. @ nhttps://ntrs.nasa.gov/search.jsp?R=19920008115 2020-03-17T13:02:08+00:00Z

N -3F
o026/

B NASA Technical Memorandum 100646 /'7
h)

THE COMPUTATIONAL STRUCTURAL
MECHANICS TESTBED PROCEDURES
MANUAL

(MATA-THM=1004544) THE COAPUTATINMRAL NR2-17333
ITHRUCTURAL MECHANTICS TESTERED PUNCTJURTS
MANUAL (MNASA) 557 o CS5LL 25K

unclias

SE139 0 0Ge23A7

Caroline B. Stewart, Compiler

; December 1991

NASA

National Aeronautics and
Space Adiministration

Langley Research Center
Hampton, Virginia 23665

Preface

Preface

The purpose of this manual is to document standard procedures of the Computational
Structural Mechanics (CSM) Testbed software system. A description of each procedure
including its function, commands, data interface, and use is presented.

Periodically, updates to this manual will be released which describe new procedures or

changes to existing procedures.

The contents of this manual were compiled by Caroline B. Stewart of Analytical Services
and Materials, Inc. Contributors include:

Lockheed Palo Alto Research Laboratory

David S. Kang
Bahram Nour-Omid
Shahram Nour-Omid

Charles R. Rankin
Marc E. Regelbrugge
Gary M. Stanley
Phillip Underwood
Mary A. Wright

NASA Langley Lockheed Engineering and Scences Company

D. Dale Davis, Jr. Christine G. Lotts

William H. Greene Steven C. Macy
Norman F. Knight, Jr. Lise D. Maring
Jonathan B. Ransom Susan L. McCleary

Analytical Services and Materials, Inc.

Mohammad A. Aminpour
T. Krishnamurthy

Awesome Computing, Inc.
Eugene L. Poole

Revised 12/19/91 CSM Testbed Procedures Manual i

Preface

Update Log Date
Initial draft June, 1989
Revised draft May, 1990

il

CSM Testbed Procedures Manual

Revised 12/19/91

Table of Contents

CSM Testbed Procedures Manual

Table of Contents

1.0 Introduction to CSM Testbed Procedures Manual

1.1
1.2
1.3
1.4
1.5
1.6
1.7

CLAMP Directives

Executing Processors
Runstream Organization
Creating and Using Procedures
The Testbed Procedures Manual
Examples

References

2.0 Preprocessing Procedures

2.1
2.2
2.3
2.4
2.5

GEN_BEAM (Beams Modeled with Beam Elements)

GEN_CANTILEVER (Cantilevered Beams Modeled with Shell Elements)
GEN_CURVED_BM (Curved Beams Modeled with Shell Elements)
GEN_PLATE (General Quadrilateral Plates)

GEN_SHELL (General Shells and Curved Surfaces)

3.0 Solution Procedures

3.1
3.2
3.3
3.4

3.5
3.6
3.7
3.8

3.9
3.10
3.11

L_DYNAMICO (Linear Transient Dynamics using Modal Analysis)

L_DYNAMIC_1 (Linear Transient Dynamics using Newmark Algorithm)

L_STABIL_1 (Linear Stability (Buckling) Analysis; Prescribed Prestress)

L_STABIL_2 (Linear Stability (Buckling) Analysis; Linearly-Computed
Prestress)

L_STATIC (Linear Static Analysis)

L_VIBRAT_O (Linear Vibration Analysis about an Unstressed State)

LVIBRAT.1 (Linear Vibration Analysis about a Prescribed Prestressed State)

L_VIBRAT.2 (Linear Vibration Analysis about a Linearly-Computed
Prestressed State)

NL_STATIC_1 (Nonlinear Static Analysis with Arc-length Control)

NL_STATIC_2 (Advanced Riks Method)

NL_DYNAMIC_1 (Nonlinear Dynamic Analysis)

4.0 Application Procedures

4.1
4.2
4.3

CLAMPED_BEAM (Transient Response of Clamped Beam)
COMPRESSED_CYL (Postbuckling of Compressed Cylindrical Shell)
COOKMEM (Inplane Bending of Trapezoidal Membrane)

Revised 12/19/91 CSM Testbed Procedures Manual iii

Table of Contents

4.4 ELASTICA (Large Rotations of Cantilevered Beam)

4.5 EULER_COLUMN (Euler Column Buckling Problem)

4.6 FOCUS_PANEL

4.7 FREEEDGE (Free Edge Stress Analysis of Composite Laminate)
4.8 GEN_STF_PANEL (Buckling of Flat Stiffened Panels)

4.9 HINGED_CYL (Snap-Through of Hinged Cylindrical Shell)

4.10 PEARCYL (Buckling of Pear-Shaped Cylindrical Shell)

4.11 PINCHED_CYL (Bending of Pinched Cylindrical Shell)

4.12 PWHOLE (Isotropic Membrane with a Circular Hole)

4.13 RECT.PLATE (Rectangular Plate Problems)

4.14 RHOMBIC_PLATE

4.15 TRUNCATED_CONE (Impulsively-Loaded Truncated Conical Shell)
4.16 VIB_2D (Vibration of Beams and Arch Using 2-D Elements)

5.0 Element Assessment Procedures
5.1 DISTORTED_PC (Distorted Pinched Cylinder)
5.2 DISTORTED_PC_3D (3-D Distorted Pinched Cylinder)
5.3 MH_BEAMS
5.4 MH.CYL (Thick-Walled Cylinder)
5.5 MH_PATCH (Patch Tests)
5.6 MH_PLATE
5.7 MH_SPHERE
5.8 MH_ROOF
5.9 SKEWED_GRID

6.0 Postprocessing Procedures
6.1 HISTORY (Tabulate Response History in Database)
6.2 POST (Tabulate Selected Results in Database)
6.3 STRESS (Compute Stresses and/or Strains from Displacements)
6.4 TOTALLOAD (Sum Total Load for Applied Displacement Problems)

7.0 Utility Procedures
7.1 CONSTRAIN (Impose Scaled Applied Displacements)
7.2 COPY.DS (Copy a Dataset and Rename)
7.3 EIGEN (Perform Eigenvalue Analysis)
7.4 ES (Generic Element Processor Control)
7.5 FACTOR (Factor (Decompose) System Stiffness Matrix)
7.6 FORCE (Form Force Vectors)
7.7 IMPERFECTION (Superpose Initial Geometric Imperfection)

iv CSM Testbed Procedures Manual Revised 12/19/91

Table of Contents

7.8 INITIALIZE (Model Initialization)

7.9 MASS (Form Mass Matrix)

7.10 MODEL_SUMMARY (Model Summary Information)

7.11 PRINTEFIL (Print Selected Segments of EFIL Dataset)
7.12 RESEQUENCE {Resequence Nodal Equations)

7.13 SOLVE (Solve System of Equations)

7.14 STIFFNESS (Form Stiffness Matrix)

7.15 SWITCHDS (Switch Two Datasets)

Revised 12/19/91 CSM Testbed Procedures Manual

Table of Contents

10.

11.

12.

CSM TESTBED DOCUMENTATION SET

. Introduction to the Computational Structural Mechanics Testbed

NASA TM 89096, 1987

Utilities for Master Source Code Distribution: MAX and Friends
NASA CR 178383, 1988

. The Computational Structural Mechanics Testbed Architecture:

Volume I - The Language
NASA CR 178384, 1988

The Computational Structural Mechanics Testbed Architecture:

Volume II - Directives

NASA CR 178385, 1988

The Computational Structural Mechanics Testbed Architecture:
Volume III - The Interface
NASA CR 178386, 1988

. The Computational Structural Mechanics Testbed Architecture:

Volume IV - The Global-Database Manager GAL-DBM
NASA CR 178387, 1988

The Computational Structural Mechanics Testbed Architecture:
Volume V - The Input-Output Manager DMGASP
NASA CR 178388, 1989

The Computational Structural Mechanics Testbed User’s Manual
NASA TM 100644, 1989

. The Computational Structural Mechanics Testbed Data Library Description

NASA TM 100645, 1988

The Computational Structural Mechanics Testbed Generic
Structural-Element Processor Manual

NASA CR 181728, 1989

The Computational Structural Mechanics Testbed Procedures Manual
NASA CR 100646, 1990

The Computational Structural Mechanics Testbed Utility Manual
NASA CR XXXXXX, 1990

vi

CSM Testbed Procedures Manual Revised 12/19/91

Introduction to CSM Testbed Procedures Manual

1.0 Introduction to CSM Testbed Procedures Manual

This manual is designed to assist users in defining and using command procedures to
perform structural analyses. It is expected that the user has read Chapters 1 and 2 of the
CSM Testbed User’s Manual (reference 1-1). It is assumed that the user is familiar with

terms such as CLIP, macrosymbol, processor, and dataset.

Runstreams are the vehicle used to perform structural analyses with the CSM Testbed.
The term “runstream” most commonly refers to the file (or files) used to perform a specific
analysis, although it may also refer to input at an interactive session. A runstream will
typically contain CLAMP directives and processor commands.

Directives, recognized and processed by CLIP, provide the user with, among other things,
a means of defining command procedures. These command procedures, defined using
the *PROCEDURE directive, bear some resemblance to FORTRAN subroutines. They may
contain branching and looping constructs (implemented using the *D0, *IF, and *WHILE
directives) as well as other directives and processor and macroprocessor commands. Com-
mand procedures may be given arguments which, unlike FORTRAN subroutine arguments,
may be assigned default values. When a command procedure is called (using the *CALL di-
rective) execution control shifts to the command procedure until the last directive (an *END
directive) in the procedure is encountered. Once the *END directive is encountered, control
returns to the input line in the calling procedure or runstream immediately following the
call.

Command procedures, while extremely useful, are not a requirement for performing many
types of simple analyses. A command procedure is only required if using the looping or
branching constructs (i.e., the *D0, *IF, and *WHILE directives). Procedures should not
be used to carry out the computationally intensive activities that are better performed by
Processors.

This chapter begins with a discussion of CLAMP directives and continues with a discussion
of the mechanics of processor execution. A template for linear, static analyses is provided in
Section 1.3. Section 1.4 offers some suggestions for creating and using procedures and the
CSM Testbed Procedures Manual is described in Section 1.5. Some examples of command
procedures are given in Section 1.6.

Revised 12/19/91 CSM Testbed Procedures Manual 1.0-1

Introduction to CSM Testbed Procedures Manual

THIS PAGE LEFT BLANK INTENTIONALLY.

1.0-2

CSM Testbed Procedures Manual

Revised 12/19/91

Introduction to CSM Testbed Procedures Manual CLAMP Directives

1.1 CLAMP Directives

Directives are special commands that are recognized and processed by CLIP and are not

transported to the processor. A directive is to CLIP like ordinary input is to the processor.

A A: 43 +
A directive is distinguished from ordinary input by beginning with a keyword prefixed by

an asterisk. The keyword (directive verb) may be followed by a verb modlﬁer, qualifiers,
and parameters, as required by the syntax of the specific directive. See references 1-2
and 1-3 for a complete description of the command language. An interactive help facility,
accessed by the *HELP directive, is built in to explain directives. For a complete list with
full descriptions, the user is directed to reference 1-3.

A summary of the most useful directives, grouped according to their function in the Testbed
execution environment is provided here for easy reference. Detailed descriptions of all
directives are provided in reference 1-3.

Table 1.1-1 CLAMP Directive Summary

Global Data Manager Interface

*0PEN Open data library
*CLOSE Close data library
*TOC Print table of contents of library
*PRINT Print table of contents, dataset record contents, or record
access table of dataset
*PACK Pack a data library, deleting disabled datasets
*COPY Copy datasets or dataset records
*DELETE Delete (i.e., disable) dataset or record
*ENABLE Enable previously deleted or disabled datasets or records
*FIND Returns information on libraries, datasets, or records
*RENAME Renames dataset or record
Command Procedure Management
*SET PLIB Set procedure library for residence of command procedures
*PROCEDURE Initiates definition of command procedure
*CALL Redirects input to a callable procedure (“calls” a procedure
with optional argument replacement)
Nonsequential Command Processing
*IF Conditional branching construct
*ELSE
*ELSEIF
*ENDIF
*D0 Looping construct
*ENDDO

Revised 12/19/91

CSM Testbed Procgdures Manual 1.1-1

PRECEDING PAGE BLANK NOT FiLMED

CLAMP Directives

*WHILE
*ENDWHILE

*JUMP
*RETURN
*END

*DEFINE
*UNDEFINE
*SHOW MACRO
*G2M

Introduction to CSM Testbed Procedures Manual

While-looping construct

Transfer control to specified label
Force exit from command procedure
Terminate definition of command procedure

Macrosymbol Directives

Define a macrosymbol or macrosymbol array
Delete macrosymbol(s)

Show macrosymbols

Define a macrosymbol from a database entity

*M2G Create a database entity from the value of a macrosymbol
Built-in Common constants, mathematical functions,
macrosymbols generic functions, reserved variables, boolean
functions, logical functions, string catenator, string matchers,
and status macros
SuperClip Directives
*RUN Start execution of another program
*STOP Stops RUN-initiated execution and restarts the parent processor
General Directives
*HELP Lists information from NICE HELP file
*SET Sets specified NICE control parameters
*SHOW Shows specified NICE control parameters
*ADD Redirects input to a text file
*REMARK Print remark line
*UNLOAD Unload contents of GAL library to an ASCII file
*LOAD Load contents of GAL library from an ASCII file
1.1-2 CSM Testbed Procedures Manual Revised 12/19/91

Introduction to CSM Testbed Procedures Manual Executing Processors

1.2 Executing Processors

There are two types of analysis modules, or processors, associated with the Testbed: in-
ternal processors, which have been installed as part of the macroprocessor, and external
processors. Either type of processor may be executed using the macroprocessor execute
command, [XQT. The user merely appends the processor name to the [XQT and the named
processor will begin execution. For example,

[xXQT INV

will start the execution of the processor INV. In order to use this method of execution
for external processors, the executable version of the processor must reside in the default
directory being used by the macroprocessor or in other pre-defined directories depending
on computer system syntax. In addition, the name of an external processor cannot be the
same as the name of any internal processor.

External processors may also be executed using the *RUN directive. When this directive
is used, a full pathname may be given so that external processors may be kept anywhere.
For example, under the VMS operating system,

*RUN duaO: [testbed.extp] INVX

will begin execution of processor INVX, located in dua0: [testbed.extp].

Once a processor (internal or external) is running, it will begin to accept input according
to the requirements of the individual processor as described in Chapters 4 through 14 of
the CSM Testbed User’s Manual (Ref. 1-1). The processor will continue accepting input
until either another [XQT, a STOP, or a *STOP is encountered. If a STOP occurs, execution
will proceed to completion of the processor’s assigned task after which the processor named
on the next [XQT command begins execution. If an [XQT occurs, execution will proceed to
completion of the processor’s assigned task after which the processor named on that last
[XQT begins execution. A *STOP terminates processor execution immediately.

The following runstream provides an example of processor, macroprocessor, and CLIP in-
teraction. The linear, static analysis, a very simple example, with one procedure definition,
has been taken from the demonstration problem set library. The procedure is defined so
that the *D0 directive may be used in defining joint locations (recall that the *D0 directive
may only be used within a command procedure). Note also that the procedure is com-
pletely defined before it has been called. This is an absolute requirement — procedures
must be defined before they are called.

Revised 12/19/91 A CSM Testbed Procedures Manual 1.2-1

[Executing Processors Introduction to CSM Testbed Procedures Manual

*procedure demoi . Directives
xopen 1 demo1.101 /mew
[xqt TAB . Macroprocessor command to execute TAB
START 5 . Processor TAB input
JOINT LOCATIONS
*do $i = 1,5 . Directive to generate TAB input
node x y z . Comment
<$i> 0. 0. <10.%<$i>> . TAB Input
»enddo . Directive to end input loop
MATERIAL CONSTANTS . Direct TAB input

1 10.E+6 .3 .101 .1E-4
BEAM ORIENTATIONS
11111,

E21 SECTION PROPERTIES
TUBE 1 2. 2.25
CONSTRAINT DEFINITION 1
ZERD 1 23456

1
[xqt ELD . Macroprocessor command to execute ELD

E21 . Direct ELD Input

12

23

34

45
[xqt TOPO . Macroprocessor command to execute TOPO
[xqt E . Macroprocessor command to execute E
[xqt EKS . Macroprocessor command to execute EKS
[xqt K . Macroprocessor command to execute K
[xqt INV . Macroprocessor command to execute INV
ALPHA . Direct AUS input

CASE TITLES
1>TRANSVERSE LOAD
27 AXIAL LOAD
SYSVEC
APPLIED FORCES
CASE 1
I=2
J=5
1000,
CASE 2
I=3
J=5
10000.
[xqt SSOL . Macroprocessor command to execute SSOL
[xqt GSF . Macroprocessor command to execute GSF
[xqt PSF . Macroprocessor command to execute PSF
stop . Macroprocessor command to exit
*end . Directive denoting procedure end

*call demo1l . Directive calling procedure demol
[xqt exit . Macroprocessor command to end execution

1.2-2 CSM Testbed Procedures Manual Revised 12/19/91

Introduction to CSM Testbéd Procedures Manual Executing Processors

It is important to note that while directives may be used to generate input data, the
directives themselves do not provide input to the processors. The *DO0 directive, used in
the JOINT LOCATIONS subprocessor of processor TAB, provides the user with a means of
automatically generating TAB input; the line containing the *do $i = 1,5 provides no
information io processor TAB but is meaningful to CLIP. The result of executing this *D0

directive is to produce five input lines for consumption by processor TAB.

Revised 12/19/91 CSM Testbed Procedures Manual 1.2-3

Fxecuting Processors Introduction to CSM Testbed Procedures Manual

THIS PAGE LEFT BLANK INTENTIONALLY.

1.2-4 CSM Testbed Procedures Manual Revised 12/19/91

Introduction to CSM Testbed Procedures Manual Runstream Organization

1.3 Runstream Organization

While the Testbed is highly modular, certain processors do depend on information gener-
ated by other processors, thus there is some degree of interdependence among the installed
processors. In many cases, the order in which processors must be executed is the same
as the order in which they appear in the CSM Testbed User’s manual (ref. 1-1); this is
not entirely true when using one or more of the independent element processors. The
following section provides a template for performing a linear static analysis using one or

more independent element processors (Section 1.3.1).

1.3.1 RUNSTREAM FOR INDEPENDENT ELEMENT PROCESSORS

The generic element processor template was developed to provide greater flexibility to
element developers. It does however, add a level of complexity to the analysis, even to a
simple linear, static analysis. This complexity is kept hidden to the average user by the use
of a “cover procedure.” The procedure name is ES and details of its use may be found in
reference 1-4. Essentially, procedure ES manages the execution of the independent element
processors, ESi.

Listed below is the order of processor and procedure execution for a linear static analysis
using one or more of the independent element processors. Following the list is an example
(the same example used in the previous section) which calls procedure ES.

1. Procedure ES. Call procedure ES to define element parameters and several global
macrosymbols which may be used to automate the definition of joint locations and
element connectivity. This call must be made for each different element type in the
model, regardless of the number of element processors used.

Processor TAB. Define joint locations, constraints, reference frames.

Processor AUS. Build tables of material and section properties.
Processor LAU. Form constitutive matrix.

Processor ELD. Define elements. Element definitions include element connectivity,
element material reference frame number, element section type number.

A

6. Processor E. Initialize element datasets; create the dataset which will contain all
important element information (e.g., intrinsic coordinates, element-to-global transfor-
mations, intrinsic stiffness matrices).

7. Procedure ES. Initialize element matrices.
8. Procedure ES. Calculate element intrinsic stiffness matrices.
9. Processor RSEQ or PFM. Resequence nodes for minimum total execution time.

10. Processor TOPO. Form maps which guide the assembly and factorization of system
matrices.

Revised 12/19/91 CSM Testbed Procedures Manual 13-1

PRECEDING PAGE rLAllX NOT FiLMED

Runstream Organization

Introduction to CSM Testbed Procedures Manual

11. Processor K. Assemble system stiffness matrix.
12. Processor INV. Factor system stiffness matrix.
13. Processor AUS. Create applied nodal 'loading;
14. Processor SSOL. Solve for static displacements.

15. Procedure ES. Calculate element stress resultants.

16. Post-process using any of the following processors: VPRT, PRTE, PLOT, CONT,

T2PT.

1.3.2 EXAMPLE RUNSTREAM

The following runstream provides an example of a very simple linear static analysis. The
problem is to calculate the stress in an isotropic flat plate subjected to a uniform end-
shortening. One-fourth of the plate is modeled and symmetry boundary conditions are
applied.

. Do not echo input
. ADD file containing procedure ES
. Open data library

#get echo=off
#add [testbed.proclib]lGENUTIL.PRC
sopen/nev 1, flat_plate

*def/a es_name == ’EX91’ . Element name
#def/a es_proc == ’ES1’ . Element processor name

*call ES (function = ’DEFINE ELEMENTS’; es_proc = <es_proc/p>; —-
es_name = <es_name/p>)
[xqt TAB

START 25 6 . Twenty five nodes total, dof 6 zero

JOINT LOCATIONS . Enter joint locations
1 0.0 0.0 0.0 2.6 0.0 0.0 5165
5 0.0 2.6 0.0 2.5 2.5 0.0
CONSTRAINT DEFINITION 1 . Constraints:

symm plane=1 . Plane 2,3 plane of symmetry
symm plane=2 . Plane 1,3 plane of symmetry
zero 3: 1 . Constrain center w

nonzero 1 : 65,25,5 . Apply displacement at x=1x edge

[xqt AUS . Material and Section properties

*def/e g = 3.84615e+6
TABLE(NI=16,NJ=3): OMB DATA 1 1
1-1,2,3,4,5,6,7,8,9
J=1: 10.0E+6 .30 10.0E+6 <g> <g> <g> 0.0 0.0 .1

. Table of material properties

1.3-2 CSM Testbed Procedures Manual

Revised 12/19/91

Introduction to CSM Testbed Procedures Manual Runstream Organization

. Table of section properties

TABLE (NI=3,Nj=1,itype=0): LAM OMB 1 1
J=1: 2 .10.00
[xqt LAU . Generate constitutive matrix
NOTE -- The macrosymbols es_nip, es_nstr, es_nen, and es_opt
were all globally defined by procedure ES the first time
the procedure was called.
[xqt ELD . Define elements
sdef/i nst = <<es_nip>*<es_nstr>>
EXPE <es_name> <es_nen> <es_opt> <es_nen> 6 <nst> 1 101 2
NSECT = 1
1 31311 2 8 12 6 7 122
[xqt E . Initialize element datasets
stop
*open 1

*call ES (function=’INITIALIZE’)
»call ES (function=’FORM STIFFNESS/MATL’)
[xqt RSEQ
{xqt TOPO
[xqt K
[xqt INV
online=2
AUS
sysvec : appl moti
i=1: J=5,256,5:
SSOL
stop
*open 1
#call ES (function
es_dis_ds
[xqt VPRT
format=4
print STAT DISP
[xqt PRTE
reset segl=7,seg2=7
[xqt exit

[xqt

-0.001
[xqt

*FORM STRESS’; --
STAT.DISP.1.1)

. Initialize element matrices

. Form intrinsic stiffness matrices

. Resequence
. Create maps
. Assemble global stiffness matrix

. Form applied loading

. Solve for static displacements

. Calculate element stresses

. Print static displacements

. Print element stresses

Revised 12/19/91

CSM Testbed Procedures Manual

1.3-3

Runstream Organization Introduction to CSM Testbed Procedures Manual

THIS PAGE LEFT BLANK INTENTIONALLY.

1.3- 4 CSM Testbed Procedures Manual Revised 12/19/91

Introduction to CSM Testbed Procedures Manual Creating and Using Procedures

1.4 Creating and Using Procedures

1.4.1 CREATING A PROCEDURE

Most directives are so simple that they may easily be entered from a keyboard terminal.
One could try to define simple procedures in exactly that manner. There are two problems
with this approach:

1. A keyed-in sequence of directives and commands is volatile and is not saved unless
a log file has been opened, although a procedure definition is compiled and saved.

2. Post-facto editing is impossible; once the return key it pressed, the line is gone.

These disadvantages become increasingly serious in long or involved procedures. The most
practical way to create most procedures is to use a text editor. Once the procedure source
text is ready on a data file, it can be inserted into the command source stream with the
*ADD directive.

1.4.2 RESIDENCE OF CALLABLE PROCEDURE ELEMENTS

When CLIP encounters a *PROCEDURE directive, it enters directive mode and does not exit
until the *END directive is detected. The result of this process is an “object” version of
the procedure, known as a callable procedure element. CLIP can store a callable procedure
element in one of two residence media:

1. An ordinary direct-access formatted file created through a FORTRAN 77 OPEN state-
ment. All records of such a file have the same length (namely 80 characters) and
contain one data line. The file name is the same as the procedure name except on a
VMS VAX where a .DAT is appended to the procedure name to create the file name.
For example, a procedure named GEN_PLATE will generate a file named GEN_PLATE.DAT
on a VMS VAX and a file named GEN_PLATE on other machines. If the *SET PLIB
directive has not been used prior to the *PROCEDURE directive, direct-access files will
be created automatically.

2. A data library managed through the global data manager. A callable procedure is
stored as a text group. In order to store procedures in a data library, the *SET PLIB
directive must be used.

The text of a callable procedure element is basically a copy of the source procedure body,
prefaced by three linkage tables. These tables store argument names, argument default
text, labels (explicit or generated) and their locations within the body of the procedure.
NEVER tamper with a callable procedure element. If the procedure must be changed,
change the source and reprocess the file.

Revised 12/19/91 CSM Testbed Procedures Manual 14-1

PRECEDING DAST #1425 hWGY 77 MED

Creating and Using Procedures Introduction to CSM Testbed Procedures Manual

1.4.3 USING A PROCEDURE

Callable procedure elements are accessed through the *CALL directive. Text substitution is
controlled by the argument specification mechanism. In a command procedure reference,
text is passed instead of addresses to data. The text supplied in the *CALL directive is
replaced before the command is interpreted. In addition, arguments not supplied in the
*CALL, assume the default values given in the *PROCEDURE definition. A procedure body
may include calls to other procedures, or may even call itself, with the ensuing call tree
extending down several levels.

1.4-2 CSM Testbed Procedures Manual Revised 12/19/91

Introduction to CSM Testbed Procedures Manual The CSM Testbed Procedures Manual

1.5 The CSM Testbed Procedures Manual

A GAL library which contains the callable procedure elements for all of the procedures
described in the following sections (2-9) of this manual is read-accessible to all Testbed
users. Separate subdirectories under the prc directory contain solution procedures (see
Chapter 3), model generation procedures (see Chapter 2), utility procedures (see Chap-
ter 6), and postprocessing procedures (see Chapter 7). This directory structure is the
same across various computer systems with differences only in the description of the path
name for each subdirectory. On a VMS VAX computer, this file is referred to by the
name CSM_PRC:PROCLIB.GAL; on UNIX-type computers, it is referred to by the name
»$CSM_PRC/proclib.gal’. If the user does not need to define any new procedures for
use in a particular Testbed runstream, this file can be used as the procedure library by

including the following commands in the runstream:
*set plib = 28

*open 28 CSM_PRC:PROCLIB.GAL /READ (on VMS)
or
*open 28 ’$CSM_PRC/proclib.gal’ /READ (on UNIX)

The source code for the procedures resides in subdirectories under the one which contains
proclib.gal. These procedures are also read-accessible to all Testbed users. They can be
included in the user’s private procedure library by placing commands like the following in
a Testbed runstream:

*set plib=28

*open 28 proclib.gal /NEW

*add GEN_UTIL:ES.CLP (on VMS)
or
*add ’$GEN_UTIL:es.clp’ (on UNIX)

or alternatively; on UNIX:

cp $CSM_PRC/proclib.gal .
chmod 765 proclib.gal
testbed

*set plib=28

*open 28 proclib.gal
*add local.prc

or on VMS:

$COPY CSM_PRC:PROCLIB.GAL []
$Testbed

*set plib=28

*open 28 proclib.gal

*add local.prc

where local.prc is the CLAMP source file for personal procedure(s).

Revised 12/19/91 CSM Testbed Procedures Manual 1.5-1

The CSM Testbed Procedures Manual Introduction to CSM Testbed Procedures Manual

THIS PAGE LEFT BLANK INTENTIONALLY.

1.5-2 CSM Testbed Procedures Manual Revised 12/18/91

Introduction to CSM Testbed Procedures Manual Examples

1.6 Examples

This section provides several examples of the use of procedures. For the sake of consistency,
where files are discussed, VAX/VMS filenames have been used. The filename convention
used is that a fle with a *.CLP extension contains a single procedure, while a file with a
*.PRC extension contains multiple procedures. The *ADD and the driving *CALL directives
typically appear in files with the *.COM extension.

1.6.1 A SIMPLE EXAMPLE

As an introductory example, an annotated procedure is presented which may be used to
run a variety of elements through the same flat plate problem. In most applications, this
procedure would be kept in a file by itself and that file would be added (using the *ADD
directive) to a much shorter runstream located in an execution control file. The procedure
and a VAX/VMS execution control file are listed in the following subsections.

1.6.1.1 The Procedure File

The following procedure is kept in a file named FLAT_PLATE.CLP.

sprocedure FLAT_PLATE (es_proc ; es_name)
ARGUMENTS:

es_proc: Independent element processor name
es_name: Element name

»if <ifeqs([es_name];E43)> /then
*def/i es_nen = 4
xglse
#=call ES (function = ’DEFINE ELEMENTS’; es_proc = [es_procl; —-
es_name = [es_name])

*endif
[xqt TAB
START 25 6 . Twenty-five joints; dof 6 zero
JOINT LOCATIONS . Define joint locations
1 0.0 0.0 0.0 2.5 0.0 0.0 515
5 0.0 2.5 0.0 2.5 2.5 0.0
CONSTRAINT DEFINITION 1) . Constraints:
symm plane=1 . Plane 2,3 plane of symmetry
symm plane=2 . Plane 1,3 plane of symmetry
zero 3: 1 . Constrain center w
nonzero 1 : 5,26,5 . Apply displacement at x=1x edge
Revised 12/18/91 CSM Testbed Procedures Manual 16-1

PRECEDING PAGE BLANK NOT FILMED

FExamj

rles

Introduction to CSM Testbed Procedures Manual

[xqt AUS

*def/e g = 3.84616e+6

TABLE(NI=16 ,NJ=3): OMB DATA 1 1 . Define material properties
1-1,2,3,4,6,6,7,8,9
J=1: 10.0E+6 .30 10.0E+6 <g> <g> <g> 0.0 0.0 .1
. Define Section properties
TABLE (NI=3,NJ=1,itype=0): LAM OMB 1 1
J=1 : 2 .1 0.00

[xqt LAU . Form constitutive matrix

[xqt

[xqt

»if

*els

»if <ifeqs([es_name] ;E43)> /then
reset SPAR=-1
sendif

ELD . Define elements
#if <ifeqs([es_name] ;E43)> /then

E43
*else

NOTE -- The macrosymbols es_nip, es_nstr, es_nen, and es_opt
were globally defined by procedure ES the first time
the procedure was called.

def/i nst = <<es_nip><es_nstr>> . Number of stress resultants
EXPE [es_name] <es_nen> <es_opt> <es_nen> 6 <nst> 1 101 2

*endif
NSECT = 1

#if < <es_nen> /eq 4 > /then

12786 1 4 4 . Element connectivity for 4-node elts
selseif < <es_nen> /eq 9 > /then

1 31311 2 8 12 6 71 2 2 . Element connectivity for 9-node elts
=endif

E . Initialize all element datasets
stop
#*open 1
<ifeqs ([es_name] ;E43)> /then . Form intrinsic stiffness matrices:
[xqt EKS . for E43
e

#call ES (function=’INITIALIZE’)
»call ES (function='FORM STIFFNESS/MATL’) . for other elements

*endif
[xqt RSEQ . Resequence
[xqt TOPO . Create maps
[xqt K . Assemble system stiffness matrix
[xqt AUS . Form applied loading
sysvec : appl moti
i=1: J=5,25,5: -0.001
1.6-2 CSM Testbed Procedures Manual Revised 12/18/91

Introduction to CSM Testbed Procedures Manual Examples

[xqt INV . Factor stiffness matrix
online=2
[xqt SSOL . Solve for static displacements
stop
*open 1
. Calculate stresses
*if <ifeqs([es_name];E43)> /then . for E43
[xqt GSF
[xqt PSF
reset display=2
*else . for other elements
#call ES (function = ’FORM STRESS’; es_dis_ds = STAT.DISP.1.1)
*endif
[xqt VPRT . Print displacements
format=4
print STAT DISP
*end

1.6.1.2 The Execution Control File

The file FLATPLATE. COM, listed below, contains no procedures, only the *ADD and the *CALL
to the procedure defined in the previous section.

$ testbed ! Execute Testbed macroprocessor
*get echo off

*open 1 flat_plate.l01 . Open data library

*add flat_plate.clp . Add procedure file BEFORE call

scall FLAT_PLATE (es_proc=ES1; es_name=Ex97)

[xqt EXIT . Exit macroprocessor

1.6.2 MACROSYMBOL USAGE EXAMPLE

The runstream described in this section still contains only one procedure; that procedure is
somewhat more complicated than the procedure of the first section although the problem
to be solved is the same. The number of elements along z and y have been parameterized
to allow for mesh convergence studies for the various elements. The logic of the procedure
remains the same; there are simply more macrosymbol definitions. The procedure and the
execution control file are listed in the following subsections.

1.6.2.1 The Procedure File

The following procedure is kept in a file named FLAT_PLATE. CLP.

sprocedure FLAT_PLATE (es_proc=ES1; es_name=Ex97;--)

Revised 12/18/91 CSM Testbed Procedures Manual 1.6-3

Examples Introduction to CSM Testbed Procedures Manual
NEL_x ; NEL_y)
ARGUMENTS:
es_proc: Independent element processor name
es_name: Element name
NEL_x: Number of elements in the x direction
NEL_y: Number of elements in the y direction

*if <ifeqs([es_name];E43)> /then
*def/i es_nen = 4
*else
#call ES (function =
es_name = [es_name])
*endif

Define necessary macrosymbols

*if << es_nen > /eq 4 > /then
#def/i nn_x = <<[NEL_x]> + 1 >
»def/i nn_y = <<[NEL_yl> + 1 >
def/i nn_total = <<nn_x><nn_y>>
selseif << es_nen > /eq 9 > /then

*def/i nn_x = <2=<[NEL_x]> + 1 >
»def/i nn_y = <2+<[NEL_yl> + 1 >
#def/i nn_total = <<nn_x>*<nn_y>>
sendif
[xqt TAB

.

START <nn_total> 6

JOINT LOCATIONS

1 0.0
<nn_x> 0.0

0.0
2.5

0.0 2.5
0.0 2.5

0.0
2.5

CONSTRAINT DEFINITION 1
symm plane=1
symm plane=2
zero 3: 1

nonzero 1 : <nn_x>,<nn_total>,<nn_x

[xqt AUS
*def/e g = 3.8461be+6
TABLE(NI=16,NJ=3): OMB DATA 1 1
1-1,2,3,4,6,6,7,8,9

*DEFINE ELEMENTS’; es_proc =

[es_procl; --

. If 4-node elements are used:
Num. nodes in x-direction
Num. nodes in y-direction

. Num. nodes total
. If 9-node elements are used:
. Num. nodes in x-direction
Num. nodes in y-direction
. Num. nodes total

. Twenty-five joints; dof 6 zero
. Define joint locations

0.0 <nn_x> 1 <nn_y>

0.0

. Constraints

. Plane 2,3 plane of symmetry
. Plane 1,3 plane of symmetry
. Constrain center w

. Define material properties

J=1: 10.0E+6 .30 10.0E+8 <g> <g> <g> 0.0 0.0 .1

.00

. Define Section properties

TABLE (NI=3,NJ=1,itype=0): LAM OMB 1 1
:2.10

J=1

1.6-4

CSM Testbed Procedures Manual

. Apply displacement at x=1x edge

Revised 12/18/91

Introduction to CSM Testbed Procedures Manual

[xqt

© -
ixqt

LAU . Form constitutive matrix
*if <ifeqs([es_namel; E43)>/ then
reset SPAR=-1

*endif
ELD . Defins slsments
*if <ifeqs([es_name]; E43)>/ then
E43 . E43 elements
*else
NOTE -- The macrosymbols es_nip, es_nstr, es_nen, and es_opt
were globally defined by procedure ES the first time
the procedure was called.
def/i nst = <<es_nip><es_nstr>> . Number of stress resultants

EXPE [es_name] <es_nen> <es_opt> <es_nen> 6 <nst> 1 101 2
*endif
NSECT = 1

*if < <es_nen> /eq 4 > /then
. Use 4-node element mesh generator
xdef/i j1 = 1
*def/i j2 = 2
sdef/i j3 = <<j2>+<nn_x>>
sdef/i j4 = <<ji1>+<nn_x>>

. Element connectivity for 4-node elts
<j1> <j2> <3j3> <j4> 1 <[NEL_x]1> <[NEL_yl>

selseif < <es_nen> /eq 9 > /then
. Use 9-node element mesh generator
*def/i j1 = 1
sdef/i j5 = 2
*def/i j2 = 3

*def/i j8 = <<j1> + <nn_x>>
*def/i j9 = <<jB> + <nn_x>>
*def/i j6 = <<j2> + <nn_x>>
sdef/i j4 = <<j8> + <nn_x>>
sdef/i j7 = <<j9> + <nn_x>>
*def/i j3 = <<j6> + <nn_x>>

. Element connectivity for 9-node elts

<j1> <j2> <j3> <j4> <j5> <j6> <jT> <j8> <j9> 1 <[NEL_x]> <[NEL_yl>

*endif

[xqt E . Initialize all element datasets
stop
*open 1

*if <ifeqs([es_namel; E43)>/ then . Form intrinsic stiffness matrices
[xqt EKS . for E43

*else

*call ES (function=’INITIALIZE’)

‘Revised 12/18/91 CSM Testbed Procedures Manual 1.6-5

Examples

Examples Introduction to CSM Testbed Procedures Manual

#call ES (function=’FORM STIFFNESS/MATL') . for other elements
*endif
[xqt RSEQ . Resequence
[xqt TOPO . Create maps
[xqt K . Assemble system stiffness matrix
[xqt AUS . Form applied loading
sysvec : appl moti
i=1: J=<nn_x>,<nn_total>,<nn_x>: -0.001
[xqt INV . Factor stiffness matrix
online=2
[xqt SSOL . Solve for static displacements
stop
*open 1
. Calculate stresses
+if <ifeqs([es_name]; E43)>/ then . for E43
[xqt GSF
[xqt PSF
reset display=2
*else . for other elements
wcall ES (function = *FORM STRESS’; es_dis_ds = STAT.DISP.1.1)
sendif
[xqt VPRT . Print displacements
format=4

print STAT DISP
*end

1.6.2.2 The Execution Control File

The file, FLATPLATE . COM, listed below contains no procedures, only the*ADD and the *CALL
to the procedure defined in the previous section.

$ testbed 1 Execute Testbed macroprocessor
*#get echo off

sopen 1 flat_plate.1l01 . Open data library

sadd flat_plate.clp . Add procedure file BEFORE call

«call FLAT_PLATE (es_proc=ES1; es_name=Ex97; --
Nel_x=4; Nel_y=4)

[xqt EXIT . Exit macroprocessor

One may notice that, except for the two extra arguments (NEL_x and NEL_y) in the *CALL
directive, this file is the same as the FLATPLATE. COM file of the last section.

1.6-6 CSM Testbed Procedures Manual Revised 12/18/91

Introduction to CSM Testbed Procedures Manual Examples

1.6.3 A MULTIPLE PROCEDURE EXAMPLE

In many cases, it may be to the user’s advantage to build and maintain a procedure library
which may be used for classes of problems. For example, in a solution library, one may
keep procedures for providing linear static solutions, buckling eigenvalues, and nonlinear
static solutions. In this section, the procedure of the previous section is split up into three
procedures — PLATE_MODEL, PLATE_BC, and L_STATIC - which generate the model, generate
the boundary conditions, and perform the linear, static solution respectively. The three
procedures are kept in two files: L_STATIC.CLP (contains only procedure L_STATIC) and
FLATPLATE.PRC (contains PLATE_MODEL and PLATE_BC). Finally, the file FLATPLATE.COM

uses the *ADD directive to add the two files and the *CALL directive to call the procedures.

1.6.3.1 The Model Generation Procedures

The following two procedures, PLATE_MODEL and PLATE_BC, are, for the sake of the example
to be kept in a file named FLATPLATE. PRC. Note that the boundary conditions and applied
loads are both in the procedure PLATE BC and that if other boundary conditions were
desired, this procedure could be decoupled from the model generation procedure and stored
in a separate file. In that case, the procedure name could be passed as an argument to
PLATE MODEL which would then call the passed name instead of PLATE_BC.

*procedure PLATE_MODEL (es_proc ; es_name ; --
NEL_x ; NEL_y)

ARGUMENTS:

es_proc: Independent element processor name
es_name: Element name

NEL_x: Number of elements in the x direction
NEL_y: Number of elements in the y direction

»if <ifeqs([es_name];E43)> /then
*def/i es_nen = 4
*else
#call ES (function = ’DEFINE ELEMENTS’; es_proc = [es_procl; --

es_name = [es_name])
*endif

Define necessary macrosymbols

*if << es_nen > /eq 4 > /then . If 4-node elements are used:
sdef/i nn_x = <<[NEL_x]> + 1 > . Num. nodes in x-direction
sdef/i nn_y = <<[NEL_yl> + 1 > . Num. nodes in y-direction
def/i nn_total = <<nn_x><nn_y>> . Num. nodes total

*elseif << es_nen > /eq 9 > /then . If 9-node elements are used:
s«def/i nn_x = <2*<[NEL_x]> + 1 > . Num. nodes in x-direction
sdef/i nn_y = <2#<[NEL_y]> + 1 > . Num. nodes in y-direction
def/i nn_total = <<nn_x>#<nn_y>> . Num. nodes total

*endif

Revised 12/18/91 CSM Testbed Procedures Manual 1.6-7

Examples Introduction to CSM Testbed Procedures Manual

txqt TAB
START <nn_total> 6 . Tuenty-five joints; dof 6 zero
JOINT LOCATIONS . Define joint locations
1 0.0 0.0 0.0 2.5 0.0 0.0 <nn_x>1 <nn_y>

<nn_x> 0.0 2.6 0.0 2.5 2.5 0.0

. Call boundary condition procedure
#call PLATE_BC (nn_x = <nn_x>; -- . to set up loads and b.c.’s
nn_total = <nn_total>)

[xqt AUS

sdef/e g = 3.84616e+6 ‘
TABLE(NI=16,8J=3): OMB DATA 1 1 . Define material properties
1=1,2,3,4,5,6,7,8,9
J=1: 10.0E+6 .30 10.0E+6 <g> <g> <g> 0.0 0.0 .1
. Define Section properties
TABLE (NI=3,NJ=1,itype=0): LAM OMB 1 1
J=1 : 2 .1 0.00
[xqt LAU . Form constitutive matrix
*if <ifeqs([es_name]; E43)> /then
reset SPAR=-1

»endif
[xqt ELD . Define elements
»if <ifeqs([es_namel; E43)> /then
E43 . E43 elements
*else
NOTE -- The macrosymbols es_nip, es_nstr, es_nen, and es_opt

were globally defined by procedure ES the first time
the procedure was called.

sdef/i nst = <<es_nip>*<es_nstr>> . Number of stress resultants
EXPE [es_name] <es_nen> <es_opt> <es_nen> 6 <nst> 1 101 2

*endif
NSECT = 1

*if < <es_nen> /eq 4 > /then
. Use 4-node element mesh generator

*def/i j1 = 1
sdef/i j2 = 2
rdef/i j3 = <<j2>+<nn_x>>
sdef/i j4 = <<ji>+<nn_x>>

. Element connectivity for 4-node elts
<j1> <j2> <j3> <j4> 1 <[NEL_x]> <[NEL_yl>

*glseif < <es_nen> /eq 9 > /then
. Use 9-node element mesh generator

1.6- 8 CSM Testbed Procedures Manual Revised 12/18/91

Introduction to CSM Testbed Procedures Manual

Examples

sdef/i j1 = 1
*def/i j5 = 2
*def/i j2 = 3

sdef/i j8 = <<j1> + <nn_x>>
sdef/i j9 = <<j6> + <nn_x>>
*def/i jB = <<j2> + <nn_x>>
wdef/i j4 = <<j8> + <nn_x>>
sdef/i j7 = <<j9> + <nn_x>>
wdef/i j3 = <<j6> + <nn_x>>

. Element connectivity for 9-node elts

<j1> <j2> <j3> <j4> <35> <j6> <j7> <j8> <j9> 1 <[NEL_x]> <[NEL_y]>

sendif

*end

sprocedure PLATE_BC (nn_x ; nn_total)

{xqt TAB

CONSTRAINT DEFINITION 1 . Constraints
symm plane=1 . Plane 2,3 plane of symmetry
symm plane=2 . Plane 1,3 plane of symmetry
zero 3: 1 . Constrain center w

nonzero 1 : [nn_x],[nn_totall,[nn_x] . Apply displacement at x=1x edge

[xqt AUS . Form applied loading
sysvec : appl moti
i=1: J=[nn_x],[nn_totall,[nn_x]: -0.001

*end

1.8.3.2 The Linear Static Analysis Procedure

The following procedure performs the linear static analysis for models using either SPAR
E43 elements or elements implemented using the generic element processors. The procedure

will be kept in a file named L_STATIC.CLP.

sprocedure L_STATIC (es_name)

[xqt E . Initialize all element datasets

stop
*open 1

Revised 12/18/91 CSM Testbed Procedures Manual

16-9

Examples Introduction to CSM Testbed Procedures Manual

»if <ifeqs([es_name]; E43)> /then . Form intrinsic stiffness matrices
[xqt EKS . for E43
*else
*call ES (Iunction=’INITIALIZE’)
#call ES (function=’FORM STIFFNESS/MATL’) . for other elements
*endif
[xqt RSEQ . Resequence
[xqt TOPO . Create maps
[xqt K . Assemble system stiffness matrix
[xqt INV . Factor stiffness matrix
online=2
[xqt SSOL . Solve for static displacements
stop
*open 1
. Calculate stresses
#if <ifeqs([es_name]; E43)> /then . for E43
[xqt GSF
{xqt PSF
reset display=2
*else . for other elements
%*call ES (function = *FORM STRESS’; es_dis_ds = STAT.DISP.1.1)
sendif
[xqt VPRT . Print displacements
format=4
print STAT DISP
send

1.6.3.3 The Execution Control File

The following file, FLATPLATE. COM, contains no procedures; it adds the two procedure files
and calls the model generation and analysis procedures, PLATE_MODEL and L_STATIC.

$ testbed ! Execute Testbed macroprocessor
*set echo off

*open 1 flat_plate.101 . Open data library

sadd flatplate.prc . Add procedure files BEFORE calls

*add 1_static.clp
. Generate model
#call PLATE_MODEL (es_proc=ES1; es_name=Ex97;--
nel_x=4; nel_y=4)
. Solve for static solution
#call L_STATIC (es_name=Ex97)

{xqt EXIT . Exit macroprocessor

It should be emphasized that the procedure L_STATIC may be used for any linear, static
analysis using either the original SPAR elements or elements implemented using one or
more of the Independent Element Processors. The procedure is not limited to SPAR E43

1.6- 10 CSM Testbed Procedures Manual Revised 12/18/91

Introduction to CSM Testbed Procedures Manual Examples

elements as no element specific operations are being performed; element specific operations
are performed in the model definition procedure(s).

By splitting the analysis into procedures, the model generation and solution have been
decoupled allowing the solution procedure to be used for many different models. The
advantages of this approach include the fact that a solution procedure need only be written
once rather than once for each problem. It is highly recommended that the user organize
procedures in this fashion.

Revised 12/18/91 CSM Testbed Procedures Manual 1.6- 11

Examples Introduction to CSM Testbed Procedures Manual

THIS PAGE LEFT BLANK INTENTIONALLY.

1.6-12 CSM Testbed Procedures Manual Revised 12/18/91

Introduction to CSM Testbed Procedures Manual References

1.7 References

1-1 Stewart, Caroline B.: The Computational Structural Mechanics Testbed User’s
Manual. NASA TM 100644, October 1989.

1-2 Felippa, Carlos A.: The Computational Structural Mechanics Testbed Architecture:
Volume I - The Language. NASA CR 178384, December 1988.

