observing network along the 260 radial (relative to KSC) will maxi-
mize the chances of observing significant changes in the wind field before they affect the shuttle
launch area.

Figure 2-1 shows the orientation of the recommended wind profiling network using six sta-
tions. Schaefer and Doswell (1979) and Doswell and Caracena (1988) showed that equilateral
triangles provide optimum estimates of vorticity and divergence. The inner triangle, formed by
- the existing KSC wind profiler and the profiling sites labeled 2 and 3, show the smallest radar
network capable of computing the kinematic properties of the wind field. Stations 4, 5, and 6
- can be added or subtracted in response to scientific or budgetary considerations. The full net-
work will allow the users of the data to compute the wind field diagnostics using the linear wind
field model for four triangular regions in the vicinity of KSC. Divergence estimates at the center
of the inner triangle can be computed using the Taylor series method outlined in Appendix A.
These calculations will include the nonlinear variations in the wind field. The network can be

expanded to the north, south, or west by adding additional stations.



D. SITING CONSIDERATIONS

Although the ideal geometry for the wind profiling network favors equilateral triangles, other
factors must be considered when siting the radars. They include radio interference from nearby
sources, ground clutter (in particular moving ground clutter such as cars on busy highways), and
air traffic corridors. We suggeét that the radar network locations maintain the equilateral
triangle geometry and avoid air traffic routes, busy highways, and powerful sources of radio

waves.
E. RADAR DESIGN CONSIDERATIONS

Wind profiling radars have been designed that operate at 50, 405, and 915 MHz. Only 405
and 50 MHz radars have demonstrated the capability to measure winds routinely to heights near
17 ki (MSL). Frisch et al. (1986) published a study that examines the height coverage demon-
strated by clear-air radars operated by WPL at 50, 405, and 915 MHz. A radar designed with an
operating frequéncy near 225 MHz might also be able to measure winds at thcse heights.
Frequency allocation in this region of the radio spectrum is controlled by the Department of
Defense. Thus, radar development has not been undertaken at 225 MHz. Recently, the Depart-
ment of Commerce accepted the first of thirty 405 MHz radars that will be used for research and
operational weather analysis. This radar measures winds from 500 m above ground to 16.25 km.
However, the current design of this radar limits its vertical resolution above 9 km to 1000 m.
Vertical wind shears of 1 km would not be well sampled above 9 km.

50 MHz radars such as the KSC radar can measure winds at 150 m intervals to heights well
above 9 km but are unable to measure winds in the lowest kilometer above the radar. This limit

makes estimation of vertical motion using the divergence of the horizontal wind difficult.



Meteorologists have inferred vertical motion in the atmosphere by integrating the continuity

equation,
T ou o
w(z)=w(zg) - f -é-)-l;—+é—;dz, 1)
zo

where u, v, and w are the east-west, north-south, and vertical wind components and x, y, and z
are the Cartesian spatial coordinates. Integration of (1) requires one to measure the full diver-
gence profile as a function of height for an upward integration or to assume that w is zero at a
height of 17 km for a downward integration. One could also use profiler-observed vertical
motions. Figure 2-2 is a time-height cross section of hourly averaged vertical motions obtained
using the vertical beam of the WPL Platteville VHF radar. Note that the vertical motions are
nonzero for any single 1-h period at the upper observation heights. The vertical motion averages
to zero at these heights only for periods greater than or equal to 12 hours. If the radar measure-
ments are reliable, then the traditional boundary condition used to integrate the continuity equa-
tion may not be representative of the true vertical motions present at 17 km. Further research
will be needed to verify these results.

Because the traditional boundary condition may be in question, we recommend that calcula-
tions of vertical motion using (1) be based on an upward integration of the full divergence pro-
file. Thus, if 50 MHz radars are chosen for use in the KSC network, low-level windfinding
capability must be added to each radar site. Radar systems operating at 915 MHz have been
developed by NOAA'’s Aeronomy Laboratory to measure low-level winds (E klund et al.,1988).
If 405 MHz is the choice, then vertical resolution in the wind profile will be sacrificed using the
405 MHz radar design that has been demonstrated.