1-3 Felippa, Carlos A.: The Computational Structural Mechanics Testbed Architecture:
Volume II - Directives. NASA CR 178385, February 1989.

1-4 Stanley, Gary and Nour-Omid, Shahram: The Computational Structural Mechanics
Testbed Generic Structural-Element Processor Manual. NASA CR 181728, March

1990.

Revised 12/18/91 CSM Testbed Procedures Manual 1.7-1

PRECEDING PAGE ELAMK NOT FILMED

References Introduction to CSM Testbed Procedures Manual
THIS PAGE LEFT BLANK INTENTIONALLY.
1.7- 2 CSM Testbed Procedures Manual Revised 12/18/91

Preprocessing Procedures

2.0 Preprocessing

Procedures

The five procedures documented in this chapter are general modeling procedures for specific

structural geometries.

Table 2.0-1 Summary of Preprocessing Procedures

Procedure Name

Preprocessing Function

GEN_BEAM

Generate 1-D models of straight beams using beam
elements

GEN_CANTILEVER

Generate 2-D models of a straight cantilever beam

using plate/shell elements. Using the default values
for the procedure arguments, the straight cantilever
beam problem from the MacNeal-Harder test cases is

generated.

GEN_CURVED_BM

Generate 2-D models of a curved (circular) beam us-

ing plate/shell elements. Using the default values for
the procedure arguments, the curved beam problem

from the MacNeal-Harder test cases is generated.

GEN_PLATE Generates 2-D models for general quadrilateral
plates.
GEN_SHELL Generates 2-D models for general shells and curved

surfaces.

Revised 12/18/91

CSM Testbed Procedures Manual

PRECEDING PAGE BiLALK NCT FILMED

2.0-1

Preprocessing Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

2.0-2

CSM Testbed Procedures Manual

Revised 12/18/91

Pre-Processing Procedures

Generic 1-D Beams

2.1 Procedure GEN_BEAM

2.1.1 GENERAL DESCRIPTION

This section describes a procedure which generates models of a straight beam using one-

dimensional beam elements.

Revised 12/18/91 CSM Testbed Procedures Manual 2.1-1

PRECEDING PAGE BLANK NGT FILMED

Generic 1-D Beams Pre-Processing Procedures

2.1.2 PROCEDURE USAGE

Procedure GEN_BEAM may be used by preceding the procedure name by the *call directive,
and following it by a list of arguments enclosed in parentheses. Procedure arguments are
order-independent, and most have default values thus making them optional. The formal
syntax is as follows:

*call GENBEAM (argl = vall ; arg2 = val2 ; ...)

where argl and arg?2 represent argument names, and vall and val2 represent their cor-
responding values. Note that semi-colons are required between arguments, and a double
dash (--) may be used to continue the argument list on the next line.

The allowable arguments for procedure GEN_BEAM are summarized in the following table,
along with their default values (if they exist). Note that arguments without defaults are
generally mandatory, while those with defaults are generally optional. Exceptions to this
rule are noted in the following section under detailed argument descriptions.

Argument Default Value Meaning

ES_PROC ES6 Select element processor
ES_NAME E210 Select element within ELT_PROC
NODES_X 3 Number of nodes in x-direction
LENGTH_X 10. Length of beam

E 120. Young’s elastic modulus

NU 0. Poisson’s ratio

AREA 1.0 Cross-sectional area

INERT.1 1. Principal moment of inertia, I
INERT.2 10. Principal moment of inertia, I3
INERT_TORSIONAL 1. Uniform torsion constant
BC_PROCEDURE BEAM_BC Procedure for boundary conditions

2.1.3 ARGUMENT DESCRIPTIONS

2.1.3.1 AREA

Cross-sectional area of beam (default: 1.0).

2.1.3.2 BC_PROCEDURE

Boundary condition procedure name (default: CC_BC for specified forces; CCD_BC for spec-
ified displacements). The term “boundary conditions” refers both to displacement con-
straints and applied loading. Procedures CC_BC and CCD.BC both have the same zero
displacement constraints. The only difference is that the former procedure applies axial
forces to the simply supported edge, while the latter procedure prescribes non-zero axial
displacements on that edge. The argument BC_PROCEDURE permits you to to supply your
own boundary condition procedure, but keep in mind that this may drastically change the
problem definition, and hence invalidate most of the discussion under Section 2.1.1.

2.1-2 CSM Testbed Procedures Manual Revised 12/18/91

Pre-Processing Procedures Generic 1-D Beams

2.1.3.3 E
Young’s elastic modulus (default: 120.0).

2.1.3.4 ES_NAME

Element name (default: E210). This is the name of the specific beam-element type you wish
to select, within the element processor defined by argument ES_PROC. The default element
type, E210, is a 2-noded beam element implemented in processor ES6, and described in
The Computational Structural Mechanics Testbed User’s Manual (see ref. 2.1-1).

2.1.3.5 ES_PROC

Element Processor (default: ES6) This is the name of the structural element (ES) processor
that contains the shell element type you wish to employ in the model. The default shell-
element, processor ES6, is described in The Computational Structural Mechanics Testbed
User’s Manual.

2.1.3.6 INERT.1

Principal moment of inertia (default: 1.0).

2.1.3.7 INERT. 2
Principal moment of inertia (default: 10.0).

2.1.3.8 INERT_TORSION

Torsional constant (default: 1.0).

2.1.3.9 LENGTH.X
Length of the beam in the x-direction (default: 10.0).

2.1.3.10 NODES_X

Number of nodes along beam length (default: 3). Note that this number should be con-
sistent with the number of nodes per element. For example, NODES X can be any number
greater than 1 for 2-node beam elements, whereas it must be an odd number greater than
1 for 3-node beam elements.

2.1.3.11 NNODES.C

Number of circumferential nodes (default: 7). This is the number of nodes you wish
to have along the circumferential direction of the cylindrical shell model, i.e., along 15
degrees of circular arclength. Note that this number should be consistent with the number
of nodes per element. For example, NNODES_C can be any number greater than 1 for 4-
node quadrilateral elements, whereas it must be an odd number greater than 1 for 9-node

quadrilateral elements.

Revised 12/18/91 CSM Testbed Procedures Manual 21-3

Generic 1-D Beams Pre-Processing Procedures

2.1.3.12 NU
Poisson’s ratio (default: 0.0).

2.1.4 USAGE GUIDELINES AND EXAMPLES

Procedure GEN_BEAM may be used by preceding the procedure name by the xcall directive.
Procedure arguments may be changed from their default values by including any or all
of the arguments and their new values when the procedure is called. A space or blank

is required between the end of the procedure name and the left parenthesis. If the default
values of the procedure arguments are to be used, then only the procedure name is required.

*procedure GEN_BEAM (es_proc = ES6 ; es_name = E210 ; --

nodes_x =3 s

length_x =10, ;--

E=120.; PR=0. ; area =10 ; --
inert_1=1. ; inert_2=10. ; inert_torsion=1. ;--

BC_PROCEDURE = BEAM_BC)

(E1) To perform an entire analysis using the default options, simply invoke the procedure
without any arguments, i.e.,

*xcall GEN_BEAM

2.1.5 LIMITATIONS

2.1.6 ERROR MESSAGES AND WARNINGS

None.

2.1.7 PROCEDURE FLOWCHAilT

2.1.8 PROCEDURE LISTING

»procedure GEN_BEAM (es_proc = ES6 ; es_name = E210 ; --

nodes_x =3 ot

length_x =10. ;--

E=120.; PR=0. ; area =1.0 ; --
inert_i=z1. ; inert_2=10. ; inert_torsion=1. ;--

BC_PROCEDURE = BEAM_BC)
#call ES_DEFN (es_proc=[es_proc]; es_name=[es_name]
[XQT TAB
*def nodes_tot = < [nodes_x] >

2.1-4 CSM Testbed Procedures Manual Revised 12/18/91

Pre-Processing Procedures

Generic 1-D Beams

‘ START <nodes_tot>
JLOC

I . DEFINE NODAL COORDINATES

| s«det/e dx = < [length_xj / {{nodes_x1-1) >
‘ «def/i node = 0
»def/e x = 0.
=do $¢i = 1,[nodes_x]
sdef node = < <node> + 1 >
<node> <x>, 0., O. . NODE DEFINITION
sdef x = < <x> + <dx> >
senddo

. DEFINE FICTITIOUS ELASTIC MATERIAL PROPERTIES

.

MATC
1 [E] [PR]

. BEAM FACE ORIENTATION AND PROPERTIES
MREF
FORMAT=2
i 1 0. 1.0 0.

BA
GIVN 1 [inert_1] 0. [inert_2] 0. [area] [inert_torsion]

. DEFINE LOADS AND BOUNDARY CONDITIONS

scall [BC_PROCEDUREl (nnx = [nodes_x] ; --
nen = <es_nen>)

. GENERATE ELEMENTS
[xQT ELD

<es_expe_cnd>
NSECT = 1

Define element nodal connectivity

scall BM_ELT_CONN (nnx=[nodes_x]; nen=<es_nen>)

*ond
. =DECK BM_ELT_CONN
sprocedure BM_ELT_CONN (nnx; nen)

11 1

Revised 12/18/91 CSM Testbed Procedures Manual

2.1-5

Generic 1-D Beams

Pre-Processing Procedures

*if < [nen] /eq 2 > /then
*do $ix = 1, <[nnx]}-1>

sdef/i n1
=def/i n2

1> <n2>

*enddo

< $ix >
<<ni>+ 1 >

selseif < [nen] /eq 3 > /then
»do $ix = 1, <[nnx]-2>, 2

*def/i n1 = < $ix >
»def/i n2 = < <ni> + 2>
sdef/i n3 = < <n2> - 1>
ZESETTRSE=S=I==SSS

*enddo
*endif
=ond

2.1.9 REFERENCES

2.1-1 Stewart, Caroline B.: The Computational Structural Mechanics Testbed User’s
Manual. NASA TM-100644, October 1989.

2.1-6

CSM Testbed Procedures Manual

Revised 12/18/91

Pre-Processing Procedures Generic 2-D CANTILEVER Beam

2.2 Procedure GEN_CANTILEVER

2.2.1 GENERAL DESCRIPTION

This section describes a procedure which generates models of a straight cantilever beam
using two-dimensional plate/shell elements. Using the default values for the procedure
arguments, the straight cantilever beam problem from the MacNeal-Harder test cases (see
ref. 2.2-1) is generated. The model used for the MacNeal-Harder cantilever beam test
cases, is shown in figure 2.2-1.

y-axis

2 L o

L2l

' Y
l [| 1 L _h J—>
I

rectangular elements

N © >\ /< 8
§1 N 7 N 7 1]
' trapezoidal elements
\8
/ 7/ A 7 /7 |
J

parallelogram elements

DIMENSIONS : h=.2, L =6, Thickness =.1

MAT=RIAL PROPERTIES : E=10 X107, v =230

Figure 2.2-1 Generic 2-D Cantilever Beam Finite Element Models.

Revised 5/24/90 CSM Testbed Procedures Manual 2.2-1

Generic 2-D CANTILEVER Beam Pre-Processing Procedures

2.2.2 PROCEDURE USAGE

Procedure GEN_CANTILEVER may be used by preceding the procedure name by the *call
directive, and following it by a list of arguments enclosed in parentheses. Procedure ar-
guments are order-independent, and most have default values thus making them optional.
The formal syntax is as follows: 1

»call GEN_CANTILEVER (argl = vall ; arg2 = val2 ; ...)

where argl and arg2 represent argument names, and vall and val2 represent their cor-
responding values. Note that semi-colons are required between arguments, and a double
dash (--) may be used to continue the argument list on the next line.

The allowable arguments for procedure GEN_CANTILEVER are summarized in the following
table, along with their default values (if they exist). Note that arguments without defaults
are generally mandatory, while those with defaults are generally optional. Exceptions to
this rule are noted in the following section under detailed argument descriptions.

Argument Default Value Meaning

ES_PROC ES2 Select element processor
ES_NAME EX41 Select element with ELT_PROC
ES_PARS 0.0 Set element-research parameters
AUTO_DOF_SUP true Automatic d.of. suppression
DRILLING_DOF false

NODES X 7 Number of nodes in x-direction
NODES_Y 2 Number of nodes in y-direction
LENGTH.X 6. ; Beam length (x-direction)
LENGTH_Y .2 " Beam width (y-direction)

E 1.E7 Young’s elastic modulus

NU .3 Poisson’s ratio

THICKESS .1 Thickness

DISTORT .07071

BC_PROCEDURE CANTILEVER_BC Procedure for boundary conditions

2.2.3 ARGUMENT DESCRIPTIONS

2.2.3.1 AUTO.DOF._SUP

Automatic degree of freedom suppression flag (default: <true>). This option provides a
convenient way of suppressing any freedoms that do not have any (or adequate) stiffness
associated with them — for example, at nodes used to prescribe geometry only; or drilling
freedoms in fine meshes composed of elements without normal rotational stiffnesses (see
argument DRILLING_DOF).

2.2-2 CSM Testbed Procedures Manual Revised 12/18/91

Pre-Processing Procedures Generic 2-D CANTILEVER Beam

2.2.3.2 BC_PROCEDURE

Boundary condition procedure name (default: CANTILEVER _BC). The term “boundary con-
ditions” refers both to displacement constraints and applied loading. The argument
BC_PROCEDURE permits the users to supply their own boundary condition procedure, but
keep in mind that this may drastically change the problem definition.

2.2.3.3 DISTORT
Distorted mesh parameter (default: 0.07071).

2.2.3.4 DRILLING_DOF

Drilling degree of freedom flag (default: <false>). Drilling freedoms are defined as rota-
tions normal to the surface of the shell. Leaving this flag off forces all drilling freedoms
in the model to be suppressed. Turning it on forces all drilling freedoms to be active —
unless they are automatically suppressed using use of the AUTO_DOF_SUP argument. Note
that while many shell elements do not have any rotational stiffness associated with their
own surface-normal directions (at nodes), when shell elements are assembled as facets ap-
proximating an arbitrary shell surface, there is usually some misalignment between the
element normal and the actual shell normal. This is especially true of “flat” (e.g., 4-node)
elements. Hence, some rotational stiffness about the skell normal is usually present in
the model. (A clear exception to this is a flat plate, where element and shell normals
are identical.) For a cylindrical shell, the misalignment diminishes only as the number of
elements is increased. Most shell elements in the Testbed have their own misalignment
tolerance parameter, which determines when the AUTO_DOF_SUP argument will automati-
cally suppress the drilling freedom. Note that for elements which have drilling stiffness,
the DRILLING_DOF argument should be set to <true> regardless of how AUTO_DOF_SUP is
set.

2.2.3.5 E
Young’s elastic modulus (default: 1.0 x 107).

2.2.3.8 ES_NAME

Element name (default: EX41). This is the name of the specific shell-element type you
wish to select, within the element processor defined by argument ES_PROC. The default
shell-element type, EX41, is a 4-noded quadrilateral element implemented in Processor
ES2, and described in The Computational Structural Mechanics Testbed User’s Manual

(see ref. 2.2-1).

2.2.3.7 ES_PARS

Element research parameters (default: 0., ...). This argument allows an optional list of
element-dependent parameters that some elements provide, primarily when the element is

still undergoing research and refinement.

Revised 12/18/91 CSM Testbed Procedures Manual 2.2-3

Generic 2-D CANTILEVER Beam Pre-Processing Procedures

2.2.3.8 ES_PROC

Element processor (default: ES2) This is the name of the structural element (ES) processor
that contains the shell element type you wish to employ in the model. The default shell-
clement, processor ES2, is described in The Computational Structural Mechanics Testbed
User’s Manual.

2.2.3.9 NODES.X

Number of nodes along x-direction (default: 7). This is the number of nodes you wish to
have along the axial direction of the beam shell model. Note that this number should be
consistent with the number of nodes per element. For example, NODES_X can be any number
greater than 1 for 4-node quadrilateral elements, whereas it must be an odd number greater
than 1 for 9-node quadrilateral elements.

2.2.3.10 NODES.Y

Number of nodes along y-direction (default: 2). This is the number of nodes you wish to
have along the depth direction of the beam shell model. Note that this number should be
consistent with the number of nodes per element. For example, NODES_Y can be any number
greater than 1 for 4-node quadrilateral elements, whereas it must be an odd number greater
than 1 for 9-node quadrilateral elements.

2.2.3.11 NU

Poisson’s ratio (default: 0.3).

2.2.3.12 THICKNESS
Beam thickness (default: 0.1).

2.2.4 USAGE GUIDELINES AND EXAMPLES

Procedure GEN_CANTILEVER may be used by preceding the procedure name by the xcall
directive. Procedure arguments may be changed from their default values by including any
or all of the arguments and their new values when the procedure is called. A space or blank
is required between the end of the procedure name and the left parenthesis. If the default
values of the procedure arguments are to be used, then only the procedure name is required.

»*call GEN_CANTILEVER (es_proc ES2 ; es_name = EX41 ; --

es_pars 0.0 ; --

auto_dof_sup = <true> ; --

drilling_dof = <false> ; --

nodes_x =7 ; nodes_y = 2 HE

length_x =6. ; length.y = .2 ; --

E=1.E7 ; NU=.3 ; thickness = .1 ; --
distort =,07071; --

BC_PROCEDURE = CANTILEVERLEVER_BC)

2.2-4 CSM Testbed Procedures Manual Revised 12/18/91

Pre-Processing Procedures Generic 2-D CANTILEVER Beam

(E1) To perform an entire analysis using the default options, simply invoke the procedure
without any arguments, i.e.,

*call GEN_CANTILEVER

2.2.5 LIMITATIONS

2.2.6 ERROR MESSAGES AND WARNINGS

None.

2.2.7 PROCEDURE FLOWCHART

2.2.8 PROCEDURE LISTING

sprocedure GEN_CANTI (es_proc ES2 ; es_name = EX41 ; --

es_pars 0.0 ; ~-

auto_dof_sup = <true> ; --

drilling_dof = <false> ; --

nodes_x =7 ; nodes_y = 2 ; -
length_x = 6. ; length.y = .2 ; --
E=1.E7 ; NU=.3 ; thickness = ,1 3 --
distort =.,07071; --

BC_PROCEDURE = CANTILEVER_BC)

*call ES (function = ’DEFINE ELEMENTS’ ; es_proc = [es_procl; --
es_name = [es_name] ; es_pars = [es_pars])
[XQT TAB
sdef nodes_tot = < [nodes_x] * [nodes_y] >
START <nodes_tot>
JLOC

. DEFINE NODAL COORDINATES

sdef/e dx = < [length_x] / ([nodes_x]-1) >
sdef/e dy = < [length_y]l / ([nodes_yl-1) >
*def/i node = 0

s*det/e y = 0.

sdef/e skew = < -1. = [distort] >

sdef/e dskew = < 2.0 » [distort] / ([nodes_yl-1) >

»do $j = 1,[nodes_y]
*def/e x = 0.

Revised 12/18/91 CSM Testbed Procedures Manual , 2.2-5

Generic 2-D CANTILEVER Beam Pre-Processing Procedures

=do $¢i = 1,[nodes_x]
*def node = < <node> + 1 >
<node> <x>, <y>, 0. . NODE DEFINITION
#def x = < <x> + <dx> >
»if < <$i> /eq 1 > /then
sdef x = < <x> + <skew> >
#endif
»if < <$i> /eq <[nodes_x]-1> > /then
»def x = < [length_x] >
*endif
senddo
sdef y = < <y> + <dy> >
sxdef skew = < <skew> + <dskew> >
*enddo

. DEFINE FICTITIOUS ELASTIC MATERIAL PROPERTIES

MATC
11.0 .3

. DEFINE LOADS AND BOUNDARY CONDITIONS

scall [BC_PROCEDURE] (nnx = [nodes_x] ; mny = [nodes_y] ; --
nen = <es_nen> ; drilling_dof = [drilling_dof])

. DEFINE REAL MATERIAL/SECTION PROPERTIES
[XQT AUS

. Build Table of Material Data
TABLE(NI=16,NJ=1): OMB DATA 1 1

sdef/e12.4 G = < [E] / (2.+(1.+[NU])) >
1=1,2,3,4,5,8
J=1
[(E] [NU] [E] <G> <G> <G>
. Build Laminate Data Tables
TABLE(NI=3,NJ=1,ITYPE=0): LAM OMB 1 1
I=1,2,3 . (material_type, layer_thickness, angle(deg.)
J=1: 1 [THICKNESS] 0.0
[XQT LAU
. GENERATE ELEMENTS
[xQT ELD

Define number of integration (stress) points based on element type

»def/i nst = < <es_nip>*<es_nstr> >

2.2-6 CSM Testbed Procedures Manual Revised 12/18/91

Pre-Processing Procedures Generic 2-D CANTILEVER Beam

Define element attributes
<ES_EXPE_CMD>
NSECT = 1

Define element nodal connectivity

»call CANTI_ELT_CONN (nnx=[nodes_x]; nny=[nodes_y]; nen=<es_nen>)

- - - > - - - " - - - o - - - . - - -

*if < [AUTO_DOF_SUP] > /then
scall ES (function = 'DEFINE FREEDOMS’)
sendif

*end
sprocedure CANTI_ELT_CONN (nnx; nny; nen)

»it < [nen] /eq 4 > /then
»do $iy = 1, <[nnyl-1>
sdo $ix = 1, <[nnx]-1>
sdet/i n1 = < (<$iy>-1)¢[nnx] + <$ix> >
sdef/i n2 = < <ni>+ 1 >
sdef/i n3 = < <n2> + [nnx] >
sdef/ing = < <n3> - 1 >

*enddo
*enddo
selseif < [nen] /eq 9 > /then
*do $iy = 1, <[nnyl-2>, 2
*do $ix = 1, <[nnx]-2>, 2

sdef/i n1 = < (<$iy>-1)*[nnx] + <$ix> >
sdef/i n2 = < <ni1> + 2>

#def/i n3 = < <n2> + (2+[nnx]) >
sdef/i nd = < <n3> - 2>

sdef/i nb = < <n1> + 1>

edef/i n6 = < <n2> + [nnx] >

sdef/i n7 = < <nd> + 1>

sdef/i n8 = < <n6> - 2>

sdef/i n9 = < <n8> + 1>

—memmmsm e == ——
Pt R L L E b e R bl bbbl k]

Revised 12/18/91 CSM Testbed Procedures Manual

22-7

Generic 2-D CANTILEVER Beam Pre-Processing Procedures

senddo
senddo
sendif
*ond

2.2.9 REFERENCES

2.2-1 MacNeal, R. H.; and Harder, R. L.: “A Proposed Set of Problems to Test Finite
Element Accuracy,” Finite Elements in Analysis and Design, Vol. 1, 1985, pp. 3-20.

2.2-2 Stewart, Caroline B.: The Computational Structural Mechanics Testbed User’s
Manual. NASA TM-100644, October 1989.

2.2-8 CSM Testbed Procedures Manual Revised 12/18/91

Pre-Processing Procedures Generic 2-D Curved Beam

2.3 Procedure GEN_CURVED BM

2.3.1 GENERAL DESCRIPTION

This section describes a procedure which generates models of a curved (circular) beam
using two-dimensional plate/shell elements. Using the default values for the procedure
arguments, the curved beam problem from the MacNeal-Harder test cases (see ref. 2.3-1)
is generated. The MacNeal-Harder curved beam test case is shown in figure 2.3-1.

PROBLEM Curved Beam
DIMENSIONS : Inner radius = 4.12 Quter radius = 4.32
Thickness = .1

MATERIAL PROPEATIES : E= 1X10 v = 25
I0UNDARY CONDITICNS : Canielever beam fixed at y=0
LOADING : Unit forces apolied at free end;

1) in-plane (verical) -- y-direction (case 1)
2) out-ct-olane - z-ciracticn {case 2)

Figure 2.3-1 Generic 2-D Curved Beam Problem.

Revised 5/24/90 CSM Testbed Procedures Manual 23-1

Generic 2-D Curved Beam Pre-Processing Procedures

2.3.2 PROCEDURE USAGE

Procedure GEN_CURVED_BM may be used by preceding the procedure name by the #*call
directive, and following it by a list of arguments enclosed in parentheses. Procedure ar-
guments are order-independent, and most have default values thus making them optional.
The formal syntax is as follows:

#call GEN_CURVED BM (argl = vall ; arg2 = val2 ; ...)

where argt and arg2 represent argument names, and vall and val2 represent their cor-
responding values. Note that semi-colons are required between arguments, and a double
dash (--) may be used to continue the argument list on the next line.

The allowable arguments for procedure GEN_CURVED_BM are summarized in the following
table, along with their default values (if they exist). Note that arguments without defaults
are generally mandatory, while those with defaults are generally optional. Exceptions to
this rule are noted in the following section under detailed argument descriptions.

Argument Default Value Meaning

ES_PROC ES2 Select element processor

ES_NAME EX41 Select element within ELT_PROC
ES_PARS 0.0 Set element-research parameters
AUTO_DOF_SUP <true> Automatic d.o.f. suppression
DRILLING_DOF <false>

NODES_T 7 Number of nodes in tangential direction
NODES.R 2 Number of nodes in radial direction
RIN 4.12 Inner radius

ROUT 4.32 Outer radius

E 1.E7 Young’s elastic modulus

NU .25 ' Poisson’s ratio

THICKNESS 1 Thickness

BC_PROCEDURE CURVED_BC Procedure for boundary conditions

2.3.3 ARGUMENT DESCRIPTIONS

2.3.3.1 AUTQ_DOF_SUP

Automatic degree of freedom suppression flag (default: <true>). This option provides a
convenient way of suppressing any freedoms that do not have any (or adequate) stiffness
associated with them — for example, at nodes used to prescribe geometry only; or drilling
freedoms in fine meshes composed of elements without normal rotational stiffnesses (see
argument DRILLING_DOF).

2.3-2 CSM Testbed Procedures Manual Revised 12/18/91

Pre-Processing Procedures Generic 2-D Curved Beam

2.3.3.2 RBRC_PROCEDURE

Boundary condition procedure name (default: CURVED_BC). The term “boundary con-
ditions” refers both to displacement constraints and applied loading. The argument
BC_PROCEDURE permits you to to supply your own boundary condition procedure, but
keep in mind that this may drastically change the problem definition.

2.3.3.3 DRILLING_DOF

Drilling degree of freedom flag (default: <false>). Drilling freedoms are defined as rota-
tions normal to the surface of the shell. Leaving this flag off forces all drilling freedoms
in the model to be suppressed. Turning it on forces all drilling freedoms to be active —
unless they are automatically suppressed using use of the AUTO_DOF_SUP argument. Note
that while many shell elements do not have any rotational stiffness associated with their
own surface-normal directions (at nodes), when shell elements are assembled as facets ap-
proximating an arbitrary shell surface, there is usually some misalignment between the
element normal and the actual shell normal. This is especially true of “flat” (e.g., 4-node)
elements. Hence, some rotational stiffness about the shell normal is usually present in
the model. (A clear exception to this is a flat plate, where element and shell normals
are identical.) For a cylindrical shell, the misalignment diminishes only as the number of
elements is increased. Most shell elements in the Testbed have their own misalignment
tolerance parameter, which determines when the AUTO_DOF_SUP argument will automati-
cally suppress the drilling freedom. Note that for elements which have drilling stiffness,
the DRILLING_DOF argument should be set to <true> regardless of how AUTO_DOF_SUP is
set.

2.3.3.4 E
Young’s elastic modulus (default: 1.0 x 107).

2.3.3.5 ES_NAME

Element name (default: EX41). This is the name of the specific shell-element type you
wish to select, within the element processor defined by argument ES_PROC. The default
shell-element type, EX41, is a 4-noded quadrilateral element implemented in Processor
ES1, and described in The Computational Structural Mechanics Testbed User’s Manual
(see ref. 2.3-1).

2.3.3.6 ES_PARS

Element research parameters (default: 0., ...). This argument allows an optional list of
element-dependent parameters that some elements provide, primarily when the element is
still undergoing research and refinement.

2.3.3.7 ES_PROC

Element processor (default: ES2) This is the name of the structural element (ES) processor
that contains the shell element type you wish to employ in the model. The default shell-
element, processor ES2, is described in The Computational Structural Mechanics Testbed

User’s Manual.

Revised 12/18/91 CSM Testbed Procedures Manual 2.3-3

Generic 2-D Curved Beam Pre-Processing Procedures

2.3.3.8 NODES_R

Number of radial nodes (default: 2). This is the number of nodes you wish to have along the
radial direction of the curved beam shell model. Note that this number should be consistent
with the number of nodes per element. For example, NODES_R can be any number greater
than 1 for 4-node quadrilateral elements, whereas it must be an odd number greater than
1 for 9-node quadrilateral elements.

2.3.3.9 NODES_T

Number of tangential nodes (default: 7). This is the number of nodes you wish to have
along the tangential direction of the curved beam shell model. Note that this number
should be consistent with the number of nodes per element. For example, NODES_T can be
any number greater than 1 for 4-node quadrilateral elements, whereas it must be an odd
number greater than 1 for 9-node quadrilateral elements.

2.3.3.10 NU
Poisson’s ratio (default: 0.25).

2.3.3.11 RIN

Inner radius of curved beam (default: 4.12).

2.3.3.12 ROOT
Outer radius of curved beam (default: 4.32).

2.3.3.13 THICKNESS
Beam thickness (default: 0.1).

2.3.4 USAGE GUIDELINES AND EXAMPLES

Procedure GEN_CURVED_BM may be used by preceding the procedure name by the *call
directive. Procedure arguments may be changed from their default values by including
any or all of the arguments and their new values when the procedure is called. A space or
blank is required between the end of the procedure name and the left parenthesis. If the
default values of the procedure arguments are to be used, then only the procedure name
is required.

»procedure GEN_CURVED_BM (elt_proc = ES2 ; elt_name = EX41 ; --
elt_pars = 0.0 ; --
auto_dof_sup = <true> ; --
drilling_dof = <false> ; --
nodes_t =7 ; nodes_.r = 2 i
rin = 4.12 ; rout = 4,32 ;-
E=1.E7 ; PR=.25 ; thick = .1 ; ~--
BC_PROCEDURE = CURVED_BC)

2.3-4 CSM Testbed Procedures Manual Revised 12/18/91

Pre-Processing Procedures Generic 2-D Curved Beam

(E1) To perform an entire analysis using the default options, simply invoke the procedure
without any arguments, t.e.,

*call GEN_.CURVED_BM

2.3.5 LIMITATIONS

2.3.6 ERROR MESSAGES AND WARNINGS

None.

2.3.7 PROCEDURE FLOWCHART

2.3.8 PROCEDURE LISTING

sprocedure GEN_CURVED (es_proc = ES2 ; es_name = EX41 ; --
es_pars = 0.0 ; --
auto_dof_sup = <true> ; --
drilling_dof = <false> ; --
nodes_t =7 ; nodes_r = 2 ; --
rin = 4,12 ; rout = 4,32 I
E=1.E7 ; NU=.256 ; thickness = .1 ; --

BC_PROCEDURE = CURVED_BC)

ecall ES (function = ’DEFINE ELEMENTS’ ; es_proc = [es_procl; --
es_name = [es_name] ; os_pars = [es_pars])
[XQT TAB
¢def nodes_tot = < [nodes_t] * [nodes_r] >
START <nodes_tot>

JLoc
FORMAT = 2 . use cylindrical coordinate system

. DEFINE NODAL COORDINATES

sdet/e dx = < 90. / ([nodes_t]-1) >

*def/e dy < < [rout] - [rin] > / ([nodes_r]-1) >
*def/i node = 0

sdet/e r = [rin]

[}

sdo $j = 1,[nodes_r]
sdef/e theta = 90.
edo $i = 1,[nodes_t]
sdef node = < <node> + 1 >

Revised 12/18/91 CSM Testbed Procedures Manual 23-5

Generic 2-D Curved Beam Pre-Processing Procedures

<node> <r>, <theta>, 0. . NODE DEFINITION
sdef theta = < <theta> - <dx> >
senddo
*def r = < <r> + <dy> >
*enddo

. DEFINE FICTITIOUS ELASTIC MATERIAL PROPERTIES

T T I Y YT Y I T
TS=SSESZSSRSRSZESRS=E==S

Y T T T T T T

JREF . Use local cylindrical basis vectors
for nodal DOFS:
. u,v,w = radial, circumfer., axial
NREF = -1
1 <nodes_tot> . same convention for all nodes

. DEFINE LOADS AND BOUNDARY CONDITIONS

«call [BC_PROCEDURE] (nnx
nen

[nodes_t] ; nny = [nodes_r] ; --
<es_nen> ; drilling_dof = [drilling_dof])

"

. DEFINE REAL MATERIAL/SECTION PROPERTIES
[(xQT aUs

. Build Table of Material Data
TABLE(NI=16,NJ=1): OMB DATA 1 1

»def/e12.4 G = < [E] / (2.+(1.+[NU])) >

1=1,2,3,4,5,6
J=1
[E] [NU] [E] <G> <G> <G>

. Build Laminate Data Tables

TABLE(NI=3,NJ=1,ITYPE=0): LAM OMB 1 1

I=1,2,3 . (material_type, layer_thickness, angle(deg.)
J=1: 1 [THICKNESS] 0.0

[XQT LAU

. GENERATE ELEMENTS

[xQT ELD
. Define number of integration (stress) points based on element type
edef/i nst = < <es_nip>*<_nstr> >

2.3-6 CSM Testbed Procedures Manual Revised 12/18/91

Pre-Processing Procedures

Generic 2-D Curved Beam

Define element attri
<ES_EXPE_CMD>
NSECT = 1

Define element nodal

butes

connectivity

#*call CURV_ELT_CONN (nnx=[nodes_t]; nny=[nodes_r}; nen=<es_nen>)

-k - ——

Suppress DOFs not supported by elements

*«if < [AUTO_DOF_SUP]

#call ES (function

sendif
=end
sprocedure CURV_ELT_CONN (

> /then
'DEFINE FREEDONS®

)

nnx; nny; nen)

. Define Element Connectivi

ty Record for ELD Processor

*if < [nen] /eq 4 > /then
sdo $iy = 1, <[nmnyl-1>
*do $ix = 1, <[nnx]-1>
sdet/i n1 = < (<$iy>-1)#[nnx] + <$ix> >
*def/i n2 = <<n1>+ 1 >
sdef/i n3 < <n2> + [nnx] >
*def/ingd = < <n3> - 1 >
<n1> <n2> <n3> <né>
senddo
*aenddo
*elseif < [nen] /eq 9 > /then
*do $iy = 1, <[nnyl-2>, 2
*do $ix = 1, <[nnx]-2>, 2
sdet/i n1 = < (<$iy>-1)s[nnx] + <$ix> >
*def/i n2 = < <n1> + 2 >
*def/i n3 = < <n2> + (2+[nnx]) >
sdef/i nd = < <n3> - 2>
sdet/i nb = < <n1> + 1>
#det/i n6 = < <n2> + [nnx] >
*def/i n7 = < <nd> + 1>
»def/i n8 = < <né> - 2>
#def/i n9 = < <n8> + 1>
<n1> <n2> <n3> <n4> <nb> <né> <n7> <n8> <n9>

Revised 12/18/91

CSM Testbed Procedures Manual 2.3-7

Generic 2-D Curved Beam Pre-Processing Procedures

wenddo
senddo
sendif
*ond

2.3.9 REFERENCES

2.3-1 MacNeal, R. H.; and Harder, R. L.: “A Proposed Set of Problems to Test Finite
Element Accuracy,” Finite Elements in Analysis and Design, Vol. 1, 1985, pp. 3-20.

2.3-2 Stewart, Caroline B.: The Computational Structural Mechanics Testbed User’s
Manual. NASA TM-100644, October 1989.

2.3-8 CSM Testbed Procedures Manual Revised 12/18/91

Pre-Processing Procedures General Quadrilateral Plates

2.4 Procedure GEN_PLATE

2.4.1 GENERAL DESCRIPTION

Procedure GEN_PLATE is used to generate flat or warped 4-sided plate finite element models.
The plate edges are defined to be straight with the surface defined as the bi-linearly
interpolation of the edges. This type of interpolated surface is also known as a Coon’s
surface (see refs. 2.4-2 and 2.4-3).

2.4.2 PROCEDURE USAGE

Procedure GEN_PLATE may be used by preceding the procedure name by the *call directive,
and following it by a list of arguments enclosed in parentheses. Procedure arguments are
order-independent, and most have default values thus making them optional. The formal
syntax is as follows:

*xcall GEN_PLATE (argl = vall ; arg2 = val2 ; ...)

where argl and arg?2 represent argument names, and vall and val2 represent their cor-
responding values. Note that semi-colons are required between arguments, and a double
dash (--) preceded by a space may be used to continue the argument list on the next line.

The allowable arguments for procedure GEN_PLATE are summarized in the following table,
along with their default values (if they exist). Exceptions to this rule are noted in the
following section under detailed argument descriptions.

Revised 12/18/91 CSM Testbed Procedures Manual 24-1

General Quadrilateral Plates

Pre-Processing Procedures

Argument Default Value
ES_PROC ES1
ES_NAME EX97
ES_PARS 0.0
XYZ1 1,0,0
XYZ2 1,0,1
XY23 1,90,1
XYZ4 1,90,0
NODES_1 7
NODES_2 7
EDGE_WEIGHTS 1,1,1,1
BC_PROCEDURE y 2
DRILLING_DOF <true>
AUTO_DOF_SUP <true>
SECTION_PRC LR
NSECT 1

E 30.E6
NU 0.3
WIDEN 0.1
THICKNESS .1

2.4.3 ARGUMENT DESCRIPTIONS

2.4.3.1 AUTO_DOF_SUP

Meaning

Generic element processor
Generic element name
Element research parameters

Cartesian coordinates of point 1.
Cartesian coordinates of point 2.
Cartesian coordinates of point 3.
Cartesian coordinates of point 4.
Number of nodes along edge 1
Number of nodes along edge 2
including duplicate nodes if plate closes
Plate section property procedure
Boundary condition procedure
Drilling dof suppression flag
Automatic dof suppression flag
Plate section property procedure

Plate section property number
The following values not used if SECTION_PRC is specified.

Young’s Modulus
Poisson’s ratio
Weight Density
Plate thickness

Automatic degree of freedom suppression flag (default: <true>). This option provides a
convenient way of suppressing any freedoms that do not have any (or adequate) stiffness
associated with them — for example, at nodes used to prescribe geometry only; or drilling
freedoms in fine meshes composed of elements without normal rotational stiffness (see

argument DRILLING_DOF).

2.4.3.2 BC.PROCEDURE

Name of user provided boundary condition procedure (default: > ’). The term “boundary
conditions” refers both to displacement constraints and applied loading. If a boundary
conditions procedure is provided, the following call will be performed. The macrosymbol

<es_nen> equals the number of element nodes.

*call [BC_PROCEDURE] (nodes_1
nodes_2
es_nodes

[nodes_1]
[nodes_2]
<es_nen>

.
’
.
»

drilling_dof = [drilling dof])

No action is taken if a boundary condition procedure name is not provided.

2.4-2 CSM Testbed Procedures Manual

Revised 12/18/91

Pre-Processing Procedures General Quadrilateral Plates

2.4.3.3 DRILLING_DOF

Drilling degree of freedom flag (default: <true>). Drilling freedoms are defined as rotations
normal to the surface of the plate. Setting this flag set to <false> forces all drilling
freedoms in the model to be suppressed. Setting it to true forces all drilling freedoms to be
active — unless they are automatically suppressed by use of the AUTO_DOF_SUP argument.
Note that while many plate elements do not have any rotational stiffness associated with
their own surface-normal directions (at nodes), when plate elements are assembled as facets
approximating an arbitrary plate surface, there is usually some misalignment between the
element normal and the actual plate normal. This is especially true of “flat” (e.g., 4-node)
elements. Hence, some rotational stiffness about the plate normal is usually present in
the model. (A clear exception to this is a flat plate, where element and plate normals are
identical.) For a curved plate, the misalignment diminishes only as the number of elements
is increased. Most plate elements in the Testbed have their own misalignment tolerance
parameter, which determines when the AUTO_DOF_SUP argument will automatically suppress
the drilling freedom. Note that for elements which kave drilling stiffness, the DRILLING_DOF
argument should be set to <true> regardless of how AUT0_DOF_SUP is set.

2.4.3.4 E

Young’s modulus (default: 30.E6). This argument is ignored if SECTION_PRC parameter is
specified. See the description for SECTION_PRC for more detail.

2.4.3.5 EDGE_WEIGHTS

Node placement can be weighted along each surface edge according to the EDGE_WEIGHTS
parameter. The input format requires a list of four edge-node placement weightings rep-
resenting the node weighting for edgel, edge2, edge3, and edge4 (default: 1.,1.,1.,1.).

The weighting value for a given edge represents the length of the last element divided by
the length of the first element along that edge. The edge orientation arrows in figure 2.4-1
point from the first element to the last element along each edge. In the case of 9-node
quad elements, the midside and center nodes are positioned at the appropriate locations
based on the elements natural coordinate system.

The procedure interprets negative weight values to mean the positive reciprocal. For
example, a value of -5.0 is identical to a value of 0.2.

2.4.3.6 ES_NAME

Element name (default: EX97). This argument is the name of the specific plate-element
type you wish to select, within the element processor defined by argument ES_PROC. The de-
fault plate-element type, EX97, is a 9-node quadrilateral element implemented in processor
ES1, and described reference 2.4-1.

2.4.3.7 ES_PARS

Element research parameters (default: 0., ...). This argument is an optional list of
element-dependent parameters that some elements provide, primarily when the element is
still undergoing research and refinement.

Revised 12/18/91 CSM Testbed Procedures Manual 24-3

General Quadrilateral Plates Pre-Processing Procedures

2.4.3.8 ES_PROC

Element processor (default: ES1) This argument is the name of the structural element
(ES) processor that contains the plate element type you wish to employ in the model.
The default plate-element, processor ES1, is described in The Computational Structural
Mechanics Testbed User’s Manual.

2.4.3.9 NODES_1

Number of nodes on edge 1 including the nodes at the surface corners (default: 7). This
argument is also the number of nodes on edge 3. This number should be consistent with
the element type selected. For example, NODES_1 can be any number greater than 1 for
4-node quadrilateral elements, whereas it must be an odd number greater than 1 for 9-node
quadrilateral elements.

2.4.3.10 NODES.2

Number of nodes on edge 2 including the nodes at the surface corners (default: 7). This
argument is also the number of nodes on edge 4. This number should be consistent with
the element type selected. For example, NODES_2 can be any number greater than 1 for
4-node quadrilateral elements, whereas it must be an odd number greater than 1 for 9-node
quadrilateral elements.

2.4.3.11 NSECT

Plate section property number (default: 1). The NSECT value is required when defining the
element using the processor ELD. See the description of SECTION_PRC for more detail.
2.4.3.12 XU

Poisson’s ratio (default: 0.3). This argument is ignored if the SECTION_PRC input parameter
is specified. See the description of SECTION_PRC for more detail.

2.4.3.13 XyZ1

The cartesian coordinates (z,y, z) which define corner number 1 of the model surface. The
form of the input is three real values, each separated by a comma (default: 1.,0.,0.). The
surface is defined by four edges which are defined as a linear interpolation in cartesian
coordinates of four endpoints, or “corner” points.

2.4.3.14 XYZ2

The cartesian coordinates (z,y,z) defining the corner number 2 of the model surface (de-
fault: 1.,0.,1.). ‘

2.4.3.15 XYZ3

The cartesian coordinates (z,y,z) defining the corner number 3 of the model surface (de-
fault: 1.,90.,1.).

2.4-4 CSM Testbed Procedures Manual Revised 12/18/91

Pre-Processing Procedures General Quadrilateral Plates

2.4.3.16 XYZ4

The cartesian coordinates (z,y, z) defining the corner number 4 of the model surface (de-
fault: 1.,90.,0.).

2.4.3.17 SECTION_PRC
Name of a user supplied procedure to define the plate section properties (default =’). If
a section properties procedure is provided, the following call will be performed.

»call [section_prc] (msect = [nsect])

The effect of the default is to allow the procedure to generate an isotropic material section
based on the input parameters E, NU, WTDEN, and THICKNESS. The section number is defined
by the input parameter NSECT. If the call parameter SECTION_PRC is defined by the user,
then call parameters E, NU, WIDEN, and THICKNESS are ignored by procedure GEN_PLATE.

2.4.3.18 THICKNESS

Thickness of the plate wall (default = 1.0). This argument is ignored if SECTION_PRC
parameter is specified. See the description for SECTION_PRC for more detail.

2.4.3.19 WTDEN

Weight density expressed in 1b/in.? (default: 0.1 Ib/in.?). This argument is ignored if the
SECTION_PRC input parameter is specified. Processor LAU will convert the weight density
to mass density using the gravitational acceleration constant 386.4 in/ sec?.

2.4.4 USAGE GUIDELINES AND EXAMPLES

Procedure GEN_PLATE may be invoked using the *call directive. Procedure arguments may
be changed from their default values by including any or all.of the arguments and their
new values in the procedure call. A space or blank is required between the end of the
procedure name and the left parenthesis. If the default values of the procedure arguments
are to be used, then only the procedure name is required.

*procedure GEN_PLATE (ES_PROC = ES1 ; ES_NAME = EX97 ; ES_PARS = 0.0 ; --
XYZ1 = 0.,0.,0. ; --
XYz2 =1.,0.,0. ; --
XYz3 =1.,1.,0. ; --
XYZ4 = 0.,1.,0. ; --
NODES_1 =3 ; =--
NODES_2 =3; -~
EDGE_WEIGHTS = 1.,1.,1.,1. ; --
BC_PROCEDURE = * ’ ; -- . Boundary condition procedure

DRILLING_DOF = <true> ; --

AUTO_DOF_SUP = <true> ; --

SECTION_PRC = * * ; -- . Plate section property procedure
NSECT = 1 ; -- . Plate section property ID

The following values not used if SECTION_PRC specified

Revised 12/18/91 CSM Testbed Procedures Manual 24-5

General Quadrilateral Plates Pre-Processing Procedures

E = 30.E6 ; -- . Young’s Modulus
NU = .3 ; -- . Poissons ratio
THICKNESS = .1 -- . Plate thickness

)

2.4.4.1 Mesh Generation

The method of surface generation used by procedure GEN_PLATE is described in the section.
Terminology depicted on figure 2.4-1 provides a visual interpretation of the parameters used
to generate a general plate surface. Node generation capability is provided by the Testbed
processor MESH.

To define the plate surface, the user defines four coordinate positions in the cartesian ref-
erence frame. These coordinate positions represent the corners of a straight-sided quadri-
lateral region. The surface of the region is defined as the bi-linear interpolation of the four
sides (see refs. 2.4-2 and 2.4-3).

corner 3

edge 3

edge 2

edge 4

edge 1
/ 2

corner 1

Figure 2.4-1 Generic Plate Surface Topology.

24-6 CSM Testbed Procedures Manual Revised 5/25/90

Pre-Processing Procedures General Quadrilateral Plates

The connectivity of the surface is defined in figure 2.4-1. The user provides the coordinates
for corners 1 to 4. Edge 1 of the region starts at corner 1 and ends at corner 2. The
remaining edges are defined in a similar manner. The arrows indicate the orientation of
the edges and the direction of increasing node numbers.

The topology of the resulting finite clemeni grid is depicted in Figure 2.4-2. Nodes are
created first along edge 1, then in successive lines terminating along edge 3. The user
defines the number of nodes along edges 1 and 2, which also defines the number of nodes
for edges 3 and 4. The relative position of the nodes along each edge may be controlled

using the edge weighting parameter EDGE_WEIGHTS.

corner 3
25
24
s 23
corner 22
21
20
19
18
17
18 element 4
element 3 1S
14
13
12
11 element 2
element 1 10
9
8
7
8
s
4
3 corner 2

P

corner 1

Figure 2.4-2 Node and Element Topology.

Revised 5/25/90 CSM Testbed Procedures Manual 24-17

General Quadrilateral Plates

Pre-Processing Procedures

2.4.4.2 Flat Plates

In this section are presented examples of how procedure GEN_PLATE may be used to create
two-dimensional finite element plate models.

In the following example, procedure GEN_PLATE is used to generate a flat rectangular plate
with length of 10 inches and width of 5 inches using 4-noded quadrilateral elements (see

figure 2.4-3).

scall GEN_PLATE (es_proc = ’ES1’

-

H]

es_name = ’EX47’ ;

xyzl = 0,,0.,0. ; --

xyz2 = 10.,0.,0. ; --

xyz3 = 10.,5.,0. ; --

xyz4 = 0.,56.,0. ;

nodes_1 =9 ; --

nodes_2 =5)

32 41 42 43 44 45
o 26 2? 28 29 30 3 32

gR_ q 1
17 18 19 20 21 22 23 24

"3 1 2. 3. 4 ?
9 10 1 12 13 14 15 16

‘L 1 2 3 4 [A 2 8
1 2 3 4 s 6 ? L__i_—L

[a——
|

1

=

Figure 2.4-3 Rectangular Plate

24-8 CSM Testbed Procedures Manual

Revised 5/25/90

Pre-Processing Procedures General Quadrilateral Plates

This example demonstrates the use of the EDGE_WEIGHTS parameter and how it affects both
the 4-node and 9-node quadrilateral element mapping (see figure 2.4-4). The EDGE_WEIGHTS
specifies elements at the ends of edges 1 through 4 to be 5 times longer than elements at
the beginning of the edges.

xcall GEN_PLATE (es_proc = ’ES1’ ; es_name = 'EX97’ ; --

xyzl = 0.,0.,0. ; --

xyz2 = 10.,0.,0. ; =--

xyz3 = 10.,5.,0. ; --

xyz4 = 0.,5.,0. ; --

nodes_1 =9 ; --

nodes_2 =5 ; --

edge_weights = 5.,-6.,-5.,5.)

(a) 4-node elements

(b) 9-node elements

Figure 2.4-4 Rectangular Plate With Weighted Elements

Revised 5/25/90 CSM Testbed Procedures Manual 24-9

General Quadrilateral Plates Pre-Processing Procedures

The following example produced the skewed flat plate shown in figure 2.4-5.
scall GEN_PLATE (es_proc = ’ES1’ ; es_name = 'EX47’ ; --

xyzi = 0.,0.,0. ; --
xyz2 = 10.,1.,0. ; -~
xyz3 =7.,6.,0. ; --
xyz4 =2.,8.,0. ; --
nodes_1 = 13 ; --
nodes_2 =11)

-C

Figure 2.4-5 Skewed Flat Plate

24-10 CSM Testbed Procedures Manual Revised 5/25/90

Pre-Processing Procedures

General Quadrilateral Plates

2.4.4.3 Warped Plates

In the following example, procedure GEN_PLATE is used to generate the highly warped
surface shown in figure 2.4-6.

*call GEN_PLATE (es_proc =

xyzl
xyz2
xyz3
xyz4
nodes_1
nodes_2

YES1
.»0.,0.
+»5.,0.
«»0.,5.

5.,6

ws we we we w

1 -

LI O |
NMDNNOONn OO
-

W .
/-

;,

Figure 2.4-6 Warped Plate

' , es_name = ’EX47? ;

Revised 5/25/90

CSM Testbed Procedures Manual

24-11

General Quadrilateral Plates

Pre-Processing Procedures

2.4.5

None.

2.4.6

None.

2.4.7

LIMITATIONS

ERROR MESSAGES AND WARNINGS

PROCEDURE FLOWCHART

GEN_PLATE (Plate generation procedure)
[BC_PROCEDURE] (user supplied boundary conditions/loads procedure)

[SECTION_PRC] (user supplied section property generation procedure)

2.4.8 PROCEDURE LISTING
sprocedure GEN_PLATE (es_proc = esl ; es_name = ex97 ; es_pars = 0.0 ; --
xyz1 = 0.,0.,0. ; --
xyz2 =1,,0.,0. ; ~--
xyz3 =1.,1.,0. ; ~--
xyz4 = 0.,1.,0. ; --
nodes_1 =3 ; --
nodes_2 =3 ; --
edge_weights = 1.,1.,1.,1. ; --
online 0 ; -- . suppress nodes and element output
be_procedure = ’> ’ ; -- . Boundary condition procedure
drilling_dof = <true> ; --
auto_dof_sup = <true> ; --
section_prc = * ’ ; -- . Shell section property procedure
The following values used only if section_prc not specified
nsect = 1 ; -- . Shell section property ID
E = 30.E6 ; ~-- . Young’s Modulus
NO = .3 ; -- . Poisons ratio
WIDEN = .1 ; -~ . Weight Density
thickness = .1 -- . Shell thickness
)

A general purpose clip procedure
mesh for a plate with arbitraty
9 noded quadrilateral elements.

If a procedure to generate shell
the isotropic section described

to create the finite element
straight sides using 4 or

section properties is not provided,
by E, NU, WTDEN, and THICKNESS will

24-

12

CSM Testbed Procedures Manual

Revised 12/18/91

Pre-Processing Procedures

General Quadrilateral Plates

be automatically generated. (see [section_prc] parameter)

A boundary condition procedure should be provided but is
optional. If not provided, no boundary conditions will be
defined. (see [bc_procedure] parameier)

STemArk SERSKARARREABERRAEEASRERSARARERRR SRS

sremark GEN_PLATE MODEL GENERATION PROCEDURE
SYQmArk *SSESEEERRREER SRS ERESARRARRUBRRRAEES

*def/i n1 = [nodes_1]

sdef/i n2 = [nodes_2]

sdet/e xyzi[1:3] = [xyz1]

sdef/e xyz2[1:3] [xyz2]

*def/e xyz3[1:3] = [xyz3]

sdef/e xyz4(1:3] = [xyz4]

»det/e w[1:4] = [edge_weights]

sdef/e rc[1:4] = <xyz1[1]>,<xyz2[1]>,<xyz3[11>,<xyz4[1]>
»def/e tcl[1:4] = <xyz1[2]>,<xyz2[2]1>,<xyz3[2]>,<xyz4[2]>
sdef/e zc[1:4] = <xyz1[31>,<xyz2[3]1>,<xyz3[31>,<xyz4[3]>

#call ES (function = ’*DEFINE ELEMENTS’ ; es_proc
es_name = [es_name] ; es_pars =

[es_procl; --
es_pars])

[g]

Define nodal coordinates and element connectivities into
separate formatted files. These files are gauranteed to have
unique names that are not currently in use in the current
directory.

sdef/1 chk_closure = 0

[xqt mesh

*«if <mesh_err> /then
sremark Error occurred during MESH processor execution.
sremark GEN_PLATE procedure terminated.
seof

»endit

Construct Model Data-base with TESTBED Processors

[XQT TAB

START <tot_nodes>
ONLINE = [online]

JLOC

#ghow macros node_file
*add <node_file>

Revised 12/18/91

CSM Testbed Procedures Manual

24-13

General Quadrilateral Plates Pre-Processing Procedures

At ittt ittt R
Define Load/Boundary Conditions If Procedure Supplied

*if <not(<ifelse([bc_procedurel; ;1;0)>)> /then
#call [BC_PROCEDURE] (nodes_i = <ni1> ; --
nodes_2 = <n2> ; --
es_nodes = <es_nen> ; --
drilling_dof = [drilling_dof])
*glse
e T
sremark BOUNDARY CONDITIONS NOT SPECIFIED
P LT T T

sandif

*=i? <not(<ifelse([section_prcl; ;1;0)>)> /then
scall [section_prc] (nsect = [nsect])
selse

sdef/e G = < [E]1/(2.+(1+[NU])) >
[xQT AUS
Build Table of Material Data

TABLE(ni=16,nj=1): OMB DATA 1 1
i=1,2,3,4,5,8,7,8,9

j=1
E11 NU12 E22 G12 G13 G23 ALPHA1 ALPHA2 WTDEN
[E] [NU] [E] <G> <G> <G> 0. 0. [WTDEN]

Build Laminate Data Tables

TABLE(ni=3,nj=1,itype=0): LAM OMB [nsect] 1

i= 1,2,3
j= 1 . matl # layer thickness matl angle
1 [thickness] 0.
[XQT LAD
ONLINE = 2
*endif

2.4-14 CSM Testbed Procedures Manual Revised 12/18/91

Pre-Processing Procedures General Quadrilateral Plates

[xQT ELD
<ES_EXPE_CMD>
NSECT = [nsect]

Define element nodal connectivity

#show macros elem_file
sadd <elem_file>

ss==oS==TsS=S=SSSSSSSSSITSSESSSISISSSST

P T T YT T Y T T 11
sS=== == SEsS=sSS=ssSS==s===

«if < [AUTO_DOF_SUP] > /then
#call ES (function = ’DEFINE FREEDOMS’)
=endif
*end

2.4.9 REFERENCES

2.4-1 Stewart, Caroline B.: The Computational Structural Mechanics Testbed User’s
Manual. NASA TM-100644, October 1989.

2.4-2 Cook, William A.: “Body Oriented (Natural) Coordinates For Generating Three-
Dimensional Meshes.” International Journal For Numerical Methods in Engineer-
ing, 1974, Volume 8, pp. 27-43.

2.4-3 Forrest, A. R.: On Coons and Other Methods for the Representation of Curved
Surfaces. Computer Graphics and Image Processing, 1972, Volume 1, pp. 341-359.

Revised 12/18/91 CSM Testbed Procedures Manual 24-15

General Quadrilateral Plates Pre-Processing Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

2.4-16 CSM Testbed Procedures Manual

Revised 12/18/91

Pre-Processing Procedures General Shells and Curved Surfaces

2.5 Procedure GEN_SHELL

2.5.1 GENERAL DESCRIPTION

Procedure GEN_SHELL is used to generate a class of curved shell finite element models. All
surfaces are modeled as bi-linearly interpolated surfaces (i.e., Coon’s surfaces) in cylindrical
coordinate space (see refs. 2.5-2 and 2.5-3). Interpolation in cylindrical coordinates is
especially well suited for generating shells of revolution, such as cylinders, cones, annular
plates, and spiraling surfaces.

2.5.2 PROCEDURE USAGE

Procedure GEN_SHELL may be used by preceding the procedure name by the *call directive,
and following it by a list of arguments enclosed in parentheses. Procedure arguments are
order-independent, and most have default values thus making them optional. The formal
syntax is as follows:

*xcall GEN_SHELL (argl = vall ; arg2 = val2 ; ...)

where argl and arg?2 represent argument names, and vall and val2 represent their cor-
responding values. Note that semi-colons are required between arguments, and a double
dash (--) preceeded by a space may be used to continue the argument list on the next
line.

The allowable arguments for procedure GEN_SHELL are summarized in the following table,
along with their default values (if they exist). Exceptions to this rule are noted in the
following section under detailed argument descriptions.

Revised 12/18/91 CSM Testbed Procedures Manual 2.5-1

PRECEDING PAGE BLANK NOT FILMED

General Shells and Curved Surfaces Pre-Processing Procedures

Argument Default Value Meaning

ES_PROC ES1 Generic element processor
ES_NAME EX97 Generic element;name

ES_PARS 0.0 Element research parameters

RTZ1 1,0,0 Cylindrical coordinates of point 1.
RTZ2 1,0,1 Cylindrical coordinates of point 2.
RTZ3 1,90,1 Cylindrical coordinates of point 3.
RTZ4 1,90,0 Cylindrical coordinates of point 4.
NODES_1 7 Number of nodes along edge 1
NODES_2 7 Number of nodes along edge 2

including duplicate nodes if shell closes
EDGE_WEIGHTS 1,1,1,1 Shell section property procedure
y)
I]

JREF Joint dof reference frame

BC_PROCEDURE Boundary condition procedure

DRILLING_DOF <false> Drilling dof suppression flag
AUTO_DOF_SUP <false> Automatic dof suppression flag
SECTION_PRC ' Shell section property procedure
NSECT | 1 Shell section property number
The following values not used if SECTION_PRC is specified.

E 30.E6 Young’s Modulus

NU 0.3 Poisson’s ratio

WIDEN 0.1 Weight Density

THICKNESS 1 Shell thickness

2.5.3 ARGUMENT DESCRIPTIONS

2.5.3.1 AUTO_DQF_SUP

Automatic degree of freedom suppression flag (default: <false>). This option provides a
convenient way of suppressing any freedoms that do not have any (or adequate) stiffness
associated with them — for example, at nodes used to prescribe geometry only; or drilling
freedoms in fine meshes composed of elements without normal rotational stiffness (see
argument DRILLING_DOF).

2.5.3.2 BC_PROCEDURE

Name of user provided boundary condition procedure (default: * ’). The term “boundary
conditions” refers both to displacement constraints and applied loading. If a boundary
condition procedure is provided, the following call will be performed. The macrosymbol
<es.nen> equals the number of element nodes, while the macrosymbols <n1> and <n2>
equal the number of nodes actually generated along edges one and two.

*call [BC_PROCEDURE] (nodes_1i = <nl1> ; --
nodes_2 <n2> ; --
es_nodes = <es_nen> ; --

n

2.5-2 CSM Testbed Procedures Manual Revised 12/18/91

Pre-Processing Procedures General Shells and Curved Surfaces

Drilling degree of freedom flag (default: <false>). Drilling freedoms are defined as rota-
tions normal to the surface of the shell. Leaving this flag set to <false> forces all drilling
freedoms in the model to be suppressed. Turning it on forces all drilling freedoms to be
active — unless they are automatically suppressed by use of the AUTO_DOF_SUP argument.
Note that while many shell elements do not have any rotational stiffness associated with
their own surface-normal directions (at nodes), when shell elements are assembled as facets
approximating an arbitrary shell surface, there is usually some misalignment between the
element normal and the actual shell normal. This is especially true of “fat” (e.g., 4-node)
elements. Hence, some rotational stiffness about the shell normal is usually present in
the model. (A clear exception to this is a flat plate, where element and shell normals
are identical.) For a cylindrical shell, the misalignment diminishes only as the number of
elements is increased. Most shell elements in the Testbed have their own misalignment
tolerance parameter, which determines when the AUTO_DOF_SUP argument will automati-
cally suppress the drilling freedom. Note that for elements which have drilling stiffness,
the DRILLING_DOF argument should be set to <true> regardless of how AUTO_DOF_SUP is
set.

2.5.3.4 E

Young’s modulus (default: 30.E6). This argument is ignored if SECTION_PRC parameter is
specified. See the description for SECTION_PRC for more detail.

2.5.3.5 EDGE_WEIGHTS

Node placement can be weighted along each surface edge according to the EDGE_WEIGHTS .
parameter. The input format requires a list of four edge-node placement weightings rep-
resenting the node weighting for edgel, edge2, edge3, and edge4 (default: 1,,1.,1,,1.).

The weighting value for a given edge represents the length of the last element divided by
the length of the first element along that edge. The edge orientation arrows in figure 2.5-1
point from the first element to the last element along each edge. In the case of 9-node
quad elements, the midside and center nodes are positioned at the appropriate locations
based on the elements natural coordinate system.

The procedure interprets negative weight values to mean the positive reciprocal. For
example, a value of -5.0 is identical to a value of 0.2.

2.5.3.6 ES_NAME

Element name (default: EX97). This argument is the name of the specific shell-element type
you wish to select, within the element processor defined by argument ES_PROC. The default
shell-element type, EX97, is a 9-node quadrilateral element implemented in processor ES1,
and described reference 2.5-1.

Revised 12/18/91 CSM Testbed Procedures Manual 2.5-3

General Shells and Curved Surfaces Pre-Processing Procedures

2.5.3.7 ES_PARS

Flement research parameters (default: 0., ...). This argument is an optional list of
element-dependent parameters that some elements provide, primarily when the element is
still undergoing research and refinement.

2.5.3.8 ES_PROC

Element processor (default: ES1) This argument is the name of the structural element
(ES) processor that contains the shell element type you wish to employ in the model.

The default shell-element, processor ES1, 1s described in The Computational Structural
Mechanics Testbed User’s Manual.

2.5.3.9 JREF

Joint degree of freedom (dof) reference frame (default: -1 for global cylindrical). The user
may provide any alternate frame which has been created prior to calling this procedure.
A negative value causes the frame to be interpreted as a cylindrical reference frame.

2.5.3.10 NODES.1

Number of nodes on edge 1 including the nodes at the surface corners (default: 7). This
argument is also the number of nodes on edge 3. This number should be consistent with
the element type selected. For example, NODES_1 can be any number greater than 1 for
4-node quadrilateral elements, whereas it must be an odd number greater than 1 for 9-node
quadrilateral elements.

2.5.3.11 NODES_2

Number of nodes on edge 2 including the nodes at the surface corners (default: 7). This
argument is also the number of nodes on edge 4. This number should be consistent with
the element type selected. For example, NODES_2 can be any number greater than 1 for
4-node quadrilateral elements, whereas it must be an odd number greater than 1 for 9-node
quadrilateral elements.

2.5.3.12 NSECT

Shell section property number (default: 1). The NSECT value is required when defining the
element using the processor ELD. See the description of SECTION_PRC for more detail.
2.5.3.13 NU

Poisson’s ratio (default: 0.3). This argument is ignored if the SECTION_PRC input parameter
is specified. See the description of SECTION.PRC for more detail.

2.5.3.14 RTZ1

The cylindrical coordinates (r,6, z) which define corner number 1 of the model surface (8
in degrees). The form of the input is three real values, each separated by a comma (default:
1.,0.,0.). The surface is defined by four edges which are defined as a linear interpolation
in cylindrical coordinates of four eundpoints, or “corner” points.

2.5-4 CSM Testbed Procedures Manual Revised 12/18/91

Pre-Processing Procedures General Shells and Curved Surfaces

2.5.3.15 RTZ2

The cylindrical coordinates (7,6, z) defining the corner number 2 of the model surface
(default: 1.,0.,1.).

2.5.3.16 RTZ3

The cylindrical coordinates (7,8, z) defining the corner number 3 of the model surface
(default: 1.,90.,1.).

2.5.3.17 RTZ4

The cylindrical coordinates (r,8,2) defining the corner number 4 of the model surface
(default: 1.,90.,0.).

2.5.3.18 SECTION_PRC

Name of a user supplied procedure to define the plate section properties (default = *’). If
a section properties procedure is provided, the following call will be performed.

*call [section_prc]l (nsect = [msect])

The effect of the default is to allow the procedure to generate an isotropic material section
based on the input parameters E, NU, WTDEN, and THICKNESS. The section number is defined
by the input parameter NSECT. If the call parameter SECTION_PRC is defined by the user,
then call parameters E, NU, WIDEN, and THICKNESS are ignored by procedure GEN_SHELL.

2.5.3.19 THICKNESS

Thickness of the shell wall (default = 1.0). This argument is ignored if SECTION_PRC
parameter is specified. See the description for SECTION_PRC for more detail.

2.5.3.20 WTDEN

Weight density expressed in 1b/in.? (default: 0.1 1b/in.3). This argument is ignored if the
SECTION_PRC input parameter is specified. Processor LAU will convert the weight density
to mass density using the gravitational acceleration constant 386.4 in/sec?.

2.5.4 USAGE GUIDELINES AND EXAMPLES

Procedure GEN_SHELL may be invoked using the *call directive. Procedure arguments may
be changed from their default values by including any or all of the arguments and their
new values in the procedure call. A space or blank is required between the end of the
procedure name and the left parenthesis. If the default values of the procedure arguments
are to be used, then only the procedure name is required.

*procedure GEN_SHELL (ES_PROC = ES1 ; ES_NAME = EX97 ; ES_PARS = 0.0 ; --
RTZ1 =1.,0.,0. ; --
RTZ2 =1.,0.,1. ; --

Revised 12/18/91 CSM Testbed Procedures Manual 2.5-5

General Shells and Curved Surfaces Pre-Processing Procedures

RTZ3 =1.,90.,1. ; --
RTZ4 =1.,90.,0. ; --
NODES_1 =7 ; --
NODES_2 =7 ; --
EDGE_WEIGHTS =1.,1.,1.,1. ; --
BC_PROCEDURE = ’ ’ ; -- . Boundary condition procedure
DRILLING_DOF = <true> ; --
AUTO_DOF_SUP = <true> ; --
SECTION_PRC = * ’ ; -- . Shell section property procedure
NSECT =1 ; -~ . Shell section property ID
- . The following values not used if SECTION_PRC specified
E = 30.E6 ; -- . Young’s Modulus
NU = .3 ; -- . Poissons ratio
THICKNESS = .1 -~ . Shell thickness

)

2.5.4.1 Mesh Generation

The method of surface generation used by procedure GEN_SHELL is described in the section.
Termology depicted on figure 2.5-1 provides a visual interpretation of the parameters used
to generate a curved surface.

To the define the shell surface, the user definess four coordinate positions in a cylindrical
reference frame. These four positions represent four corners of a four sided region. The
sides of the region (which will also be referred to as edges) are defined by linearly inter-
polating between the coordinate values of the corner points. The surface of the region is
defined as a bi-linear interpolation of the four sides, also known as a Coon’s surface (see
refs. 2.5-2 and 2.5-3). It must be remembered that since interpolations are performed in
cylindrical coordinates, the surface and its edges will not generally be flat or straight, but
rather curved.

2.5-6 CSM Testbed Procedures Manual Revised 12/18/91

Pre-Processing Procedures General Shells and Curved Surfaces

CORNER 3
-
CORNER 2 e
EDGE 2
ENGE 3
EDGE 1
L ENGE 4 —7T CORNER 4
Y cRMR 1T R

Figure 2.5-1 Generic Shell Surface Topology.

The connectivity of the surface is defined in figure 2.5-1. The user provides the coordinates
for corners 1 to 4. Edge 1 of the region starts at corner 1 and ends at corner 2. The
remaining edges are defined in a similar manner. The arrows indicate the orientation of
the edges and the direction of increasing node numbers.

The topology of the resulting finite element grid is depicted in Figure 2.5-2. Nodes are
created first along edge 1, then in successive lines terminating along edge 3. The user
defines the number of nodes along edges 1 and 2, which also defines the number of nodes
for edges 3 and 4. The relative position of the nodes along each edge may be controlled
using the edge weighting parameter EDGE_WEIGHTS.

Revised 5/24/90 CSM Testbed Procedures Manual 25-17

General Shells and Curved Surfaces Pre-Processing Procedures

CORNER 3
A°
CORNER 2 /3‘,/
P 8 —Tlir/"
4
a9
d g (Kl
E4
E2 Pe
o
Jﬁﬁw_______#u’—"”
E3 1’74
El
a7
¥ ? 12
/ !
8 CORNE
T SN R

Figure 2.5-2 Node and Element Topology.

Recognizing that the surfaces generated by procedure GEN_SHELL are four sided surfaces
in cylindrical coordinates, it will be shown, by example, how to generate segments of
cylinders, cones, annular plates, spirals, and more general surfaces. For applications which
require a complete axisymmetric surface, such as a 360 degree cylinder, the procedure has
the capability of joining the resulting finite element mesh where two sides of the region are
coincident. Closure occurs automatically but is checked only along edges 1 and 3. Closure
will not occur between edges 2 and 4. Note also that the user must request the number of
nodes along edge 2 as though the surface were not closed. This requirement is to say that
the user should not presume closure will occur.

25-8 CSM Testbed Procedures Manual Revised 5/24/90

Pre-Processing Procedures General Shells and Curved Surfaces

L e |

o r 4 H stanl C 1 nd 2
L.0.2:. 4 oyiiniuracal ol 1 JTLLVIVILD

In this section there are presented examples of how procedure GEN_SHELL may be used to
create various shell segments on a right circular cylindrical surface.

In the following example, procedure GEN_SHELL is used to generate a cylindrical segment
with radius of 5 inches and length of 10 inches. Only 90 degrees of the cylinder is generated
(see figure 2.5-3).

*call GEN_SHELL (es_proc = ’ES1’ ; es_name = ’EX47’ ; -~
rtzl = 5.,0.,0. ; --

rtz2 = 5.,0.,10. ; --
rtz3 = 5.,90.,10. ; --
rtz4 = 5,,90.,0. ; --
nodes_1 =5 ; --

nodes_2 =7)

S ,_,__-—/——-9’//‘

- S

(a) 4-node elements (b) 9-node elements

Figure 2.5-3 90 Degree Cylindrical Segment

Revised 5/24/90 CSM Testbed Procedures Manual 2.5-9

General Shells and Curved Surfaces Pre-Processing Procedures

This example creates a complete 360 degree cylindrical shell using 9-node quadrilateral
elements (see figure 2.5-4). Note that midside nodes are not shown. The input specifies
elements at the end of edges 1 and 3 to be 5 times longer that elements at the beginning
of the same edges. Closure of the cylinder is obtained by defining corner points 1 and 4,
and corner points 2 and 3, to be coincident in the » and z directions, with a difference in

6 of 360 degrees.
*call GEN_SHELL (es_proc = ’ES1’ ; es_name = ’EX97’ ; --

rtzl =5.,0.,0, ; -~
rtz2 = 5.,0.,10. ; --
rtz3 = 5,,360.,10. ; --
rtz4 = 5.,360.,0. ; --
nodes_1 =11 ; --

nodes_2 =25 ; --
edge_weights = 65.,1.,5.,1.)

e ——

~.
/;\\
N
A
\
\
4
4
\
S, /
'\ e

a— -
e T T ~]
o P
B —
\A I — R g
\\‘ - '
-
\\\‘_ S _ﬁ—'_—/, -
\\ -~
._ ‘__‘/
S R P
r \\ 1
\
X _\ e I, -

Figure 2.5-4 Right Circular Cylinder - 9-node Elements

2.5- 10 CSM Testbed Procedures Manual Revised 5/24/90

Pre-Processing Procedures General Shells and Curved Surfaces

By simply increasing the z coordinaie values for corner points 3 and 4, the cylinder wall
can be made to spiral about the z axis. The following example illustrates this technique.
The resulting spiral is shown in figure 2.5-5. This configuration may be used to model a
spring.

*call GEN_SHELL (es_proc = ’ES1’ ; es_name = ’EX47’ ; --

rtzi = 5.,0.,0. ; --
rtz2 = 5.,0.,2. ; --
rtz3 = 5.,720.,12. ; --
rtz4 = 5.,720.,10. ; --
nodes_1 =5 ; --

nodes_2 = 37)

Figure 2.5.5 Spiraling Cylinder Wall

Revised 5/24/90 CSM Testbed Procedures Manual 2.5-11

General Shells and Curved Surfaces

Pre-Processing Procedures

The following example produced the cylinder of skewed elements shown in figure 2.5-6.
*call GEN_SHELL (es_proc = 'ES1’ ; es_name = ’EX47’ ; --

rtzl
rtz2
rtz3
rtz4
nodes_1
nodes_2

Figure 2.5-6 Cylinder With Skewed Elements

+,0.,0. ; --
.,90.,10. ; --
.,450.,10. ; --
.,360.,0. ; --
=T ; --

= 25)

aooo;m

.. (_\/\’_’V—“ /// y /

~ 4 z
e — B

2.5-12

CSM Testbed Procedures Manual

Revised 5/24/90

Pre-Processing Procedures General Shells and Curved Surfaces

Z2.5.4.3 Conical Shell Seciions

In this section, examples of how procedure GEN_SHELL may be used to create shell segments
on a conical surface are presented.

This example creates a complete 360 degree conical shell using 9-node quadrilateral ele-
ments (see figure 2.5-7). Elements are defined at the top of the cones to be 1/5 as long
axially as those at the base. Closure of the cone is obtained by defining corner points 1
and 4, and corner points 2 and 3, to be coincident in r and z directions, with a difference

in 8 of 360 degrees.
*call GEN_SHELL (es_proc = ’'ES1’ ; es_name = ’EX97’ ; --

rtzl = 5,,0.,0. ; --
rtz2 =1.,0.,10. ; --
rtz3 = 1,,360.,10, ; =--
rtz4 = 5.,360.,0, ; --
nodes_1 =9 ; --

nodes_2 = 26 ; --
edge_weights = -4.,1.,-4.,1.)

Figure 2.5-7 Conical Shell - 9-Node Elements

Revised 5/24/90 CSM Testbed Procedures Manual 2.5-13

General Shells and Curved Surfaces Pre-Processing Procedures

In the following example, procedure GEN_SHELL is used to generate an unusual shell which
lies on the conical surface of the previous example. The shell spans 360 degrees at the top
but only spans 180 degrees at the base (see figure 2.5-8).

»call GEN_SHELL (es_proc = 'ES1’ ; es_name = ’EX47’ ; --

rtzl = 5,,90.,0. ; --
rtz2 =1.,0.,10. ; --
rtz3 = 1.,360.,10. ; --
rtz4 = §.,270.,0. ; --
nodes_1 =11 ; --

nodes_2 = 21 ; --

edge_weights = -3.,1.,-3.,1.)

Figure 2.5-8 Unusual Conical Shell

2.5-14 CSM Testbed Procedures Manual Revised 5/24/90

Pre-Processing Procedures General Shells and Curved Surfaces

2.5.4.4 Annular Plates

In this section examples of how procedure GEN_SHELL may be used to create annular shell
segments are presented.

This example creates a 90 degree annular shell segment using 9-node quadrilateral elements
(see figure 2.5-9). Note that the midside nodes are not shown. The plate has an inner radius
of 1 inch and the outer radius of 5 inches. Element size weighting is also demonstrated.

*call GEN_SHELL (es_proc = 'ES1’ ; es_name = ’EX97’ ; --

rtzl = 1,,0.,0, ; -~
rtz2 = 5.,0.,0. ; --
rtz3 = 5,,90.,0. ; -~
rtz4 =1,,90.,0. ; --
nodes_1 = 11 ; ~--
nodes_2 = 11 ; --
edge_weights = 6.,1.,6.,1.)

=
»

Figure 2.5-9 Flat Annular Shell

Revised 5/24/90 CSM Testbed Procedures Manual 2.5-15

General Shells and Curved Surfaces Pre-Processing Procedures

By simply increasing the z coordinate values for corner points 3 and 4, the annular surface
can be made to spiral about the z axis. The following example illustrates this technique.
The resulting spiral is shown in figure 2.5-10.

*call GEN_SHELL (es_proc = ’ES1’ ; es_name = ’'EX47’ ; --

rtzi = 3,,0.,0. ; --
rtz2 = §5,,0.,0. ; --
rtz3 =5.,720.,10. ; -~
rtz4 = 3,,720.,10. ; --
nodes_1 = 5 ; ==

nodes_2 = 33)

Figure 2.5-10 Spiraling Shell

2.5-16 CSM Testbed Procedures Manual Revised 5/24/90

Pre-Processing Procedures General Shells and Curved Surfaces

2.5.4.5 Exotic Shell Sections

In this section examples of how procedure GEN_SHELL may be used to create unusual shell
segments are presented.

This example creates a spiraling surface which changes from a flat to a vertical shell while
increasing in z direction and decreasing in radius (see figure 2.5-11).

*call GEN_SHELL (es_proc = ’ES1’ ; es_name = ’EX97’ ; --

rtzl = 3.,0.,0. ; ~--
rtz2 = 5,,0.,0. ; -~
rtz3 = 1,,720.,12. ; --
rtz4 =1,,720.,10, ; --
nodes_1 =5 ; --

nodes_2 = 45)

Figure 2.5-11 Exotic Spiral Shell

Revised 5/24/90 CSM Testbed Procedures Manual 2.5-17

Qeneral Shells and Curved Surfaces Pre-Processing Procedures

In the following example, procedure GEN_SHELL is used to generate a vertical coiled shell
(see figure 2.5-12).

»call GEN_SHELL (es_proc = 'ES1’ ; es_name = 'EX47’ ; --

rtzl = 0.,0.,0. ; --
rtz2 0.,0.,1. ; --
rtz3 = 3.,1080.,1. ; --
rtz4 = 3.,1080.,0. ; --
nodes_1 =5 ; --

nodes_2 = 85)

Figure 2.5-12 Vertical Coiled Shell

25-18 CSM Testbed Procedures Manual Revised 5/24/90

Pre-Processing Procedures

This example uses procedure GEN_SHELL t{o generate a flat coiled shell (see figure 2.

*call GEN_SHELL (es_proc = ?ES1’
0.,0.,0.
i.,0.,0.
9.,720.,0.

rtzl
rtz2
rtz3
rtz4
nodes_1
nodes_2

5.5,720.,0.

5;
51)

n_

; es_name = ’EX47’ ; --

.
’

¢ -
’

Figure 2.5-13 Flat Coiled Shell

» ot o)
5-13).

Revised 5/24/90

CSM Testbed Procedures Manual

2.5-19

General Shells and Curved Surfaces Pre-Processing Procedures

Finally, an arbitrary shell is created to demonstrate the generality of the procedure
GEN_SHELL (see figure 2.5-14).

*call GEN_SHELL (es_proc = ’ES1’ ; es_name = ’EX47’ ; --

rtzl = -2.,-256.,0. ; --
rtz2 =7.,190.,-3. ; --
rtz3 = -2.,230.,7. ; --
rtz4 = 6.,0.,10. ; --
nodes_1 =26 ; --

nodes_2 = 25)

Figure 2.5-14 Arbitrary Shell

2.5-20 CSM Testbed Procedures Manual Revised 5/24/90

Pre-Processing Procedures General Shells and Curved Surfaces

As previously stated, to obtain closed axisymmetric surface models, the user must define
edges 1 and 3 to be the coincident edges.

2.5.6 ERROR MESSAGES AND WARNINGS

None.

2.5.7 PROCEDURE FLOWCHART

GEN_SHELL (Shell generation procedure)
[BC_PROCEDURE] (user supplied boundary conditions/loads procedure)
[SECTION._PRC] (user supplied section property generation procedure)
CYL_NODES (surface node generation procedure)
CYL_ELT_CONN (element connectivity definition procedure)

2.5.8 PROCEDURE LISTING

sprocedure GEN_SHELL (es_proc esl ; es_name = ex97 ; es_pars = 0. ; --

rtzi =1,,0.,0. ; --
rtz2 =1.,0.,1. ; --
rtz3 =1.,80.,1. ; ~--
rtz4 = 1.,90.,0. ; ~--
nodes_1 =7 ; --
nodes_2 =7 ; --
edge_weights =1.,1.,1.,1. ; --
jret = -1 ; -- . Joint dof reference frame
be_procedure = > > ; -- . Boundary condition procedure
online = 0 ; -- . supress nodes/elts output
drilling_dof = <true> ; --
auto_dof_sup = <true> ; --
section_prc = ? ? ; -- . Shell section property procedure
The following values used only if section_prc not specified
nsect = 1 ; -- . Shell section property ID
E = 30.E6 ; -- . Young’s Modulus
NU = .3 ; -- . Poisons ratio
WIDEN = .1 ; -~ . Weight Demnsity
thickness = .1 -- . Shell thickness
)
ittt PP PP Pt R R PR i At i A b e A 2]

Model Definition Procedure for GENeric Shell in cylindrical coordinates

sS=IS=sSsxz== 1 I I i ittt i ittt it e A A 2 2 2]

a2

A general purpose clip procedure to create the finite element

Revised 12/18/91 CSM Testbed Procedures Manual 2.5-21

General Shells and Curved Surfaces Pre-Processing Procedures

mesh for a partial or complete cylindrical shell using 4 or
9 noded quadrilateral elements.

Note that when generating a 360 degree closed shell,
the caller should specify the number of circumferential nodes as
if the cylindrical shell were not closed, or in other words,
the line of nodes where closure occurs should be counted twice.
There will only be one set of nodes actually create where
closure occurs.

There is no verification performed to detect overlapping or
. otherwise improbable element generation. This should be done
. prior to calling this utility.

If a procedure to generate shell section properties is not provided,
the isotropic section described by E, NU, WTDEN, and THICKNESS will
be automatically generated. (see [section_prc] parameter)

A boundary condition procedure should be provided but is
optional. If not provided, no boundary conditions will be
defined. (see [bc_procedure] parameter)

Sromark SSASERERSRARRRIRRRREREERREREESERARER

sremark GEN_SHELL MODEL GENERATION PROCEDURE
STOMATK #HERIEEASARRRRASERARERRREREER SRS SRS R

#def/i n1 = [nodes_1]

sdef/i n2 = [nodes_2]

sdef/e rtz1[1:3] = [rtzi]

sdef/e rtz2[1:3] [rtz2]

sdet/e rtz3[1:3] [rtz3]

sdef/e rtz4[1:3] = [rtz4]

sdef/e w[1:4] = [edge_weights]

*def/e rc[1:4] <rtz1[1]>,<rtz2[1]1>,<rtz3[11>,<rtz4[1]>
sdet/e tc[1:4] = <rtz1[21>,<rtz2[2]>,<rtz3[2]1>,<rtz4[(2]>
edet/e zc[1:4] = <rtz1[31>,<rtz2[3]1>,<rtz3[3]1>,<rtz4[3]>

#call ES (function = 'DEFINE ELEMENTS’ ; es_proc = [es_procl; --
es_name = [es_name] ; es_pars = [es_pars])

Detine nodal coordinates and element connectivities into
separate formatted files. These files are gauranteed to have
unique names that are not currently in use in the current

. directory.

#def/i chk_closure = 1
[xqt mesh
*if <mesh_err> /then

2.5-22 CSM Testbed Procedures Manual Revised 12/18/91

Pre-Processing Procedures General Shells and Curved Surfaces

sremark Error occurred during HESH processor execution.
sremark GEN_SHELL procedure terminated.
*eof

*endif

[XQT TAB

START <tot_nodes>

ONLINE = [online]

JLOC

FORMAT = 2 . use cylindrical coordinate system
sshow macros node_file

=add <node_file>

Define DOF Directions

JREF . Use local cylindrical basis vectors
. for nodal DOFS:
. u,v,w = radial, circumfer., axial
NREF = [jref]
1 <tot_nodes> . same convention for all nodes

. Define Load/Boundary Conditions If Procedure Supplied

»if <not(<ifelse([bc_procedurel; ;1;0)>)> /then
scall [BC_PROCEDURE] (nodes_1 = <ni> ; -~
nodes_2 = <n2> ; --
es_nodes = <es_nen> ; --
drilling dof = [drilling dof])
selse
sremark *assssEssss P ITT T
sremark BOUNDARY CONDITIONS NOT SPECIFIED
Sromark SHSSASENRSARAERREERRESRERKARIPREN

sendif

Define Shell Section Properties

»if <not(<ifelse([section_prcl; ;1;0)>)> /then
wcall [section_prcl (nsect = [nsect])
*olse

Revised 12/18/91 CSM Testbed Procedures Manual 2.5- 23

General Shells and Curved Surfaces

Pre-Processing Procedures

sdef/e G = < [E1/(2.+(1+[NU1)) >
[XQT AUS

Build Table of Material Data

TABLE(ni=16,nj=1): OMB DATA 1 1
i=1,2,3,4,5,6,7,8,9

j=1
E11 NU12 E22 G12 G13 G23 ALPHA1 ALPHA2 WTDEN
[E] [NU] [E] <G> <G> <G> 0. 0. [WTDEN]

Build Laminate Data Tables

TABLE(ni=3,nj=1,itype=0): LAM OMB [nsect] 1

i= 1,2,3
j= 1 . ratl # layer thickness matl angle
1 [thickness] 0.
[XQT LAU
ONLINE = 2
*endif

Generate Elements

{XQT ELD
<ES_EXPE_CMD>
NSECT = [nsect]

Define element nodal connectivity

*ghow macros elem_file
*add <elem_file>

*if < [AUTO_DOF_SUP] > /then
#call ES (function = ’DEFINE FREEDOMS’)
sendif

»end

2.5-24 CSM Testbed Procedures Manual

Revised 12/18/91

Pre-Processing Procedures General Shells and Curved Surfaces

2.5.9 REFERENCES

2.5-1 Stewart, Caroline B.: The Computational Structural Mechanics Testbed User’s
Manual. NASA TM-100644, October 1989.

2.5-2 Cook, William A.: “Body Oriented (Natural) Coordinates For Generating Three-
Dimensional Meshes.” International Journal For Numerical Methods in Engineer-
ing, 1974, Volume 8, pp. 27-43.

2.5-3 Forrest, A. R.: On Coons and Other Methods for the Representation of Curved
Surfaces. Computer Graphics and Image Processing, 1972, Volume 1, pp. 341-359.

Revised 12/18/91 CSM Testbed Procedures Manual _ 2.5-25

General Shells and Curved Surfaces Pre-Processing Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

2.5- 26 CSM Testbed Procedures Manual Revised 5/24/90

Solution Procedures

o N
Q.U

The procedures documented in this chapter are for specific analysis tasks. These procedures
provide examples of how to perform common structural analysis tasks (e.g., static solution,
eigensolution) using the command language and processors available in the CSM Testbed
Software System.

A summary of the procedures found in this chapter is provided in Table 3.0-1.

Table 3.0-1 Solution Procedures

Procedure Name

Analysis Description

L_DYNAMIC_O Linear transient dynamic analysis using modal anal-
ysis

L_DYNAMIC_1 - Linear transient dynamic analysis using Newmark al-
gorithm

L_STABIL_ 1 Linear stability (buckling eigenvalue) analysis with
prescribed prestress

L_STABIL.2 Linear stability (buckling eigenvalue) analysis with
linearly-computed prestress

L_STATIC Linear static analysis

L_VIBRAT.O Linear vibration (eigenvalue) analysis about un-
stressed state

L_VIBRAT_1 Linear vibration (eigenvalue) analysis about a pre-
scribed prestressed state

L_VIBRAT_2 Linear vibration (eigenvalue) analysis about a linearly-
computed prestressed state

NL_STATIC_1 Nonlinear static analysis; modified Newton iteration
with arc-length control

NL_STATIC.2 Advanced Riks method

NL_DYNAMIC.1

Nonlinear Dynamic Analysis

Revised 5/18/90

CSM Testbed Procedures Manual

3.0-1

PRECEDING PAGE BLANK NOT FILMED

Solution Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

3.0-2

CSM Testbed Procedures Manual

Revised 5/18/90

Solution Procedures L.DYNAMIC_0

3.1 Processor L. DYNAMIC_0

THIS SECTION UNDER PREPARATION

5/24/90 CSM Testbed Procedures Manual 3.1-1
PRECEDING PAGE BLANX NOT FILMED

L.DYNAMIC.0 Solution Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

3.1-2 CSM Testbed Procedures Manual 5/24/90

Solution Procedures Linear Transient Dynamic Analysis

ot
N
o
ry
©
(¢]
y']
(="
$=
[a]
¢
-

> L.DYNAMIC._1

3.2.1 GENERAL DESCRIPTION

Procedure L DYNAMIC.1 performs a linear transient dynamic analysis using either the
Newmark-3 implicit direct time integration procedure outlined in reference 3.2-1. When
Procedure L_DYNAMIC_1 is called, a transient response calculation by direct integration
of the system equations with a fixed time step is performed. Procedure L_DYNAMIC calls
Procedure NEWMARK which implements the well-known Newmark integration method for
second order, coupled systems. Parameters such as the names of the system stiffness and
mass matrices, the time step, and the total number of time steps in the analysis are formal
arguments to Procedure L_DYNAMIC_1. In Procedure NEWMARK, extensive use is made of the
CLAMP macro expression capability for calculating integration constants and controlling
the algorithm. The initial acceleration at time t = 0 is calculated from the given initial
displacement and velocity vectors. This is done by using processor AUS to set up the
equations of motion at t=0, and processors INV and SSOL to solve for the acceleration.
At each subsequent time step, processor AUS is used to set up the récursion relations, and
processor SSOL is used to solve for the displacement vector at the next time step. Then
velocity and acceleration vectors are calculated and selectively printed.

3.2.2 THEORY

3.2.2.1 Introduction

The equations of motion for an undamped, linear elastic structure at time ¢t + At are

Mua: + Kugpae = Pipae (3.2-1)
where
M is the mass matrix
K is the linear elastic stiffness matrix
Py At is the load vector at time ¢ + At
u¢+ae is the displacement vector at time ¢ + At

Uy e is the acceleration vector at time ¢ + At

3.2.2.2 Newmark-3 Method

The Newmark-8 method is an implicit direct time integration procedure that is based on
the following assumptions:

Uepae = 0+ [(1 =)l + iy ae | A (3.2-2)
. 1 . .
Wb At = U + AtU¢ + [(5 - ,B)ut + ﬂUg+Ag](At)2 (32 — 3)
where
Revised 5/18/90 CSM Testbed Procedures Manual 3.2-1

PRECEDING PAGE BLANK NOT FILMED

Linear Transient Dynamic Analysis Solution Procedures

Ut A¢ is the velocity vector at time ¢ + At

At is time step size

The paramcters ~ and 8 determine integration accuracy and stability. When v = — and
B = z, thelinear acceleration method i 1s obtained (1 e., the acceleration is assumed to vary
lnnearly over a time step). When vy = — and g = 4) Newmark’s original, constant-average-
acceleration method (also called the trapezoida.l rule) is obtained.

3.2.3 ALGORITHM

The Procedure L_DYNAMIC_1 closely follows the computational procedure presented in ref-
erence 3.2-1. Briefly, an outline of the procedure is as follows:

1. Select time step size, AAt, and parameters v and . Calculate integration constants:

1 1,1
> L. (= .
125; B2 4(2+'7) :
- . S S
= Bar M Taar M T Ay
1 Y
w=gp-t w=F-b w=547-2)

ag = At(l —7); ar =vAt

2. Initialize displacements u,, velocities u,, and accelerations u,.

3. Form effective stiffness matrix K
K=K+ a, M

4. Decompose K X
K = LDL”

For each time step:
5. Calculate effective loads RH At
Ritar = Popar +M(aou, + azit, + asiiy)
6. Solve for displacements at time t + At
LDLTUH.At = Rt+At

7. Calculate accelerations and velocities at time t + At

Upar = o(Uepar — Ue) — aglly — a3iiy
Wepae = W+ agliy + ariieyae
3.2-2 CSM Testbed Procedures Manual Revised 5/18/90

oL

Solution Procedures Linear Transient Dynamic Analysis

3 eciImas R S DI DY S S SR S [
This procedure neglects damping and assumes that a single, constant time step size At is

] 4
used throughout the analysis.

PDnCEDTTDE 17

QALY
ALNS i U ANTL

2.4
Procedure L_DYNAMIC_1 is used by preceding the procedure name by the *call directive.
Procedure arguments may be changed from their default values by including any or all
of the arguments and their new values when the procedure is called. A space or blank
is required between the end of the procedure name and the left parenthesis. If the default
values of the procedure arguments are to be used, then only the procedure name is required.

*call LDYNAMIC_ 1 (argl = vall ; arg2 = val2 ; ...)

where argl and arg?2 represent argument names, and vall and val2 represent their cor-
responding values. Note that semi-colons are required between arguments, and a double
dash (--) may be used to continue the argument list on the next line.

The allowable arguments for Procedure L_DYNAMIC_1 are summarized in the following table,
along with their default values (if they exist). Note that arguments without defaults are
generally mandatory, while those with defaults are generally optional. Exceptions to this
rule are noted in the following section under detailed argument descriptions.

For Procedure L_DYNAMIC_1, the following table lists each argument, its default value and
meaning.

Argument Default Value Meaning

DELT - Time increment, At

NSTEP - Number of time steps
BETA 0.25 Time integrator parameter
GAMMA 0.50 Time integrator parameter

3.2.5 ARGUMENT DESCRIPTION

3.2.5.1 BETA
Newmark-g3 time integrator parameter, 8 (default: 1/4).

3.2.5.2 DELT

Time step size. This argument specifies the size of the time step to be used in the analysis.
A constant step size is assumed per procedure call.

3.2.5.3 GAMMA
Newmark-83 time integrator parameter v (default: 1/6).

Revised 5/18/90 CSM Testbed Procedures Manual 3.2-3

Linear Transient Dynamic Analysis Solution Procedures

3.2.5.4 NSTEP

Number of time steps to march. This argument specifies the number of time steps to march
in the transient response prediction using a constant time step size of DELT.

3.2.6 PROCEDURE FLOWCHART
L_DYNAMIC_1 (main procedure)
NEWMARK (Newmark-g time integration)
8.2.7 LIMITATIONS

None.

3.2.8 ERROR MESSAGES AND WARNINGS

None.

3.2.9 USAGE GUIDELINES AND EXAMPLES

Procedure L DYNAMIC_1 is used by preceding the procedure name by the *call directive.
Procedure arguments may be changed from their default values by including any or all
of the arguments and their new values when the procedure is called. A space or blank
is required between the end of the procedure name and the left parenthesis.

*call L_DYNAMIC_1 (delt = 0.02 ; --
nstep = 100 ; --
beta = 0.25 ; --
gamma = 0.50)

3.2.10 PROCEDURE LISTING

3.2.11 REFERENCES

3.2-1 Bathe, K. J., Finite Element Procedures in Engineering Analysis, Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, 1982, pp. 511-512.