CHAPTER 3

RADAR PERFORMANCE

A.THE EVALUATION DATA SET

Before we discuss forecasting applications using a single profiler or a network of profilers, we
can examine the performance of the KSC radar during launch conditions. This approach allows
us to see strengths and weaknesses in the existing design and radar operation strategies. For this
assessment we chose a 58-h wind profiler data gathering period in December 1988, when a
Space Shuttle launch took place. We realize that the average radar-transmitted power was 15-dB
below normal during this period. The findings of this section of the report should thus be sub-
jected to further scrutiny when additional data sets are gathered using the full design capability
of the KSC radar.

The radar data set begins at 1000 UTC 30 November 1988 and ends at 2000 UTC 2 Decem-
ber 1988. During this time period a large-amplitude, upper atmospheric trough passed over the
eastern United States. Associated with the passage of the wave was a well-defined jet stream
structure. Figures 3-1, 3-2, and 3-3 show the radar observations during the passage of the wave.
Winds higher than 50 m s™ were observed during the period. The radar observed winds in excess
of 25 m s™ at a height of 3.5 km MSL around 0000 UTC 2 December 1988. Strong vertical wind
shears were generated by the passage of this weather system over Cape Canaveral.

During this time period the radar operated using vertical resolutions of 150 and 600 m. Figure

-3-4 displays the number of wind observations recovered for a given range gate. Figure 3-4 indi-
cates that the radar had difficulty recovering data between 2 and 4 and between 9 and 10 km.

Near-field antenna effects or problems with the transmit/receive switch may account for the



missing data in the 2-4 km height range. Low signal-to-noise ratios (S/N) could be responsible
for the data losses at other heights. Data losses caused by low S/N can be identified using low
consensus numbers. Examination of the data indicates that the number of profiles passing
through the consensus average test are not archived as part of the basic data set. Therefore, we
were unable to use consensus data to confirm our speculations. For WPL 50 MHz radars, 12 pro-
files are taken during a 1-h period and passed through the consensus test. Figure 3-5 is an exam-
ple printout of an hourly averaged wind profile obtained by the 50 MHz wind profiler operated
by WPL at Flagler, Colorado. The sharp drop in the number of profiles passing the consensus
average above 11 km was an indication that S/N was getting weaker. Data losses began appear-
ing in subsequent range gates. We recommend that the number of wind profiles used to estimate
the averaged wind at a given height be archived with the wind profiles. These consensus
numbers can be used to identify radar hardware or software problems and are one indication of
data quality. Frisch et al. (1986) examined the statistics of the altitude coverage of the WPL
clear-air radars using the consensus numbers.

In general there is good agreement between the wind profiler observations taken at KSC and
the synoptic-scale weather pattern. We did not encounter large problems with the data set at
heights where the data recovery rates were high. NASA personnel have noticed a systematic
problem with profiler wind observations in the 6-8 km range gates. We found an increase in the
number of wind observations missing at those heights, but the statistical significance of this

result cannot be determined using the December data sample.



DATA ANALYSIS AND FORECASTING APPLICATIONS

A. AUTOCORRELATION FUNCTION ANALYSIS

After checking the data set for gross errors, we computed autocorrelation functions and power
spectra as a function of height from the wind profiler data af range gates where 6 or fewer hours
of data were absent. The missing data points were filled by linear interpolation. Studies of the
atmospheric boundary layer have used the autocorrelation functions computed from the velocity
field to determine when the fluid no longer feels the influence of its initial state (Panofsky and
Dutton, 1984). Thus, given the computed autocorrelations of the KSC profiler velocity field, we
can determine statistically the limits of a short-term wind forecast based on a linear extrapolation
of wind measurements made using the KSC profiler. The power spectra computed from the pro-
filer observations contain important information about the noise content of the data and can be
used to determine if the radar sampling times were chosen correctly.