3.2-4 CSM Testbed Procedures Manual Revised 5/18/90

Solution Procedures Procedure L_STABIL_1

3.3 Procedure L_STARBIL 1

3.3.1 GENERAL DESCRIPTION

Procedure L_STABIL_1 performs linear stability analysis using an eigensolver selected by the
global macrosymbol eigensolver_name (e.g., EIG2, LAN, LANZ) and structural element
(ES:) processors based on the generic element processor template. The procedure assumes
that the finite element model, loads, and boundary conditions have already been generated,
that the prebuckling stress state has been specified, and that the buckling loads and mode
shapes need to be calculated. The prebuckling stress state (i.e., prestress state) is specified
by prescribing values for procedure L_STABIL_1 arguments. A linear stability analysis is
performed using this prescribed stress state.

3.3.2 THEORY

Linear elastic stability analyses may be formulated using the concept of adjacent equilib-
rium. Membrane forces in beams, plates, and shells result in an equilibrium configuration
in which the deformation pattern is tangent to the midsurface of the structure. However,
another equilibrium configuration involving out-of-plane deflections and rotations may be
adjacent to this membrane state. Buckling occurs when this membrane strain energy is
converted to bending strain energy. The linear elastic stability analysis is an eigenvalue
problem to calculate the critical load for the bifurcation in the solution (e.g., change from
a membrane state to a bending state). This eigenvalue problem can be written as

Ko, + MKy (o)p; =0 i=1,2,... (3.3-1)
where
K = assembled linear elastic stiffness matrix
K, (o) = assembled geometric stiffness matrix
¢; = i-th eigenvector or modeshape

Ai = i-th eigenvalue or buckling load factor

The matrix denoted by K, has been called the initial stress stiffnéss matrix, the differential
stiffness matrix, the geometric stiffness matrix, and the stability coefficient matrix (e.g.,
see ref. 3.3-1). It is independent of the elastic properties of the structure and dependent
on the geometry, displacement field, and state of stress. Herein the matrix K, will be
referred to as the geometric stiffness matrix.

A general formulation for the geometric stiffness matrix is presented in reference 3.3-1.
Strains can be written as 4
€ = €L + €ENL (3.3-2)

where €1, contains the linear strain-displacement terms and €Ny, contains the higher-order
or nonlinear strain-displacement terms. For a given stress state oy, elastic strain energy

5/24/90 CSM Testbed Procedures Manual 33-1

Procedure L STABIL_1 Solution Procedures

is stored and can be expressed as

U=Ur+Unt (3.3-3)
where -
1
= - / el oodV (3.3 — 4a)
2Jy
1
Up==< / el oydV (3.3 — 4b)
2Jv
1 T
UnL = 5 ENLO0dV (3.3 - 4c)
v

The geometric stiffness matrix is derived from the strain energy produced by stresses acting
through displacements associated with the nonlinear strain-displacement relations. These
relations couple the membrane and bending effects. Typically the strain-displacements
relations are written using index notation as

1
€j =73 [Biuj + Bjui + Biuwdjur) (3.3-5)

where u; = (u,v,w) for i = 1,2,3, respectively, J; denotes differentiation with respect to
ith coordinate direction and summation over repeated indices is implied. Let d denote the
nodal degrees of freedom, then

§ =Gd (3.3-16)
where

6 = {0, u, 8yu, 8,u, 8.v, Oyv, 8,v, O:w, Fyw, B.w}

The coeficients of G are obtained by differentiating the element shape functions. Finally
the matrix Q is defined as '
[0y O 0 8:v O 0 O.w O 0 1
0 8u 0 0 Jv O 0 Guw 0
0 0 d,u O 0 O,v O 0 Ow
Q= u Gu 0 Ov v 0 OGw O,w O (3.3-7)
0 8u 8u 0 8v v 0 Jw Juw
|8,y 0 8u v 0 O:v Bw 0 O.w

With these definitions the nonlinear strains given by equation (3.3-2) can be written as

1
ENL = EQGd (3.3 - 8)
The vector of initial stresses is

Oy = {630 Oyo 020 Tzyo Tyz0 Tzzo} (3.3 - 9)

3.3-2 CSM Testbed Procedures Manual 5/24/90

S

Solution Procedures Procedure L_STABIL_1

Substituting equations (3.3-6) through (3.3-9) into equation (3.3-4c) gives

1
UNL = EdT(/ GTQTGQ dV) (3.3 - 10)
\’4

However, the term QT o can be written as

Q7o = 6§ =5(00)6 (3.3-11)

oo n
S n ©
n OO

where

-0'2:0 Tzy0o Tzz0
8= |Tzyo Oy Tyz0 (3.3-12)

| Tzz0 Tyz0 Oz0

With these expressions, a general form of the geometric stiffness matrix can be written as
Ky(o) = / GTS(00)GdV (3.3 - 13)
v

which is symmetric and explicitly dependent on the stress state.

The stress state used to form the geometric stiffness matrix may be obtained in two ways.
The first way is first to perform a linear static stress analysis for the given load set and
constraint set. This way is used in procedure L_STABIL_2. The second way is to specify, in
advance, the values of the stress components given in equation (3.3-11) (i.e., specify the
prestress state). This way is used in procedure L_STABIL_1.

3.3.3 ALGORITHM

The algorithm used to solve equation (3.3-1) depends on the value of the global macrosym-
bol eigensolver_name. Processor EIG2is used if eigensolver_name is defined to be EIG2.
This processor uses a nodal-block sparse matrix approach as described in reference 3.3-2.
Processor LAN is used if eigensolver_name is defined to be LAN. Processor LANZ is used
if eigensolver_name is defined to be LANZ. These processors are based on the Lanczos
algorithm as described in references 3.3-2 to 3.3-4.

3.3.4 PROCEDURE USAGE

Procedure L_STABIL_1 may be invoked by the *call directive, and following it by a list of
arguments separated by semicolons(;) and enclosed in parentheses. Procedure arguments
are order-independent, and most have default values thus making them optional. The
formal syntax is as follows:

*call L STABIL_1 (argl = vall; arg2 = val2; ...)

5/24/90 CSM Testbed Procedures Manual 3.3-3

Procedure L_STABIL_1 Solution Procedures

where arg: are argument names and vali are the corresponding values. The following
are valid arguments for procedure L_STABIL_1; note that those arguments without default
values are mandatory, while the others are optional.

Argument Default Value Meaning

PS_1 -- Prebuckling membrane stress resultant N2

PS_2 -- Prebuckling membrane stress resultant N7

PS_3 -- Prebuckling membrane stress resultant N2,

BCON_SET 1 Constraint set for buckling analysis

ERROR_TOL .0001 Convergence criterion for eigenvalues

FUNCTION ALL Select function to be performed by procedure

INIT_VECTOR 0 Number of initial vectors used to span the subspace

ISEQ 0 Resequencing method to be used

LDI 1 Local device index

LOAD_SET 1 Load set number

KNAME K First word of the name of the dataset containing the
assembled stiffness matrix

MAX_ITERS 20 Maximum number of iterations allowed

N_GROUPS 1

N_MODES 1 Number of eigenvalues to converge

PRINT <false> Flag to print displacement solution, internal forces, and
element stresses, and eigenvectors

RENUMBER <true> Flag to resequence node numbers for equation solver

SHIFT 0.0 Eigenvalue shift

Tables 3.3-1, 3.3-2, and 3.3-3 list the datasets used or created by procedure L_.STABIL_1,
the procedures invoked by procedure L_STABIL_1, and the processors invoked by procedure
L_STABIL_1, respectively.

3.3-4 CSM Testbed Procedures Manual 5/24/90

Solution Procedures

Procedure L_STABIL_1

Table 3.3-1 Datasets Input/Output by procedure L_STABIL_1
Dataset Description Input |Output
AMAP..ic2.isize Factorization Map for INV Vv
BUCK.EVAL.:.jt Buckling eigenvalues v
BUCK.MODE.i.;! Buckling eigenvalues v
<ES_NAME>.EFIL.0.nnod | Element Computational Data Vv Vv
ES.SUMMARY ES Processor Status V4 Vv
DEF.<ES_NAME>.0.nnod |Element Definition (Connectivity) Vv
DIR.<ES_NAME>.0.nnod |Element EFIL Directory Vv
INV.KSHF.jf Factored Shifted System Matrix
INV.<KNAME>.;I Factored System Matrix v
JDF1.BTAB.1.8 Model Summary Vv
KG.SPAR.jdf2 Assembled geometric stiffness matrix Vv
KMAP..ic2.isize Model Connectivity Map Vv
<KNAME>.SPAR.jdf2 Assembled system matrix Vv

t i = <loadset> and j = <cons_set>

Table 3.3-2 Sub-Procedures Invoked by procedure L_STABIL_1

Procedure Type Function
ES External |Element utility procedure
FACTOR External |Factors assembled stiffness matrix

L_.STABIL_1 |Internal

Main procedure

5/24/90

CSM Testbed Procedures Manual

33-5

Procedure L. STABIL_1 Solution Procedures

Table 3.3-3 Processors Invoked by procedure L_STABIL_1

Procedure| Type Function

AUS Internal | Arithmetic Utilities

E Internal |Initializes EFIL datasets

EIG2 Internal |Solve eigenvalue problem using subspace iteration
ES: External |Element processors based on GEP

K Internal | Assemble system matrix

LAN External | Solve eigenvalue problem using Lanczos method

LANZ External |Solve eigenvalue problem using Lanczos method

RSEQ Internal |Resequences nodes for equation solving

TOPO |Internal |Generates nodal topology maps

VPRT Internal |Print SYSVEC system vectors

3.3.5 ARGUMENT DESCRIPTION

3.3.5.1 BCON_SET

Constraint set number for buckling analysis (default: 1). This argument selects which
constraint set to use in solving the linear stability problem.

3.3.5.2 ERROR_TOL

Convergence criterion for eigenvalues (default: 0.0001). For the k-th iteration, the error
measure for the i-th eigenvalue is

k—
O (v
' IS
The i-th eigenvalue is converged if € is smaller than ERROR_TOL.

3.3.5.3 FUNCTION

Select function to be performed by procedure L_.STABIL_1 (default: ALL). This procedure
may be used to perform two functions. For FUNCTION=ALL, the element data are initialized
and elemental stiffness matrices formed; nodal resequencing may be performed, the mesh

3.3-6 CSM Testbed Procedures Manual 5/24/90

Solution Procedures Procedure L_STABIL_1

topology is analyzed, the system stifiness matrix is assembled and factored, and the eigen-
problem is solved. For FUNCTION=EIGEN, procedure L_STABIL_1 uses a prescribed prestress
state in solving the eigenvalue problem. Using the FUNCTION argument, the user may solve
for a variety of constraint (boundary conditions) sets on a given model subjected to a
variety of loading conditions.

3.3.5.4 INIT_VECTOR

Number of initial vectors used to span the subspace (default: 0). This argument defines
the number of trial vectors used to initiate the subspace iteration. If INIT_VECTOR=0, the
number of initial vectors will be calculated by the procedure as

INIT_.VECTOR=MINIMUM (2*N_MODES, N_MODES + 8)

3.3.5.5 ISEQ

Resequencing method to be used (default: 0). If the argument RENUMBER is <true>,
then nodal resequencing will be performed using processor RSEQ. The method used by
processor RSEQ to resequence the nodes depends on the value of ISEQ. If the argument
ISEQ is greater than or equal to zero, then that method will be used (i.e., method=0,1,2,3;
see Section 6.1 of the CSM Testbed User’s Manual, ref. 3.3-2).

3.3.5.6 KNAME

First word of the dataset name containing the assembled stiffness matrix (default: K).

3.3.5.7 LDI
Logical device index (default: 1).

3.3.5.8 MAX_ITERS

Maximum number of iterations (default: 20). This argument specifies the maximum num-
ber of iterations that can be used per call to eigensolver.

3.3.5.9 N_GROUPS

3.3.5.10 N_MODES

Number of converged eigenvalues desired (default: 1). This argument specifies the number
of eigenvalues to calculate to a convergence criterion of ERROR_TOL.

3.3.5.11 PRINT

Flag to print modeshapes (default: <false>). If printing of these computed results is
requested, processor VPRT will be used to print the buckling modeshapes.

5/24/90 CSM Testbed Procedures Manual 33-7

Procedure L'STABIL'1 Solution Procedures

3.3.5.12 ps_1

Prescribed membrane stress resultant N2 for the prestressed state.

3.3.5.13 Ps.2

Prescribed membrane stress resultant N7 for the prestressed state.

3.3.5.14 PS.3

Prescribed membrane stress resultant N7, for the prestressed state.

3.3.5.15 RENUMBER

Flag to resequence node numbers prior to equation solving (default: <true>). If the argu-
ment RENUMBER=<true>, then processor RSEQ will be used to perform nodal resequencing,
otherwise no resequencing will be performed. Note that the nodal resequencing may greatly
reduce the time required to factor and solve the linear system of equations.

3.3.5.16 SHIFT

Eigenvalue shift (default: 0.0). Converged eigenvalue will only be obtained for eigenvalues
greater than SHIFT. The shift parameter refers to the shift in the buckling load factor.

3.3.6 PROCEDURE FLOWCHART

L_STABIL_1 (main procedure)
INITIALIZE (initialize)
STIFFNESS (form K)
STIFFNESS (form K,)
FACTOR (factor using buckling boundary conditions)
EIGEN (perform eigenvalue analysis)

3.3.7 LIMITATIONS

None.

3.3.8 ERROR MESSAGES AND WARNINGS

None.

3.3-8 CSM Testbed Procedures Manual 5/24/90

Solution Procedures Procedure L_.STABIL_1

Procedure L_STABIL_1 may be used by preceding the procedure name by the *call direc-
tive. Procedure arguments may be changed from their default values by including any or
all the arguments and their new values when the procedure is called. A space or blank
is required between the end of the procedure name and the left parenthesis.

*call L_STABIL_1 (FUNCTION = ALL ; -- . Select function
BCON_SET =1 ; -- . Select buckling constraint set
ERROR_TOL = .0001 ; -- . Eigenvalue convergence criterion
INIT_VECTOR = O ; -~ . Number of initial vectors

ISEQ = -1 ; -- . Select resequencing method
KNAME = K ; -- . First word of stiffness matrix
-- ., dataset name

MAX_ITERS = 20; -- Maximum number of iterations

N_MODES = 1
N_GROUPS = 1

-~ Number of eigenvalues

PS_1 -

PS_2 -

PS_3 ; --

PRINT = <true> ; -- . PRINT flag
RENUMBER = <true> ; -- . RESEQUENCING flag
SHIFT = 0.0 ; Eigenvalue shift

Before procedure L_STABIL_1 is called, the global macrosymbol eigensolver_name should
be defined as described in Section 3.3.3; otherwise, the default value of EIG2 will be used.

3.3.10 PROCEDURE LISTING

3.3.11 REFERENCES

3.3-1 Cook, Robert D.: Concepts and Applications of Finite Element Analysis. (Second
Edition). John Wiley and Sons, Inc., New York 1981.

3.3-2 Stewart, Caroline B.: The Computational Structural Mechanics Testbed User’s
Manual. NASA TM-100644, October 1989.

3.3-3 Bostic, S. W. and Fulton R. E.: A Lanczos Eigenvalue Method on a Parallel Com-
puter. AIAA Paper No. 87-0725-CP.

3.3-4 Jones, Mark T. and Patrick, Merrell L.: The Use of Lanczos’s Method to Solve
the Large Generalized Symmetric Definite Eigenvalue Problem. NASA CR-181914,
September 1989. (Also available as ICASE Report No. 89-69).

5/24/90 CSM Testbed Procedures Manual 33-9

Procedure L_.STABIL_1 Solution Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

3.3-10 CSM Testbed Procedures Manual 5/24/90

Solution Procedures Procedure L_STABIL_2

3.4 Procedure L_STABIL 2

3.4.1 GENERAL DESCRIPTION

Procedure L_STABIL_2 performs linear stability analysis using an eigensolver selected by the
global macrosymbol eigensolver_name (e.g., EIG2, LAN, LANZ) and structural element
(ESi) processors based on the generic element processor template. The procedure assumes
that the finite element model, loads, and boundary conditions have already been generated,
and that the nodal displacements, reaction forces, element stresses, and buckling loads
and mode shapes need to be calculated. The applied loads may be due to a combination
of specified forces and displacements, and one constraint (i.e., boundary condition) set
is permitted per procedure call. A linear elastic stress analysis is performed first using
procedure L_STATIC (see Section 3.5) to calculate the prebuckling stress state (i.e., prestress
state). After the linear static solution, a linear stability analysis is performed.

3.4.2 THEORY

Linear elastic stability analyses may be formulated using the concept of adjacent equilib-
rium. Membrane forces in beams, plates, and shells result in an equilibrium configuration
in which the deformation pattern is tangent to the midsurface of the structure. However,
another equilibrium configuration involving out-of-plane deflections and rotations may be
adjacent to this membrane state. Buckling occurs when this membrane strain energy is
converted to bending strain energy. The linear elastic stability analysis is an eigenvalue
problem to calculate the critical load for the bifurcation in the solution (e.g., change from
a membrane state to a bending state). This eigenvalue problem can be written as

Ko, + MK (o)p; =0 i=1,2,... (3.4-1)
where
K = assembled linear elastic stiffness matrix
K (o) = assembled geometric stiffness matrix
¢; = i-th eigenvector or modeshape

i i-th eigenvalue or buckling load factor

The matrix denoted by K, has been called the initial stress stiffness matrix, the differential
stiffness matrix, the geometric stiffness matrix, and the stability coefficient matrix (e.g.,
see ref 3.4-1). It is independent of the elastic properties of the structure and dependent on
the geometry, displacement field, and state of stress. Herein the matrix K will be referred
to as the geometric stiffness matrix.

A general formulation for the geometric stiffness matrix is presented in reference 3.4-1.
Strains can be written as

€ = €L + €ENL (3.4-2)

5/24/90 CSM Testbed Procedures Manual 34-1

PRECEDING PAGE BLANK NOT FILMED

Procedure L.STABIL_2

Solution Procedures

where €1, contains the linear strain-displacement terms and €) contains the higher-order
or nonlinear strain-displacement terms. For a given stress state o, elastic strain energy
is stored and can be expressed as

U=UL+UntL (3.4 -13)
where
U= l/ eTooydV (3.4 — 4a)
2Jv
1
Uy = —/ eloodV (3.4 — 4b)
2J)v
1 T
UnL =5 | enLOodV (3.4 — 4¢)
2Jv

The geometric stiffness matrix is derived from the strain energy produced by stresses acting
through displacements associated with the nonlinear strain-displacement relations. These
relations couple the membrane and bending effects. Typically the strain-displacements
relations are written using index notation as

[8."&1.,' + Ojui + B;uka,-u,,] (3.4 -5)

€ij =

N =

where u; = (u,v,w) for ¢ = 1,2,3, respectively, 9; denotes differentiation with respect to
ith coordinate direction and summation over repeated indices is implied. Let d denote the
nodal degrees of freedom, then

§ =Gd (3.4 -16)
where

6 = {0,u, Oyu, 8,u, 8.v, Oyv, 0,v, d,w, Oyw, 9, w}

The coefficients of G are obtained by differentiating the element shape functions. Finally
the matrix Q is defined as

[0,u O 0 v O 0 &w 0 0]
0 Ju 0 0 Jov 0 0 dw 0
0 0 9.u O 0 08,v 0 0 d.w
Q= (34-17)
Ou O,x 0 Ow v 0 OGw Gw O
0 v Ou 0 9,v v 0 OJ,w Jw
|0,y 0 0w Ov 0 O,v Ow 0 O,w]

With these definitions the nonlinear strains given by equation (3.4-2) can be written as

ENL = %QGd (3.4-18)

3.4-2 CSM Testbed Procedures Manual 5/24/90

Solution Procedures Procedure L_STABIL_2

The vector of initial stresses is
O = {020 Oy0 020 Tzyo Tyzo Tzzo} (3.4 - 9)

Substituting equations (3.4-6) through (3.4-9) into equation (3.4-4c) gives
1 .
Unt = §dT(/ G'Q%0, av) (3.4 —10)
\4

However, the term QT oo can be written as

[

-3
QToy = |0 6 =S(00)6 (3.4 —11)
0

S n O
n OO

where

Oz0 Tzy0 Tzz0
§= | Tzyo Oyo Tyzo (3.4-12)

i Tz20 Tyzo 020

With these expressions, a general form of the geometric stiffness matrix can be written as
K,(o) = / GTS(00)GdV (3.4 -13)
| 4

which is symmetric and explicitly dependent on the stress state.

The stress state used to form the geometric stiffness matrix may be obtained in two ways.
The first way is first to perform a linear static stress analysis for the given load set and
constraint set. This way is used in procedure L_STABIL_2. The second way is to specify, in
advance, the values of the stress components given in equation (3.4-11) (i.e., specify the
prestress state). This way is used in procedure L_STABIL_1.

3.4.3 ALGORITHM

The algorithm used to solve equation (3.4-1) depends on the value of the global macrosym-
bol eigensolver_name. Processor EIG2 is used if eigensolver_name is defined to be EIG2.
This processor uses a nodal-block sparse matrix approach as described in reference 3.4-2.
Processor LAN is used if eigensolver_name is defined to be LAN. Processor LANZ is used
if eigensolver_name is defined to be LANZ. These processors are based on the Lanczos
algorithm as described in references 3.4-2 to 3.4-4.

5/24/90 CSM Testbed Procedures Manual 34-3

Procedure L.STABIL_2

Solution Procedures

3.4.4 PROCEDURE USAGE

Procedure L_STABIL_2 may be invoked by the *call directive, and following it by a list of
arguments separated by semicolons(;) and enclosed in parentheses. Procedure arguments
are order-independent, and most have default values thus making them optional. The
formal syntax is as follows:

*call L_STABIL 2 (argl = vall; arg2 = val2; ...)

where argi are argument names and vali are the corresponding values. The following
are valid arguments for procedure L_STABIL_2; note that those arguments without default
values are mandatory, while the others are optional.

Argument Default Value Meaning ;

BCON_SET 1 Constraint set for buckling analysis

CONS_SET 1 Constaint set number for prestress analysis

DIRECTION 0 Direction for element stress output

ERROR_TOL .0001 Convergence criterion for eigenvalues

FUNCTION ALL Select function to be performed by procedure

INIT_VECTOR 0 Number of initial vectors used to span the subspace

ISEQ 0 Resequencing method to be used

KNAME K First word of the name of the dataset containing the
assembled stiffness matrix

LDI 1 Logical device index

LOAD_SET 1 Load set number

LOCATION CENTROIDS Location of the evaluation points for element stresses

MAX_ITERS 20 Maximum number of iterations allowed

N_MODES 1 Number of eigenvalues to converge

NVAL_METH 3 Method to be used for global smoothing

PRINT <false> Flag to print displacement solution, internal forces,
element stresses, and eigenvectors

REACTION <false> Flag to compute internal forces or reactions

RENUMBER <true> Flag to resequence node numbers for equation solver

RHS APPL.FORC First two words of the dataset name for the
right-hand side system vector

SHIFT 0.0 Eigenvalue shift

SMOOTH <false> Flag to compute smoothed global stresses

SOLN STAT.DISP First two words of the dataset name for the
displacement solution

STRESS <false> Flag to compute element stresses (resultants)

Tables 3.4-1, 3.4-2, and 3.4-3 list the datasets used or created by procedure L_STABIL_2,
the procedures invoked by procedure L_STABIL_2, and the processors invoked by procedure
L_STABIL_2, respectively.

34-4 CSM Testbed Procedures Manual 5/24/90

Solution Procedures

Procedure L_STABIL_2

Table 3.4-1 Datasets Input/ Outbut by procedure L_STABIL_2
Dataset Description Input Putput
AMAP..ic2.isize Factorization map for INV Vv
APPL.FORC.i.1f Applied force vector v
APPL.MOTL.i.11 Specified displacement vector V
BUCK.EVAL.i.;! Buckling eigenvalues v
BUCK.MODE.i.;! Buckling eigenvalues v
<ES_NAME>.EFIL.0.nnod|Element Computational Data v | v
ES.SUMMARY ES Processor Status V4 Vv
DEF.<ES_NAME>.0.nnod |Element Defn. (Connectivity) 4
DIR.<ES_.NAME>.0.nnod |Element EFIL Directory V4
INT.FORC.i. jT System Internal Force Vector V4
INV.KSHF.;! Factored Shifted System Matrix Y,
INV.<KNAME>.;! Factored System Matrix v
JDF1.BTAB.1.8 Model Summary Vv
KG.SPAR.jdf2 Assembled geometric stiffness matrix V4
KMAP..ic2.isize Model connectivity map 4
<KNAME>.SPAR.jdf2 |Assembled system matrix 4
STAT.DISP.i. j’f System Displacement Vector Vv
STAT.REAC.i.jT System Reaction Force Vector Vv
STRS.<ES_.NAME>.i.jl |Element Stresses v

T i = <load_set> and j = <cons.set>
5/24/90 CSM Testbed Procedures Manual 34-5

Procedure L_STABIL_2 Solution Procedures

Table 3.4-2 Sub-Procedures Invoked by procedure L_STABIL_2

Procedure Type Function

ES External |Element utility procedure

FACTOR External |Factors assembled stiffness matrix

L_STABIL_2 |Internal |Main procedure
L_STATIC Internal |Linear static analysis

Table 3.4-3 Processors Invoked by procedure L_STABIL_2

Procedure | Type Function

AUS Internal | Arithmetic Utilities

E Internal |Initializes EFIL datasets

EIG2 Internal |Solve eigenvalue problem using subspace iteration
ES: External |Element processors based on GEP

K Internal | Assemble system matrix

LAN External |Solve eigenvalue problem using Lanczos method

LANZ External |Solve eigenvalue problem using Lanczos method

RSEQ Internal |Resequences nodes for equation solving

TOPO |Internal |Generates nodal topology maps

VPRT Internal |Print system vectors

3.4.5 ARGUMENT DESCRIPTION

3.4.5.1 BCON_SET

Constraint set number for buckling analysis (default: 1). This argument selects which
constraint set to use in solving the linear stability problem.

3.4.5.2 CONS_SET

Constraint set number for prestress solution (default: 1). This argument selects which
constraint set to use in solving the linear system of equations.

34-6 CSM Testbed Procedures Manual 5/18/90

Solution Procedures Procedure L_STABIL_2

3.4.5.3 DIRECTION

Direction for the element stress (stress resultant) output (default: 0). The element stress
coordinate system will be used if direction=0. The material axes (Zm, Ym, zm) will be
used if direction=1; the material axes (ym, zm, zm) will be used for direction=2; and
the material axes (zm, m, Ym) Will be used for direction=3. For isotropic materials, the
first material axis is replaced by the corresponding global axis (see Section 4.3.3.9 of the
CSM Testbed User’s Manual, ref. 3.4-2).

3.4.5.4 ERROR_TOL

Convergence criterion for eigenvalues (default: 0.0001). For the k-th iteration, the error
measure for the k-th eigenvalue is

O (V)|
: BN

The i-th eigenvalue is converged if €* is smaller than ERROR_TOL.

3.4.5.5 FUNCTION

Select function to be performed by procedure L_STABIL_2 (default: ALL). This procedure
may be used to perform four functions. For FINCTION=ALL, the element data are initialized
and elemental stiffness matrices formed; nodal resequencing may be performed, the mesh
topology is analyzed, the system stiffness matrix is assembled and factored, the displace-
ment solution is obtained, optionally element stresses (stress resultants) and internal nodal
forces (reactions) computed and the eigenproblem is solved. For FUNCTION=FACT_SOLV, pro-
cedure L_STABIL_2 assumes that the system stiffness matrix has previously been assembled
and that nodal resequencing has been performed. The procedure then proceeds to factor
the system stiffness matrix, solves for the displacement solution, optionally computes the
element stresses (stress resultants) and internal nodal forces (reactions) and solves the
eigenproblem. For FUNCTION=SOLV, procedure L_STABIL_2 assumes that the system stiff-
ness has previously been formed and factored. The procedure then proceeds to solve for
the displacement solution, optionally computes the element stresses (stress resultants) and
internal nodal forces (reactions) and solves the eigenproblem. For FUNCTION=EIGEN, pro-
cedure L_STABIL_2 uses a previously computed prestress state in solving the eigenvalue
problem. Using the FUNCTION argument, the user may solve for a variety of constraint
(boundary conditions) sets on a given model subjected to a variety of loading conditions.

3.4.5.6 INIT._VECTOR

Number of initial vectors used to span the subspace (default: 0). This argument defines
the number of trial vectors used to initiate the subspace iteration. If INIT_VECTOR=0, the
number of initial vectors will be calculated by the procedure as

INIT_VECTOR=MINIMUM (2*N_MODES, N_MODES + 8)

5/18/90 CSM Testbed Procedures Manual 34-7

Procedure L STABIL_2 Solution Procedures

3.4.5.7 ISEQ

Resequencing method to be used (default: 0). If the argument RENUMBER is <true>,
then nodal resequencing will be performed using processor RSEQ. The method used by
processor RSEQ to resequence the nodes depends on the value of ISEQ. If the argument
ISEQ is greater than or equal to zero, then that method will be used (i.e., method=0,1,2,3;
see Section 6.1 of the CSM Testbed User’s Manual, ref. 3.4-2).

3.4.5.8 KNAME

First word of the dataset name containing the assembled stiffness matrix (default: K).

3.4.5.9 LDI

Logical device index (default: 1).

3.4.5.10 LOAD_SET

Load set number (default: 1). This argument selects which load set to use as a right-hand
side vector.

3.4.5.11 LOCATION

Location of the evaluation points for the element stresses or stress resultants (default:
CENTROIDS). The element stresses or stress resultants are optionally computed by call-
ing procedure STRESS (see Section 6.4). This argument may have four values. For
LOCATION=INTEG_PTS, the element stresses are computed at the element integration points.
For LOCATION=CENTROIDS, the element stresses are computed at the element centroid. For
LOCATION=NODES, the element stresses are extrapolated from the integration points to be
element nodes. These element nodal stresses will be discontinuous across interelement
boundaries. For LOCATION=ALL, the element stresses are computed at the element integra-
tion points, element centroid, and element nodes.

3.4.5.12 MAX_ITERS

Maximum number of iterations (default: 20). This argument specifies the maximum num-
ber of iterations that can be used per call to eigensolver.

3.4.5.13 N_MODES

Number of converged eigenvalues desired (default: 1). This argument specifies the number
of eigenvalues to calculate to a convergence criterion of ERROR_TOL.

34-8 CSM Testbed Procedures Manual 5/24/90

Solution Procedures Procedure L_STABIL_2

3.4.5.14 NVAL_METH

Select method to be used for computing the smoothed global stresses (default: 3). Proces-
sor NVAL is used to compute the smoothed global stresses using the method defined by the

arzument NVAL METH [sae Section 12.5 of reference 2 A_')). If NVAL METH=1 a tcpglogical

argument NVAL METH (see Sectio of reference 3.4-2 1,
interpolation of the element centroidal stresses is performed, and the element stresses must
have been computed using LOCATION=CENTROIDS. If NVAL_METH=2, a projected least-squares
interpolation of the element centroidal stresses is performed, and the stresses must have
been computed using LOCATION=CENTROIDS. If NVAL_METH=3, the element nodal stresses
(discontinuous across interelement boundaries) are averaged, and the element stresses must
have been computed using LOCATION=NODES. Using LOCATION=ALL will generate element
stresses at the element centroids, element nodes, and element gauss points. Acceptable
values of LOCATION for specific values of NVAL_METH are as follows:

NVAL_METH LOCATION
1 CENTROIDS, ALL
2 CENTROIDS, ALL
3 NODES, ALL

3.4.5.15 PRINT

Flag to print displacement solution, internal forces and element stresses (default: <false>).
If printing of these computed results is requested, processor VPRT will be used to print
the displacement solution and internal forces and processor PESR will be used to print the
element stresses.

3.4.5.16 REACTION

Flag to compute the internal nodal forces (default: <true>) If the argument REAC-
TION=<true>, then the internal forces will be computed by calling procedure INT_FORC
(see Section 6.2).

3.4.5.17 RENUMBER

Flag to resequence node numbers prior to equation solving (default: <true>). If the argu-
ment RENUMBER=<true>, then processor RSEQ will be used to perform nodal resequencing,
otherwise no resequencing will be performed. Note that the nodal resequencing may greatly
reduce the time required to factor and solve the linear system of equations.

3.4.5.18 RHS

First two words of the dataset name for the right-hand side system vector (default:
APPL.FORC).

3.4.5.19 SHIFT

Eigenvalue shift (default: 0.0). Converged eigenvalues will only be obtained for values
greater than SHIFT. The shift parameter refers to the shift in the buckling load factor.

5/24/90 CSM Testbed Procedures Manual 34-9

Procedure L_STABIL_2 Solution Procedures

3.4.5.20 SMOOTH

Flag to compute smoothed global stresses (default: <false>). If the argument
SMOOTH=<true>, then smoothed global stresses will be computed by processor NVAL using
the method defined by the argument NVAL_METH.

3.4.5.21 SOLN

First two words of the dataset name for the displacement solution (default: STAT.DISP).

3.4.5.22 STRESS

Flag to compute element stresses or stress resultants (default: <tfalse>). If the argument
STRESS=<true>, then the element stresses will be computed at the location and in the
direction specified by the arguments LOCATION and DIRECTION, respectively, by calling
procedure STRESS (see Section 6.4).

3.4.6 PROCEDURE FLOWCHART

L_STABIL.2 (main procedure)
L_STATIC (linear static analysis procedure)
ES (initialize, form K)
FACTOR (factor assembled stiffness matrix)
SOLVE (solve linear system of equations)
STRESS (stress/strain recovery procedure)
ES (calculate element and nodal stress/strain)
INT_FORCE (internal force procedure)
ES (internal force calculation)
ES (form K,)
FACTOR (factor using buckling boundary conditions)

3.4.7 LIMITATIONS

None.

3.4.8 ERROR MESSAGES AND WARNINGS

None.

34-10 CSM Testbed Procedures Manual 5/24/90

Solution Procedures Procedure L_.STABIL_2

3.4.9 USAGE GUIDELINES AND EXAMPLES

Procedure L_STABIL_2 may be used by preceding the procedure name by the *call direc-
tive. Procedure arguments may be changed from their default values by including any or
all the arguments and their new values when the procedure is called. A space or blank
is required between the end of the procedure name and the left parenthesis.

»call L_STABIL_2 (FUNCTION = ALL ; -- . Select function

CONS_SET =1 ; -~ . Select constraint set

BCON_SET =1 ; -- . Select buckling constraint set

DIRECTION = O ; -- . Select direction for element stresses

ERROR_TOL = .0001 ; --

INIT_VECTOR = O ; --

ISEQ = 0 ; -- . Select resequencing method

KNAME = K ; -- . First word of stiffness matrix

9 -- . dataset name

LOAD_SET =1 ; -- . Select load set

LOCATION = CENTROIDS ; -- Select location of element
-- . stress evaluation points

MAX_ITERS = 20; -- Maximum number of iterations

N_MODES = 1 ; -- Number of eigenvalues

NVAL_METH = 3 ; --

PRINT = <false> ; -- . PRINT flag

REACTION = <false> ; -- . REACTIONS flag

RENUMBER = <true> ; -- . RESEQUENCING flag

RHS = APPL. FORC ; -- . First two words of RHS
-- . vector dataset

SHIFT = 0.0 ; Eigenvalue shift

SMOOTH = <false> ; -- compute smoothed global stresses?

SOLN = STAT. DISP ; -- . First two words of SOLN
-- . dataset

STRESS = <false> -- . STRESS flag

)

Before procedure L_STABIL_2 is called, the global macrosymbol eigensolver_name should
be defined as described in Section 3.4.3; otherwise, the default value of EIG2 will be used.

3.4.10 PROCEDURE LISTING

3.4.11 REFERENCES

3.4-1 Cook, Robert D.: Concepts and Applications of Finite Element Analysis. (Second
Edition). John Wiley and Sons, Inc., New York 1981.

3.4-2 Stewart, Caroline B.: The Computational Structural Mechanics Testbed User’s
Manual. NASA TM-100644, October 1989.

3.4-3 Bostic, S. W. and Fulton R. E.: A Lanczos Eigenvalue Method on a Parallel Com-
puter. AIAA Paper No. 87-0725-CP.

5/28/90 CSM Testbed Procedures Manual 34-11

..

Procedure L. STABIL_2 Solution Procedures

3.4-4 Jones, Mark T. and Patrick, Merrell L.: The Use of Lanczos’s Method to Solve
the Large Generalized Symmetric Definite Eigenvalue Problem. NASA CR-181914,
September 1989. (Also available as ICASE Report No. 89-69).

34-12 CSM Testbed Procedures Manual 5/28/90

Solution Procedures Procedure L_STATIC

3.5 Proced
3.5.1 GENERAL DESCRIPTION

Procedure L_STATIC performs linear static analysis, using an equation solver selected by
defining the global macrosymbol solver_name (e.g., INV, BAND, ITER, SPK) and user
specified structural element (ES?) processors based on the generic element processor tem-
plate. The procedure assumes that the finite element model, loads, and boundary condi-
tions, have already been generated, and that the nodal displacements, reaction forces, and
element stresses need to be calculated. The applied loads may be due to a combination
of specified forces and displacements, and one constraint (i.e., boundary condition) set is
permitted per procedure call.

3.5.2 THEORY

Mathematically, procedure L_STATIC solves the linear static problem:

Kd=f (3.5-1)
where
K = assembled linear stiffness matrix ;
d = generalized displacement vector

f

external force vector

Note that both the translational and rotational displacements in d are assumed to be in-
finitesimally small (linear strain-displacement relations are employed), and that the mate-
rial (stress-strain relation) is assumed to be both linear and elastic. Once the displacement
vector, d, is computed by solution of equation (3.5-1), the reaction forces are computed by
multiplying those rows of the stiffness matrix K at which the displacements are prescribed
(zero or non-zero) by the generalized displacement vector d. Finally, element stresses may
be optionally computed.

3.5.3 ALGORITHM

The algorithm used to solve equation 3.5-1 depends on the value of the global macrosymbol
solver_name. Processors INV and SSOL are used if solver_name is defined to be INV.
These processors use nodal-block sparse matrix approach as described in references 3.5-1,
3.5-2 and 3.5-3. Processor BAND (meth=28) is used if solver_name is defined to be BAND.
This algorithm is a LDLT direct method based on an Choleski variable bandwidth method
with loop unrolling as described in references 3.5-1 and 3.5-4. Processor ITER (meth=0)
is used if solver.name is defined to be ITER. This algorithm is an iterative method based
on a conjugate gradient method with diagonal scaling and sparse storage of the system
matrix as described in references 3.5-1 and 3.5-4. Processor SPK is used if solver_name
is defined to be SPK. This algorithm uses the vector-sum column Cholesky algorithms to

5/24/90 CSM Testbed Procedures Manual 3.5-1

Procedure L_STATIC

Solution Procedures

factor a general sparse matrix as described in references 3.5-1 and 3.5-5. Processor SPK
contains a subset of the SPARSPAK-A package of FORTRAN programs designed to solve
effectively large sparse systems of linear equations by direct methods (see reference 3.5-6).

3.5.4 PROCEDURE USAGE

Procedure L_STATIC may be invoked by the *call directive, and following it by a list of
arguments separated by semicolons(;) and enclosed in parentheses. Procedure arguments
are order-independent, and most have default values thus making them optional. The
formal syntax is as follows:

*call L_STATIC (argl = vall; arg2 = val2; ...)

where arg: are argument names and val: are the corresponding values. The following are
valid arguments for procedure L_STATIC; note that those arguments without default values
are mandatory, while the others are optional.

Argument Default Value Meaning

CONS_SET 1 Constraint set number

DIRECTION 1 Direction for element stress output

FUNCTION ALL Select function to be performed by procedure

ISEQ -1 Resequencing method to be used

KNAME K First word of the name of the dataset containing the
assembled stiffness matrix

LDI 1 Logical device index

LOAD_SET 1 Load set number

LOCATION NODES Location of the evaluation points for element stresses

NVAL_METH 3 Method to be used for global smoothing

PRINT <false> Flag to print computed results

REACTION <false> Flag to compute internal forces or reactions

RENUMBER <true> Flag to resequence node numbers for equation solver

RHS APPL.FORC First two words of the dataset name for the right-hand
side system vector

SMOOTH <false> Flag to compute smoothed global stresses

SOLN STAT.DISP First two words of the dataset name for the displacement
solution

STRESS <false> Flag to compute element stresses (resultants)

Tables 3.5-1, 3.5-2, and 3.5-3 list the datasets used or created by procedure L_STATIC,
the procedures invoked by procedure L_STATIC, and the processors invoked by procedure
L_STATIC, respectively.

3.5-2 CSM Testbed Procedures Manual 5/24/90

Solution Procedures

Procedure L_STATIC

Table 3.5-1 Datasets Input/Output by procedure L_STATIC

Dataset Description Input |Output
AMAP..ic2.isize Factorization Map for INV Vv
APPL.FORC.i.1 Applied force vector v
APPL.MOTLi.11 Specified displacement vector | v/
<ES_NAME>.EFIL.0.nnod | Element Computational Data Vv Vv
ES.SUMMARY ES Processor Status V4 Vv
DEF.<ES_NAME>.0.nnod | Element Defn. (Connectivity) V4
DIR.<ES_NAME>.0.nnod |Element EFIL Directory Vv
INT.FORC.i.;t System Internal Force Vector Y,
INV.<KNAME>.i.jl Factored System Matrix v
JDF1.BTAB.1.8 Model Summary

JLOC.BTAB.2.5 Nodal Coordinates

KMAP..ic2.isize Model Connectivity Map Vv
<KNAME>.SPAR.jdf2 Assembled System Matrix V4
PROP.BTAB.x Material/Section Properties Vv
QJJT.BTAB.2.9 Nodal Transformations Vv
STAT.DISP.:.j! System Displacement Vector N,
STAT.REAC.i.j! System Reaction Force Vector v
STRS.<ES_NAME>.ijl |Element Stresses Y,

t § = <load_set> and j = <consset>

5/24/90

CSM Testbed Procedures Manual

3.5-3

Procedure L.STATIC Solution Procedures

Table 8.5-2 Sub-Procedures Invoked by procedure L_STATIC

Procedure Type Function
ES External |Element utility procedure
FACTOR External |Factors assembled stiffness matrix

INT_FORCE |External | Computes internal forces

L_STATIC Internal |Main procedure

SOLVE External |Solves for the displacement solution

STRESS External | Computes element stresses

Table 3.5-3 Processors Invoked by procedure L_STATIC

Procedure| Type Function

E Internal |Initializes EFIL datasets

ES: External |Element processors based on GEP

K Internal | Assemble material stiffness matrix
RSEQ Internal |Resequences nodes for equation solving

TOPO |Internal |Generates nodal topology maps

VPRT Internal |Print SYSVEC-format vectors

3.5.5 ARGUMENT DESCRIPTION

3.5.5.1 CONS_SET

Constraint set number (default: 1). This argument selects which constraint set to use in
solving the linear system of equations.

3.5.5.2 DIRECTION

Direction for the element stress (stress resultant) output (default: 1). The element stress
coordinate system will be used if DIRECTION=0. The material axes (Zm, Ym, zm) Will be
used if DIRECTION=1; the material axes (Ym, Zm, zm) will be used for DIRECTION=2; and
the material axes (zm, Tm, Ym) Will be used for DIRECTION=3. For isotropic materials, the
first material axis is replaced by the corresponding global axis (see Section 4.3.3.9 of the
CSM Testbed User’s Manual, ref. 3.5-1).

3.5-4 CSM Testbed Procedures Manual 5/24/90

Solution Procedures Procedure L_.STATIC

3.5.5.3 FUNCTION

Select function to be performed by procedure L_.STATIC (default: ALL). This procedure
may be used to perform three functions. For FUNCTION=ALL, the element data are ini-
tialized and elemental stiffness matrices formed; nodal resequencing may be performed,
the mesh topology is analyzed, the system stiffness matrix is assembled and factored, the
displacement solution is obtained and optionally element stresses (stress resultants) and
internal nodal forces (reactions) computed. For FUNCTION=FACT_SOLV, procedure L_STATIC
assumes that the system stiffness matrix has previously been assembled and that nodal re-
sequencing has been performed. The procedure then proceeds to factor the system stiffness
matrix, solves for the displacement solution, and optionally computes the element stresses
(stress resultants) and internal nodal forces (reactions). For FUNCTION=SOLV, procedure
L_STATIC assumes that the system stiffness has previously been formed and factored. The
procedure then proceeds to solve for the displacement solution and optionally computes
the element stresses (stress resultants) and internal nodal forces (reactions). Using the
FUNCTION argument, the user may solve for a variety of constraint (boundary conditions)
sets on a given model subjected to a variety of loading conditions.

3.5.5.4 ISEQ

Resequencing method to be used (default: -1). If the argument RENUMBER is <true>,
then nodal resequencing will be performed using processor RSEQ. The method used by
processor RSEQ to resequence the nodes depends on the value of ISEQ. If the argument
ISEQ is greater than or equal to zero, then that method will be used (i.e., method=0,1,2, 3;
see Section 6.1 of the CSM Testbed User’s Manual, ref. 3.5-1). If the argument ISEQ has
a value of -1, then a default method will be used depending on the value of the global
macrosymbol <solver_name>.

These default value are as follows:

<solver_name> ISEQ
INV 0
BAND 2
ITER 1
SPK 1

3.5.5.5 KNAME

First word of the dataset name containing the assembled stiffness matrix (default: K).

3.5.5.6 LDI
Logical device index (default: 1).

3.5.5.7 LOAD_SET

Load set number (default: 1). This argument selects which load set to use as a right-hand
side vector.

5/24/90 CSM Testbed Procedures Manual 3.5-5

Procedure L_STATIC Solution Procedures

3.5.5.8 LOCATION

Location of the evaluation points for the element stresses or stress resultants (default:
NODES). The element stresses or stress resultants are optionally computed by calling proce-
dure STRESS (see Section 6.4). This argument may have four values. For
LOCATION=INTEG_PTS, the element stresses are computed at the element integration points.
For LOCATION=CENTROIDS, the element stresses are computed at the element centroid. For
LOCATION=NODES, the element stresses are extrapolated from the integration points to be
element nodes. These element nodal stresses will be discontinuous across interelement
boundaries. For LOCATION=ALL, the element stresses are computed at the element integra-
tion points, element centroid, and element nodes.

3.5.5.9 NVAL _METH

Select method to be used for computing the smoothed global stresses (default: 3). Proces-
sor NVAL is used to compute the smoothed global stresses using the method defined by the
argument NVAL_METH (see Section 12.5 of reference 6.4-1). If NVAL_METH=1, a topological
interpolation of the element centroidal stresses is performed, and the element stresses must
have been computed using LOCATION=CENTROIDS. If NVAL_METH=2, a projected least-squares
interpolation of the element centroidal stresses is performed, and the stresses must have
been computed using LOCATION=CENTROIDS. If NVAL_METH=3, the element nodal stresses
(discontinuous across interelement boundaries) are averaged, and the element stresses must
have been computed using LOCATION=NODES. Using LOCATION=ALL will generate element
stresses at the element centroids, element nodes, and element gauss points. Acceptable
values of LOCATION for specific values of NVAL_METH are as follows:

NVAL METH LOCATION
i CENTROIDS, ALL
2 CENTROIDS, ALL
3 NODES, ALL

3.5.5.10 PRINT

Flag to print computed results such as the displacement solution, internal forces, and
element and nodal stresses (default: <false>). If printing of these computed results is
requested, processor VPRT will be used to print the displacement solution and internal
forces, processor PESR will be used to print the element stresses and processor PNSR will
be used to print nodal stresses.

3.5.5.11 REACTION

Flag to compute the internal nodal forces (default: <true>) If the argument REAC-
TION=<true>, then the internal forces will be computed by calling procedure INT_FORCE
(see Section 6.2).

3.5-6 CSM Testbed Procedures Manual 5/24/90

N

Solution Procedures Procedure L_STATIC

3.5.5.12 RENUMBER

Flag to resequence node numbers prior to equation solving (default: <true>). If the
argument RENUMBER=<true>, then processor RSEQ will be used to perform nodal rese-
quencing, otherwise no resequencing will be performed. Note that the nodal resequencing
may greatly reduce the time required to factor and solve the linear system of equations
given by equation 3.5-1.

3.5.5.13 RHS
First two words of the dataset name for the right-hand side system vector (default:
APPL .FORC).

3.5.5.14 SMOOTH

Flag to compute smoothed global stresses (default: <false>). If the argument
SMOOTH=<true>, then smoothed global stresses will be computed by processor NVAL using
the method defined by the argument NVAL_METH.