The profiler autocorrelation functions computed for the u- and v-components of the wind at
3.2 km are shown in Figures 4-1 and 4-2. The functions indicate that the velocities become
decorrelated rapidly, with the correlations becoming smaller than 50% at the third lag or 3-h time
scale for the u-component. The u-component correlation goes to zero for time scales beyond 12
hours. If one used a short-term nowcast or extrapolation of KSC wind conditions for a 6-h period
at 3.2 km there would be only a slight chance that it would be correct. The autocorrelation func-
tion for the u-component of the wind at 5.1 km (Figure 4-3) shows an improvement in the corre-
lation time. At the third lag the correllation was better than 80%. At the crucial 6-h time period

there was a 55% correlation. We found that the percentages were nearly the same at the 7.6-km



profiler observing height (Figure 4-4). The 10.6- and 14.2-km u-component autocorrelation func-
tions show good correlations for any time scale shorter than 3 hours (Figures 4-5 and 4-6).

In general, the autocorrelation functions indicate that atmospheric variability decreases as a
function of height. At heights of 3.2 and 5.1 km the autocorrelation functions show a steep drop
in the correlation to smaller than 30% in the 6-10-h lags. The functions do not exhibit this sharp
drop in correlation in the 6-10 h lags at 10.6 and 14.2 km. Thus, single-station forecasts of wind
in the upper troposphere and lower stratosphere should be more accurate in the absence of jet
streaks or upper level frontal zones. Below 5.0 km, we do not expect extrapolation of wind con-

ditions present at KSC to lead to accurate wind forecasts.
B. SPECTRAL ANALYSIS

The power spectra computed from the profiler time series suggest an additional limitation for
single-station wind forecasts or nowcasts. The spectra computed from the u-component and
v-component time series at 3.2 km are shown in Figures 4-7 and 4-8. The spectral estimates
presented here were normalized by frequency. In this presentation, +1 and -2/3 slopes indicate a
white noise and a -5/3 spectrum, respectively. Figure 4-7 indicates that the spectral estimates for
time scales shorter than 3 hours contain a significant amount of noise. The spectra computed for
the measured wind components at 5.1 , 7.6, 10.6, and 14.2 km are shown in Figures 4—9 through
4-16. These spectra also show signs of a noise slope at high frequencies. Which leads to the
sharp drop in the autocorrelation function noted earlier. The source of this noise may be buoy-
ancy (gravity) waves or poor radar system performance. Therefore, single-station forecasts of
wind conditions based on wind profiles measured during the last observing period may be
contaminated by meteorological or radar system noise. Zamora et al. (1987) noted that wind
profiler measurements need prefiltering and smoothing before coherent divergence patterns can

be calculated using profiler data.
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C. PREFILTERING AND SMOOTHING

Wind measurements containing large errors may pass through the consensus averaging.
These gross eﬁors must be removed before smoothing the wind field in height and time. Wuertz
and Weber (1989) use a nearest neighbor approach that uses past and present data to prefilter the
profilef data. _

Most filtering techniques need at least three measurements of the variable being filtered.
Points adjacent to the point being filtered are used. If the values of wind speed and direction
used in the nowcast are the values gathered during the last observing period, there will be no
point after the observation because that point is in the future. Thus, three or five point recursive
filtering techniques cannot be used. Wind measurements contain the estimate of the wind plus
noise. It may be difficult to discem meaningful changes in the wind field from the most recent
wind observation.

We can also illustrate this using the KSC profiler measurements made between 1200 and 1400
UTC 2 December 1988 and the NWS rawinsonde observations. An observer nowcasting solely
from the 1200 UTC profiler observation would most likely forecast northwesterly windflow.
However, the northerly wind flow associated with the frontal passage aloft passed over KSC at
1300 UTC. If a wind profiler had been located upstream of KSC, observers would have located
the shear layer perhaps 6 houm earlier, and its approximate phase speed could have been esti-
mated. The 0000 UTC 12 December 1988 NWS rawinsonde observation for Tampa is shown in
Figure 4-17. The winds measured over Tampa indicate that the front has passed over that site.
Thus, the NWS observation gave a clear indication that changing wind conditions were
approaching, 12 hours before the 700-mb frontal zone reached KSC. Having an upstream wind
profiler rather than twice a day rawinsonde observations should allow forecaster to improve their

short term forecasts.