3.5.5.15 SOLN

First two words of the dataset name for the displacement solution (default: STAT.DISP).

3.5.5.16 STRESS

Flag to compute element stresses or stress resultants (default: <false>). If the argument
STRESS is defined to be <true>, then the element stresses will be computed at the location
and in the direction specified by the arguments LOCATION and DIRECTION, respectively, by
calling procedure STRESS (see Section 6.4).

3.5.6 PROCEDURE FLOWCHART

L_STATIC (main procedure)
ES (initialize, form K)
FACTOR (factor assembled stiffness matrix)
SOLVE (solve linear system of equations)
STRESS (stress/strain recovery procedure)
ES (calculate element stresses and/or strains)
INT_FORCE (internal force procedure)
ES (internal force calculation)

5/24/90 CSM Testbed Procedures Manual 35-7

Procedure L_STATIC Solution Procedures

3.5.7 LIMITATIONS

Procedure L_STATIC assumes that all datasets either required or generated reside on library
one (LDI=1).

3.5.8 ERROR MESSAGES AND WARNINGS
None.

3.5.0 USAGE GUIDELINES AND EXAMPLES

Procedure L_STATIC may be used by preceding the procedure name by the *call directive.
Procedure arguments may be changed from their default values by including any or all the
arguments and their new values when the procedure is called. A space or blank is required
between the end of the procedure name and the left parenthesis.

*call L_STATIC (FUNCTION = ALL ; -- . Select function

CONS_SET = 1 ; -- . Select constraint set

DIRECTION = O ; -- . Select direction for element stresses

ISEQ = -1 ; -- . Select resequencing method

KNAME = K ; -- . First word of stiffness matrix

-- . dataset name
LOAD_SET = 1 ; -- . Select load set
LOCATION = CENTROIDS ; -- Select location of element
-- . stress evaluation points

PRINT = <true> ; -- . PRINT flag

REACTION = <false> ; -- . REACTIONS flag

RENUMBER = <true> ; -- . RESEQUENCING flag

RHS = APPL. FORC ; -- . First two words of RHS
-- . vector dataset

SOLN = STAT. DISP ; ~- . First two words of SOLN
-- . dataset

STRESS = <false> -- . STRESS flag

)

Before procedure L_STATIC is called, the global macrosymbol solver_name should be de-
fined as described in Section 3.5.3; otherwise, the default value of INV will be used.

3.5.10 PROCEDURE LISTING

3.5-8 CSM Testbed Procedures Manual 5/24/90

Solution Procedures Procedure L_STATIC

3.5-1

3.5-2

3.5-3

3.5-4

3.5-5

3.5-6

3.5-7

Stewart, Caroline B.: The Computational Structural Mechanics Testbed User’s
Manual, NASA TM-100644, October 1989.

Whetstone, W. D.: “Computer Analysis of Large Linear Frames”: Journal of the
Structural Division, ASCE, Vol. 95, No. ST11, November 1969, pp. 2401-2417.

Regelbrugge, M. E. and Wright, M. A.: The Computational Structural Mechanics
Testbed Matriz Processors Internal Logic and Dataflow Descriptions. NASA CR-
181742, March 1989.

Poole, Eugene L. and Overman, Andrea L.: The Solution of Linear Systems of
Equations with a Structural Analysis Code of the NAS Cray-2. NASA CR-4159,
September 1988.

Chu, Eleanor and George, J. Alan: Sparse Matriz Methods Research Using the
CSM Testbed Software System. NASA CR-4219, March 1989.

Chu, E.C.H.; George, J. A.; Liu, W-H.; and Ng, E. G-Y.: User’s Guide for
SPARSPAK-A: Waterloo Sparse Linear Equations Package. Technical Report CS-
84-36, University of Waterloo, Waterloo Ontario, Canada, 1984.

Stewart, Caroline B.: The Computational Structural Mechanics Testbed Data Li-
brary Description. NASA TM-100645, October 1988.

5/24/90 CSM Testbed Procedures Manual 3.5-9

Procedure L_STATIC Solution Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

3.5-10 CSM Testbed Procedures Manual 5/24/90

Solution Procedures Procedure L_VIBRAT.0

3.6.1 GENERAL DESCRIPTION

Procedure L_VIBRAT_O performs a linear vibration analysis about an unstressed state. The
eigensolver is selected by defining the global macrosymbol eigensolver_name to be the
name of the desired processor (e.g., EIG2, LAN, LANZ), and the structural element pro-
cessors (ES{) form the elemental stiffness and mass matrices. The procedure assumes that
the finite element model and boundary conditions have already been generated and that
the vibration modeshapes and frequencies need to be calculated.

3.6.2 THEORY

Linear vibration analyses are formulated using the equations of motion for an undamped
structure. For the case of no external forces, the equations of motion are

Mu+Ku=20 (3.6-1)
where .

M = assembled mass matix (consistent or diagonal)

K = assembled linear stiffness matrix

U = acceleration vector

u = displacement vector

If harmonic motion is assumed, then

u=¢;,sinwit 1=12,... (3.6 —2)
where
¢; = ith eigen modeshape

w; = ith circular frequency (radians per second)

The ith cyclic frequency f; (in hertz) is

Wi
fi= T
and the period T; (in seconds) is
-l
3 f“
Substituting equation (3.6-2) in equation (3.6-1) gives
(K-\M)p, =0 i=1,2,... (3.6 - 3)
where
5/24/90 CSM Testbed Procedures Manual 3.6-1

PRECEDING PAGE BLANK NOT FiLMED

Procedure L_VIBRAT_0 Solution Procedures

2
A":w".

If the user has specified the reset parameter GRAV in processor LAU to a value of unity then
the matrix M has the meaning of a “weight” matrix instead of a “mass” matrix. This
reset parameter is important for interpreting the eigenvalues calculated by the various
eigensolvers.

3.6.3 ALGORITHM

The algorithm used to solve equation (3.6-1) depends on the value of the global macrosym-
bol eigensolver_name. Processor EIG2 is used if eigensolver_name is defined to be EIG2.
This processor uses a nodal-block sparse matrix approach as described in reference 3.6-2.
Processor LAN is used if eigensolver_name is defined to be LAN. Processor LANZ is used
if eigensolver_name is defined to be LANZ. These processors are based on the Lanczos
algorithm as described in references 3.6-2 and 3.6-3. If this global macrosymbol is not
defined, procedure L_VIBRAT_O will set it to EIG2.

3.6.4 PROCEDURE USAGE

Procedure L_VIBRAT_O may be invoked by the *call directive, and following it by a list of
arguments separated by semicolons(;) and enclosed in parentheses. Procedure arguments
are order-independent, and most have default values thus making them optional. The
formal syntax is as follows:

*call L.VIBRAT O (argl = vall; arg2 = val2; ...)

where argi are argument names and vali are the corresponding values. The following
are valid arguments for procedure L_VIBRAT_0; note that those arguments without default
values are mandatory, while the others are optional.

Argument Default Value Meaning

ERROR_TOL .0001 Convergence criterion for eigenvalues

FUNCTION ALL Select function to be performed by procedure

INIT_VECTORS 0 Number of initial vectors used to span the subspace

ISEQ 0 Resequencing method to be used

LDI 1 Logical device index

KNAME K First word of the name of the dataset containing the
assembled stiffness matrix

MASS_TYPE CONSISTENT Type of mass matrix

MAX_ITERS 20 Maximum number of iterations

N_MODES 1 Number of eigenvalues to converge

PRINT <false> Flag to print eigenvectors

RENUMBER <true> Flag to resequence node numbers for equation solver

SHIFT 0.0 Eigenvalue shift

VCON_SET 1 Constraint set for vibration analysis

3.6-2 CSM Testbed Procedures Manual 5/24/90

Solution Procedures

Procedure L_VIBRAT_0

m.o11_ P ig e
Tables 3.6-1, 3.6-2, and 3.6-3 list the

the procedures invoked by procedure L_VIBRAT_O, and the processors invoked by procedure

L_VIBRAT.O, respectively.

Table 8.6-1 Datasets Input/Output by procedure L_VIBRAT._0
Dataset Description Input Putput
AMAP..ic2.isize Factorization Map for INV V4
CEM.SPAR Consistent Mass Matrix Vv
<ES_NAME>.EFIL.0.nnod|Element Computational Data Vv Vv
ES.SUMMARY ES Processor Status Vv Vv
DEF.<ES_NAME>.0.nnod |Element Defn. (Connectivity) Vv
DEM.DIAG Diagonal (Lumped) Mass Matrix Vv
DIR.<ES_NAME>.0.nnod |Element EFIL Directory Vv
INV.KSHF.jt Factored Shifted System Matrix
INV.<KNAME>.J'1 Factored System Matrix
JDF1.BTAB.1.8 Model Summary Vv
KG.SPAR.jdf2 Assembled geometric stiffness matrix Vv
KMAP..ic2.isize Model Connectivity Map Vv
<KNAME>.SPAR.jdf2 |Assembled system matrix v
VIBR.EVAL.1.;! Vibration eigenvalues v
VIBR.MODE.1.;f Vibration eigenvalues v

t j = <cons_set>

5/24/90

CSM Testbed Procedures Manual

36-3

Procedure L_VIBRAT 0 Solution Procedures

Table 3.6-3 Processors Invoked by Procedure L_VIBRAT_0

Procedure| Type Function

AUS Internal |Arithmetic utilities

E Internal |Initializes EFIL datasets

EIG2 Internal |Solve eigenvalue problem using subspace iteration
ES: External |Element processors based on GEP i

K Internal | Assemble system matrix

LAN External |Solve eigenvalue problem using Lanczos method

LANZ External |Solve eigenvalue problem using Lanczos method

RSEQ Internal [Resequences nodes for equation solving

TOPO |Internal |Generates nodal topology maps
VPRT Internal |Print SYSVEC system vectors

3.6.5 ARGUMENT DESCRIPTION

3.6.5.1 ERROR_TOL

Convergence criterion for eigenvalues (default: 0.0001). For the k-th iteration, the error
measure for the i-th eigenvalue is

o o= e
N P

The i-th eigenvalue is converged if €¥ is smaller than ERROR_TOL.

3.6.5.2 FUNCTION

Select function to be performed by procedure L_VIBRAT_O (default: ALL). This procedure
may be used to perform two functions. For FUNCTION=ALL, the element data are initialized
and elemental stiffness matrices formed; nodal resequencing may be performed, the mesh
topology is analyzed, the system stiffness matrix is assembled and factored, and the eigen-
problem is solved. For FUNCTION=EIGEN, procedure L_VIBRAT.O uses a previously computed
prestress state in solving the eigenvalue problem. Using the FUNCTION argument, the user
may solve for a variety of constraint (boundary conditions) sets on a given model.

3.6-4 CSM Testbed Procedures Manual 5/24/90

Solution Procedures Procedure L_VIBRAT_0

3.6.5.3 INIT_VECTOR
Number of initial vectors used to span the subspace (default: 0). This argument defines
the number of trial vectors used to initiate the subspace iteration. If INIT_VECTOR=0, the

IO MUY b UL VN NG Ry g rnla.. - o e
nulubct Ol uutnu VECWOIS wxu be \.a..u.uxa.ucd }Jy uhc Pl.uu:ul.he as

INIT_VECTOR=MINIMUM (2+#N_MODES, N._modes + 8)

3.6.5.4 ISEQ

Resequencing method to be used (default: 0). If the argument RENUMBER is <true>,
then nodal resequencing will be performed using processor RSEQ. The method used by
processor RSEQ to resequence the nodes depends on the value of ISEQ. If the argument
ISEQ is greater than or equal to zero, then that method will be used (i.e., method=0,1,2,3;
see Section 6.1 of the CSM Testbed User’s Manual, ref. 3.6-1).

3.6.5.5 LDI
Logical device index (default: 1).

3.6.5.6 KNAME

First word of the dataset name containing the assembled stiffness matrix (default: K).

3.6.5.7 MASS.TYPE

Type of mass matrix (default: CONSISTENT). If MASS_TYPE=CONSISTENT, the element pro-
cessor will generate consistent element mass matrices that will be assembled by processor
K to form the system mass matrix. If MASS_TYPE=DIAGONAL, the element processor will
generate a diagonal or lumped mass matrix.

3.6.5.8 MAX_ITERS

Maximum number of iterations (default: 20). This argument specifies the maximum num-
ber of iterations that can be used per call to eigensolver.

3.6.5.9 N_MODES

Number of converged eigenvalues desired (default: 1). This argument specifies the number
of eigenvalues to calculate to a convergence criterion of ERROR_TOL.

3.6.5.10 PRINT

Flag to print displacement solution, internal forces and element stresses (default: <false>).
If printing of these computed results is requested, processor VPRT will be used to print
the vibration modeshapes.

3.6.5.11 RENUMBER

Flag to resequence node numbers prior to equation solving (default: <true>). If the argu-
ment RENUMBER=<true>, then processor RSEQ will be used to perform nodal resequencing,
otherwise no resequencing will be performed. Note that the nodal resequencing may greatly
reduce the time required to factor and solve the linear system of equations.

5/24/90 CSM Testbed Procedures Manual 3.6-5

Procedure L_.VIBRAT_ 0 Solution Procedures

!

3.6.5.12 SHIFT

Eigenvalue shift (default: 0.0). Converged eigenvalue will only be obtained for eigenvalues
greater than SHIFT. The shift parameter refers to the frequency squared (i.e., w?) for
vibration problems.

3.6.5.13 VCON_SET

Constraint set number for vibration analysis (default: 1). This argument selects which
constraint set to use in solving the linear vibration problem.

3.6.6 PROCEDURE FLOWCHART

L_VIBRAT.O (main procedure)
ES (initialize, form K and M)
FACTOR (factor using vibration boundary conditions)

3.6.7 LIMITATIONS

None.

3.6.8 ERROR MESSAGES AND WARNINGS

None.

3.6.9 USAGE GUIDELINES AND EXAMPLES

Procedure L_.VIBRAT_O0 may be used by preceding the procedure name by the *call direc-
tive. Procedure arguments may be changed from their default values by including any or
all the arguments and their new values when the procedure is called. A space or blank
is required between the end of the procedure name and the left parenthesis.

3.6-6 CSM Testbed Procedures Manual 5/24/90

Solution Procedures Procedure L_VIBRAT_0

»xcall L_VIBRAT_O { FUNCTION = ALL ; -- . Select function
BCON_SET =1 ; -- . Select vibration constraint set
ERROR_TOL = .0001 ; -- . Eigenvalue convergence criterion
INIT_VECTOR = 0 ; -- . Number of initial vectors

1 ISEQ = -1 ; -- ., Select resequencing method
KNAME = K ; -- . First word of stiffness matrix
-- dataset name

MAX_ITERS = 20; -- Haxlmnm number of iterationmns
N_MODES = 1 ; -- Number of eigenvalues
PRINT = <true> ; -- . PRINT flag
RENUMBER = <true> ; -- . RESEQUENCING flag
SHIFT = 0.0 -- . Eigenvalue shift

Before procedure L_VIBRAT_O is called, the global macrosymboi eigensolver_name should
be defined as described in Section 3.6-3; otherwise, the default value of EIG2 will be used.

38.6.10 PROCEDURE LISTING

3.6.11 REFERENCES

3.6-1 Stewart, Caroline B.: The Computational Structural Mechanics Testbed User’s
Manual. NASA TM-100644, October 1989.

3.6-2 Bosfic, S. W. and Fulton R. E.: A Lanczos Eigenvalue Method on a Parallel Com-
puter. AIAA Paper No. 87-0725-CP.

3.6-3 Jones, Mark T. and Patrick, Merrell L.: The Use of Lanczos’s Method to Solve
the Large Generalized Symmetric Definite Eigenvalue Problem. NASA CR-181914,
September 1989. (Also available as ICASE Report No. 89-69). '

L (]

5/24/90 CSM Testbed Procedures Manual 3.6-7

Procedure L_VIBRAT 0

Solution Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

3.6-8 CSM Testbed Procedures Manual

5/24/90

—_——

Solution Procedures Procedure L_VIBRAT_1

3.7.1 GENERAL DESCRIPTION

Procedure L_VIBRAT.1 performs a linear vibration analysis about a prescribed prestresse:.
state. The eigensolver is selected by defining the global macrosymbol eigensolver_name
to be the name of the desired processor (e.g., EIG2, LAN), and the structural element pro-
cessors (ESi) form the elemental stiffness and mass matrices. The procedure assumes that
the finite element model and boundary conditions have already been generated, that the
prestressed state has been prescribed, and that the vibration modeshapes and frequencies
need to be calculated.

3.7.2 THEORY

Linear vibration analyses are formulated using the equations of motion for an undamped
structure. For the case of prestressed state, the equations of motion are

Mii + Ku+ Ky (o)u=0 (3.7-1)
where
M = assembled mass matix (consistent or diagonal)
K = assembled linear stiffness matrix |
K (o) = assembled geometric stiffness matrix for given stress state
il = acceleration vector
u = displacement vector

o = prestress state

The prestressed state may be defined in several ways. Procedure L_VIBRAT_1 assumes that
a membrane prestressed state (N7, N7, N7,) is explicitly prescribed. :

If harmonic motion is assumed, then
u = ¢@; sin w;t 1=1,2,... (3.7-2)
where

¢; = ith eigen modeshape

w; = ith circular frequency (radians per second)

The ith cyclic frequency f; (in hertz) is

Wi
fi=5-
and the period T; (in seconds) is
1
T= o
fi
5/24/90 CSM Testbed Procedures Manual 3.7-1

PRECEDING PAGE BLANK NOT FILMED

Procedure L_VIBRAT 1 Solution Procedures

Substituting equation (3.7-2) in equation (3.7-1) gives

(K+Ky(o)—AiM)g; =0 1=1,2,... (3.7-3)
where

Agzw,-.

If the userihas specified the reset parameter GRAV in processor LAU to a value of unity then
the matrix M has the meaning of a “weight” matrix instead of a “mass” matrix. This
reset parameter is important for interpreting the eigenvalues calculated by the various
eigensolvers.

3.7.3 ALGORITHM

The algorithm used to solve equation (3.7-1) depends on the value of the global macrosym-
bol eigensolver_name. Processor EIG2 is used if eigensolver_name is defined to be EIG2.
This processor uses a nodal-block sparse matrix approach as described in reference 3.7-2.
Processor LAN is used if eigensolver_name is defined to be LAN. Processor LANZ is used
if eigensolver_name is defined to be LANZ. These processors are based on the Lanczos al-
gorithm as described in references 3.7-2 to 3.7-3. If this global macrosymbol is not defined,
procedure L_.VIBRAT_1 will set it to EIG2.

3.7.4 PROCEDURE USAGE

Procedure L_.VIBRAT_1 may be invoked by the *call directive, and following it by a list of
arguments separated by semicolons(;) and enclosed in parentheses. Procedure arguments
are order-independent, and most have default values thus making them optional. The
formal syntax is as follows:

*call L_.VIBRAT_1 (argl = vall; arg2 = val2; ...)

where argi are argument names and vali are the corresponding values. The following
are valid arguments for procedure L_VIBRAT.1; note that those arguments without default
values are mandatory, while the others are optional.

3.7-2 CSM Testbed Procedures Manual 5/24/90

Procedure L_VIBRAT_1

Argument Default Value Meaning

PS_1 -- Prescribed membrane stres resultant N2

PS_2 -- Prescribed membrane stres resultant Ny

PS_3 - Prescribed membrane stres resultant N2

ERROR_TOL .0001 Convergence criterion for eigenvalues

FUNCTION ALL Select function to be performed by procedure

INIT_VECTORS 0 Number of initial vectors used to span the subspace

ISEQ 0 Resequencing method to be used

LDI 1 Logical device index

KNAME K First word of the name of the dataset containing the
assembled stiffness matrix

MASS_TYPE CONSISTENT Type of mass matrix

MAX_ITERS 20 Maximum number of iterations

N_GROUPS 1

N_MODES 1 Number of eigenvalues to converge

PRINT <false> Flag to print eigenvectors

RENUMBER <true> Flag to resequence node numbers for equation solver

SHIFT 0.0 Eigenvalue shift

VCON_SET 1 Constraint set for vibration analysis

Tables 3.7-1, 3.7-2, and 3.7-3 list the datasets used or created by procedure L_VIBRAT_1,
the procedures invoked by procedure L_.VIBRAT_1, and the processors invoked by procedure
L_VIBRAT_1, respectively.

5/24/90 CSM Testbed Procedures Manual 3.7-3

e

Procedure L_VIBRAT_1

Solution Procedures

Table 3.7-1 Datasets Input/Output by procedure L_VIBRAT_1
Dataset Description Input |Output
AMAP..ic2.isize Factorization Map for INV Vv
CEM.SPAR Consistent Mass Matrix Vv
<ES_NAME> .EFIL.0.nnod | Element Computational Data Vv V4
ES.SUMMARY ES Processor Status Vv Vv
DEF.<ES_NAME>.0.nnod | Element Defn. (Connectivity) Vv
DEM.DIAG Diagonal (Lumped) Mass Matrix 4
DIR.<ES_NAME>.0.nnod |Element EFIL Directory Vv
INV.KSHF.jt Factored Shifted System Matrix
INV.<KNAME> ;I Factored System Matrix
JDF1.BTAB.1.8 Model Summary Vv
KG.SPAR.jdf2 Assembled geometric stiffness matrix Vv
KMAP..ic2.isize Model Connectivity Map V4
<KNAME>.SPAR.jdf2 Assembled system matrix Vv
VIBR.EVAL.1. jf Vibration eigenvalues Vv
VIBR.MODE.1.;t Vibration eigenvalues N,

t j = <vcon.set>

Table 3.7-2 Sub-Procedures Invoked by procedure L_.VIBRAT_1
Procedure Type Function
ES External | Element utility procedure
FACTOR External |Factors assembled stiffness matrix
L_VIBRAT_1 |Internal |Main procedure
3.7-4 CSM Testbed Procedures Manual 5/24/90

Solution Procedures Procedure L_VIBRAT_1

Table 3.7-3 Processors Invoked by Procedure L_VIBRAT_1

Procedure| Type Function

AUS Internal | Arithmetic utilities

E Internal |Initializes EFIL datasets

EIG2 Internal |Solve eigenvalue problem using subspace iteration
ES: External |Element processors based on GEP

K Internal | Assemble system matrix

LAN External |Solve eigenvalue problem using Lanczos method

LANZ External |Solve eigenvalue problem using Lanczos method

RSEQ Internal |Resequences nodes for equation solving

TOPO Internal | Generates nodal topology maps
VPRT Internal |Print SYSVEC system vectors

3.7.5 ARGUMENT DESCRIPTION

3.7.5.1 ERROR.TOL

Convergence criterion for eigenvalues (default: 0.0001). For the k-th iteration, the error
measure for the i-th eigenvalue is

o o=k
S P

The i-th eigenvalue is converged if € is smaller than ERROR_TOL.

3.7.5.2 FUNCTION

Select function to be performed by procedure L_.VIBRAT_1 (default: ALL). This procedure
may be used to perform two functions. For FUNCTION=ALL, the element data are initialized
and elemental stiffness matrices formed; nodal resequencing may be performed, the mesh
topology is analyzed, the system stiffness matrix is assembled and factored, and the eigen-
problem is solved. For FUNCTION=EIGEN, procedure L_VIBRAT_1 uses a prescribed prestress
state in solving the eigenvalue problem. Using the FUNCTION argument, the user may solve
for a variety of constraint (boundary conditions) sets on a given model.

5/24/90 CSM Testbed Procedures Manual 3.7-5

Procedure L_VIBRAT_1 Solution Procedures

3.7.5.3 INIT_VECTOR

Number of initial vectors used to span the subspace (default: 0). This argument defines
the number of trial vectors used to initiate the subspace iteration. If INIT_VECTOR=0, the
number of initial vectors will be calculated by the procedure as

INIT_VECTOR=MINIMUM (2*N_MODES, N_modes + 8)

3.7.5.4 ISEQ

Resequencing method to be used (default: 0). If the argument RENUMBER is <true>,
then nodal resequencing will be performed using processor RSEQ. The method used by
processor RSEQ to resequence the nodes depends on the value of ISEQ. If the argument
ISEQ is greater than or equal to zero, then that method will be used (i.e., method=0,1,2, 3;
see Section 6.1 of the CSM Testbed User’s Manual, ref. 3.7-1).

3.7.5.5 LDI
Logical device index (default: 1).

3.7.5.6 KNAME

First word of the dataset name containing the assembled stiffness matrix (default: K).

3.7.5.7 MASS_TYPE

Type of mass matrix (default: CONSISTENT). If MASS_TYPE=CONSISTENT, the element pro-
cessor will generate consistent element mass matrices that will be assembled by processor
K to form the system mass matrix. If MASS_TYPE=DIAGONAL, the element processor will
generate a diagonal or lumped mass matrix.

3.7.5.8 N_GROUPS
Element group number (default: 1).

3.7.5.9 MAX_ITERS

Maximum number of iterations (default: 20). This argument specifies the maximum num-
ber of iterations that can be used per call to eigensolver.

3.7.5.10 N_MODES

Number of converged eigenvalues desired (default: 1). This argument specifies the number
of eigenvalues to calculate to a convergence criterion of ERROR_TOL.

3.7.5.11 PRINT

Flag to print modeshapes (default: <false>). If printing of these computed results is
requested, processor VPRT will be used to print the vibration modeshapes.

3.7-6 CSM Testbed Procedures Manual 5/24/90

Solution Procedures Procedure L_VIBRAT_1

3.7.5.12 Ps_1

Prescribed membrane stress resultant N2 for the prestressed state.

3.7.5.13 Ps.2

Prescribed membrane siress resultant N7 for the prestressed state.

3.7.5.14 PS.3

Prescribed membrane stress resultant N7, for the prestressed state.

3.7.5.15 RENUMBER

Flag to resequence node numbers prior to equation solving (default: <true>). If the argu-
ment RENUMBER=<true>, then processor RSEQ will be used to perform nodal resequencing,
otherwise no resequencing will be performed. Note that the nodal resequencing may greatly
reduce the time required to factor and solve the linear system of equations.

3.7.5.16 SHIFT

Eigenvalue shift (default: 0.0). Converged eigenvalue will only be obtained for eigenvalues
greater than SHIFT. The shift parameter refers to the frequency squared (i.e., w?) for
vibration problems.

3.7.5.17 VCON_SET

Constraint set number for vibration analysis (default: 1). This argument selects which
constraint set to use in solving the linear vibration problem.

3.7.6 PROCEDURE FLOWCHART

L_VIBRAT-1 (main procedure)
ES (initialize, form K and M)
ES (form Kg)
FACTOR (factor using vibration boundary conditions)

3.7.7 LIMITATIONS

None.

3.7.8 ERROR MESSAGES AND WARNINGS

None.

5/24/90 CSM Testbed Procedures Manual 3.7-17

Procedure L_VIBRAT 1 Solution Procedures

3.7.9 USAGE GUIDELINES AND EXAMPLES

Procedure L_.VIBRAT_1 may be used by preceding the procedure name by the *call direc-
tive. Procedure arguments may be changed from their default values by including any or
all the arguments and their new values when the procedure is called. A space or blank
is required between the end of the procedure name and the left parenthesis.

*call L_VIBRAT_1 (FUNCTION = ALL ; -- . Select function
VCON_SET =1 ; -- . Select vibration constraint set
ERROR_TOL = .0001 ; -- . Eigenvalue convergence criterion
INIT_VECTOR = O ; -- . Number of initial vectors
ISEQ = 0 ; -- . Select resequencing method
KNAME = K ; -- . First word of stiffness matrix
-- . dataset name

MAX_ITERS = 20 ~- Maximum number of iterations

’
N_MODES = 1 ; -- Number of eigenvalues
N_GROUPS = 1 ; --
PS_1 HEE
PS_2 HE
PS_3 ;. -
PRINT = <true> ; -- . PRINT flag
RENUMBER = <true> ; -- . RESEQUENCING flag
SHIFT = 0.0 ; Eigenvalue shift

Before procedure L_VIBRAT_1 is called, the global macrosymbol eigensolver_name should
be defined as described in Section 3.7-3; otherwise, the default value of EIG2 will be used.

3.7.10 PROCEDURE LISTING

3.7.11 REFERENCES

3.7-1 Stewart, Caroline B.: The Computational Structural Mechanics Testbed User’s
Manual. NASA TM-100644, October 1989.

3.7-2 Bostic, S. W. and Fulton R. E.: A Lanczos Eigenvalue Method on a Parallel Com-
puter. ATAA Paper No. 87-0725-CP.

3.7-3 Jones, Mark T. and Patrick, Merrell L.: The Use of Lanczos’s Method to Solve
the Large Generalized Symmetric Definite Eigenvalue Problem. NASA CR-181914,
September 1989. (Also available as ICASE Report No. 89-69).

3.7-8 CSM Testbed Procedures Manual 5/24/90

Solution Procedures Procedure L_VIBRAT 2

3.8 Procedure L_VIBRAT 2

3.8.1 GENERAL DESCRIPTION

Procedure L_VIBRAT_2 performs a linear vibration analysis about a prescribed prestressed
state. The eigensolver is selected by defining the global macrosymbol eigensolver_name
to be the name of the desired processor (e.g., EIG2, LAN), and the structural element pro-
cessors (ESs) form the elemental stiffness and mass matrices. The procedure assumes that
the finite element model and boundary conditions have already been generated, that the
prestressed state has been prescribed, and that the vibration modeshapes and frequencies
need to be calculated.

. 3.8.2 THEORY

Linear vibration analyses are formulated using the equations of motion for an undamped
structure. For the case of prestressed state, the equations of motion are

Mi + Ku+ Ky(o)u=0 (3.8-1)
where
M = assembled mass matix (consistent or diagonal)
K = assembled linear stiffness matrix
K, (o) = assembled geometric stiffness matrix for given stress state
i = acceleration vector
u = displacement vector

o = prestress state

The prestressed state may be defined in several ways. Procedure L_VIBRAT_2 assumes that
the prestressed state will be first calculated using procedure L_STATIC.

If harmonic motion is assumed, then
u=¢; sinw;t 1=12,... (3.8 -2)
where

@; = ith eigen modeshape

w; = ith circular frequency (radians per second)

The ith cyclic frequency f; (in hertz) is

wi
fi= o
and the period T; (in seconds) is
1
Ti= &
fi

5/24/90 CSM Testbed Procedures Manual 38-1

Procedure L_.VIBRAT_2 Solution Procedures

Substituting equation (3.8-2) in equation (3.8-1) gives

(K +Ky(0) = AM)g, =0 i=1,2,... (3.8-3)

where

2
A;:w‘-.

If the user has specified the reset parameter GRAV in processor LAU to a value of unity then
the matrix M has the meaning of a “weight” matrix instead of a “mass” matrix. This
reset parameter is important for interpreting the eigenvalues calculated by the various
eigensolvers.

3.8.3 ALGORITHM

The algorithm used to solve equation (3.3-1) depends on the value of the global macrosym-
bol eigensolver_name. Processor EIG2 is used if eigensolver_name is defined to be EIG2.
This processor uses a nodal-block sparse matrix approach as described in reference 3.3-2.
Processor LAN is used if eigensolver_name is defined to be LAN. Processor LANZ is used
if eigensolver_name is defined to be LANZ. These processors are based on the Lanczos al-
gorithm as described in references 3.3-2 to 3.3-3. If this global macrosymbol is not defined,
procedure L_VIBRAT_2 will set it to EIG2.

3.8.4 PROCEDURE USAGE

Procedure L_VIBRAT_2 may be invoked by the *call directive, and following it by a list of
arguments separated by semicolons(;) and enclosed in parentheses. Procedure arguments
are order-independent, and most have default values thus making them optional. The
formal syntax is as follows:

*call L_VIBRAT_2 (argl = vall; arg2 = val2; ...)

where argi are argument names and vali are the corresponding values. The following
are valid arguments for procedure L_VIBRAT_2; note that those arguments without default
values are mandatory, while the others are optional.

3.8-2 CSM Testbed Procedures Manual 5/24/90

Procedure L_.VIBRAT 2

Solution Procedures

A W
Argument

CONS_SET 1 Constaint set number for prestress analysis

DIRECTION 0 Direction for element stress output

ERROR_TOL .0001 Convergence criterion for eigenvalues

FUNCTION ALL Select function to be performed by procedure

INIT_VECTORS 0 Number of initial vectors used to span the subspace

ISEQ 0 Resequencing method to be used

LDI 1 Logical device index

KNAME K First word of the name of the dataset containing the
assembled stiffness matrix

LOAD_SET 1 Load set number

MASS_TYPE CONSISTENT Type of mass matrix

MAX_ITERS 20 Maximum number of iterations

N_GROUPS 1

N_MODES 1 Number of eigenvalues to converge

PRINT <false> Flag to print computed solutions

REACTION <false> Flag to compute internal forces or reactions

RENUMBER <true> Flag to resequence node numbers for equation solver

SHIFT 0.0 Eigenvalue shift

STRESS <false> Flag to compute element stresses (resultants)

VCON_SET 1 Constraint set for vibration analysis

Tables 3.8-1, 3.8-2, and 3.8-3 list the datasets used or created by procedure L.VIBRAT.2,
the procedures invoked by procedure L_VIBRAT_2, and the processors invoked by procedure
L_VIBRAT.2, respectively.

5/24/90 ' CSM Testbed Procedures Manual 3.8-3

Procedure L_VIBRAT 2

Solution Procedures

Table 3.8-1 Datasets Input/Output by procedure L_VIBRAT_2
Dataset Description Input Putput
AMAP..ic2.isize Factorization Map for INV Vv
CEM.SPAR Consistent Mass Matrix v
<ES_NAME>.EFIL.0.nnod|Element Computational Data Vv 4
ES.SUMMARY ES Processor Status Vv v
DEF.<ES_NAME>.0.nnod |Element Defn. (Connectivity) Vv
DEM.DIAG Diagonal (Lumped) Mass Matrix v
DIR.<ES_NAME>.0.nnod |Element EFIL Directory Vv
INV.KSHF.j't Factored Shifted System Matrix Vv
INV.<KNAME>._1"t Factored System Matrix
JDF1.BTAB.1.8 Model Summary Vv
KG.SPAR.jdf2 Assembled geometric stiffness matrix Vv
KMAP..ic2.isize Model Connectivity Map Vv
<KNAME>.SPAR.jdf2 |Assembled system matrix Vv
VIBR.EVAL.1. jt Vibration eigenvalues Vv
VIBR.MODE.1.]t Vibration eigenvalues Vv

t j = <vcon_set>

Table 3.8-2 Sub-Procedures Invoked by procedure L_VIBRAT_2
Procedure Type Function
ES External |Element utility procedure
FACTOR External |Factors assembled stiffness matrix
L_STATIC Internal |Static solution procedure
L_VIBRAT_2 |Internal |Main procedure
3.8-4 CSM Testbed Procedures Manual 5/24/90

Solution Procedures Procedure L_VIBRAT_2

Table 3.8-3 Processors Invoked by Procedure L_VIBRAT_2

Procedure | Type Function

AUS Internal | Arithmetic utilities

E Internal |Initializes EFIL datasets

EIG2 Internal |Solve eigenvalue problem using subspace iteration
ESi External |Element processors based on GEP

K Internal | Assemble system matrix

LAN External |Solve eigenvalue problem using Lanczos method

LANZ External |Solve eigenvalue problem using Lanczos method

RSEQ Internal |Resequences nodes for equation solving

TOPO |Internal |Generates nodal topology maps
VPRT Internal |Print SYSVEC system vectors

3.8.5 ARGUMENT DESCRIPTION

3.8.5.1 CONS_SET

Constraint set number for prestress solution (default: 1). This argument selects which
constraint set to use in solving the linear system of equations.

3.8.5.2 DIRECTION

Direction for the element stress (stress resultant) output (default: 0). The element stress
coordinate system will be used if direction=0. The material axes (Zm, Yym, zm) will be
used if direction=1; the material axes (Ym, Zm, zm) Will be used for direction=2; and
the material axes (zm, Zm, Ym) Will be used for direction=3. For isotropic materials, the
first material axis is replaced by the corresponding global axis (see Section 4.3.3.9 of the
CSM Testbed User’s Manual, ref. 3.4-2).

3.8.5.3 ERROR_TOL

Convergence criterion for eigenvalues (default: 0.0001). For the k-th iteration, the error
measure for the i-th eigenvalue is

' (R4l

The i-th eigenvalue is converged if €¥ is smaller than ERROR_TOL.

5/24/90 CSM Testbed Procedures Manual 3.8-5

Procedure L_VIBRAT 2 Solution Procedures

3.8.5.4 FUNCTION

Select function to be performed by procedure L_VIBRAT_2 (default: ALL). This procedure
may be used to perform four functions. For FUNCTION=ALL, the element data are initialized
and elemental stiffness matrices formed; nodal resequencing may be performed, the mesh
topology is analyzed, the system stiffness matrix is assembled and factored, the displace-
ment solution is obtained, optionally element stresses (stress resultants) and internal nodal
forces (reactions) computed and the eigenproblem is solved. For FUNCTION=FACT_SOLV, pro-
cedure L_VIBRAT.2 assumes that the system stiffness matrix has previously been assembled
and that nodal resequencing has been performed. The procedure then proceeds to factor
the system stiffness matrix, solves for the displacement solution, optionally computes the
element stresses (stress resultants) and internal nodal forces (reactions) and solves the
eigenproblem. For FUNCTION=SOLV, procedure L_VIBRAT_2 assumes that the system stiff-
ness has previously been formed and factored. The procedure then proceeds to solve for
the displacement solution, optionally computes the element stresses (stress resultants) and
internal nodal forces (reactions) and solves the eigenproblem. For FUNCTION=EIGEN, pro-
cedure L_VIBRAT_2 uses a previously computed prestress state in solving the eigenvalue
problem. Using the FUNCTION argument, the user may solve for a variety of constraint
(boundary conditions) sets on a given model subjected to a variety of loading conditions.

3.8.5.5 INIT_VECTOR

Number of initial vectors used to span the subspace (default: 0). This argument defines
the number of trial vectors used to initiate the subspace iteration. If INIT_VECTOR=0, the
number of initial vectors will be calculated by the procedure as

INIT_VECTOR=MINIMUM (2*N_MODES, N_modes + 8)

3.8.5.6 IsEg

Resequencing method to be used (default: -1). If the argument RENUMBER is <true>,
then nodal resequencing will be performed using processor RSEQ. The method used by
processor RSEQ to resequence the nodes depends on the value of ISEQ. If the argument
ISEQ is greater than or equal to zero, then that method will be used (i.e., method=0,1,2,3;
see Section 6.1 of the CSM Testbed User’s Manual, ref. 3.8-1).

3.8.5.7 KNAME

First word of the dataset name containing the assembled stiffness matrix (default: K).

3.8.5.8 LDI
Logical device index (default: 1).

3.8.5.9 LOAD_SET

Load set number (default: 1). This argument selects which load set to use as a right-hand
side vector.

3.8-6 CSM Testbed Procedures Manual 5/24/90

Solution Procedures Procedure L_VIBRAT 2

3.8.5.10 MASS_TYPE

Type of mass matrix (default: CONSISTENT). If MASS_TYPE=CONSISTENT, the element pro-
cessor will generate consistent element mass matrices that will be assembled by processor
K to form the system mass matrix. If MASS_TYPE=DIAGONAL, the element processor will
generate a diagonal or lumped mass matrix.

3.8.5.11 MAX_ITERS

Maximum number of iterations (default: 20). This argument specifies the maximum num-
ber of iterations that can be used per call to eigensolver.

3.8.5.12 N_MODES

Number of converged eigenvalues desired (default: 1). This argument specifies the number
of eigenvalues to calculate to a convergence criterion of ERROR_TOL.

3.8.5.13 PRINT

Flag to print modeshapes (default: <false>). If printing of these computed results is
requested, processor VPRT will be used to print the vibration modeshapes.

3.8.5.14 REACTION

Flag to compute the internal nodal forces (default: <true>) If the argument REAC-
TION=<true>, then the internal forces will be computed by calling procedure INT_FORC
(see Section 6.2).

3.8.5.15 RENUMBER

Flag to resequence node numbers prior to equation solving (default: <true>). If the argu-
ment RENUMBER=<true>, then processor RSEQ will be used to perform nodal resequencing,
otherwise no resequencing will be performed. Note that the nodal resequencing may greatly
reduce the time required to factor and solve the linear system of equations.

3.8.5.16 SHIFT

Eigenvalue shift (default: 0.0). Converged eigenvalue will only be obtained for eigenvalues
greater than SHIFT. The shift parameter refers to the frequency squared (i.e., w?) for
vibration problems.

3.8.5.17 STRESS

Flag to compute element stresses or stress resultants (default: <false>). If the argument
STRESS=<true>, then the element stresses will be computed at the location and in the
direction specified by the arguments LOCATION and DIRECTION, respectively, by calling
procedure STRESS (see Section 6.4).

5/24/90 CSM Testbed Procedures Manual 3.8-17

Procedure L'VIBRAT 2 Solution Procedures

3.8.5.18 VCON_SET

Constraint set number for vibration analysis (default: 1). This argument selects which
constraint set to use in solving the linear vibration problem.

3.8.6 PROCEDURE FLOWCHART

L_VIBRAT.2 (main procedure)
L_STATIC (linear static analysis procedure)
ES (initialize, form K and M)
FACTOR (factor assembled stiffness matrix)
SOLVE (solve linear system of equations)
STRESS (stress/strain recovery procedure)
ES (calculate element and nodal stress/strain)
INT_FORCE (internal force procedure)
ES (internal force calculation)
ES (form K,)

FACTOR (factor using vibration boundary conditions)

3.8.7 LIMITATIONS

None.

3.8.8 ERROR MESSAGES AND WARNINGS

None.

3.8.9 USAGE GUIDELINES AND EXAMPLES

Procedure L_.VIBRAT_2 may be used by preceding the procedure name by the *call direc-
tive. Procedure arguments may be changed from their default values by including any or
all the arguments and their new values when the procedure is called. A space or blank
is required between the end of the procedure name and the left parenthesis.

*call L_VIBRAT_2 (FUNCTION = ALL ; -- . Select function
VCON_SET =1 ; -- . Select vibration constraint set
ERROR_TOL = .0001 ; -- . Eigenvalue convergence criterion
INIT_VECTOR = O ~- . Number of initial vectors

ISEQ -1

-
)
.
’

-- . Select resequencing method

3.8-8 CSM Testbed Procedures Manual 5/24/90

Solution Procedures Procedure L_VIBRAT 2

KNAME = K ; -~ . First word of stiffness matrix
-- . dataset name
MAX_ITERS = 20; -- Maximum number of iterations
N_MODES = 1 ; -- Number of eigenvalues
CONS_SET = 1 ; -- . Select constraint set
DIRECTION = O ; -- . Select direction for element stresses
LOAD_SET =1 ; -- . Select load set
| REACTION = <false> ; -- . REACTIONS flag
i STRESS = <false> -- . STRESS flag
PRINT = <true> ; -- . PRINT flag
RENUMBER = <true> ; -- . RESEQUENCING flag
SHIFT =

0.0 ; Eigenvalue shift
)

Before procedure L_VIBRAT.2 is called, the global macrosymbol eigensolver_name should
be defined as described in Section 3.8-3; otherwise, the default value of EIG2 will be used.

3.8.10 PROCEDURE LISTING

3.8.11 REFERENCES

3.8-1 Stewart, Caroline B.: The Computational Structural Mechanics Testbed User’s
Manual. NASA TM-100644, October 1989.

3.8-2 Bostic, S. W. and Fulton R. E.: A Lanczos Eigenvalue Method on @ Parallel Com-
puter. ATIAA Paper No. 87-0725-CP. '

3.8-3 Jones, Mark T. and Patrick, Merrell L.: The Use of Lanczos’s Method to Solve
the Large Generalized Symmetric Definite Eigenvalue Problem. NASA CR-181914,
September 1989. (Also available as ICASE Report No. 89-69).

5/24/90 CSM Testbed Procedures Manual 38-9

Procedure L_VIBRAT_2 Solution Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

3.8-10 CSM Testbed Procedures Manual 5/24/90

Solution Procedures NL_STATIC.1

3.9 Procedure NL_STATIC_1
3.9.1 GENERAL DESCRIPTION

Procedure NL_STATIC_1, written by G. M. Stanley of Lockheed Palo Alto Research Labora-
tory, performs nonlinear static analysis based on a modified Newton/Raphson incremental
strategy for automatic load-step control (e.g., ref. 3.1). Procedure NL_STATIC_1 relies on
the Generic Element Processor (i.e., structural element processors, ESi) and hence has a
corotational option for geometric nonlinearity that enables arbitrarily large rotations.

Procedure NL_STATIC_1 solves a nonlinear algebraic equation system of the form:
firt(d) = £°()) (3.9-1)

where £'™ is the nonlinear internal force vector for the discrete (i.e., finite element) system,
£°*t is the external force vector, d is the displacement vector, and) is a load factor. The
basic modified Newton/Raphson procedure solves this system of equations by linearizing
it at each load level (i.e., fixed)), leading to the solution of the following linear equations:

K 6d£:ill) = r(dﬂx) An-H)

i+1 i i+1
ds;+1) = dsnl] + 6d$z+1)

(3.9-2)

within an iteration loop where n+1 is the current (fixed) load-step number, i+1 is the itera-
tion number at that load-step, &d is the iterative displacement change, andr = f*** — £*™*
is the nonlinear residual force vector. K is the effective tangent stiffness matrix, which
is updated only at the first iteration of selected load steps (though typically at every
step). Iteration is continued until the inner product of éd and r become smaller than a
user-specified error tolerance.

An arc-length constraint is added to the above equations so that i) the user doesn’t have
to select the load increment (AX = An41 — Ap), and ii) the solution algorithm can auto-
matically traverse limit points — maxima and minima in the load-displacement “curve”.
The user need only specify the initial load factor, A;; the constraint equation converts
this to an “arc-length” increment in load-displacement space, and adaptively adjusts this
increment based on the iterative performance of the algorithm. Details of this algorithm
are given in the theory and algorithm sections.

3.9.2 THEORY

3.9.2.1 Introduction

Procedure NL_STATIC_1 performs a quasi-static analysis of a system of nonlinear equi-
librium equations using an adaptive arc-length-controlled Newton/Raphson incremen-
tal/iterative solution algorithm. The arc-length method adopted here is based on a variant

5/22/90 CSM Testbed Procedures Manual - 3.9-1

PRECEDING PAGE BLANX NOT FILMED

NL_STATIC.1 Solution Procedures

of Crisfield’s algorithm (ref. 3.1), where instead of using a nonlinear (quadratic) arc-
length constraint equation in conjunction with the linearized equilibrium equations, the
constraint equation is consistently linearized as well. This eliminates the pitfalls associ-
ated with quadratic root selection in Crisfield’s algorithm. By combining this modification
with i) polynomial extrapolation of converged solutions to obtain step-predictor solutions,
ii) an energy error norm that properly weights translational and rotational freedoms, and
iii) generalization to large rotations, specified displacements and live loads; the present
algorithm is both more general and more robust than the basic algorithm. Additional
enhancements to overcome hard singularities at limit and bifurcation points are currently
under development; and will be incorporated as procedures at a later date.

3.9-2 CSM Testbed Procedures Manual 5/22/90

Solution Procedures NL_STATIC._1

d
6d
Ad
d,
Ad:,
&d
Al

~ezt
fint

r

K

6d

6d*
num-._cuts
num.div
Cn

€

€

€ref

€tol

AX
K‘B.

~8

d.

Displacement vector.

Iterative change in d.

Incremental (load-step) change in d.
Displacement vector at iteration i of step n.

Incremental (step) change in d. Adfjj,’) = df:?H —d,

~ezxt

Tangential displacement = K~'f

Incremental arc-length (step) parameter.

External force vector — base load.

Internal force vector.

Residual force vector.

Stiffness matrix.

Basic (fixed-load) iterative change in d.

Linear combination of §d and &d.

Number of times load step has been cut in half at current step.
Number of consecutive iterations at which divergence occurs.
Extrapolation coefficient corresponding to step n.

Relative error in energy norm.

Absolute error in energy norm.

Reference value of ¢; initialized as zero.

Relative error tolerance (default: 10~4).

Load factor.

Incremental (load-step) change in A.

Stiffness submatrix coupling specified (s) displacement components with force
components corresponding to unknown (u) displacements.

Base value of specified displacement vector.

Current value of specified displacement vector. d* = A d’.

3.9.2.2 Nonlinear Equations

The set of nonlinear equations solved by the present algorithm consist of: i) the system
of equilibrium equations for the discrete (finite element) model, and ii) a single constraint
equation governing the maximum “arc-length” to be traversed in a single solution incre-
ment along a curve in load-displacement space. These equations may be expressed as

follows:
r(d,A\)=0 (Equilibrium) (39 -3)
c(d,)) =0 (Arc-length Constraint))
5/22/90 CSM Testbed Procedures Manual 39-3

NL_STATIC_1 Solution Procedures

where d is the displacement vector representing all of the degrees-of-freedom (DOF's) for the
discrete model, and) is an external load parameter. In conventional load- or displacement-
controlled solution algorithms, X is usually specified by the user. In an arc-length controlled
algorithm like the present one, X is treated as an additional unknown. Thus, there are
just as many independent equations in equation 3.9-3 as there are unknowns. The vec-
tor r represents the residual (or out-of-balance) force vector, which is identically zero at
equilibrium.

For the special case of:

e Displacement-independent loading
e Proportional (one-parameter) force loading
¢ Load-independent arc-length constraint

r and c take on the following form:

r(d,\) = AT — £"Y(d)
o(d,)) = |Ad|? - A

(3.9 — 4)

~ezt .
where T is a normalized (base-value) external load vector, f*** is the nonlinear internal

force vector, Ad is an incremental displacement vector, defined as
Ad =d - d, (3.9 -15)

in which d, is the known displacement vector at a nearby (previous) configuration, and
Al is a prescribed arc-length parameter defining the size of the increment.

The problem statement then is to solve equation 3.9-3 for a statically connected set of con-
figurations, (d,), representing the load-displacement “history” of the structural model.
Note that due to the nonlinear nature of the equations, this history is not always unique.
For example, at pure bifurcation points, the present algorithm cannot determine the cor-
rect path, unless some sort of imperfection or “trigger” is introduced by the user - thus
converting the bifurcation point into a limit point. Limit points (i.e., local maximums and
minimums in the load-displacement curve) cause no difficulty for the present algorithm —
except when a load-step happens to lie “too close” to the actual limit point (see procedure
NL_STATIC.2 for a solution to this rare but frustrating problem).

3.9.2.3 Linearized Equations

To solve the above nonlinear equations, we use the modified Newton/Raphson algorithm,
which requires their linearization — i.e., first-order Taylor series expansion of the simultane-
ous equations. The solution to the linearized equations is then used to update the nonlinear
solution in an iterative process that continues until convergence has been obtained at a
given configuration. Furthermore, the final configuration is typically obtained as a series
of steps, or increments, with a new iteration cycle occuring within each step; and with in-
formation from preceding steps used to predict a starting solution at the new step. (This is

39-4 CSM Testbed Procedures Manual 5/22/90

Solution Procedures NL_STATIC_.1

commonly called an “incremental/iterative” algorithm.) Note that the iterative changes in
displacement and load-factor, which we shall denote d and 6], respectively, are different
than the incremental changes, denoted by Ad and A). The incremental load/displacement
changes are used to advance from one converged solution (d,, A;.) to another (dn11,Any1,
while the iterative changes all refer to successive approximations (ds:-){-v AS:,)H) of the same
target configuration (dn41,Ant1). Thus, éd converges to zero at a given configuration,

while Ad converges to a value dictated by the arc-length constraint equation 3.9-4b*

Linearization of equations 3.9-4 about a reference configuration (d,) results in the fol-
lowing expressions:

S or

r(d,)) = r(d,)) + —(d,))éd + ﬂ(Ii,?\‘)w\ =0
s @9-9
c(d,)) = ¢(d,}) + 55(d,1)éd + z+(d,)81 = 0

where for the special assumptions listed in Section 3.9.9.1, the partial derivatives in equa-
tion 3.9-6 become:

@Y = K@, Z@¥» =1
o A (3.9-7)
=@ =283, @ =0

where K = Of™/8d is the tangent stiffness matrix. Substituting equation 3.9-7 into
equation 3.9-6 leads to the simultaneous linear equations:

—_— ~ezxt
d=r
_K6 T + 6Af (3.9 — 8)
2Ad -6d = ¢
where
= _ - = _ [K(d) for True Newton
T = r(d,X), ¢ = od,2), K = {K(dn) for Modified Newton (3.9-9)
Solving the first of equations 3.9-8 for éd leads to
fd = K [F +7 6)\] = 6d +6d6) (3.9 - 10)
where
§d = R__lf
-~ ——]1 ezt (3‘9 - 11)
od = f

* The reason for using a series of increments, instead of solving for the final solution in one
single increment, is that the Newton/Raphson method converges only if the starting solution
is sufficiently “close” to the final solution.

5/22/90 CSM Testbed Procedures Manual 39-5

NL_STATIC_1 Solution Procedures

Similarly, we can solve for §)\, by substituting equation 3.9-10 into equation 3.9-8b, i.e.,

¢ + 2Ad - 6d + 2(Ad - 6d)6A = 0 (3.9 — 12)
which yields
—t—-2Ad - 6d AL —|Ad|? -2Ad - &d
p = —£-24d-0d ladjl” - 2 (3.9 — 13)
2Ad - 6d 2Ad - 6d

3.9.2.4 Update Procedure

The solution update procedure — from one iteration to the next at a fixed arc-length
increment from a converged solution — consists of the following two (sequential) equations:

A2 — 2Ad - ||Ad|)?
2Ad - &d (3.9 - 14)
2) 6d = 6d + 6d6X

1)) =

where §d and §d are first computed using equation 3.9-11, and Ad is the displacement
increment from the previous converged solution to the previous iterate of the current
solution, t.e., d — d,.

Then we simply apply the update formulas:

d =
A =

d

+ 6
(3.9 - 15)
+ 86X

> Al

where special consideration must be given to equation 3.9-15a in the case of problems with
large-rotational degrees-of-freedom (see Section 3.9.2.10).

3.9.2.5 Predictor Solutions; arc-length-Constraint and Extrapolation Techniques

To obtain a prediction for d,4; and A,4; at the beginning of step n + 1 (so that the
Newton iterations may occur within a sufficiently small neighborhood of the converged
solution), we use one of the following two procedures:

1) The arc-length constraint equation 3.9-4b

or

2) Quadratic extrapolation of a series of converged solutions

3.9-6 CSM Testbed Procedures Manual 5/22/90

Solution Procedures NL_STATIC.1

The first approach (arc-length constraint) leads to the following predictor equations:

dﬂ: =d, + AAS—{)—I §dn+1
N — —

(1)
Adn+1

AL, 3.9-16
A=A, L ()
ll6d 1]
N, o’

1
A,\f‘ll

where the sign in front of A in equation 3.9-16b is taken as the sign of the determinant
of K. Equation 3.9-16a was obtained by noting that

ad®), = sdQ), (3.9 -17)
which from equation 3.9-10 can be written as
6d), = sdl), + AN, 6d,y = AN, 8dnp (3.9 — 18)
since
d), =X 'r, =K'0=0 (3.9 - 19)
and
N, = A, (3.9 — 20)

Then, equation 3.9-16b follows by substituting equation 3.9-16a into the arc-length con-
straint equation

1ad$,) = Al (3.9 —21)

The second approach (quadratic eztrapolation) leads to the following predictor equations:

dﬁl.?.l = ¢ndp + cno1dn-1 + cn—2dn_2

A(l) —

(3.9 - 22)
ntl — CnAn + Cnaa An—1 + Cno2An_2

where (dp,An), (dn-1,An-1), and (dn-2,An_2) are the converged solutions at the three
previous (consecutive) load steps, and the ¢; are the quadratic Lagrange interpolation

functions:
_ (en+l - en—2)(£n+l - ln—l)
(zn - ln—Z)(ln - en—l)

(ln+l — ln—2)(£n+1 - ln)
nml T 3.9 - 23
et (Ln-1 = la2)(bnz — £3) ()
(£n+l - ln—l)(ln-{-] - f,;)

n-2 = (en—Z - ln—l)(£n—2 - ln)

5/22/90 CSM Testbed Procedures Manual 39-7

NL_STATIC.1 Solution Procedures

The arc-length parameter, £, is computed by arbitrarily setting £,,_, = 0, and accumulating
the incremental parameters, Af. Thus, :

ln—2 =0
en—l = Aen-—l

39—-24
en = ln—l + Aen ()

where the arc-length increments, Al,_3, Al,_;, Al,, and Al,, are defined by the adap-
tive algorithm described in Section 3.9.2.6.

Note that unlike the arc-length-based predictor equations 3.9-16, the above extrapolation
formulas do not require any additional information to determine the direction (i.e., sign)
of the load increment. This is because the curvature of the quadratic polynomial used
for extrapolation automatically senses, and enables the traversal of, turning points in the
solution path.

Quadratic extrapolation is usually much more efficient than the arc-length constraint ap-
proach for computing the predictor solutions. In some cases, extrapolation can reduce the
number of load steps by up to an order of magnitude. However, in other cases ~ e.g.,
around very sharp turns in load-displacement space — quadratic extrapolation may be too
smooth to capture the sudden changes. In such cases, small, arc-length-controlled predictor
steps may be the most practical strategy for getting through the critical phases. (Adaptive
algorithms for selectively switching between extrapolation and arc-length step predictors
are recommended as a topic for future research.)

3.9.2.6 Adaptive Load-Step (arc-length) Selection

To advance the solution from one load-step (n) to the next (n+1), it is also necessary to
select a new arc-length increment, Al,;;. Note that this parameter, which represents a
distance traversed along the load-displacement “curve”, is (by definition) always positive,*
but may grow or shrink depending on solution difficulty. To automate the process, we use
the following simple, but fairly robust, heuristic algorithm suggested by Crisfield (ref. 3.1):

Desired number of iterations

Alyyy = x Al, (3.9 — 25)

~ Actual number of iterations
where actual refers to the number of iterations required for convergence at the previous
step (n), and the desired number of iterations is user-specified and typically around 4.
This causes the step-size to grow or shrink in direct proportion to the convergence rate
of the nonlinear solution, and generally leads to a nearly constant number of iterations
(i.e., computations) per step. In fact the number of load-steps will automatically adjust
according to the curvature of the load-displacement curve, with more steps being required
around turning points (high curvature) and less along smooth stretches (low curvature).

* This is in contrast to conventional load-controlled algorithms, which require explicit selection
of the load increment, — a parameter that may change sign at limit or bifurcation points.

3.9-8 CSM Testbed Procedures Manual 5/22/90

Solution Procedures NL_STATIC_1

Note that the initial value of the arc-lengih increment, A¢;, must be specified — at least
indirectly — by the user. However, since the user typically has no physical insight about the
magnitude of Af;, we employ the arc-length constraint equation 3.9-10 to compute it in
terms of the initial load-factor, A); — which the user can typically estimate based on some
prior linear analysis. The expression used to compute the initial arc-length increment is
thus

Al =) ||6d,| (3.9 — 26)
which was derived by rewriting equation 3.9-16b as
Alnyy = Ay |[6dnsq|| (3.9 - 27)
setting n = 0 and noting that
Ay = A=) = A (3.9 —28)

The “tangential” displacement, 631, in equation 3.9-26 is simply the linear solution ob-
tained with the normalized external load vector as right-hand-side, i.e.,

~ezt

éd; = K1(0)F (3.9 — 29)

3.9.2.7 Specified Displacements

The presence of specified-displacement loads (in addition to specified-force loads) af-
fects the above algorithm in three subtle — but important — ways:

i) It modifies the definition of the residual force vector, r, since the internal force
vector, f*™*, becomes a function of the load-factor, A.

ii) Due to the above dependence, the derivative of r with respect to A gains an ad-
ditional term, which in turn modifies the definition of the tangential displacement
vector, éd.

iii) The specified displacement components must be included in all displacement norms
and inner products appearing in the arc-length constraint equation, and in the
computation of nonlinear error estimates.

The above modifications can be expressed mathematically as follows. First, define a spec-
ified displacement vector, d*, which has zeros everywhere except in the components that
are user-specified. Further assume that this specified displacement vector is scaled by the
same load-factor, A, as the external force vector, i.e.,

d* = ad (3.9 — 30)

where d' is a normalized vector containing the reference (A = 1) values of specified displace-
ment. The expression for the residual force vector, equation 3.9-4, can then be re-written
as

r(d,)) = AT — fin(d,d*) (3.9 - 31)

5/22/90 CSM Testbed Procedures Manual 39-9

NL_STATIC.1 Solution Procedures

and its derivative with respect to A in equation 3.9-7 becomes

3r ~ezxt af‘nt 3d‘ ~ezxt afint ~8

But: apint
S5 - K (3.9 — 33)

where K%’ is the partition of the tangent stiffness matrix that couples specified displace-
ment increments to unknown force increments, i.e., the eztended stiffness matrix may be
partitioned as

(3.9 — 34)

K‘:[K K]

Klu K”
where K"* is the active block of the stiffness matrix, i.e., in the present terminology:

K = K* (3.9 — 35)

Thus, the new load-derivative of the residual force vector may be expressed as

Br ~ezt ~8

o = f - Kvd (3.9 — 36)

and the corresponding tangential displacement vector from equation 3.9-11b becomes:

sd = K'E" -k"d) (3.9 - 37)

where the superposed bar is defined in equation 3.9-9.

Note that the solution indicated in equation 3.9-37 is much like what is required for linear
analysis with specified displacements: The right-hand-side is modified by multiplying a
part of the extended stiffness matrix times the (normalized) specified displacements. This
is in contrast to the solution for éd in equation 3.9-11a, where specified displacements are
accounted for exclusively through their nonlinear dependence in the residual force vector,

r.

3.9.2.8 General Loading (e.q., “Live” Loads

The last restriction we shall lift is the simple form of the external force vector given in
equation 3.9-4a, i.e., we shall replace:

~ezxtl

£t = AT (3.9 — 38)

£t = AT(d) (3.9 - 39)

3.9-10 | CSM Testbed Procedures Manual 5/22/90

Solution Procedures NL_STATICA1

This allows for the kind of displacement-dependent (or “live”) loading that arises from
hydrostatic, or follower, forces. The residual force vector then becomes

t
ext .\ _ ']
\4)

Y
J

~
£
i

£L)

int
A = A £74(d, A (3.9 — 40)

and the only modifications to equations 3.9-7 are that i) the tangent stiffness matrix
acquires a load-stiffness contribution, t.e.,

where zt
Kload - a;d (3.9 - 42)

and ii) the external-force contribution to the tangent load vector, r , is no longer a con-
stant, i.e.,

a ~ezr ~8

T~ a) - k*(d)d (3.9 — 43)
li)

Note that we have not allowed for a general external-load history, in which both the
magnitude and direction of the external force vector may change from step to step, e.g.,

£t = £°*'(d,) (3.9 — 44)

Nor have we allowed for multiple load-factors, A4, A, . . . , which can arise when several inde-
pendent load systems are acting on a structure. Such complications require straightfoward
generalization of the present arc-length algorithm, and will be considered as necessary for
future applications.

3.9.2.9 Convergence Criteria

As a measure of the error in the nonlinear equilibrium equations (not including discretiza-
tion errors), we use an energy norm, which is the inner product of the residual force vector
and the iterative displacement-change vector. This is effective for two reasons: i) it involves
only a single error norm, in contrast to algorithms that check displacement and residual
errors independently; and ii) the inner product of force and displacement introduces a
natural scaling of different types of generalized freedoms (for example rotational freedoms
versus translational freedoms) — by weighting each generalized displacement with its cor-
responding (conjugate) generalized force. Thus, sensitivity to physical units and choice of
independent variables is minimized.

Convergence of the nonlinear solution process at a given load-step, n + 1, is checked by
evaluating the following energy error norm at each iteration, i:

lerror]), = y/r$hs - 645k, (3.9 — 45)

5/22/90 CSM Testbed Procedures Manual 3.9-11

NL_STATIC. Solution Procedures

and comparing it with some user-specified fraction of a reference error norm. Thus, con-
vergence is defined as satisfaction of the condition:

||error||$3Ll < tolerance x ||e1'ror||:;°_;_f1 (3.9 — 46)

where tolerance is the user-specified fraction, and the reference error is defined as:
||e1‘ror||:;:{1 = MAX(HerrorHS:_{)_l, ||error||7ef) (3.9 — 47)

Note that at the first load-step, ||error||;¢/) is assumed to be zero.

The above convergence criterion can be very sensitive to the user-specified error tolerance.
Typically, a value of 10~3 is adequate, but for some problems this may be an order of
magnitude too large — or even too small (i.e., causing more iterations than are actually
needed). More adaptive and robust error tolerances are a recommended topic for future
research.

3.9.2.10 Large Rotations

In problems involving rotational freedoms, e.g., with beam or shell elements, the following
modification to equation 3.9-15a is used when the rotation angles become large (say greater
than 10 degrees). First, note that the system displacement vector, and its iterative change,
are typically partitioned by nodes, i.e.,

d] 6dl
d, 6d,

d = . ’ 6d = . (3.9 — 48)
dNnodes 8dNnodes

where Nnodes is the total number of nodes in the problem. At nodes with both translational
and rotational freedoms we can further partition:

dy = {,E} §dy = {‘;‘;i} (3.9 — 49)
in which
uy = translation at node A
duy = iterative change in translation at node A
T4 = rotation triad at node A
604 = iterative change in rotation pseudo-vector at node A

Thus the total displacement, d 4, is represented by the combination of a nodal translation,
and a nodal triad that describes the orientation of a “rigid body” attached to the node. The
iterative change in displacement, §d 4, is represented by an iterative change in translation,
and an iterative change in a rotation pseudo-vector. The latter quantity uniquely describes
iterative changes in the rotation triad.

3.9-12 CSM Testbed Procedures Manual 5/22/90

Solution Procedures NL_STATIC_1

TEY* LY .Y £ 2 on 1> :

With the above definitions, the modified version of equation 3.9-15a at an individual node
may be written as follows. For the translational freedoms we simply have:

ug = Uy + éuy (3.9——5())

whereas for the rotational freedoms we use:

T4 = ezp(604) T4 (3.9 - 51)

where ezp(60 4) is the ezponential of 8 4, which is an orthogonal (rotation) matrix whose
rotation angle and direction correspond to the magnitude and direction of the pseudo-
vector §0 4. The following explicit expression for this matrix is known as as “Rodriguez’
formula” (see, e.g., ref. 3.2):

ezp(8) = T + % ® + (_1_‘0_‘;‘_’_’;"_) o (3.9 - 52)
where © is the skew-symmeiric matrix corresponding to the pseudo-vector, 6, i.e.,
®h =60 x h (3.9 - 53)
for any vector h, so that
0 -6 6, 0,
@ = 6 0 -6,1, 0 =<0, (3.9 — 54)
—02 01 0 03

and 8 is the magnitude of 9, i.e.,

8 = [|8] = (/62 +62 + 62 (3.9 - 55)

where 6;(i = 1,2, 3) are Cartesian components of 8. Note that the pseudovector, 8, behaves
as a true vector in all ways except for vector addition — since the sum of two arbitrary large
rotations is not a vectorial sum (see refs. 3.3or 3.4for the rules of rotation pseudovector

addition).

The rotation update formula given by equation 3.9-19 need only be performed at nodes
with rotational freedoms. It may also be used to perform incremental updates as well as
iterative updates, i.e.,

T3 = ezp(A04) T (3.9 — 56)

The above relation is employed in the computation of the predictor solutions described by
equations 3.9-16 or 3.9-22. For the eztrapolated predictor (equation 3.9-22), the extrapo-
lated rotation triads are obtained by: i) extrapolating the rotational components of the
displacement vector precisely as indicated by equation 3.9-22a; ii) computing the rotation
increments between steps n and n + 1 by subtracting the rotational components of d,
from those of the extrapolated vector, d,+1; and iii) plugging the corresponding rotation-
increments (Af,4) into equation 3.9-56. Note that while the rotation components of the
“total” displacement vectors, d’; and d;“ are meaningless for large rotations, the differ-
ence between these to vectors defines a valid incremental rotation pseudo-vector, Af 4.

5/22/90 CSM Testbed Procedures Manual 3.9-13

NL_STATIC_1 Solution Procedures

3.9.3 ALGORITHM

General Algorithm
(1) STEP LOOP: forn = 2, 3,4 ... (step = n+1)

(1.1) Extrapolate Solution for Predictor
call EXTRAP (AZ,..H,AZ", Aen_] — CpyCn—14Cn-2)

As,l.*)q = CpAn+ Cno1An_1 + Cn_2An_2
d£,1.|)..1 = cndp +cn—1dn_3 + cn—2dn_2

Add), = a), -d. (TY), = R(AdY),)T.)
Y, = A0 -,

(1.2) Solve for Tangential Displacement based on Predictor

6 = K(dl),) [F™ + x+d’]

(1.3) Form Residual based on Predictor

1 1 1 1) ezt in 1
rsz-i)—l = r(dSH)-l”\St-l)-l) = ASH)-lf ~f t(dflll

call CHK.CONV (), AdY) | eres = &, 6res)

(2) ITERATION LOOP:i =1, 2,...(iter =i+1 =2, 3, ...)
(2.1) Solve for Basic Iterative Displacement Change

sd = K@) 9,

(2.2) Solve Linearized arc-length Constraint Eqn for New Load Factor

A — AdY, - adl), - 2(Adl), - 5d)
2(AdS), - &d)

6 =

XD = X0+ 6

3.9-14

CSM Testbed Procedures Manual g 5/22/90

Solution Procedures NL_STATIC.1

(2.3) Update Displacements

§d = 6d + §)\éd
diy = di, +6d (TS = R(A) TS,

AdGHY = adl), +4d
(2.4) Compute New Residual

i+1 i+1 i+1 i+1)ypezt in i+1
r£;+1) = r(d$;+1)a'\£;+1)) = ’\$;+1)? - f t(dS;-H))

(2.5) Check Convergence
call CHK_CONV (r(1D, 6d,e9, €., 801, num.div —
ei+1) <CONVERGED>, <DIVERGED>)
if (<CONVERGED>) then

num.ters_required = iter

Alpyr = AZ,,“(num iters_desired)

num-ters_requir
ne—n+l

go to (1) STEP LOOP
elseif (<KDIVERGED> .or. (iter > max_iters)) then

if (num_cuts < max_cuts) then

Alpyy = Alppy/2

num_cuts = num_cuts + 1

go to (1.1)
else
STOP
endif .
else
te—1+1
go to (2) ITER LOOP
endif

5/22/90 CSM Testbed Procedures Manual 3.9-15

NL_STATIC_ 1 Solution Procedures

Starting Procedure: Step 1 (n=0)
Replace Algorithm Steps (1.1)-(1.2) by:

d® = o
sd = K'(d") [?“‘ " K“a‘]

1= Astart (user specified)
ISIREEIPY

At = AP ||sd)
Adl” = axVéd

al" = aa{"

(Also, form K(d(ll)) before next solve.)

Starting Procedure: Step 2 (n=1)
Replace Algorithm Steps (1.1)-(1.2) by:

al” - d,

~exl

§d = K 1(d) [f 4 K“-’a’]

AxY = At/||8d
MWD = A+ Ay
Ad"” = Axsd
a0 = 4, +Ad” (T = R(ADVT)

i

(But don’t reform K(dgl)) until step 3.)

3.9-16 COSM Testbed Procedures Manual 5/22/90

NL_STATIC1

Input: r, 6d, €9, €.cs, o, num.div, iter

bea. A(i41) o : — . —_
; Output: €**Y, num.div, <CONVERGED>, <DIVERGED>

(1) Compute Energy Error Norm: ('t = |r . 6d|

((+1)

(2) Normalize: €(i+1) = &7

(3) Check Convergence / Divergence:
if (€(11) < €1) then
<CONVERGED> = TRUE

else
if (€6+1 > €9) then
num._div = num_div + 1
if (numdiv > 1) then
<DIVERGED> = TRUE
endif
endif
endif

Modification for Iteration = 1 (i=0):

(1.5) if (iter = 1) then
if (€V > €pes) then
€ref = 5(1)

endif
endif

5/22/90 CSM Testbed Procedures Manual

3.9-17

NL_STATIC_I Solution Procedures

EXTRAP: Procedure to Compute Quadratic Extrapolation Coefficients

Input: Alnyy, Aln, AL,

Output: ¢,y €n-1, Cn-2

(n——l - A[n—l

en = gn——l + Zxe'n

£n+1 = en + Ae'n.-i‘l

A{tot == enfl - (n-vl

Cn = (bnt1)(Alioy)
" T (e)(AL)
ey = —Ent1)(Blnyy)
h (Ln-1)(AL,)
Cn_2 = (Alny1)(Alior)

(Zn—v—l)(en)

3.9-18 CSM Testbed Procedures Manual 5/22/90

Solution Procedures NL_STATIC_1

3.9.4 PROCEDURE USAGE

Procedure NL_STATIC_1 may be invoked by the *call directive:

*call NL_STATIC_1 (argl = vall; arg2 = val2; ...)|

where arg: are argument names and vali are the corresponding values you wish to give
them. The following are valid arguments for procedure NL_STATIC_1; note that those
without default values are mandatory, while the others are optional.

Argument Default Value Meaning

BEG_LOAD -- Starting load factor (>0.)

BEG_STEP -- Starting step number (>0)

MAX_LOAD -- Upper_bound on load factor

MIN_LOAD -~ Lower_bound on load factor

MAX_STEPS -- Maximum steps to compute

COROTATION 1 Corotational Update Option

DES_ITERS 4 Number of iterations per step desired
EXTRAPOLATE <true> Perform quadratic extrapolation of solution
FAC_STEPS 1 Steps_per_refactoring

MAX_ITERS 9 Maximum iterations per step

MAX_CUTS 3 Maximum number of successive step cuts
NL_GEOM 2 Geometric Nonlinearity Level (1 or 2)
NOMINAL_DB NOMINAL.GAL Results database file

NOMINAL DS RESPONSE.HISTORY Results dataset

N_SELECT 0 Number of nodes for selected disp. output
PATH_SCALE 1. arc-length scale factor for restarts
SEL_NODES 0 List of nodes for selected output

SEL_DOFS 0 Corresponding list of nodal freedoms (1-6)
TOL_E 1.E-3 Relative error tolerance in energy norm

In the above definitions, the term step refers to a load step. The total response is auto-
matically subdivided into load steps, with the starting load factor prescribed by the user
- using BEG_LOAD. Subsequent load step sizes are automatically selected by the algorithm,
using an arc-length constraint, as described in the theory section.

5/22/90 CSM Testbed Procedures Manual 3.9-19

NL_STATIC.1

Solution Procedures

Table 3.9-1 Datasets Input/Output by procedure NL_STATIC_1
Dataset Description Lib | Input |Output
<ES_NAME>.EFIL.0.nnod |Element Computational Data | 1 Vv 4
ES.SUMMARY.0.nnod ES Processor Status 1 Vv
DEF.<ES_NAME>.0.nnod |Element Defn. (Connectivity) | 1 Vv
DIR.<ES_NAMEp>..0.nnod |Element EFIL Directory 1 Vv
INC.DISP System Displacement Vector 1 Vv 4
INT.FORC.step Nodal Rotation Pseudovectors | 1 v Vv
JDF1.BTAB.1.8 Model Summary 1 Vv
JLOC.BTAB.2.5 Nodal Coordinates 1 Vv
PROP.BTAB.x Material/Section Properties 1 V4
QJJT.BTAB.2.9 Nodal Transformations 1 V4
TOT.DISP.step System Displacement Vector 1 Vv 4
TOT.ROTN.step System Force Vector 1 Vv 4

where step is the load-step number, and ranges consecutively from 1 to the total number

of steps computed.

3.9-20

CSM Testbed Procedures Manual

5/22/90

Solution Procedures NL_STATIC_1

Table 3.9-2 Sub-Procedures Invoked by procedure NL_STATIC_1

Procedure Type Function

NL_STATIC_1 |Internal |Main procedure
CHKCONYV Internal | Check convergence

DEFNS Internal | Defines recursive macrosymbols

ES External |Element utility procedure

EXTRAP Internal |Quadratic extrapolation for next load step
INITIAL Internal |Initialize displacements and rotations

POSTSTEP Internal |Print load step summary
POSTRESS Internal | Archive load step data
RESIDUAL Internal |Forms residual-force vector

SOLVE Internal | Solves linear equation systems
STIFFNESS Internal | Forms and factors stiffness matrix

TANDIS Internal |Solves for tangential displacements

3.9.5 ARGUMENT DESCRIPTION

3.9.5.1 BEG_LOAD

Starting load factor ();) for the nonlinear analysis. For applied force loading, this factor
is multiplied by the reference applied force vector to obtain the starting load vector, i.e.,

ezt

flezt - Al 'i-
where °°' is the reference applied force vector stored in dataset APPL.FORC.1. For

applied displacement loading, the starting load factor is applied to the reference applied
displacement vector, which is then used to compute the initial internal force vector, i.e.,

fll"n.t(l) — fint(Alaez‘)

where d°*' is the reference applied displacement vector stored in dataset APPL.MOTI.I‘.
Note that this argument is irrelevant for re-start runs (i.e., BEG_STEP > 1).

5/22/90 CSM Testbed Procedures Manual 3.9-21

NL_STATIC_1 Solution Procedures

3.0.5.2 BEG.STEP

This argument defines the number of the first step to be computed in a given nonlinear
analysis interval. It is important primarily for analysis re-starts. Initially, BEG_STEP should
be set to 1. To continue an analysis in a subsequent run, after having computed and saved
“n” steps in the previous run, one would typically set BEG_STEP equal to “n+1”. For
example, if the 10th step was successfully completed in the first run, then it could be
continued in a second run by setting BEG_.STEP = 11. However, it is not necessary for
BEG.STEP to be larger than any previously computed step. That is, you may re-compute a
sequence of steps by setting BEG_STEP to the number of the first step to be re-computed.
The procedure will automatically use those steps which immediately precede BEG_STEP
(e.g., BEG_STEP-1, BEG_STEP-2 and BEG_STEP-3) to smoothly effect the restart.

3.9.5.3 COROTATION

Corotational update switch for large-rotation problems (default: <true>). This switch
should be set to <true> when the model involves finite elements that require corotation
for geometric nonlinearity. This is true of most beam and shell elements, and may be
true for some solid (3D) elements used to model shell structures. Consult the appropriate
element processor (ES:) section in the CSM Testbed User’s Manual (see ref. 3.9-5) for
specific guidelines.

3.9.5.4 DEBUG

Procedure debug switch (default: <false>). This switch should only be turned on to
obtain additional diagnostic printout for procedure debugging.

3.9.5.5 DES_ITERS

Desired number of iterations allowed for convergence at a given load step (default=4).
This parameter is used to adaptively adjust the arc-length increment from one load step
to the next, by comparing DES_ITERS with the actual number of iterations required for
convergence at the last step.

3.0.5.6 EXTRAPOLATE

Solution extrapolation switch (default: <true>). Extrapolation here refers to a technique
for predicting the displacement vector and load factor at the beginning of a new load step,
by fitting a quadratic curve through the converged solutions at the three previous load
steps. It has been found to be a very effective strategy for accelerating traversal of the
load-displacement “curve”, i.e., far fewer load steps are usually required with extrapolation
turned on, than with it turned off. One exception is near very sharp turns in the load-
displacement curve, where extrapolation may be too smooth to follow the curve, and may
have to be temporarily suppressed. (Note: EXTRAPOLATE = <false> option has not been
fully tested.)

3.9-22 CSM Testbed Procedures Manual 5/22/90

Solution Procedures) NL_STATIC_1

3.9.5.7 FAC_STEPS

Number of load steps between updating (formation and re-factoring) of the stiffness matrix
default = 1). FAC_STEPS = n implies that re-factoring will be performed every n steps,
starting with the first step of the analysis interval (BEG.STEP). Best results are often ob-
tained by allowing the procedure to re-factor at the beginning of each load step (FAC_STEPS
=1).

3.9.5.8 MAX_CUTS

Maximum number of step cuts permitted during the current nonlinear analysis interval
(default=3). A step cut refers to a halving of the arc-length increment used to advance
the solution from one step to the next. Step cuts are performed only if the maximum
number of iterations are exceeded without converging at a given load step. Note that the
relationship between the increment in “arc-length” and the increment in the load-factor,
), is computed internally by the procedure.

3.9.5.9 MAX_ITERS

Maximum number of iterations allowed for convergence at a given load step. This param-
eter is used to terminate the iteration process at a given load level. If convergence hasn’t
been obtained after MAX_ITERS iterations, the load (i.e., arc-length) increment is cut in
half and the step is repeated — until either convergence has been obtained or MAX_CUTS has
been exceeded.

3.9.5.10 MAX_LOAD

Maximum load factor. This sets an upper limit on the load level, and thus provides a
convenient way of terminating the arc-length controlled solution algorithm. Since the load
factor is actually an unknown in procedure NL_STATIC_1, there is no way of knowing a-
priori how many load steps will be required to attain a particular load level. The nonlinear
analysis is terminated when either MAX_LOAD, MIN_LOAD, MAX_STEPS or MAX_CUTS is exceeded
- whichever comes first.

3.9.5.11 MAX_STEPS

Maximum number of load steps to compute in the current nonlinear analysis run. This
provides an implicit limit on analysis run-time. Since the load factor is actually an unknown
in procedure NL_STATIC_1 (controlled by the arc-length constraint), there is no way of
knowing a-priori how many load steps will be required to attain a particular load level.
The nonlinear analysis is thus terminated whenever MAX_STEPS, MIN_LOAD, MAX_LOAD or
MAX_CUTS is exceeded — whichever comes first.

3.9.5.12 MIN_LOAD

Minimum load factor. This sets a lower limit on the load level, and thus provides a
convenient way of terminating the arc-length controlled solution algorithm. Since the load

5/22/90 CSM Testbed Procedures Manual 39-23

ORiGIAL PAGE IS
OF POOR QUALITY

NL_STATIC.1 Solution Procedures

factor is actually an unknown in procedure NL_STATIC_1, there is no way of knowing a-
priori how many load steps will be required to attain a particular load level. The nonlinear
analysis is terminated when either MIN_LOAD, MAX_LOAD, MAX_STEPS or MAX_CUTS is exceeded
- whichever comes first.

3.9.5.13 NL_GEOM

Geometric nonlinearity level: 0, 1, or 2 (default =2). A value of zero means that the
problem is geometrically linear; a value of one means that the geometric nonlinearity will
be handled globally (i.e., using corotational updates only); and a value of two means that
the nonlinear element strain-displacement relations will be used in addition to any global
treatment of geometric nonlinearity. If COROTATION = <true>, options 1 and 2 refer to
first-order and second-order corotation, respectively. The latter option can be significantly
more accurate than the former for a given finite element model — depending on which
element types are involved.

3.9.5.14 NOMINAL_DB

Name of database (GAL file) where a step-wise history of important solution parameters
and selected response variables is to be stored (default = NOMINAL.GAL).

3.9.5.15 NOMINAL_DS

Name of dataset, within database defined by argument NOMINAL_DB, where a step-wise
history of important solution parameters and selected response variables is to be stored
(default = RESPONSE.HISTORY). See the CSM Testbed Dataset Manual (ref. 3.9-6), under
dataset RESPONSE.HISTORY, for a description of the individual data records stored in this
dataset.

3.9.5.16 N_SELECT

Number of user-selected displacement components to be saved in the dataset specified
by argument NOMINAL DS (default =0). Values for these displacement components, the
locations and directions of which are specified by arguments SEL_NODES and SEL_DOFS,
respectively, are stored at every load-step.

3.9.5.17 PATH_SCALE

This floating point number represents a scale factor to be applied to the incremental
arclength (or pathlength) used for the first step of an analysis re-start run (default =1.0).
If the default (1.0) is used, the arc-length increment from the previous step BEG_STEP-1
will be used for the first step BEG_STEP. Note that this may lead to a different load-step
size than if the analysis had continued to step BEG_STEP without a re-start. To eliminate
this difference, the user can set:

[PATH_SCALE] = [DES_ITERS] / act.iters

where “act_iters” is the actual number of iterations required for convergence at step
[BEG_STEP]-1.

3.9-24 CSM Testbed Procedures Manual 5/22/90

1

Solution Procedures NL_STATIC_1

List of nodal degrees-of-freedom at which displacement histories are to be saved in dataset
NOMINAL. DS (default =1.0). There should be N_SELECT numbers in the list, in correspon-
dence with the node numbers specified by argument SEL_NODES. Values of each number
in the list must range between 1 and 6, in correspondence to the nodal degree-of-freedom
sequence (e.g., u,v,w,0;,0,,0,) specified by the START command of processor TAB.

3.9.5.19 SEL_NODES

List of node numbers at which displacement histories are to be saved in dataset NOMINAL_DS
(default =0). There should be N_SELECT numbers in the list, and node numbers can
be repeated if more than one nodal degree-of-freedom is to be saved at a node. The
corresponding nodal degree-of-freedom for each entry is specified by argument SEL_DOFS.

3.9.5.20 TOL.E

Error tolerance used to establish convergence of the nonlinear equilibrium iteration proce-
dure at each load step (default =1.e-3). The iteration loop at a given step is terminated
whenever the following condition is met:

¢ < [TOL_E]
where
r() . 54
rM) . §d®

is the relative energy error norm, r is the residual force vector, éd is the iterative displace-
ment change, and i is the iteration counter.

5/22/90 CSM Testbed Procedures Manual 3.9-25

NL.STATIC1

Solution Procedures

3.9.6 PROCEDURE FLOWCHART

NL_STABIL_1

DEFNS
INITIAL
ES
EXTRAP
STIFFNESS
TANDIS
SOLVE
RESIDUAL
ES
CHKCONV
POSTSTEP

(main procedure)

(define recursive macrosymbols)
(initial displacements and rotations)
(initialize element data)

(quadratic extrapolation for next load step)
(form and form stiffness matrix)
(solve for tangential displacements)
(solve linear system of equations)
(form residual-force vector)
(calculate residual)

(check convergence)

(print load step summary)

POSTRESS (archive load step data)

3.9- 26

CSM Testbed Procedures Manual

5/22/90

Solution Procedures NL_STATIC_1

~
4

o o
Q.U.

3.9.7.1 Number of Database Libraries

All analysis (ccmp"tat:onal) data is assumed to be resident on a single database library

(i.e., file), and that file is expected to be attached to logical device index 1 before callmg
procedure NL_STATIC.1. Additionally, important analysis statistics and re-start parame-
ters, as well as selected post-processing data, will be deposited in a separate data library,
which is automatically opened by procedure NL_STATIC_1 on logical device index 3. The
name of this secondary library is user-specified using procedure argument NOMINAL_DB,
which has the default setting: NOMINAL_ DB = NOMINAL.GAL.

3.9.7.2 Element Types

Only shell elements have been tested thus far with procedure NL_STATIC_1. While the
procedure is potentially compatible with beam and solid elements too, minor modifications
to the generic element processor may be required to handle geometric nonlinearity for these
elements.

3.9.7.3 Number of Load/Constraint Systems

Only one set of loads and constraints is accommodated by procedure NL_STATIC_1. Fur-
thermore, they must be referred to as load set 1 and constraint set 1 in the database.

3.9.7.4 Specified Rotations

Specified (non-zero) rotational freedoms are currently not implemented in procedure
NL_STATIC_1 - unless rotation angles remain moderately small (i.e., less than 10 degrees).
For larger rotations, the specification of rotation components constitutes a nonlinear con-
straint, which must be translated into the motion of nodal rotation triads, and requires

a modification to the linearized equilibrium equations. This capability is planned for a
f“""ﬁ "'ﬂrslon f\r '\"ﬁl‘el‘ﬂ"‘ﬂ NT QTATTF 1

uvuivw Vi prauy

3.9.7.5 Material Nonlinearity

Only geometric nonlinearity is accounted for by procedure NL_STATIC_1. However, this lim-
itation is really due to current limitations within the generic element processor; the global
nonlinear solution algorithm doesn’t particularly care about the source of the nonlinearity,
as long as it is properly represented by the tangent stiffness matrix and the residual force
vector.

3.9.7.6 Re-Starting from Step 1

It is currently not permitted to re-start the analysis from step 1 (i.e., re-run the problem
from the beginning) unless you either: i) delete the database and recreate the model, or ii)
*enable the original APPL.MOTI and APPL.FORC datasets. The reason for this is that
the original APPL.MOTI and APPL.FORC datasets are copied into new datasets — and
marked for deletion — by procedure NL_STATIC_1 whenever BEG_STEP = 1. This limitation
will be removed in the next version of NL_STATIC_1.

5/22/90 : CSM Testbed Procedures Manual 3.9-27

NL_STATIC.1 Solution Procedures

3.9.7.7 EXTRAPOLATE Must be Turned On

Extrapolation is the only form of load/displacement step prediction that has been thor-
oughly tested. Without extrapolation, procedure NL_STATIC_1 is supposed to use the arc-
length constraint equation to generate a predictor solution (see theory section), and use
information regarding the sign of the stiffness determinant to determine the load direction
(increasing or decreasing) between one step and the next. However, the no-extrapolation
option has not yet been quality assured. Note that the extrapolation option is the recom-
mended approach anyway.

3.9.7.8 True-Newton Iteration

Only modified Newton/Raphson iteration is provided by the current version of procedure
NL_STATIC_1. This means that the stiffness matrix is re-formed and re-factored only at the
beginning (first iteration) of every FAC_STEPS load steps (where FAC_STEPS = 1 by default).
In the next version, we plan to implement the option for true Newton/Raphson iteration,
in which the stiffness matrix can be updated at each iteration of selected load steps. This
option can be useful for problems with limit points that are nearly as sharp as bifurcation
points.

3.9.7.9 Constant Load-Increments

Currently, all load increments (except the first one) are computed automatically by proce-
dure NL_STATIC_1, using the arc-length constraint equation. Therefore, it is not possible
for the user to fix the load increment, as is done in conventional load-controlled algorithms.
Since this option may be useful for benchmarking (and research) purposes, we plan to in-
clude it in a future version of the procedure, wherein the arc-length constraint equation
will be selectively bypassed.

8.9.7.10 Singularities due to Limit Points and Bifurcations

Procedure NL_STATIC_1 cannot handle singularities in the stiffness matrix that arise when
the load-stepping algorithm lands too close to a limit point, or attempts to traverse a
bifurcation point. (Note: Singularities due to limit points are overcome by procedure
NL_STATIC.2.)

3.9.8 ERROR MESSAGES AND WARNINGS

3.9.8.1 "Non-Convergence at Step n. Revise Strategy."

This message means that the maximum number of nonlinear iterations (MAX_ITERS) has
been exhausted, as well as the maximum number of step cuts (MAX_CUTS), and convergence
still hasn’t been obtained at step n. A possible cure is to re-start the analysis from several
steps back, and decrease the arc-length increment at that point (using the PATH_SCALE
argument). However, just increasing MAX_ITERS or MAX_CUTS, or even TOL_E, may also
solve the problem. In other words, re-think the definition of all solution parameters based
on the observed behavior of the solution algorithm just prior to the break-down. ‘

3.9-28 CSM Testbed Procedures Manual 5/22/90

Solution Procedures NL_STATIC_.1

3.9.8.2 "Divergence at Step n. Revise Strategy."

This message has similar implications to the previous message, but it occurs when the
error grows instead of decreases during two successive nonlinear iterations. The difference
between divergence and non-convergence is that divergence cannot be cured by increasing
MAX_ITERS; and probably should not be “cured” by increasing TOL_E. It generally means
that the step-size is too big — or that the error tolerance (TOL_E) has been too big all
along, so that changes are occurring suddenly that should have been detected by the
solution algorithm at earlier load steps. Thus, you might try re-starting from an earlier
step, reducing PATH_INC, and possibly reducing TOL_E as well.

3.0.8.3 "Specified Displacements are Identically Zero"

This is not necessarily an abortive error. As long as either nonzero specified displacements
or specified forces are defined, the solution can proceed — in which case the message should
be taken merely as a warning.

3.9.8.4 "Specified Forces are Identically Zero"

This is not necessarily an abortive error. As long as either nonzero specified displacements
or specified forces are defined, the solution can proceed ~ in which case the message should
be taken merely as a warning.

3.9.9 USAGE GUIDELINES AND EXAMPLES

Procedure NL_STATIC_1 may be used by preceding the procedure name by the *call di-
rective. Procedure arguments may be changed from their default values by including any
or all the arguments and their new values when the procedure is called. A space or blank
is required between the end of the procedure name and the left parenthesis.

*call NL_STATIC_1 (--
beg_step =1 ; -- . Starting step number (>0)
max_steps=1 ; -- . Maximum steps to compute
max_iters=9 ; -- . Maximum iterations per step
des_iters=4 ; -~ . Number of iterations desired
fac_steps=1 ; -- . Steps_per_refactoring
)
’
l
'

max_cuts=3 ~= . Maximum number of step cuts
tol_e=1.E-3 -~ . Energy error tolerance

beg_load i —— . Starting load factor (>0.)
max_load -= . Upper_bound on load factor
min_load == . Lower_bound on load factor

path_scale=1.; -- . Path_inc scl_factor (restart)
extrapolate-<true> ; --

line_search=1.;-- . Initial line-search parameter
debug=<FALSE>; -- . Debug_print switch

NL_GEOM = 2 ; -~ . Geom. Nonlin. Level (1/2)
COROTATION=1 ; -- . Corotational Flag (leave on!!)
Nominal DB = NOMINAL.GAL ; -- . Selected Output
Nominal_DS = RESPONSE.HISTORY ; --

N_SELECT ; SEL_NODES; SEL_DOFS)

5/22/90 CSM Testbed Procedures Manual 3.9-29

NL_STATIC_1 Solution Procedures

3.9.9.1 Starting an Analysis

To begin a nonlinear static analysis with procedure NL_STATIC_1, it is only necessary that
the finite element model be defined. This does not require pre-formation of element stiffness
matrices, node renumbering for optimal factorization time, or any form of linear analysis
(unless initial geometric imperfections are based on linear displacement modes). Only
nodal coordinates/transformations, material properties and element connectivity are pre-
requisite to nonlinear analysis. To invoke procedure NL_STATIC_1, only those arguments
that don’t have default values (see procedure usage section) need be specified.

For example, suppose you wanted to start an analysis with an initial load-factor of .1, a
maximum load-factor of 1., a minimum load-factor of 0., and compute no more than 20
load-steps. You could then invoke the procedure as follows:

xcall NL_STATIC_.1 (BEG.STEP = 1 ; MAX_STEPS
BEG_LOAD = .1 ; MAX_LOAD

20 ; -~
1. ; MIN.LOAD = 0.)

Keep in mind that the number of load-steps actually performed during the above run
will depend on the number of adaptively-sized arc-length increments needed to attain the
maximum load level. Since it may be difficult to estimate this in advance, you may want
to start with only a few load-steps (e.g., set MAX_STEPS = 3) to get some experience, and
later re-start the analysis with more steps allowed.

3.9.9.2 Re-Starting (or Continuing) an Analysis

To re-start an analysis from a previously computed, converged solution, you need only
specify the first step to compute as argument BEG_STEP. If the EXTRAPOLATE argument is
activated (which is the default), the three solution steps immediately preceding the one
you wish to compute must be resident on the database. If the EXTRAPOLATE argument is
turned off, only one preceeding solution step is required. Thus, to continue an analysis
that has already produced ten load steps, you could issue the call:

*xcall NL_STATIC_1 (BEG_STEP
MAX_LOAD

11; MAX_STEPS = 100 ; --
1. ; MINLLOAD = 0.)

Note that the argument BEG_LOAD is not necessary for a continuation (or re-start) run;
the new load level is automatically computed using the preceeding value of the arc-length
increment. However, you can modify the new increment, by using the PATH_.SCALE argu-
ment, which is a scale factor applied to the previous arc-length increment to generate the
new increment. The default value of PATH_SCALE is 1.0.

3.9- 30 CSM Testbed Procedures Manual 5/22/90

Solution Procedures

NL_STATIC.1

Furihermore, on analysis continuations/restarts, you are free to modify any of the other
solution parameters (i.e., procedure arguments). For example, you may want to increase
MAX_ITERS, reduce TOL_E, or even change DES_ITERS. The default values for these solu-
tion parameters are not suitable for all problems; they are useful primarily for gaining
experience by trial and error.