D. FORECASTING APPLICATION

11



We recommend that hourly correlations be examined using wind data obtained from the KSC
wind profiler and any profiling station located 100 km upstream of KSC. If the correlation is
good, then nowcasts based on existing wind conditions at KSC will have a high probability of
being correct. If the correlation is small, then meteorologists must direct their attention upstream
of KSC and begin to monitor wind conditions closely. This approach should give forecasters
some lead time before the wind change occurs at KSC as long as the scale of the weather system

responsible for the change is larger than 200 km.
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CHAPTER 5
USE OF NUMERICAL MODEL GRID POINT DATA
A. COMPARISONS FOR 2 DECEMBER 1988

Numerical weather prediction models are capable of producing wind forecasts through the
depth of the atmosphere with good temporal and spatial resolution. These wind forecasts may be
used to improve the nowcasting capabilities of the profiler network. We compared the winds
measured at KSC durihg the 2 December 1988 Space Shuttle launch with those forecast from the
National Meteorological Center (NMC) Nested Grid Model (NGM) (Phillips, 1979).

The model was run using the initial conditions generated by NMC for 0000 UTC 2 Decem-
ber 1988. The run covered a 48-h period. Winds were extracted from the 16 model forecast lev-
els at hourly intervals for the first 24 hours of the run using the grid points nearest KSC. The
model forecast wind profiles are shown in Figure 5-1. The KSC profiler winds measured at the
heights nearest the forecast levels for the same time period are displayed in Figure 5-2. Forecast
wind profiles at 0800 UTC and 1700 UTC were not plotted because of problems with the NMC
model data fields. These problems did not compromise the model results outside the 0800 and
1700 UTC forecast times. There was very good agreement between the forecast and observed
winds during the first 8 hours of the experimental period, after which the difference between the
forecast and observed winds increased gradually. During the period the winds at 4 km shifted
from westerly to northwesterly. The strongest vertical wind shears were found at 1100 UTC,
before the shuttle launch. The NGM did not forecast these events until 1700 UTC; thus, the fore-
cast contained a 6-7-h phase error. Forecasters having access to this information would be aware
of a significant change in the wind field over KSC within the forecast period. However, the exact
timing of the event would have exceeded the 6-h limit imposed by KSC needs.

We also noted a bias in the forecast of the winds at 17 km. Here the wind speeds were 5-10

13



m s™ greater than the profiler observed winds at that level. If this type of error is present at other
levels in the model, then wind load calculations should not be based on the model forecast wind
profiles unless the errors can be corrected using empirical techniques. Furthermore, the vertical
resolution of the model is crude. Sixteen forecast levels cover the depth of the tropospere with
coarser resolution in the upper troposphere and lower stratosphere. This means that wind shears
layers ksmaller in scale than 2 km will not be forecast by the model in the middle and upper tropo-
sphere.

Since most Space Shuttle launches take place near 1400 UTC, they are too close to the
synoptic rawinsonde time to take advantage of the lateét numerical forecast cycle started at
NMC. Thus, the latest forecast available to forecasters will be 12 hours old. The example model
run we have presented here suggests that the forecast accuracy will be degraded after 8 to 10
hours. In most cases forecasters will be forced to use winds that are 12 to 14 hours into the model

run. Thus, the model runs must be used with caution.
B. INITIALIZATION

The current generation of limited area numerical weather prediction models requires wind
and temperature information on at least two horizontal scales of motion. These scales represent
the synoptic and mesoscale scales of motion. Limited area models need a specification of these
meteorological scales in their initial state. The limited data samplé that would be provided by the
profiling network we have recommended will not be able to specify the synoptic scales of
motions. Haltiner and Williams (1980) also showed that the lack of mesoscale details in the ini-
tial model state forces the model to generate mesoscale circulations that are consistent with the
large-scale initial conditions. Tarbell et al. (1981) indicate that it takes 6 to 12 hours for models
to generate realistic mesoscale circulations. Thus, numerical weather prediction models run
using only the NGM initial conditions may take too long to generate a mesoscale circulation that

may in fact be erroneous. Note that the NGM simulation run for 2 December showed that differ-