3.9.10 PROCEDURE LISTING

. =DECK NL_STATIC_1

*procedure NL_STATIC_1 (--

*Remark
*Remark |
*Remark
*Remark
*Remark
*Remark
*Remark
*Remark
*Remark
*Remark
*Remark
*Remark
*Remark |
*Remark

beg_step =1 ; -- . Starting step number (>0)
max_steps=1 -- . Maximum steps to compute
max_iters=9 -- . Maximum iterations per step

]

;

’
des_iters=4 ; -- . Number of iterations desired
fac_steps=1 ; -- . Steps_per_refactoring
max_cuts=3 ; == . Maximum number of step cuts
tol_e=1.E-3 ; -- . Energy error tolerance
beg_load ; —— . Starting load factor (>0.)
max_load - ; == . Upper_bound on load factor
min_load ; == . Lower_bound on load factor

path_scale=1.; -- . Path_inc scl_factor (restart)
extrapolate=<true> ; --

line_search=1.;-- . Initial line-search parameter
debug=<FALSE>; -- . Debug_print switch

NL_GEOM = 2 ; -- . Geom. Nonlin. Level (1]2)
COROTATION=1 ; -- . Corotational Flag (leave on!!)
Nominal DB = NOMINAL.GAL ; -- . Selected Output

Nominal_DS = RESPONSE.HISTORY ; --
N_SELECT ; SEL_NODES; SEL_DOFS --

NL_STATIC_1

CSM Testbed Procedure for Nonlinear Statics:

o Corotational Newton/Raphson algorithm
o Linearized Crisfield/Riks arc-length control
o Applied forces and/or displacements

Authors: G.M. Stanley and C.C. Rankin
Version: MAR-03-1988

———— - - - - - - —— - — - - W - - - - - - - - - = -

5/22/90

CSM Testbed Procedures Manual 3.9-31

NL_STATIC1 Solution Procedures

3.9.11 REFERENCES

3.9-1.

3.9-2.

3.9-3.

3.9-4.

3.9-5.

3.9-6.

Crisfield, M. A.: “A Fast Incremental/Iterative Solution Procedure that Handles
Snap-Through.” Computers and Structures, Vol. 13, 1983, pp. 55-62.

Kane, T. R.; Likins, P, W.; and Levinson, D. A.: Spacecraft Dynamics, McGraw-
Hill Book Co., New York, 1983.

Argyris, J. H.: “An Excursion into Large Rotations.” International Journal for
Numerical Methods in Engineering, Vol. 32, 1982, pp. 85-155.

Rankin, C. C. and Brogan, F. A.: “An Element-Independent Corotational Proce-
dure for the Treatment of Large Rotations.” In Collapse Analysis of Structures,

edited by Sobel, L.H. and Thomas, K., ASME, New York, 1984, pp. 85-100.

Stewart, Caroline B.: The Computational Structural Mechanics Testbed User’s
Manual. NASA TM-100644, October 1989.

Stewart, Caroline B.: The Computational Structural Mechanics Testbed Data Li-
brary Description. NASA TM-100645, October 1988.

3.9- 32 CSM Testbed Procedures Manual 5/22/90

Solution Procedures NL_STATIC2

ure NL_STATIC_2

(=]
0"
=
C
(]
ml
(=¥
=
L}
®
-
y

o 5
Jd.1

3.10.1 GENERAL DESCRIPTION

NL_STATIC_2 is a modification to NL_.STATIC_1 Riks arclength strategy that allows solu-
tion of a limit point problem in the immediate neighborhood of a critical point. Developed
and written by C. C. Rankin in consultation with E. Riks, this modified algorithm avoids
the singularity in the stiffness matrix at the critical point, thereby permitting a smooth
continuation of the solution even when a solution point coincides ezactly with the critical
point. NL_.STATIC.2 is preferred over NL_.STATIC_1 whenever solution points are desired
very near the critical area, or when the singularity of the stiffness is likely to persist over

some distance along the solution path. In the absence of numerical difficulties, however,
NL_STATIC_1 and NL_STATIC_2 produce identical results.

3.10.2 PROCEDURE USAGE

Procedure NL_.STATIC_2 may be invoked by the *call directive:

*call NL_STATIC_2 (argl = vall; arg2 = val2; ...)

where argi are argument names and vali are the corresponding values you wish to give
them. The following are valid arguments for NL_.STATIC_1; note that those without
default values are mandatory, while the others are optional.

Argument Default Value Meaning

BEG_LOAD - Starting load factor (>0.)

BEG_STEP - Starting step number (>0)

MAX.LOAD - Upper_bound on load factor

MIN_LOAD - Lower_bound on load factor

MAX_STEPS - Maximum steps to compute
COROTATION 1 Corotational Update Option

DES_ITERS 4 Number of iterations per step desired
EXTRAPOLATE <true> Perform quadratic extrapolation of solution
FAC_STEPS 1 Steps_per_refactoring

MAXITERS 9 Maximum iterations per step

MAX_CUTS 3 Maximum number of successive step cuts
NL.GEOM 2 Geometric Nonlinearity Level (1 or 2)
NOMINAL.DB NOMINAL.GAL Results database file

NOMINAL_DS RESPONSE.HISTORY Results dataset

N._SELECT 0 Number of nodes for selected disp. output
PATH.SCALE 1. Arclength scale factor for restarts
SEL_.NODES 0 List of nodes for selected output
SEL_DOFS 0 Corresponding list of nodal freedoms (1-6)
TOL_E 1.E-3 Relative error tolerance in energy norm
ADV_RIKS <false> If true, advanced Riks; else, do NL_STATIC_1

Revised 5/23/90 CSM Testbed Procedures Manual 3.10-1

NL_STATIC_2 Solution Procedures

3.10.3 ARGUMENT GLOSSARY

The only additional argument that NL_STATIC_2 has is ADV_RIKS. All other arguments
are identical in name and function as their counterparts in NL_STATIC_1.

3.10.3.1 ADV_RIKS

This is a logical parameter, that, when set to <true>, invokes the advanced Riks option.
Otherwise, NL_STATIC_2 reduces to NL_STATIC_1.

3.10- 2 CSM Testbed Procedures Manual Revised 5/23/90

Solution Procedures NL_STATIC_2

3.10.4 INPUT/OUTPUT DATASETS

The input/output requirements of NL_STATIC.2 are identical to NL_STATIC_L.

Revised 5/23/90 CSM Testbed Procedures Manual 3.10-3

NL_STATIC2 Solution Procedures

3.10.5 SUB-PROCEDURES AND PROCESSORS

Table 3.10-2 Sub-Procedures Invoked by Procedure NL_STATIC_2

Procedure Type Function

NL_STATIC_2 Internal |Main Procedure
CHK_CONV Internal |Check convergence

DEFNS Internal |Defines recursive macrosymbols

ES External |Element utility Procedure
FACT_STIFF Internal |Factors Stiffness Matrix
FORM_STIFF Internal |Forms Stiffness Matrix
RESIDUAL Internal |Forms residual-force vector

SOLVE Internal |Solves linear equation systems

STIF_.COLMN Internal |Fixes Freedom I, Extracts Stiffness Col. I
TWOBY_TWO |Internal |Computes Advanced Riks Reduced Coefficients

Table 83.10-3 Processors Invoked by Procedure NL_STATIC_2

Procedure| Type Function

AUS Internal |Extracts column I of Stiffness

E Internal |Initializes EFIL datasets

ESi External |Element Processors based on GEP
INV Internal |Factors stiffness matrix

SSOL Internal |Solves linear equation systems

VEC Internal |Performs all vector/pseudo-vector algebra

3.10- 4 CSM Testbed Procedures Manual Revised 5/23/90

Solution Procedures NL_STATIC2

3.10.6 LIMITATIONS

NL_STATIC_2 has the all the limitations that are listed in Section 4.1.6. However, whereas
numerical difficulties can be expected with NL_.STATIC_1 near a critical point, no diffi-
culties whatsoever should be expected with NL_STATIC_2 near limit (as opposed to bi-
furcation points). There are two additional software limitations described in the next two

subsections.

3.10.6.1 AUS Limitation

Due to hard wired data set naming conventions in processor AUS for system matrices
(e.g. K.SPAR.36), the number of DOF’s per node specified on the START command of
processor TAB is presently restricted to be 6. AUS is currently essential to NL_.STATIC_2
for computing the product of the stiffness with an elementary vector to extract row I of
the stiffness matrix. This restriction will be removed when we make the connection to the
Generic Matrix Processor.

3.10.6.2 First Two Steps

Because of the way the extrapolation is set up, NL_.STATIC_2 operates as NL_.STATIC_1
for the first two steps for a new (not restart) analysis. This limitation is not important,
since it is highly unlikely that a critical point will be reached at the very beginning of a
solution sequence.

3.10.7 ERROR MESSAGES

All error messages have the same meaning as in NL_.STATIC_1 (section 4.1.7).

3.10.8 USAGE GUIDELINES AND EXAMPLES

As they are identical to NL_STATIC_1, please consult section 4.1.8 for usage guidelines.

3.10.9 THEORY

3.10.9.1 Introduction

Procedure NL_STATIC_2, like NL_STATIC.1, performs a quasi-static analysis of a sys-
tem of nonlinear equilibrium equations using an adaptive arclength-controlled New-
ton/Raphson incremental/iterative solution algorithm. The function of the arclength con-
straint, the stepsize selection, and convergence criteria are identical to NL.STATIC1.
Because almost all of the theory underlying NL_STATIC_2 is covered in Section 4.1.9, only
the matrix partitioning and pivoting process that avoids the factoring of a singular or near
singular stiffness matrix is covered here.

Revised 5/23/90 CSM Testbed Procedures Manual 3.10- 5

NL_STATIC_2 Solution Procedures

3.10.9.2 The Block Pivot Strategy
The difficulties that occur in NL.STATIC_1 can be readily seen by examining Eq. (8).

Kéd = 227rbbold + 2T

- (3.10-1)

2Ad-éd = ¢
where T is the residual, T is the external load, € is the arclength parameter, and éd is
the desired displacement increment. Clearly, if K is singular, we will have a problem in
solving this pair of equations. For limit points, however, the extended equation system
containing the constraint (second of (57)) is non-singular. A simple and robust method of
overcoming the singularity is to select out the equation for a particular freedom and treat
it the same way as the constraint equation, solving three rather than two sets of equations,
as illustrated by the following

R ¥ -F'[sa £
@) K —fe=t| |8dr| = |1 (3.10 - 2)
Iy cr 0 S s

where K is the stiffness matrix with row and column I removed. The hats over vectors
also indicate that row I has been deleted. ?l is column I of the stiffness, with K;s being
the diagonal element for freedom I. The same partitioning also applies to the external
force f°** and the constraint equation c.

If we formally solve the first of (58) for §d and substitute the result into the remaining
two equations, we obtain the following two-by-two nonsymmetric system of equations for

bdy and é):

Ku-@)RT F)yR7T- f;zt} [MI]

. = 1 (3.10 — 3)
TR TRT t-eTR'F

ci—¢c K s

[r, ~- (TR e

One additional forward/backsolve is required with this algorithm. After each factoring of
the stiffness matrix, one must solve the pair

Rsv =T
= (3.10 — 4)
Réw =T

for vector 6% and §®%. §W corresponds to §d in the second of (11). &d is also used for §&
ir the description of the NL_STATIC.2 algorithm. The following vector must be solved
every iteration:

Ki=* (3.10 - 5)

3.10-6 CSM Testbed Procedures Manual Revised 5/23/90

Solution Procedures NL_STATIC2

This equation corresponds to the first of (11). The two-by-iwo system (59) becomes
I'Kn @) @)Tew—se=] [6dr] [r @)Tﬁ]
| e —<cTse Tsw x| | e-<¢7a |
(3.10 — 6)
A Agg) [6dr] [R,
Axn Azz- | A] _Rz

We have rewritten the first of (62) with the notation used in the description of the algo-
rithm, where the coefficients A;; and R; are the reduced Riks coefficients and residuals,
respectively; a comparison of the first of (62) with the second yields their values.

Once §d; and 8 are known, the full solution becomes the sum
5d = G — 8d;6V + SA6W (3.10 - 7)

6d is then expanded by one freedom and the explicit value §dy previously solved for is
inserted. The advantage of (62) is that this system, in contrast to (8) is never singular at
a limit point, provided that the component I does not correspond to a zero entry in the
tangent displacement vector at the critical point.

3.10.9.3 Selecting Freedom I and the Vector ?’

A simple method for ensuring a nonsingular reduced stifiness K is to look at the difference
between the last converged solution and the predicted solution for the current step. We
choose that particular component with the largest absolute value; its index becomes I,

and the stiffness column belonging to that freedom becomes ?I with diagonal Kj;. In
practice, after we have selected the proper index, we generate an elementary vector that is
zero except for unity in position I. f' is just the product of the stiffness matrix with the

elementary vector. ?I is this same column with row I deleted.

3.10.9.4 Constructing the Solution

Immediately after the stiffness matrix has been factored, we solve (60) for §V and éW.
Solution for §W is treated like the corresponding solution for §d in (37), with specified
displacements being handled exactly as in NL.STATIC_1. The only difference is that the
new stiffness has one additional freedom held fixed. In practice, entry I is added to the
specified displacement list (and if I has changed since the last step, the previous freedom
is “released” or “unfized”). The solutions 6¥,é6W are full system vectors with a zero in
the Ith slot. At each iteration, a new basic displacement increment U is also solved for
(62). After solution of the reduced two-by-two system (62), (63) is used to construct
the full displacement increment. This is followed by direct insertion of the increment for
component I.

Revised 5/23/90 CSM Testbed Procedures Manual 3.10- 7

NL_STATIC2 Solution Procedures

3.10.9.5 Computing the Stiffness Determinant

The determinant of the stiffness K is not equal to that of the original, unconstrained
stifiness. However, since our algorithm is a special case of a block Gauss eliminationit is
a simple matter to compute it. The full determinant of the stiffness matrix is the product

Det(K) = Det(K)A4;, (3.10 — 8)

Note that when A;; vanishes, the stiffness determinant also vanishes. However, the system
(62) is still nonsingular whenever the off diagonal reduced coefficients are nonzero (the
extended system).

3.10- 8 CSM Testbed Procedures Manual Revised 5/23/90

Solution Procedures NL_STATIC2

3.10.10 ALGOR FLOW CHART

General Algorithm
(1) STEP LOOP:n =2, 3,4 ... (step = n+1)
(1.1) Extrapolate Solution for Predictor
call EXTRAP (Aly41,ALy,Aln_y — cpyCnoi1,€n—2)

Astlll = CnAn + €n—1An_1 + €n_3An_z
ds‘l.}).] = cndn + cn_1dn_1 + cn-_2dn_2

Ad511+)1 = dSullx —-dn (T(l)l = R(Ad(])l)Tn)
AAS;I-{)-I = AStl-{)-l —An
(1.2) Form and Assemble Stiffness

(1.3) Find Index of Largest Tangent Component
Extract Column I from Stiffness (including diagonal)

I = Arg{maz |Ad(k){, 1}

~I
f =Ke;

(1.4) Fix freedom I to give constrained K (K)
(1.5) Solve for Tangential Displacement based on Predictor

n-rl

sd = R (d®) [f +K"‘d]

(1.6) Solve for perturbation displacement §v

5% = R (AT

(1.7) Solve for Riks reduced system coefficients

§vr =0.
- ‘ 531 =0.
~ I
An =T -F 6%

~ezt

Ap=-T+1 .(6d-3")
Az = 2(Ad(1)), - AdY), - 69)
Az =244, -6d

Revised 5/23/90 CSM Testbed Procedures Manual

C3

3.10-9

NL_STATIC2 Solution Procedures

(1.7) Form Residual based on Predictor
2, = Hao) = A eal,
call CHK_CONV (r{),,Ad®) | eres — €, €res)
(2) ITERATION LOOP:i =1, 2, ...(iter =i+1 =2, 3, ...)
(2.1) Solve for Basic Iterative Displacement Change

6 = R @),

(2.2) Solve for Reduced r.h.s.

édr = 0.

Ri=r(D®, -1 .63

Ry=A8 — AdY), . AdY), - 244, -6d

(2.3) Solve 2 x 2 Reduced system:
A Ay | | édr Ry
Ay Az 5\ R,
(2.4) Update Displacements and Load Factor

6d = 6d + 6A6d — 6dr6V
a1 = d¥, +6d (TS = R(6A) T,
AdSTY = AdY), +46d

/\5:':11) = ’\S:-)o—l + 6

(2.4) Compute New Residual

e = r@EEP G = AGET - el
(2.5) Check Convergence
call CHK_.CONV (r1D,8d,e9, €res, €01, numdiv —
¢(i+1), <CONVERGED>, <DIVERGED>)
if (<CONVERGED>) then

num.iters_required = iter

3.10- 10 CSM Testbed Procedures Manual Revised 5/23/90

NL_STATIC2

Solution Procedures

_ (num_iters_desired)
Alnyz = Alnyy (num_lters_requlrea)
ne—n+1
go to (1) STEP LOOP

elseif (<DIVERGED> .or. (iter > max.iters)) then

if (num_cuts < max_cuts) then
Alyyy = Ay /2

num_cuts = num_cuts + 1

go to (1.3)
else
STOP
endif
else
1e—1+1
go to (2) ITER LOOP
endif

Revised 5/23/90 CSM Testbed Procedures Manual 3.10- 11

NL_STATIC_2 Solution Procedures

Starting Procedure: Step 1 (n=0)
Replace Algorithm Steps (1.1)—(1.2) by:

d” = o
sd = K1(d®) [?‘“+K‘“3']

Agl) = Astart (user specified)
1 1
ANY = AP
At = AP |54
Ad®Y = AP sd
a) = a4

(Also, form K(dgl)) before next solve.)

Starting Procedure: Step 2 (n=1)
Replace Algorithm Steps (1.1)-(1.2) by:

a” = dq,
5d = K@) ™ + xd']

A = Ab/|8d)
AN =+
Ad = ax{Vsd
d{ = d;+4ad’ (T = R(AdPVTY)

(But don’t reform K(d(ll)) until step 3.)

3.10- 12 CSM Testbed Procedures Manual Revised 5/23/90

Solution Procedures

NL_STATIC2

num.cuts
num_div
Cn

-~

€

€

Eref

€tol

A)
Kul

dl

NOTATION
Displacement vector.
Iterative change in d.
Incremental (load-step) change in d.
Displacement vector at iteration i of step n.

Incremental (step) change in d. Ads:'_tll) = ds:-)n —-d,

ext

Tangential displacement = K 'f
Incremental arclength (step) parameter.

External force vector — base load.

Internal force vector.

I'th column of K

Residual force vector.

Stiffness matrix.

Stiffness matrix with I’th row and column deleted
—I?I
Basic (fixed-load) iterative change in dj

Solution vector corresponding to K

Linear combination of éd and &d.

Advanced-Riks reduced system coefficients
Advanced-Riks reduced residuals

Number of times load step has been cut in half at current step.

Number of consecutive iterations at which divergence occurs.
Extrapolation coefficient corresponding to step n.

Relative error in energy norm.

Absolute error in energy norm.

Reference value of ¢; initialized as zero.

Relative error tolerance (default: 10~*).

Load factor.

Incremental (load-step) change in A.

Stiffness submatrix coupling specified (s) displacement components with force

components corresponding to unknown (u) displacements.
Base value of specified displacement vector.

Current value of specified displacement vector. d* = A d.

Revised 5/23/90 CSM Testbed Procedures Manual

3.10- 13

NL'STATIC2 Solution Procedures

3.10.11 PROCEDURE LISTING

sprocedure NL_STATIC_2 (--

beg_step =1
max_steps=1
nax_iters=9
des_iters=4
fac_steps=1
max_cuts=3
tol_e=1.E-3
beg_load

-- . Starting step number (>0)

== . Maximum steps to compute

== . Maximun iterations per step
== . Number of iterations desired
== . Steps_per_refactoring

. Maximum number of step cuts
=~ . Energy errxor tolerance

-- . Starting load factor (>0.)
max_load -- . Upper_bound on load factor
ain_load ~~ . Lower_bound on load factor
path_scale=1.; -- . Path_inc scl_factor (restart)
extrapolate=<true> ; --

line_search=1,;-- . Initial line-search parameter
debug=<FALSE>; -- . Debug_print switch

NL_GEOMN = 2 ; -- . Geom. Nonlin. Level (1]2)
CORDTATION=1 ; -- . Corotational Flag (leave on!!)
adv_riks = <false> ; -- . Advanced RIKS flag.
Nominal DB = NOMINAL.GAL ; -- . Selected Output
Nominal_ DS = RESPONSE.HISTORY ; --

N_SELECT ; SEL_NODES; SEL_DOFS --

ws we we we we wr we we we we

*Remark - -
sRemark | 1
sRemark NL_STATIC_1
sif < [adv_riks] > /then
sremark ADVANCED RIKS
sendif
sRenmark
sRemark CSM Testbed Procedure for Nonlinear Statics:
sRemark
*Remark o Corotational Newton/Raphson algorithm
sRenark o Linearized Crisfield/Riks arc-length control
sRemark o Applied forces and/or displacements
sRemark
*Remark Authors: G.M. Stanley and C.C. Rankin
*Remark Version: MAR-03-1988
sRemark | |
sRemark

. INITIALIZATION

sdef/i ns_overwrite == <true>

*def/i debug == [debug]
sdef/i max_step a= <[beg_step]+[max_steps]-1>
sdef/i num_iters z= [des_iters]

*def/d path_scale == [path_scale]
*def/i extrapolate == [extrapolate]
sdet/a NOM_DB == [Nominal_DB]
*def/a NOM_DS == [Nominal_DS]

3.10- 14 CSM Testbed Procedures Manual Revised 5/24/90

Solution Procedures

NL'STATIC2

sdef/i N_SELECT == [N_SELECT]
*def/i SEL_NODES[1:<N_SELECT>] == [SEL_NODES]
sdef/i SEL_DOFS[1:<N_SELECT>] == [SEL_DOFS]

sdef/1i NL_GEONM == [NL_GEOM]

2 2e Mo smwasy Mmvonan 2 my nar)

#def/i COROTATION == [COROTATION]
‘ «CALL DEFNS (STEP = [BEG_STEP]; ITER = 0)
*IF < [BEG_STEP] /EQ 1 > /THEN
sRemark INITIALIZATION:
scall INITIAL
sENDIF
. BEGIN STEP_LOOP
D0 :STEP_LOOP $n = 0, <[max_steps]-1>
sdef/i step == < [beg_stepl+<$n> >
sdef/i pass == 1
sdef/i tot_iters == 1
sif < <<step> /gt 2> /and <<extrapolate> /eq <true>> > /then
#def/i extrap_this_step == <true>
selse
sdet/i extrap_this_step == <false>
sendit
sRemark
sremark

sremark
sRemark BEGINNING STEP <STEP>
sremark

sremark
scall DEFNS (step = <step>; iter = 1)
:NEW_PASS . Re-entry point for step-size reduction
[xqT VEC
*if < <<step> /gt 1> /and <<pass> /eq 1> > /then
sdef/d path_inc == < <plth_scilo>‘<pnth_inc_n> >
sRemark New PATH INCREMENT = <path_inc>
sendif
+ « « Generate Displacement PREDICTOR
#if <extrap_this_step> /then
sRemark Predicting displacements/load via EXTRAPOLATION
scall EXTRAP (dx_npl = <path_inc> 5 ¢X_n = ¢x_n ; -
dx.n = <path_inc.n> ; cx_nml = cx_nmi; --
dx_nm1 = <path_inc_na1>; cx_nm2 = cx_nm2)
sdef/d lam_np1_i == < (<cx_n>*<lam_n>) -
+ (<cx_nmi1>¢<lam_nmi>) --
+ (<cx_nm2>#<lan_nm2>) >
<d_np1_i> <- <cx_n> <d_n> + <cx_naild> <d_nm1>
<d_np1.i> «- <d_npi_3i> + <cx_np2> <d_nm2>
<d_inc_i> <- <d_mp1_i> - <d.m
ROTATE <T.n> » <d_inc_i> -> <T_mpi_i>
*olse
*Remark Using Previous Step as Displacement Predictor
sremark

Revised 5/24/90 CSM Testbed Procedures Manual

3.10- 15

NL'STATIC2

Solution Procedures

. « . Solve for incremental displacement based on stiffness column I

sremark Last displacement dataset : <d_n>
sremark
sdef lam_npi_i == <lam_n>
<d_npi_i> <- <d_n>
<T.npi_i> <~ <T.n>
<d_inc_1i> <- <d_n>
sendif

#if < <spec_disp_flag> > /then
SPECIFY <lam_npi_i> <d_ext> -> <d_npi_i>
sendif

. Form Stiffness based on Predictor

#if < < <pass> feq 1 > /or <extrap_this_step> > /then
#call FORM_STIFF (displacement = <d_npi_i>; --
rotation = <T_npi_id>; --
stiffness = <K_asm>) . output

. Find largest tangent component I = <ndef> <td>
. Extract corresponding column of systeam mairix
. Specity freedom NDEF, FD as constrained to zero

#if <adv_riks> /then
*if <<step> /le 1> /then
sdef/i ndefz=0
solse
scall STIF_COLMN
sendif
sqlse
sdef/1i ndef==0
sendif

. Factor stiffness with the added constraint
scall FACT_STIFF
. Solve for Tangential Displacement

scall TANDIS (step = <step> ; iter =1 ; --
displacement = <d_np1_i> ; --

rotation = <T_npi_i> -
load_factor = <lam_npi_i>; --
nax_load = [max_load] ; --

internal _force = <F_int>
specified_disp = <d_ext>
tangent_force = <F_T>
tangent_disp = <delta_T>)

H

H

H
external_force = <F_ext> ; --

H

1]

H

*if <<ndef> /gt 0> /then

3.10- 16 CSM Testbed Procedures Manual

Revised 5/24/90

Solution Procedures NL'STATIC 2

scall SOLVE (RHS = <K_I>; SOLN = <delta_I>)
sendif
sendift

+ + « Compute Magnitude of Tangential Displacement
NORM <delta_T> -> mag_delta_T . magnitude of tang. displacement
. . Predict Load Factor and Path Increment for Current Step

#if < <step> /eq 1 > /then
*if < <pass> /eq 1 > /then
sdet/d lam_npi_i == [beg_load]
sdet/d lam_inc == <lam_npi_i>
sdef/d path_inc == < <lam_inc>*<mag_delta_T> >
*def/i load_dir == <SIGN(1.;<lam_inc>)>
sglse
*def/d lam_inc == < <path_inc>/<mag_delta_T> >
sdef/d lam_npi_i ==z <lam_inc>
soendif
selseif < <step> /gt 1 > /then

« + « o Path_Increment based on Iterative Performance, Set Direction

*if < <sign_det> /ne <sign_det_n> > /then
sdef/i load_dir == < -1.#<Cload_dir_n> >
selse
sdef/i load_dir == <load_dir_n>
sendif

« + « . Compute Load_Increment

»if <Cextrap_this_step> /then
#*def/d lam_inc == < <lam_npi_i> - <lam_m> >
*else
sRemark USING CONSTRAINT EQN TO PREDICT LOAD AT STEP <step>
sdef/d lam_inc =2z << <path_inc>/<mag_delta_T> >#<load_dir>>
sdet/d lam_npi_i == <<lam_n>+<lam_inc>>
sendif
*endif
sRemark LAMBDA_<step>~ 1 = <lam_npi_i> y LAMBDA_INC = <lam_inc>
*if < <lam_npi_i> /gt [max_load] > /then
sRemark MAXIMUM LOAD_LEVEL OBTAINED.
*jump to :EXIT
selseif < <lam npi_i> /le [min_load] > /then
*Remark MINIMUM LOAD_LEVEL OBTAINED.
*jump to :EXIT
sendif
sif <<extrap_this_step> /eq <false>> /then
sRemark MODIFYING PREDICTOR VIA PATH-CONSTRAINT
<d_inc_i> <~ <lam_inc> <delta_T>
<d_npi_i> <- <d.n> + <d_ inc_i>
ROTATE <T_n> * <d_inc_i> -> <T_npi i>

Revised 5/24/90 CSM Testbed Procedures Manual 3.10- 17

NL'STATIC 2

Solution Procedures

#if < <spec_disp_flag> > /then
SPECIFY <lam_npi_i> <d_ext> -> <d_mpi_i>
sendif
wondif
. . . Compute 2 x 2 system coefficients

scall TWO_BY.TWO (free = <ndef>)

. . . Form (Stress and) Residual_Force Vector

ecall RESIDUAL (step = <step> ; == . input
iter = 1 ; ==
displacement = <d_npi_i> ;-
rotation = <T_npi_i> ; -
load_factor = <lam_npl_i> ;-
external_force = <F_ext> ; -
internal_force = <F_int> ; ==
residual_force = <R_npl_i>) . output

+ « . Initialize Convergence Criteria

#call CHKCONV (STEP = 1 ; ITER = 1 HIE
Residual_force = <R_npi_i> ; -
displacement_inc = <d_inc_i> ;-
load_inc = <lam_inc> 3 --
relaxation = s5)

*if <CONVERGENCE> /then
sdef/d lam_npi_ip1 == <lam_npi_i>
sjurp to :CONVERGED

sendif

. =~ BEGIN ITERATION LOOP

«D0 :ITER_LOOP $i = 1, [max_iters]
sdet/1 iter == <<$id>+1>
sdef/1i tot_iters == <<tot_iters>+1>
*if < <<step> /eq 1> /and <<iter> /eq 2> > /then
scall FORM_STIFF (displacement = <d_npi_i>; --
rotation = <T_np1_.i>; --
stiffness =z <K_asm>) . output

. + . Find largest tangent component I = <ndef> <fd>
. + « Extract corresponding column of systea matrix
« + + Specify freedom NDEF, FD as constrained to zero

#if <adv_riks> /then
*if <<step> /le 1> /then
sdef/i ndef==0

solse
#call STIF_COLMN
»endif
*olse
3.10- 18 CSM Testbed Procedures Manual Revised 5/24/90

Solution Procedures NL'STATIC2

*def/i ndef==0
sendif

. . . Factor stiffness with the added constraint
] scall FACT_STIFF
« « o« « « +» Update Tangential Displacement if Specified Displs., etc.
#if < <spec_disp_flag> /or <live_load_flag> > /then
sRemark o Recomputing Tangential Displacement

scall TANDIS (step = <step> ; iter = <$i>; --
displacement = <d_npi_i>

rotation = <T_npi_i> -
load_factor = <lam_npi_i>; --
max_load = [max_load] ; --

external_force = <F_ext>
internal_force = <F_int>
specified_disp = <d_ext>
tangent_force <F_T>

tangent_disp = <delta_T>)

sendif
. . . Solve for incremental displacement based on stiffness column I

#if <<ndef> /gt 0> /then
#call SOLVE (RHS = <K_I>; SOLN = <delta_I>)
sendif

. » » Compute 2 x 2 system coefficients

scall TWO_BY_TWO (free = <ndef>)
sendif

« + +« « « Compute Basic Displacement Iteration (delta_B)

*call SOLVE (RHS = <R_npi_3i>; SOLN = <DELTA_B>)

.+« « .« . Compute New Load-Factor and Displacement Component I
« « « « « Advanced Riks (2 x 2) system.

DOT <delta_B> * <d_inc_i> -> db_D0T_Dd
DOT <d_inc_i> * <d_inc_i> ~> DA_DOT_Dd
sdef/d R_2 == < <path_inc>¢<path_inc> >
sdet/d R_2 == < <R_2> - <DA_DOT_Dd> - <2.0#<db_DOT_Dd>> >
»if <<ndef> /gt 0> /then
COMPONENT <ndef> <fd> <r_mp1_i> -> r_I
DOT <delta_B> & <K_I> -> db_DOT_K_I

N sdef/d R_1 == <<r_I> - <db_DOT_K_I>

« ¢« « « o Solve 2 x 2 RIKS system

Revised 5/24/90 CSM Testbed Procedures Manual 3.10- 19

NL'STATIC2

Solution Procedures

¢ o o o

sremark
sremark
sremark
sremark
sremark
srenark

sdef/d Rdet = <<<A_11> & <A_22>> - <<A_12> * <A_21>>>
sdef/d dd_I = <CCR_1> » <A_22>> - <<R_2> * <A_12>>
sdef/d dlam = <<<A_11> & <R_2>> - <<A_21> * <R_1>>
sdef/d dd_I = <<dd_I> / <Rdet>

sdef/d dlam = <<dlam> / <Rdet>>
solse

. Solve simple 1-D RIKS system for load factor (Normal Riks)

sdef/d dlam = <<R_2>/<A_22>>
sondit

. Update Load Factor
sdet/d lam_npi_ipl = < <lam_np1_i> + <dlam> >

*REMARK RANKIN’S ROOT SELECTION:
Dd = Dd = <Dd_dot_Dd>
dlam = <Dlam>
lanbda = <lam_npi_ipi>
sremark
:LOAD_LEVEL

. Update Increments

<delta> <- <delta_B> + <dlam> <delta_T>
*if <<ndef> /gt 0>/then

. . . Add Solution Due to Perturbation in I’th Displacement Component
.. (Advanced Riks Only)

<delta> <- <delta> - <dd_1i> <delta_I>
+« + + Set last component

COMPONENT <ndef> <fd> <delta> <- <dd_I>
sendif

. Update Displacements, Rotations

<d_np1_ip1> <~ <d_np1_i> + <delta>
ROTATE <T_npi_i> * <delta> ° ~-> <T_np1l_ipi1>
<d_inc_ip1> <- <d_inc_i> + <delta>
*if < <spec_disp_flag> > /then
SPECIFY <lam_npi_ip1> <d_ext> =-> <d_npi1_ip1>
seondif
*if < <DEBUG> > /then
sprint 1, <d_np1_ip1>
sprint 1, <T_npi_ip1>
sondif

. PORM (STRESSES AND) RESIDUAL_FORCE

3.10- 20 CSM Testbed Procedures Manual Revised 5/24/90

Solution Procedures

NL'STATIC 2

*call BRESIDUAL (step = <step> ; == . input
iter = <iter> ; --
displacement = <d_npi_ip1> HIE
rotation = <T_npi_ipi> R
load_factor = <lam_npi_ip1> ; --
external _force = <f_ext> HIR L
internal_force = <P_int> 3 -~
residual_force = <R_np1_ip1>) . output

« « » » CHECK CONVERGENCE

scall CHKCONV (step = <step> ; =~ . input
iter = <iter> HECE
Residual_force = <R_np1_ip1> ; --
displacement_inc = <delta> HEEE
load_inc = 0.0 ; -- . for error nora
tol_e = [tol_e] ; --
max_iters = [max_iters]l ; --

convergence = CONVERGENCE; -- . output
divergence = DIVERGENCE ; --
relaxation = s)
#if <CCONVERGENCE> /eq <TRUE>> /then
sjump to :CONVERGED
selseif <<DIVERGENCE> /eq <TRUE>> /then
sif < <pass> /le [max_cuts] > /then
sjump to :REPEAT
*olse
sRemark Maximum number of automatic step cuts exhausted.
sjusp to :DIVERGED
sendif
sendif
sdef/d lam_npi_i == <lam_npi_ip1>
sITER_LOOP
:NEUTRAL
*if < <pass> /le [max_cuts] > /then
sjuap to :REPEAT
*else
sRemark Maximum number of automatic step cuts exhausted.
sendif

sRemark NON-CONVERGENCE AT STEP <step>. REVISE STRATEGY.
sjump to :EXIT

:REPEAT

*def/i pass =z < <pass>+1 >

sdef path_inc == < <path_inc>/2. >

sRemark

sRemark CONVERGENCE DIFFICULTIES; REPEATING STEP <step>
sRemark with reduced path_increment = <path_inc>

*Renark Pass: <pass>

¢jump to :NEW_PASS

:DIVERGED

sRemark DIVERGENCE AT STEP <STEP>. REVISE STRATEGY.
sjump to :EXIT

Revised 5/24/90 A CSM Testbed Procedures Manual

3.10- 21

NL'STATIC'2

Solution Procedures

:CONVERGED

sRemark CONVERGENCE AT STEP <STEP>.
:NEXTSTEP

sdet/i num_iters =z <iter>

sdef/d path_scale == <[des_iters]/<num_iters>>
sdef/d path_inc_nm1l == <path_inc_n>
sdef/d path_inc_.m == <path_inc>

sdef/d lam_nm2 == <lam_nai>
sdef/d lam_nmi == <lam_n>
sdef/d lam_n == <lam_npi_ip1>
*def/i sign_det_n == <sign_det>

sdef/i load_dir.m == <load_dir>
scall POSTSTEP (step=z=<step>; iter=<iter>)

:STEP_LOOP

:EXIT

send

. =DECK CHKCONV

sprocedure CHKCONV (STEP ; == . input
ITER iR
DISPLACEMENT_INC ; --
RESIDUAL_FORCE ; --
LOAD_INC ; -
TOL_E ; -
MAX_ITERS R
CONVERGENCE=CONVERGENCE ; -- . output

DIVERGENCE =DIVERGENCE ; --
relaxation = s)

[xQT VEC

.

. Initialize

»det/i [CONVERGENCE] == <FALSE>

sdef/i [DIVERGENCE] == <FALSE>

*jf < [ITER] /gt 1 > /then
sdef/d12.4 ERR_E_I == <ERR_E_IP1>

sendif

. Compute Current Incremental Energy Norm

DOT [RESIDUAL_FORCE] = [DISPLACEMENT_INC] -> INC_E_IPi
=it < [ITER] /le 1 > /then
#if < <ABS(CINC_E_IP1>)> /gt <REF_E> > /then
#def/d12.4 REF_E == <ABS(<INC_E_IP1>)>

sendif

*def/17.2 [RELAXATION] == 1.0

sdet/i num_diverges == 0
sendif

. Compute Error Norms

*def/d12.4 ERR_E_RAW == < <INC_E_IP1>/<REF_E> >
«def/d12.4 ERR_E_IP1 == < <ABS{<ERR_E_RAW>)>" .6 >
3.10- 22 CSM Testbed Procedures Manual Revised 5/24/90

Solution Procedures

NL'STATIC"2

. « Check for displacement convergence
sif < <ERR_E_IP1> /le [TOL_E] > /then
« « « Step Converged

*DEF/I [CONVERGENCE] == <TRUE>
*jusp to :BOTTOM_LINE

sendit

»it < [ITER] /le 1 > :BOTTOM_LINE

. . . Step Not Converged; Check for Divergence

sIF < <ERR_E_IP1>/<ERR_E_I> /GT 1.0 > /THEN
*def num_diverges == < <num_diverges>+1 >
*if <<num_diverges> /gt 1 > /then
#DEP/I [DIVERGENCE] == <TRUE>
sENDIF
sENDIF

. . Select Relaxation (i.e., line-search) Parameter: s

sdef/27.2 15 = <[relaxation]>
*if < <<err_e_ipi1>/<err_e_1i>> /gt .5 > /then
COMP <max_nod> <max_dof> [DISPLACEMENT_INC] -> max_d_ip1
*if < <max_d_ipi>s<max_d_i> /1t 0 > /then
sdef 1s = < <1s>-.3 >
sdef 1s = <MAX(<1s>;.4)>
selseif < <ABS(<max_d_ipi1>)> /1t <ABS(<max_d_i>)> > /then
sdef 1s = < <1s>+.4 >
sdef 1s = <MIN(<1s>;2.)>
selse
sdef 1s = 1.0
*endif
sendif
sdef/27.2 [relaxation] == <1s>
:BOTTON_LINE
NORM/MAX [DISPLACEMENT_INC] -> wmax_d_i max_nod max_dof
NORM/MAX [RESIDUAL_FORCE] -> max_f_i max_nod_f max_dof_{f
s#if < [ITER] /1E 1 > /then
sdef/e12.4 load_factor = <lam_npi_i>
*else
*def/e12.4 load_factor = <lam_npl_ip1>
sendif
sremark
sremark
sremark ITER=[ITER] LD=<load_factor> ERR=<err_e_ip1> REFP=<ref_e>
sremark delta_d_max=<max_d_i> node=<max_nod> dof=<max_dof>
sremark resid_f_max=<max_f_1i> node=<max_nod_£> dof=<max_dof_1>
sremark
sremark
*if < <DEBUG> > /then
sprint 1, [DISPLACEMENT_INC]

Revised 5/24/90 CSM Testbed Procedures Manual

3.10- 23

NL'STATIC 2 Solution Procedures

sprint 1, [RESIDUAL_FORCE]
sendif
*END
. =DECK DEFNS
sprocedure DEFNS (step; iter)

. Purpose: Define basic macro_symbols for NLSTATIC3 procedure

*def/i npi

= [step]
sdef/i n = < <np1>-1 >
*def/i nml = < <n>-1 >
sdef/i nm2 = < <n>-2 >
*«if < [iter] /eq 0 > /then . run initialization
sdef/i NS_1di == 1
sdef/i NOM_1di = 3
sdef/i iset == 1
sdef/i icon == 1

*def/a f_spec == APPL.FORC.<iset>.<icon>
sdef/a d_spec == APPL.MOTI.<iset>.<icon>

Check for Prescribed Force/Displacement Loading

*find dataset <NS_1di> <f_spec> /seq=ids

*if < <ids> /gt 0 > /then
*Remark Note: Applied forces dataset <f_spec>, will be used
*det/i spec_force_flag == <true>

selse

<false>

*def/i spec_force_flag =
sendif
sfind dataset <NS_1di> <d_spec> /seq=ids
*if < <ids> /gt 0 > /then
*Remark Note: Specified displacement dataset <d_spec> will be used
edet/i spec_disp_flag == <true>

*else
*det/i spec_disp_flag == <false>
sendif
*if < <<spec_force_flag>/eq 0> /and <<spec_disp_flag>/eq 0>> /then
*remark ; *remark Procedure stopped: no loads defined
sondif

sdef/i live_load_flag == <false>

sdef/a d_ext == EXT.DISP
sdef/a f_ext == EXT.FORC
*def/a f_int == INT.FORC
sdef/a £ T == TAN.FORC
sdef/a R_np1_i == RES.FORC
sdef/a R_npl_ip1l == RES.FORC
*def/a d_inc_i == INC.DISP
*def/a d_inc_ipl == INC.DISP
*def/a delta_T == HAT.DISI
*def/a delta_B == BAR.DISI
sdef/a delta_S == STR.DISI
*def/a delta == TOT.DISI

3.10- 24 CSM Testbed Procedures Manual Revised 5/24/90

Solution Procedures NL'STATIC 2

sdet/a K_ == COL.STIF.1.1
sdet/a Delta_l == STF.DISI
*def/1i ndet == 0

sdef/a d_active == ACT.DISI
. Retrieve Control Parameters from DATA_BASE

sif < [step] /eq 1 > /then
*det/1 sign_det == 1

sdef/i load_dir == 1

*def/d lam_n == 0.0
sdef/d lam_nmni z= 0.0
sdef/d lam_nm2 == 0.0

sdef/d path_inc.n == 0.0
#*def/d path_inc_nmi == 0.0

sdef/d ref_e == 0.0
sRemark STARTING PARAMETERS INITIALIZED.
solse

sopen <NOM_1di> <NOM_DB>

sfind dataset <nom_l1di> <nom_ds> /seq=noa_ids

*g2an /namex=lam_n /type=d <nom_ldi> <nom_ids> LOAD.<n>

*g2m /namezzlam_nmi /type=d <nom_ldi> <nom_ids> LOAD.<nm1>

*g2n /name=zlam_nm2 /type=d <nom_ldi> <noa_ids> LOAD.<na2>

*g2n /namez=path_inc_n /type=d <nom_1di> <nom_ids> PATH_INC.<n>
*g2a /name=zpath_inc_na1 /type=d <mom_1di> <nom_ids> PATH_INC.<nm1>
*g2n /name==zsign_det_n /type=I <nom_1di> <nom_ids> SIGN_DET.<n>
*g2n /name==zload_dir_n /type=I <nom_ldi> <nom_ids> LOAD_DIR.<n>
*g2n /name==ref_e /type=d <nom_ldi> <nom_ids> REF_ERR.<n>

sg2n /name==ndef /type=i <nom_ldi> <nom_ids> NDEF

*g2n /name==fd /type=i <nom_ldi> <nom_ids> FD

sclose <NOM_1di>

sRemark
sremark
sremark
sRemark RE-START PARAMETERS:

*Remark LOAD_FACTORS (n,n-i,n-2) = <lam_n>, <lam_nai>, <lam_nm2>
sRemark PATH_INCREMS (n, nal) <path_inc_n>, <path_inc_nmi>
sRemark SIGN_DET (n) <sign_det_n>

sRomark LOAD_DIR (mn) <load_dir_n>

sremark

remark e
sendif

sendif

.+ Define Global Datasets for Upcoming Step

sdef/a d_nm2 sz TOT.DISP.<na2>
sdef/a d_nmi == TOT.DISP.<nm1>
sdef/a d_n == TOT.DISP.<n>

sdef/a d_npi.i == TOT.DISP.<np1>
*def/a d_npi_ipi == TOT.DISP.<npi>

Revised 5/24/90 CSM Testbed Procedures Manual 3.10- 25

NL'STATIC2 Solution Procedures

sdef/a T_n == TOT.ROTN.<n>
sdef/a T_np1.i == TOT.ROTN.<npl>
#det/a T_npi_ip1 == TOT.ROTN.<npi>
sond . - e e e e
. =DECK EXTRAP
sprocedure EITRAP (dx_np1; dx_n; dx_nmi; cx_n; cx_nal; cx_nm2)
sdef dx_npi = [dx_np1]
sdef dx_.n = [dx_n]
sdef dx_nmi = [dx_nmi]

sdef x_nmi = <dx_nai>

sdef x_n = < <x_nmi>+<dx_n> >

sdef x_npl = < <x_n>+<dx_npi> >

sdef s_nml = < <x_npi>-<x_nmi> >

sdef s.n = < <x_np1>-<x_n> >

sdef [cx_n] == < <x_npi>s<s_nm1>/<<x_n>#<dx_n>> >
sdef [cx_nm1] a=z < -1.%<x_npi1>*<s_n>/<<x_nmi>#<dx_n>> >
sdef [cx_nm2] == < <s_nmi>#<s_n>/<<x_nm1>*<x_n>> >

*end

. =DECK FACT_STIFF
sprocedure FACT_STIFF
[xQT INV . Pactor stiffness
RESET CON = 1
RESET LRA = 7168
RESET DZERD = 1.E-10
RESET SPDP = <csm_precision>

sremark
*Remark MATRIX BEING FACTORED (in Double Precision).
. Define factored-matrix parameters as global macrosymbols
{xqT VEC
sremark Determinant = <coef_det> * 10 - <expl10_det>
sremark Neg. roots = <num_neg>
sdet/i sign_det == <SIGN(1.;<coef_det>)>
sremark Sign of det = <sign_det>
sremark
=END

. =DECK FORM_STIFF
sprocedure FORM_STIFF (DISPLACEMENT

H
ROTATION ; ==
STIFFNESS) . output
sRemark FORMING NEW STIPFNESS MATRIX
scall ES (function = *FORM STIFFNESS/TANG’ ; ~--
es_nl_geom = <NL_GEOM> HEE
e8_coro = <COROTATION> ; -
es_dis_ds = [DISPLACEMENT] R
es_rot_ds = [ROTATION])
[xQT K : . Transform/assemble stiffness

*END
. =DECK INITIAL
sprocedure INITIAL

. CLEAR INITIAL DISPLACEMENTS AND ROTATIONS (n =0)

3.10- 26 CSM Testbed Procedures Manual Revised 5/24/90

Solution Procedures NL'STATIC 2

sg2n /namesparameters /type=i /maxn=18 <NS_LDI> JDF1.BTAB.1.8 DATA.1

sdef/i NNODES = <PARAMETERS[1]>

sdef/i NDOF = <PARAMETERS[2]>

sRemark Problem Dimensions: K_nodes = <NNGDES>, R
[xqQT VEC

INIT_DOF CON..<icom> -> DOF.TABL

sRemark DOF TABLE initialized.