14




ences between the forecast and observed fields began to grow in the 6 to 12 period. It may be
possible to use the NGM forecasts to specify the lateral boundary conditions for a regional model
that would focus its attention on the KSC area. The wind profiler network data could then be
assimilated into the numerical model using the four-dimensional data assimilation techniques

discussed by Kuo and Guo (1989).
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APPENDIX A. WIND FIELD DECOMPOSITION
By using a Taylor series expansion, we can write the u- and v-components of the wind in

Cartesian coordinates as

B Ju Ju & (x ~%5)°
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This system can be cast as a system of 12 equations in 12 unknowns where the known quantities
are the 12 wind components measured at six radar sites and the x and y locations of the wind
measurements. The unknowns are the derivatives of the velocity field that contain the diver-
gence, vorticity, deformation, translation, and curvature of the wind field.

For a given triangular region we can ignore the second derivatives of the velocity field. Then
the linear system reduces to a system of six equations in six unknowris, as shown by Zamora et
al. (1987). The recommended network of six wind profilers will allow forecasters to estimate
divergence and vertical motion using the linear approximation for four triangular regions and
hence the spatial variation of divergence and vertical motion near KSC. In addition, if the full
linear system is solved, divergence and vertical motion estimates accurate to second order are

available for the triangular region immediately upstream of KSC.
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Figure 3-1. Time-height cross section of KSC profiler winds 1000 UTC 30 November 1988 to

0900 UTC 1 December 1988. Half barb 2.5 m s, full barb 5 m s, and flag 25 ms™%.
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FLAGLER
39.12 103.90 1463.

87 7 22 1000 12. 350. 124. 13. 22. 3.67 9.67 238.00 672.00 69.8 69.8 1.64 35. 0
.29 0.87 1.
1 5.2 245.8 3.11 12, 12. 57.7
2 6.4 255.9 3.39 12. 12. 64.7
3 5.0 256.8 3.68 12. 1l2. 66.7
4 3.5 281.4 3.97 12. 12. 67.5
5 3.3 300.2 4.26 12. 12. 69.6
6 2.8 305.2 4.55 12, 12. 72.3
7 2.3 310.0 4.84 12. 12. 72.8
8 1.9 304.5 5.13 12. 12. 72.2
9 3.1 280.5 5.42 12. 12. 68.1
10 3.3 252.2 5.71 12. 12. 72.3
11 3.0 243.0 6.00 12. 12. 74.0
12 3.1 239.0 6.29 12. 12. 70.3
13 3.3 232.4 6.58 12. 12. 61.7
14 3.5 238.1 6.87 12. 12. 61.9
15 4.0 242.9 7.16 12, 12. 62.4
16 6.2 249.8 7.45 12. 12. 60.5
17 8.1 253.3 7.74 12. 12. 62.1
18 8.3 249.8 8.03 12. 12. 60.1
19 7.2 236.7 8.32 12. 12. 54.3
20 7.1 212.7 8.61 12. 12. 50.8
21 8.5 207.2 8.90 12. 12. 51.2
22 9.4 198.9 9.19 12. 12. 51.4
23 10.9 201.6 9.48 12. 12. 50.0

24 12.1 213.6 9.77 12. 12. 44.9
25 10.7 214.7 10.20 12. -12. 45.7
26 -999.0 -999.0 11.07 6. 3. 32.2

27 -999.0 -999.0 11.94 7. 3 28.4
28 11.2 223.0 12.81 5. 4 32.4
29 -999.0 -999.0 13.68 9. 3. 30.0
30 13.1 227.4 14.55 10. 8. 32.3
31 12.6 214.5 15.42 11. 11. 32.3
32 15.4 218.1 16.29 10. 7. 32.7
33 -999.0 -999.0 17.16 11. 2 31.9
34 -999.0 -999.0 18.03 5. 3. 30.7
35 -999.0 -999.0 18.90 3. 3. -999.0

Figure 3-5. Sample data printout for WPL wind profiling station showing number of profiles
satisfying the consensus for a 1-h period. Column 5 shows the east antenna consensus. Column
6 indicates the north antenna consensus.
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