INIT_VEC <d_inc_ip1> <NDOF> BY <NNODES> . Zeroize translations

INIT_VEC <K_I> <NDOF> BY <NNODES> . Zeroize translations

INIT_VEC <Delta_I> <NDOF> BY <KNODES> . Zeroize tramnslations

INIT_VEC <d_active> <NDOF> BY <NNODES> . Zeroize translations

INIT_VEC <d_n> <NDOF> BY <NNODES> . Zeroize translations

INIT_VEC <T_n> 3 BY <NNODES> . Zeroize rotation pseudovectors

sRemark Displacements initialized.

sif < <spec_disp_flag> > /then

<d_ext> <- <d_spec> . for VEC

NORM <d_ext> -> norm_d

sif < <norm_d> /eq 0. > /then

sRenark
*Remark NOTE: Specified displacements are identically zero.
sRemark
*endif
scopy <NS_1di> = <NS_1di>, <d_spec>
<d_spec> <- 0 . for SSOL
sRemark Specitied displacements saved in <d_ext>.
s=endif
sif <<spec_force_flag>> /then
<F_ext> <~ <F_spec> . for VEC

NORM <f_ext> -> norm_1
eif < <norm_f> /eq 0. > /then
*Remark
sRemark NOTE: External forces are identically zero.
sRemark
wondif <
sRemark External force vector saved in <FP_ext>.
scopy <NS_1di> = <NS_1di>, <FP_spec> . for SSOL
selse
INIT_VEC <F_ext> <NDOF> BY <NNODES>
INIT_VEC <F_spec> <NDOF> BY <NNODES> /single_precision . for SSOL
sendif
sRemark Right-hand-side vector zeroized (in <F_spec>).
INIT_VEC <F_int> <NDOF> BY <NNODES>
sRemark Internal force vector zeroized (in <F_int>).
. INITIALIZE ELEMENT CONFIGURATION
[(xqT E
[xqQT RSEQ
reset method=0,maxcon=35
{xqT TOPO
reset maxsub = 40000,lran=8196
*call ES (function = ’INITIALIZE’)

Revised 5/24/90 CSM Testbed Procedures Manual 3.10- 27

NL'STATIC2 Solution Procedures

*Remark Element configuration initialized.
send
. =DECK POSTRES
sprocedure POSTRES (step)
[xqQT VEC
sfind dataset <NOM_LDI> <NOM_DS> /seq=post_ids
»if < <post_ids> /le 0 > /then
sput dataset <NOM_LDI> <NOM_DS> /mrat=2000 /seq=post_ids
sondif

. Save selected displacements on nominal data-base
sdef/a dof_names = U, V, W, RU, RV, RV

«do $isel = 1, <N_SELECT>
sdef/i node = <SEL_NODES([<$isel>]>
sdef/i dof = <SEL_DOFS[<$isel>]>
sdef/a dof_name = <dof_names[<dof>]>
COMPONENT <node> <dof> TOT.DISP.[step] -> DISP
sdef/a recd_name = DISP_<dof_name>_<node>.[step]
sRemark <recd_name> = <DISP>
sa2g /name=disp /type=d <nom_1di> <post_ids> <recd_name>

. Save Reaction Forces for Current Step

REAC.FORC.[step] <- INT.FORC
eif < [step]l /eq 0 > /then
REAC.FORC.0 <~ 0.0
wendif
sif < <spec_disp_flag> > /then
COMPONENT <node> <dof> REAC.FPORC.[step] -> PORCE
sdef/a recd_name = FORCE_<dof_name>_<node>.[step]
sReaark <recd_name> = <FORCE>
*n2g /namezforce /type=d <nom_1ldi> <post_ids> <recd_name>
sendif
senddo
send
. =DECK POSTSTEP
sprocedure POSTSTEP (step; iter)

sRemark -

sRomark STEP [step] SUMMARY :

*Remark e ——— - -— -
sRemark Load Factor _— <lam_npi_ipi1>

sRemark Load Direction —eew €load_dir>

sRemark Stiffness determinant _____________ <coef_det> * 10 - <explO_det>
*Renark Number of negative roots _________ <num_neg>

sRemark Path_length_increment ____________ <path_inc>

sRemark Relative energy error ____________ <err_e_ip1>

*Remark Number of Iteratioms ____________ <num_iters>
sRomark Number of Step Cuts __________.____ <<pass>-1>

sRemark Total Number of Iterations _______ <tot_iters>
sRemark

3.10- 28 CSM Testbed Procedures Manual Revised 5/24/90

Solution Procedures

NL'STATIC2

=spsn 1di> <NOM_DB>
»{f < [step] /eq 1 > /then

#call POSTRES (step = 0)

*det/d load_0=0.

su2g /namezload_0 /type=d <NOM_LDI> <NOM_DS> LOAD.0:0
sondif
scall POSTRES (step=[step])
sfind dataset <NOM_LDI> <NOM_DS> /seq=nom_ids
sn2g /name=lam_npl_ip1 /type=sd <nom_1di> <nom_ids> LOAD.[STEP]
*n2g /name=path_inc /type=d <nom_1di> <nom_ids> PATH_INC.[STEP]
*n2g /nanezerr_e_ip1l /typezd <nom_1di> <nom_ids> ERROR.[STEP]
*n2g /namesref_e /type=d <nom_1ldi> <nom_ids> REF_ERR. [STEP]
*n2g /namezload_dir /type=i <nom_1di> <nom_ids> LOAD_DIR.[STEP]
*n2g /name=sign_det /type=i <nom_ldi> <nom_ids> SIGN_DET.[STEP)
*a2g /name=coef_det /type=d <nom_ldi> <nom_ids> COEF_DET.[STEP]
*n2g /namesexpiO_det /type=i <nom_1di> <nom_ids> EXP10_DET.[STEP]
*a2g /name=num_neg /typezd <nom_1di> <nom_ids> NEG_ROOTS.[STEP]
*n2g /name=num_iters /type=i <mom_1di> <nom_ids> NUM_ITERS.[STEP]
sn2g /namestot_iters /type=i <nom_1di> <nom_ids> TOT_ITERS.[STEP]
sdef/i passaml = <<pass>-1>
*a2g /name=passmi /type=i <nom_1ldi> <nom_ids> NUM_CUTS.[STEP] . cgl, 7/26/88
sn2g /nanme=ndef /type=i <nom_ldi> <nom_ids> NDEF
sif <<ndef> /eq 0> /then

edet/i fd==0
sendif
*n2g /name=fd /type=i <nom_1di> <nom_ids> FD
*close <NOM_1di>
sond
. =DECK RESIDUAL

NN
Sawvn_

sprocedure RESIDUAL (STEP=1; ITER=1 H input
DISPLACEMENT HIEE
ROTATION HIE
LOAD_FACTOR ;-
SPECIFIED_DISP R
INTERNAL_FORCE I
EXTERNAL_FORCE ; -
RESIDUAL_FORCE) . output
. ¥
[xQT VEC
CINTERNAL_FORCE] <- 0.
scall ES (function = JFORM FORCE/INT’; --
es_nl_geom = <NL_GEOM> HIR
e8_coro = <COROTATION> ; --
es_dis_ds = [DISPLACEMENT] ; --
es_rot_ds = [ROTATION] ; -
es_frc_ds = [INTERNAL_FORCE])
[XQT VEC

[RESIDUAL_FORCE] <- [load_factor] [EXTERNAL_FORCE] - [INTERNAL_FORCE]
*END

. =DECK SOLVE

sprocedure SOLVE (RHS ; SOLN)

. Copy Right-Hand-Side Vector to Expected SPAR (Single Precision) Dataset

Revised 5/24/90 CSM Testbed Procedures Manual

3.10- 29

NL'STATIC2

Solution Procedures

[xQT VEC

APPL.FORC.<iset>.<icon> <~ [RHS] /single_precision

. Solve

[xQT SsoL

RESET CON = <icon>
RESET SET = <iset>
RESET REAC = 0

. Copy SPAR Solution Vector to Double Precision Dataset

[xqT VEC
[SOLN] <- STATIC.DISP.<iset>.<icon>
send
. =DECK STIF_COLMN
sprocedure STIF_COLMN
[xQT VEC
#if CCNDEF> /gt 0> /then
FREE <NDEF> <FD>
sendif
sif <<spec_disp_flag> > /then
<d_active> <~ <d_inc_1i>
SPECIFY 0. <d_ext> -> <d_active>
NORM/MAX <d_active> -> D_II NDEF FD
selse
NORM/MAX <d_inc_i> -> D_II NDEF FD
sendif
[XQT AUS
SYSVEC : UNIT I 1 1
I=<FD> : J=<NDEPF> : 1.0
SYSVEC : COL STF 1 1
DEPINE E = <NS_1di> UNIT I 1 1
DEFINE K = <NS_1di> K SPAR 36
COL STF 1 1 = PRODUCT (K,E)
{xqT VEC
FIX <NDEF> <FD>
<K_I> <- COL.STF.1.1
sEND
. =DECK STIFFNESS
sprocedure STIFFNESS (DATA_BASE
STEP
ITER
LOAD_FACTOR
DISPLACEMENT
ROTATION
STIFFNESS) . output

-- . input

- we ws we we we
[]
]

*Remark FORMING NEW STIFFNESS MATRIX

*call ES (function = 'FORM STIFFNESS/TANG’ ; --
es_nl_geom = <NL_GEOM> ; ==

3.10- 30 CSM Testbed Procedures Manual

Revised 5/24/90

Solution Procedures NL'STATIC?2

<COROTATION>

es_coro = H

es_dis_ds = [DISPLACEMENT] ; -

es_rot_ds = [ROTATION])
[(xQT K . Transform/assemble stiffness
[xQr INv . Factor stiffness

RESET COR = 1

RESET LRA = 7168

RESET DZERO = 1.E-10

RESET SPDP = <csa_precision>

sremark
sRemark MATRIX BEING FACTORED (in Double Precision).
. Define factored-matirix parameters as global macrosymbols
(xqQr VEC
sremark Deterainant = <coef_det> * 10 - <explO_det>
sremark Neg. roots = <num_neg>
sdef/i sign_det == <SIGN(1.;<coef_det>)>
sremark Sign of det = <sign_det>
sremark
»END
. =sDECK TANDIS
sprocedure TANDIS (step; iter; displacement ; rotation HER
load_factor ; max_load ; external_force; --
specified_disp; internal_force; -~
tangent_force ; tangent_disp)
#if < <spec_disp_flag> > /then . Load standard spec_disp dataset
[xqQT vEC
SPECIFY 1.0 [specified_disp]l -> <d_spec>
*endif
scall SOLVE (RHS = [external_forcel; SOLN = [tangent_disp])
sif < <spec._disp_flag> > /then . Clear standard spec_disp dataset
(1QT VEC
<d_spec> <- 0.0
sendit
send

. =DECK TWO_BY_TWO
esprocedure TWO_BY_TWO (FREE)
. « . Compute 2 x 2 systes cosfficients

[xQT VEC
« « « A_22 is used for both ordinary and advanced RIKS

DOT <d_inc_3i> & <delta_T> -> A_22
sdef/d A_22 == < 2.0 » <A_22>>

+ + « The remainder of Procedure is invoked only for Advanced Riks
sif <[FREE] /gt 0> /then
COMPONENT <ndef> <fd> <K_I> -> K_II
COMPONENT <ndef> <fd> <f_ext> -> fe_I
COMPONENT <ndef> <fd> <d_inc_i> -> D_II
DOT <K_I> & <delta_I> -> K_DOT_ d_I

Revised 5/24/90 CSM Testbed Procedures Manual 3.10- 31

NL_STATIC_2 Solution Procedures

DOT <K_I> * <delta_T> -> K_DOT_T
DOT <d_inc_i> s <delta_I> -> dd_DOT_d_I
sdef/d A_11 == <<K_II> -~ <K_DOT_d_I>>
sdef/d A_12 == <<K_DOT_T> - <fe_I>>
sif <<spec_disp_flag>>/then
DOT <K_I> * <d_ext> -> K_DOT_d_ext
sdef/d A_12 == <<CA_12> - <K_DOT_d_ext>>
sendif
sdet/d A_21 == < 2.0 #<<D_II> - <dd_DOT_d_I>> >
sendif
send

3.10- 32 CSM Testbed Procedures Manual Revised 5/24/90

Solution Procedures NL_DYNAMIC_1

9 11
Js 4 L

3.11.1 GENERAL DESCRIPTION

Procedure NL.LDYNAMIC_1, written by C. C. Rankin and B. Nour-Omid of Lockheed
Palo Alto Research Laboratory, performs nonlinear transient analysis using a one-step,
self-starting, implicit integration algorithm containing adjustable parameters. The non-
linear system is solved using a modified Newton/Raphson incremental /iterative solution
sequence. Like NL_.STATIC_1, procedure NL_.DYNAMIC_1 relies on the Generic Element
Processor (i.e., structural element processors, ESi) and hence has a corotational option for
geometric nonlinearity that enables arbitrarily large rotations.

Procedure NL_LDYNAMIC_1 solves the transient system
Mii + f™(u) = fe= (3.11-1)

Here M is the mass matrix, u is the displacement, and dots over quantities refer to differen-
tiation with respect to time. These equations are discretized over time using the following
relations involving two parameters 6 and a:

Maio + (1 + @)f™(dnye) — af™(d,) = £235 (3.11-2)

where d,. ¢ and a, 14 are the approximations to the displacement and acceleration at time
(n + 6)At, and where Wilson’s 8 interpolation parameter is used to obtain the desired
acceleration according to

Qnt9 = (1 - 0)a,. + 08n+1 (311 - 3)

Velocity v and acceleration a are related to the displacements at the point n + 8 by

Vnto = Vp + OAt[(l - 7)an + 7an+0]

2,1 (3.11 - 4)
dnte = dn + 0Atv, + (0AL) [('5 — B)a, + fan+e
where we have introduced the two standard Newmark parameters 8 and v as the last two
parameters in our system. The resulting system to be solved is

Mdn o + (042 B(1 + a)f*(dn o) — faso =0 (8)

where the quantity ?n+o is known from the last converged time step (see Section 4.3.9.2.
for a complete derivation of equations and definition of symbols).

NL_DYNAMIC_1 is designed to solve any well posed initial value transient analysis prob-
lem with non-negative mass. This includes problems with initial velocity and/or initial
displacement, as well as a generalized imposed external forcing with either built-in or
user-suppled time dependence. Currently, the procedure uses the same external loading
as NL.STATIC_1, with a multiplier defined by a force-time procedure. The built-in pro-
cedures are described in Sections 4.3.3.7 and 4.3.3.8.

5/24/90 CSM Testbed Procedures Manual 311-1

NL_DYNAMIC_1 Solution Procedures

Since (66) is a nonlinear system similar to (1), much of what is in NL_STATIC_1 ap-
plies to NLDYNAMIC_1. In particular, we mention the solution of a banded system
with similar structure to the stiffness matrix, identical handling of large rotations, similar
procedures for archiving results of solutions and retrieving restart information, and very
similar convergence and stepsize adjustment procedures. We shall henceforth concentrate
on the differences between the static and dynamic algorithms, with particular emphasis on
operations involving the mass, time step, and the four adjustable integration parameters.
In some respects, NL_DYNAMIC_1 is simpler than its static analogues, since no arclength
constraint is needed for a positive-definite mass/stiffness system.

8$.11.2 PROCEDURE USAGE

Procedure NL_LDYNAMIC_1 may be invoked by the *call directive:

#call NL_DYNAMIC 1 (argl = vall; arg2 = val2; ...)

where argi are argument names and vali are the corresponding values you wish to give
them. The following are valid arguments for NL.DYNAMIC_1; note that those without
default values are mandatory, while the others are optional.

Argument Default Value Meaning

BEG_STEP - Starting step number (>0)

MAX_STEPS - Maximum steps to compute

BEG.TIME - Problem starting time

MAX_TIME - Upper.bound on problem time
DEL_TIME - Beginning time step

INT_PARS 1.,0.,.25,.5 Time integration parameters
LOAD_STIFF <false> Include load stiffness

FT_PROC FT_ZERO Forcing procedure

FT_ARGS 0. Parameter array for FT_ PROC
COROTATION 1 Corotational Update Option

DESITERS 4 Number of iterations per step desired
EXTRAPOLATE <true> Perform quadratic extrapolation of solution
FACSTEPS 1 Steps_per_refactoring

MAX.ITERS 9 Maximum iterations per step

MAX_CUTS 3 Maximum number of successive step cuts
NL.GEOM 2 Geometric Nonlinearity Level (1 or 2)
NOMINAL_DB NOMINAL.GAL Results database file

NOMINAL.DS RESPONSE.HISTORY Results dataset

N_SELECT 0 Number of nodes for selected disp. output
SEL.NODES 0 List of nodes for selected output
SEL_DOFS 0 Corresponding list of nodal freedoms (1-6)
TOLE 1.E-3 Relative error tolerance in energy norm

3.11-2 CSM Testbed Procedures Manual 5/24/90

Solution Procedures NL.DYNAMIC. 1

In the above definitions, the term siep refers to a time step. The total response is au-
tomatically subdivided into time steps, with the starting time prescribed by the User —
using BEG_TIME. The initial time step is set by DEL_TIME, and held constant unless
trouble occurs. If convergence is difficult, the time step will be cut, and a new initial value

problem will be started at the last converged solution.

3.11.3 ARGUMENT GLOSSARY

3.11.3.1 BEG.STEP

This argument defines the number of the first step to be computed in a given nonlinear
analysis interval. It is important primarily for analysis re-starts. Initially, BEG.STEP
should be set to 1. To continue an analysis in a subsequent run, after having computed
and saved “n” steps in the previous run, one would typically set BEG_STEP equal to
“n+1”. For example, if the 10th step was successfully completed in the first run, then
it could be continued in a second run by setting BEG_.STEP = 11. However, it is not
necessary for BEG_.STEP to be larger than any previously computed step. That is, you
may re-compute a sequence of steps by setting BEG_STEP to the number of the first step to
be re-computed. The procedure will automatically use the step that immediately precedes
BEG_STEP (e.g., BEG_STEP-1) to obtain the necessary initial displacements, velocities,

and accelerations.

3.11.3.2 BEG_TIME

The starting problem time. For the initial run, the value of this parameter is usually set
to zero.

3.11.8.3 COROTATION (default = <true>)

Corotational update switch for large-rotation problems. This switch should be set to
<true> when the model involves finite elements that require corotation for geometric
nonlinearity. This is true of most beam and shell elements, and may be true for some solid
(3D) elements used to model shell structures. Consult the appropriate element Processor
(ESi) section in the Testbed User’s Manual for specific guidelines.

3.11.3.4 DEBUG (default = <false>)

Procedure debug switch. This switch should only be turned on to obtain additional diag-
nostic printout for procedure debugging.

3.11.3.5 DEL_TIME

The initial time step. If all goes well with the integration, this will be the time increment
throughout the analysis. For restart, it is possible to use the time increment that was in
force for the previous run. For restart only, input zero to cause the procedure to read in

and use the previous DEL_TIME.

5/24/90 CSM Testbed Procedures Manual 3.11-3

NL_.DYNAMIC_1 Solution Procedures

3.11.3.6 DES_ITERS (default = 4)

Desired number of iterations allowed for convergence at a given load step. This parameter
is used to adaptively adjust the arclength increment from one load step to the next, by
comparing DES_ITERS with the actual number of iterations required for convergence at
the last step.

3.11.3.7 FT_PROC (default = FT_ZERO)

FT_PROC is the name of a procedure that will obtain the load factor (A) for the time-
dependent forcing function. For applied force loading, this factor is multiplied by the
reference applied force vector to obtain the current load vector, i.e.,

ezt

£r7t = A()F

where T°°* is the reference applied force vector stored in dataset APPL.FORC.1. For
applied displacement loading, the starting load factor is applied to the reference applied
displacement vector, which is then used to compute the initial internal force vector, i.e.,

i LU OT:

where d°"" is the reference applied displacement vector stored in dataset APPL.MOTI.1.

The user can supply any procedure he desires for FT_PROC. If this is the case, FT_PROC
is the name of that procedure. FT.PROC has three arguments of its own. T is the current
problem time, FT_ARGS is an array of up to six scalars, and F_/MAC is the name of the
macrosymbol (set by NL_LDYNAMIC_1) to contain A(t).

If the user wishes to use the FT procedures supplied here, he has four choices, as illustrated
in Fig. 4.3-1.

FT.ZERO This is the default option, which means that there will be no external forcing.
FT_LIN Piecewise linear forcing function.

FTSIN Sinusoidal forcing function.

FT_EXP Exponential decay.

3.11.3.8 FT_ARGS

These are the arguments to either the user-supplied forcing function, or required for
FT.LIN, FT.SIN, or FT_EXP. For these last three procedures (supplied here), we offer
the same options that are supplied with the code Structural Analysis of General Shells
(STAGS). We have reproduced the forcing function diagram from the STAGS manual,
which here appears as Fig. 4.3-1. In this figure, PA is the function A(t), TIME is in units
of problem time, and CA1 through CA6 are FT_ARGS[1:6], respectively. A summary for
each each case follows:

For FT_LIN (piecewise linear time dependence), the array is as follows:

3.11- 4 CSM Testbed Procedures Manual 5/24/90

Solution Procedures NL_DYNAMIC_1

FT_ARGS[1] Maximum load factor {CA1 in figure).

FT_ARGS|2] Delay time before applied load ramps up (CA2). Can be zero.

FT_ARGS(3] Time at which load reaches maximum (CA3). Can be equal to FT_ARGS|2].

FT_ARGS[4] Time at which load begins to drop (CA4). Can be equal to FT_ARGS|3] if
FT_ARGS[3] is not equal to FT_ARGS|2].

FT_ARGS[5] Time at which load drops (CAS).

FT_ARGS(3:5] can be safely set to larger than MAX_TIME if that is what the user wants.

For FT_SIN (sinusoidal time dependence), the array is as follows:

FT_ARGS|1] Peak height of sine wave (see Fig. 4.3-1, CA1)

FT_ARGS[2] Load offset for the sine wave function (CA2). If zero, the sine wave will
oscillate to plus/minus FT_ARGS[1].

FT_ARGS|[3] Half wavelength (CA3).
FT_ARGS[4] Problem time to first maximum load (CA4).
FT_ARGS[5] Delay time to imposition of load (CA5).

FT_ARGS[6] Time at which all loading will terminate (can be a large number), or CA6 in
Fig. 4.3-1.

For FT_EXP (Exponential decay), the array is as follows:

FT_ARGS[1] Peak height of exponential (see Fig. 4.3-1, CA1)
FT_ARGS|2] Delay time before any load is imposed (CA2). Can be zero.
FT_ARGS[3] Half life time of exponential decay.

FT_ARGS[4] This argument is not used. In the Fig. 4.3-1, CA4 must be half CA1. If this
is not the case, then FT_ARGS[3] should be recomputed.

5/24/90 CSM Testbed Procedures Manual 3.11-5
i

NL_DYNAMIC_1 Solution Procedures

Figure 4.3-1 Load Factor Histories

3.11- 6 CSM Testbed Procedures Manual 5/24/90

Solution Procedures NL.DYNAMIC_

3.11.3.9 INT_PARS (default=1.,0.,.25,.5)

The values contained in this array set the characteristics of the time integrator.

INT_PARS[1] is Wilson’s 8 interpolator (see Theory, Section 4.3.9), INT_PARS(2] is o,
and INT_PARS[3:4] are the Newmark 3 and v parameters, respectively. A sophisticated
user can reset these parameters for special integrator performance characteristics. Unless
there is reason to tinker with their default values, it is better for the user to leave these

parameters alone.

3$.11.3.10 LOAD_STIFF / (default=<false>)

If true, include load stiffness in the total stifiness matrix assembly.

3$.11.3.11 MAX CUTS (default=3)

Maximum number of step cuts permitted during the current nonlinear analysis interval. A
step cut refers to a halving of the arclength increment used to advance the solution from
one step to the next. Step cuts are performed only if the maximum number of iterations are
exceeded without converging at a given load step. Note that the relationship between the
increment in “arclength” and the increment in the load-factor, A, is computed internally
by the procedure.

3.11.3.12 MAX TIME

Problem time for which the analysis is to be terminated.

3.11.3.13 MAX_ITERS

Maximum number of iterations allowed for convergence at a given load step. This
parameter is used to terminate the iteration process at a given load level. If convergence
hasn’t been obtained after MAX_ITERS iterations, the load (i.e., arclength) increment
is cut in half and the step is repeated — until either convergence has been obtained or
MAX_CUTS has been exceeded.

3.11.3.14 MAX STEPS

Maximum number of load steps to compute in the current nonlinear analysis run. This
provides an implicit limit on analysis run-time. The transient analysis is thus terminated
whenever MAX_STEPS or MAX_TIME is exceeded — whichever comes first.

3.11.3.15 NL_.GEOM (default = 2

Geometric nonlinearity level: 0, 1, or 2. 0 = the problem is geometrically linear; 1 =
geometric nonlinearity will be handled globally, e.g., using corotational updates only; and
2 = nonlinear element strain-displacement relations should be used in addition to any
global treatment of geometric nonlinearity. If COROTATION = <true>, options 1 and
2 refer to first-order and second-order corotation, respectively. The latter option can be
significantly more accurate than the former for a given finite element model — depending
on which element types are involved.

5/24/90 CSM Testbed Procedures Manual 311-7

NL_DYNAMIC_1 Solution Procedures

8.11.8.16 NOMINAL_DB (default = NOMINAL.GAL)

Name of database (GAL file) where a step-wise history of important solution parameters
and selected response variables is to be stored.

3.11.3.17 NOMINAL_DS (default = RESPONSE.HISTORY)

Name of dataset, within database defined by argument NOMINAL_DB, where a step-
wise history of important solution parameters and selected response variables is to be
stored. See the CSM Testbed Dataset Manual, under dataset RESPONSE.HISTORY, for
a description of the individual data records stored in this dataset.

3.11.3.18 N.SELECT (default = 0)

Number of user-selected displacement components to be saved in the dataset specified by
argument NOMINAL_DS. Values for these displacement components, the locations and
directions of which are specified by arguments SEL_NODES and SEL_DOFS, respectively,
are stored at every time step.

3.11.3.19 SEL_DOFS (default = 0)

List of nodal DOF’s at which displacement histories are to be saved in dataset [NOM-
INAL_DS]. There should be [N.SELECT] numbers in the list, in correspondence with
the node numbers specified by argument SEL_NODES. Values of each number in the
list must range between 1 and 6, in correspondence to the nodal DOF sequence (e.g.,
u,v,w,0;,0,,0,) specified by the START command of Processor TAB.

3.11.3.20 SEL.NODES (default = 0)

List of node numbers at which displacement histories are to be saved in dataset [NOM-
INAL_DS]. There should be [N.SELECT] numbers in the list, and node numbers can be
repeated if more than one nodal DOF is to be saved at a node. The corresponding nodal
DOF for each entry is specified by argument SEL_DOFS.

3.11.3.21 TOL_E (default = 1.e-8)

Error tolerance used to establish convergence of the nonlinear equilibrium iteration pro-
cedure at each load step. The iteration loop at a given step is terminated whenever the
following condition is met:

¢ < [TOL_E]
where
r® . §a¥
€= r . 4

is the relative energy error norm, r is the residual force vector, éd is the iterative displace-
ment change, and ¢ is the iteration counter.

3.11- 8 CSM Testbed Procedures Manual 5/24/90

Solution Procedures

NL_DYNAMIC_1

3.11.4 INPUT/OUTPUT DATASETS

Table 3.11-1 Datasets Input/Output by Procedure NL_. DYNAMIC_1
Dataset Description Lib | Input {Output
<ES_NAME> .EFIL.x |Element Computational Data | 1 V4 Vv
ES.SUMMARY ES Processor Status 1 4 Vv
DEF.<ES_NAME>.x |Element Defn. (Connectivity) | 1 Vv
DIR.<ES_NAME>.x |Element EFIL Directory 1 V4
JDF1.BTAB.» Model Summary 1 Vv
JLOC.BTAB.« Nodal Coordinates 1 V4
PROP.BTAB.x Material/Section Properties 1 Vv
QJJT.BTAB.x Nodal Transformations 1 Vv
TOT.DISP.step System Displacement Vector 1 Vv Vv
TOT.ROTN.step Nodal Rotation Pseudovectors | 1 V4 Vv
TOT.VEL.step System Velocity Vector 1 Vv Vv
TOT.ACC.step System Acceleration Vector 1 Vv Vv
REAC.FORC.step System Internal Force Vector 1 Vv

where step is the time step number, and ranges consecutively from 1 to the total number
of steps computed. We must emphasize here that if one wishes to solve an initial value
problem with either nonzero initial velocities or displacements (and not a restart), the user
must supply TOT.DISP.0 and/or TOT.VEL.0. If they are not supplied, the procedure will

initialize these to zero.

5/24/90

CSM Testbed Procedures Manual

3.11-9

NLDYNAMIC.1 Solution Procedures

3.11.5 SUB-PROCEDURES AND PROCESSORS

Table 3.11-2 Sub-Procedures Invoked by Procedure NL_ DYNAMIC_1
Procedure Type Function

NL_DYNAMIC_1 |Internal |[Main Procedure

CHK_CONVD Internal |Check convergence

CONSTRAIN Internal |Impose constraints on freedoms

DEFND Internal |Defines recursive macrosymbols

ES External |Element utility Procedure

FACTOR Internal |Factor stiffness matrix

FORCE Internal |Forms INTERNAL/EXTERNAL force vector
FT_ZERO Internal |Zero force-time history

FT_LIN Internal |Piecewise linear force-time history

FT_SIN Internal |Sinusoidal force-time history

FT_EXP Internal |Exponential decay force-time history

MASS Internal | Compute mass

MASS_STIFF Internal | Combine mass and stiffness matrices
NLINITD Internal |Initialize datasets and set restart
POSTRES Internal |Save selected data, internal forces
POSTSTPD Internal |Save data for restart

SOLVE Internal |Solves linear equation systems

STIFFNESS Internal |Forms and assembles stiffness matrix

3.11- 10 CSM Testbed Procedures Manual 5/24/90

Solution Procedures NL_DYNAMIC_1

Table 3.11-3 Processors Invoked by Procedure NL_DYNAMIC_1

Procedure | Type Function

AUS Internal |Combines mass and stiffness matrices

E Internal |Initializes EFIL datasets

ESi External |Element Processors based on GEP

INV Internal |Factors stiffness matrix

SSOL Internal |Solves linear equation systems

VEC Internal |Performs all vector/pseudo-vector algebra

5/24/90 CSM Testbed Procedures Manual 3.11-11

NL_DYNAMIC. 1 Solution Procedures

3.11.6 LIMITATIONS

Limitations spelled out in Sections 4.1.6.1 through 4.1.6.8 apply also to NL_.DYNAMIC_1.
In addition, the following limitations also exist:

3.11.6.1 No Damping Included

No damping is included in this first version of NL_.DYNAMIC_1. Damping that preserves
the bandwidth of the problem will be included in a later version.

3.11.6.2 Initial Velocities and Displacements

These are currently the responsibility of the user. NL_DYNAMIC_1 will expect to see data
sets TOT.DISP.0 and TOT.VEL.0 for these types of problems. Currently, there is no way
to initialize rotational triads. This is a topic for future development.

3.11.6.3 Diagonal Mass

Currently, only diagonal mass can be used. This limitation will soon be removed.

3.11.6.4 AUS Limitation

Due to hard wired data set naming conventions in processor AUS for system matrices (e.g.
K.SPAR.36), the number of DOF’s per node specified on the START command of processor
TAB is presently restricted to be 6. AUS is currently essential to NL.DYNAMIC_1 for
computing the sum of the mass and stiffness matrices to obtain the dynamic operator. This
restriction will be removed when we make the connection to the Generic Matrix Processor.

3.11.7 ERROR MESSAGES

3.11.7.1 “Non-Convergence at Step n. Revise Strategy.”

This message means that the maximum number of nonlinear iterations (MAX_ITERS)
has been exhausted, as well as the maximum number of step cuts (MAX_CUTS), and
convergence still hasn’t been obtained at step n. A possible cure is to re-start the analysis
from several steps back, and decrease the arclength increment at that point (using the
PATH_.SCALE argument). However, just increasing MAX_ITERS or MAX_CUTS, or even
TOL_E, may also solve the problem. In other words, re-think the definition of all solution

parameters based on the observed behavior of the solution algorithm just prior to the
break-down.

3.11.7.2 “Divergence at Step n. Revise Strategy.”

This message has similar implications to the previous message, but it occurs when the
error grows instead of decreases during two successive nonlinear iterations. The difference
between divergence and non-convergence is that divergence cannot be cured by increasing
MAXITERS; and probably should not be “cured” by increasing TOL_E. It generally

3.11- 12 CSM Testbed Procedures Manual 5/24/90

Solution Procedures NL_.DYNAMIC_1

means that the step-size is too big — or that the error tolerance (TOL_E) has been too big
all along, so that changes are occurring suddenly that should have been detected by the
solution algorithm at earlier load steps. Thus, you might try re-starting from an earlier

step, reducing PATH_INC, and possibly reducing TOL_E as well.

8.11.7.3 “Specified Displacements are Identically Zero”

This is not necessarily an abortive error. As long as either nonzero specified displacements
or specified forces are defined, the solution can proceed — in which case the message should
be taken merely as a warning.

3.11.7.4 “Specified Forces are Identically Zero”

This is not necessarily an abortive error. As long as either nonzero specified displacements
or specified forces are defined, the solution can proceed — in which case the message should
be taken merely as a warning.

3.11.8 USAGE GUIDELINES AND EXAMPLES

8.11.8.1 Starting an Analysis

To begin a nonlinear transient analysis with procedure NL.DYNAMIC._1, it is only nec-
essary that the finite element model be defined. This does not require pre-formation of
element stiffness matrices, node renumbering for optimal factorization time, or any form
of linear analysis (unless initial geometric imperfections are based on linear displacement
modes). Only nodal coordinates/transformations, material properties and element con-
nectivity are pre-requisite to nonlinear analysis. To invoke procedure NL DYNAMIC._1,
only those arguments that don’t have default values (see PROCEDURE USAGE section)
need be specified.

For example, if you wanted to start an analysis with an initial time of 0., maximum time
of .01, a time step of .005, and compute no more than 20 time steps with an initial velocity
profile defined in data set TOT.VEL.0, you could invoke the procedure as follows:

xcall NL.DYNAMIC_1 (BEG.STEP = 1 ; MAX_STEPS = 20 ; -
BEG.TIME = .0 ; MAX.TIME = .1 ; -
DEL_TIME = 0.005)

Keep in mind that the number of time-steps actually performed during the above run will
depend on whether convergence difficulties were encountered. If that happened, the step
will be cut, and the number of steps to maximum time will be greater. Since it may be
difficult to estimate this in advance, you may want to start with only a few time steps
(e.g., set MAX_STEPS = 3) to get some experience, and later re-start the analysis with
more steps allowed.

 5/24/90 CSM Testbed Procedures Manual 3.11- 13

NL.DYNAMIC.1 Solution Procedures

3.11.8.2 Re-Starting (or Continuing) an Analysis

To re-start an analysis from a previously computed, converged solution, you need only
specify the first step to compute, the maximum time, and any changes in the forcing
function. The only requirement is that a previous complete set of solution data for a
converged time step must be present on the database. If, for example, one wishes to
restart from step 10 (compute beginning step 11), then the call could be

xcall NL_.DYNAMIC_.1 (BEG.STEP = 11; MAX_STEPS = 100 ; -
MAX_TIME= .1 ; DEL.TIME = 0. ; -
FT_PROC=FT_LIN ; FT_ARGS=100.,0.,0.,1.)

In this case, the user wants to restart the previous example at time .05 with the sudden
imposition of a step forcing function with scaled magnitude of 100. By examining Fig.
4.3-1, one can see that the step load is to be continued well beyond the termination time.
FT_LIN is one of the procedures supplied here.

It is also possible to modify integration parameters and the time step, as well as any of
the other applicable procedure arguments. Note that the parameter DEL_TIME is always
required. The value zero is used to tell the procedure to look into the database for the last
value. A nonzero value for this parameter overrides the time step saved in the data base.

3.11- 14 CSM Testbed Procedures Manual 5/24/90

Solution Procedures NL.DYNAMIC._ 1

3.11.9 THEO
3.11.9.1 Introduction

Procedure NL_DYNAMIC_1 performs a nonlinear transient analysis of a system using
a time integration algorithm that has adjustable parameters which allow for the automatic
selection of a family of related transient analyzers. All of them are self starting, require no
“historical” vectors, and for a useful range of parameters, are unconditionally stable. All
are based on discrete matrix equations of motion that may or may not include damping.
The internal and external force vectors can be nonlinear functions of the displacements
(unknowns).

3.11.9.2 Development of the Algorithm -

The discrete form of the equations of motion are
Mii + f**(u) = f*=t (3.11 - 5)

where for simplicity we have omitted damping, and where the dependence of the internal
forces on displacement and the external forces has been emphasized. Here M is the mass
matrix, u is the displacement, and dots over quantities refer to differentiation with respect
to time. Our goal is to find a discrete solution to (69) at time ¢ + At (step n + 1), given
information at time ¢ (step n). In order to do this, we need additional relations between
the displacements, velocities, and accelerations being solved for.

We begin with a two parameter family of the equations of motion (69) discretized in
time as follows:

Ma, g + (1 4 @)™ (dnts) — af™(d,) = ££25 (3.11 — 6)

where d, ;¢ and a,, ¢ are the approximations to the displacement and acceleration at time
(n + 0)At, and where Wilson’s 8 interpolation parameter is used to obtain the desired
acceleration according to

anto = (1 —0)a, +fany (3.11-17)

The parameter « is a measure of the “degree of implicitness” of the integrator. If a is 0,
the equations of motion are to be satisfied at some point 0 greater than unity. If a = —1,
we have an explicit system, with the acceleration extrapolated from values at the previous
step.

To relate the velocity and acceleration to the displacements at the point n + 6, we
introduce the two standard Newmark parameters 8 and v:

Vot = Vi + 0AL(1 — v)a, + yant (3.11-8)

1
dn+0 = dn + 0Atvn + (0At)2 [(5 - ﬂ)an + ﬂan+o] (3.11 - 9)

5/24/90 CSM Testbed Procedures Manual 3.11-15

NL.DYNAMIC._1 Solution Procedures

Eq. (72) is required when damping is present. If we define the known quantity

-~

1
dnyo =dy + 0ALv, + (0At)2(§ - PBa, (3.11 - 10)

then, using (73), we have
dn+0 = an-}-@ + (0At)2ﬂan+g (3.11 - 11)

If we multiply Eq. (70) by (8At)?8 and eliminate a,4¢ using (74), we obtain

Mdoyo + (0A1)?8(1 + @)f™(dnse) — frye =0 (3.11 — 12)

where the quantity ?n.q.o is known from the last converged time step:

faro = (OALBIEY + af ™ (d,)] + Mdp4o (3.11 — 13)

Eq. (77) is a nonlinear system of equations which must be solved for d,;¢; these dis-
placements will be solved for using an extrapolated starting solution followed by modified
Newton corrections. The solution of this system is very similar to what is in NL_STATIC_1,
with the exception of the arclength constraint and load factor equation. Thus, solution
of (77) proceeds like a fixed-step static algorithm with a modified “stiffness” matrix and
residual vector. In the algorithm description, these are labeled the dynamic operator and
dynamic residual, respectively.

3.11.9.3 Derivation of the Dynamic Operator and Residual

The derivation of the dynamic operator and residual follows directly from the lin-
earization of (77). Using a procedure similar to that for static analysis, we carry out a
Taylor expansion of (77) and drop all terms of order higher than first. The result is the
system

n

[M + (0A1)?8(1 + o)K(d®),)16dD o = 1), (3.11 — 14)

where

1 =Taro - MdY})) — (001 8(1 + a)f"4(dl;)) (3.11 - 15)

is the dynamic residual. Here

foro = (0A1)? B[(tare) + af™(dyn)] + Mdaye (3.11 — 16)

which is computed from information known at the previous step or computed from the
known external forcing function. 6d$3,9 is the vector of unknown displacement increments
at iteration ¢, time point ¢ + §At. One can tell that this is a modified Newton sequence,
because of the argument of the stiffness matrix in (78). For true Newton, one would have

to reform and refactor the stiffness matrix using the latest displacement information.

3.11- 16 CSM Testbed Procedures Manual 5/24/90

Solution Procedures NL_DYNAMIC. 1

3.11.9.4 Recovery of Quantities at Step n 11

Once the displacements at point ¢+0At are known, we need to update the accelerations
and compute the new velocities and displacements at the desired new step. Starting with
BT 179 b onlon £ o Vb ez aln e (7 tha ansindian fan tha

0n+0, we use l.uc sccuuu of \lo) vO 301VE 10T 8n46. unuuuuuus \l'x}, the €{uavion ior wac
acceleration becomes 1

anto = m(dnw —d.+0) (3.11 -17)

We now require the accelerations, velocities, and displacements at time step n + 1. Using
(72), we have for a,4,
1 1
Ap41 = -o-a,,.w + (1 - -a)a,. (3.11 - 18)
Eqgs. (72) and (73) can then be used with 6 =1 to interpolate velocities and displacements
to step n + 1, given the new and old accelerations:

Vnt+1 = Vo + At[(1 — y)a, + yan41

o (3.11 — 19)
dn+1 = dn + Atvn + At [('2' - ,B)an + ﬂan-i-l]

3.11.9.5 The Composition of New Displacements and Velocities

" Whenever a new velocity vector is to be updated from a previous vector, the increment
is simply added to the vector. For displacements, however, only the translations are
handled this way. The rotational triads must be updated by the product rule, covered
in Section 4.1.9.10. NL_LDYNAMIC.1 is no different from NL_STATIC_1 in this respect.
However, the reader will notice that the vector dn¢ is treated like a velocity, with no
accompanying rotational update. The reason is that &,,+o eventually ends up as part of
an incremental quantity used to account for inertial effects in the dynamic residual. The
rotational freedoms in this vector are accumulated like their translational counterparts. To
avoid confusion in the algorithm description, compositions that require special rotational
treatment will be denoted by the symbol @. Again, this is similar to the static case.

3.11.9.6 The Integration Parameters

The integration parameters allow the user to taylor the integrator to the special needs
of his problem. The following table defines what we mean by each parameter. For detailed
information on the various integrator options, the reader should consult references at the

end of this section.

Parameter Name

B, Newmark Parameters

é Wilson’s Collocation Parameter
a Dissipation Parameter

5/24/90 CSM Testbed Procedures Manual 3.11-17

NL.DYNAMIC_.1 Solution Procedures

Table 3.11-4 Parameter names used in the NL_DYNAMIC Procedure.

Special choices of these parameters select out well known integrators whose behavior has
been studied extensively. These integrators, the parameter choices, and their regions of
stability for stiff linear systems can be found in the following table.

3.11-18 CSM Testbed Procedures Manual 5/24/90

Solution Procedures NL_DYNAMIC.1

Algorithm a |8 |~ |6 Remarks

Newmark 0 1 | Implicit and unconditicnally sta-
ble when 28 >y > 1

Trapezoidal 0 % % 1 | Implicit and unconditionally sta-

’r ble

Linear Acceleration | 0 : 3 |1 | Implicit and conditionally stable

Fox-Goodwin 0 -117 3 |1 | Implicit and conditionally stable

Central Difference 0 0 % 1 | Explicit and conditionally stable

Wilson-6 0 3 3 Implicit and unconditionally sta-
ble when 6 > 1.366025

Collocation 0 % Implicit and unconditionally sta-

[
ble:vhenﬂZlandWZﬂZ
03—

4(2295-]15

a—Method 1 | Implicit and unconditionally sta-
ble when —1 < a < 0, v =
3(1-2a) and 8 = 1(1 - a)?

Table 3.11-5. Some properties of the algorithms that can be produced using
NLDYNAMIC_1 through the a, 8, v, and 8 parameters.

5/24/90 CSM Testbed Procedures Manual 3.11-19

NL_.DYNAMIC._1 Solution Procedures

3.11.10 ALGORITHM

General Algorithm
(1) INITIALIZATION
(1.1) Initialize a, B, v, 6.
(1.2) Initialize do, V.

(1.3) Compute time at 6
to = tg + AL

(1.4) Compute weighted out-of-balance force
1 : 1
£= B (te) + (5 — AIF*"(to) + £7(o)[B(1 +0) — 3]

(1.5) Add inertial terms
To = M(do + 0Atv,) + (At8)’T

(1.6) Compute initial estimate of displacements

d{” = do ® 8Atv,
(1.7) Compute initial dynamic residual

19 =Toro - Md(;)) - (08176(1 + a)™(dl7))

(1.8) Set n=0,t =ty + At, npeg =1

(2) STEP LOOP: for n = Npeg, Nbeg + 1, ...
(2.1) Form and Assemble Stiffness Matrix based on predicted displacements
(2.2) Compute the Dynamic Operator

E = [M + (8At)*8(1 + 0)K(d®),))

(3) ITERATION LOOP:i =1, 2, ... (iter = i+1 = 2,3, ...)

(3.1) Solve for incremental displacement change

. i)
Esd®), = £,

n

3.11- 20 CSM Testbed Procedures Manual 5/24/90

Solution Procedures NL_DYNAMIC_1

i—-1 H
d), = d%) @sa,
3.3) Set iteration counter
(3.3) Set i .
1e—1+4+1

(3.4) Compute new Dynamic Residual

0 =Fupo - Ma'SD - (0AL)?B(1 +)fmt (@l
= n+0 () :B(+a) (n+0)

(3.5) Check Convergence
call CHK_CONV (r{T1),6d,e9, e,ef, €01, num_div —
€+ <CONVERGED>, <DIVERGED>)
if (<CONVERGED>) then

num.iters_required = iter
ne—n-+l
go to (2.3) STEP LOOP
elseif (<DIVERGED> .or. (iter > max.iters)) then

if (num_cuts < max_cuts) then

Atn+1 = Atn+1/2
num.cuts = num._cuts + 1

Nheg =N
GO TO (1.3)
else
STOP
endif
else
go to (3) ITER LOOP
endif

(2.3) Compute acceleration at n + 8

Bn4o = (0At)2ﬂ(d"+° dn+6)

(2.4) Compute acceleration at n + 1

1 1
8nt1 = g8nto +(1- -)an

5/24/90 CSM Testbed Procedures Manual 3.11-21

NL_DYNAMIC_1 Solution Procedures

(2.5) Extract velocities
Vat1 = Vo + At{(1 — 7)an + y8n41]
(2.6) If 8 # 1, recompute displacements
duts = dn © {Btvn + A5 — Han + Pansal}
(2.7) Update counters, timestep
nen4l; te—t+1

(2.8) Check to see if t > tymaz OF B > Nmasz
(2.9) If either statement in 2.8 is true, STOP; else GO TO 2.10
(2.10) Compute dnte

dvo = dn + ALV, + (OAt)z(% _ B)an

(2.11) Compute external loads f***(t) at current time ¢
(2.12) Compute ?n+9

Taro = (0AL)BIf ™ (tnre) + af™(dn)] + Mdars
(2.13) Compute initial estimate of new solution

Adpye = dnie + (0AL) Ba, —d,
dsg).o = dn & Adn+0

(2.14) END STEP_LOOP

3.11- 22 CSM Testbed Procedures Manual 5/24/90

Solution Procedures

NL_DYNAMIC.1

éd

~ezt

fint

= '-'al-nl-g

num-_cuts
num.div
€

€

Eref

€tol

A

aa

d°

t

At

n+d

Displacement vector.

Velocity vector.

Acceleration vector.

Iterative change in d.

Extrapolated displacement from step n

External force vector — base load.
Internal force vector.

External force vector.
Extrapolated out-of-balance force.
The dynamic residual.

Stiffness matrix.

Number of times load step has been cut in half at current step.

Number of consecutive iterations at which divergence occurs.

Relative error in energy norm.
Absolute error in energy norm.
Reference value of ¢; initialized as zero.
Relative error tolerance (default: 10~4).
Load factor.

Base value of specified displacement vector.

Current value of specified displacement vector. d* = A d’.

Problem time.
Time increment.
Time at step n + At

5/24/90

CSM Testbed Procedures Manual

3.11- 23

NL'DYNAMIC’1

Solution Procedures

3.11.11 PROCEDURE LISTING

sprocedure NL_DYNAMIC.1 (--

beg_step =1
nax_steps=i
nax_iters=9
des_iters=4
fac_steps=1
max_cuts=3
tol_e=1.E-3
beg_time
nax_time
del_time

int_pars = 1.,0.,.25,.5 ;
load_stiff=<false> ;
FT_proc=FT_ZERO

FT_args
debug=<FALSE>;
NL_GEON = 2
COROTATION=1 ;
Nominal_DB =
Nominal_ DS =

NOMINAL.GAL ; --
RESPONSE.HISTORY ;
N_SELECT ; SEL_NODES; SEL_DOFS

. Starting step number (>0)
. Maximum steps to compute
. Naximum iterations per step
. Number of iterations desired
. Steps_per_refactoring
. Maximum number of step cuts
. Energy error tolerance
. Starting time
. Upper_bound on time
. Time increment
== . Itegration parameters
» Include load stiffness
i == . Name of force-time procedure
i == . Parameter array for above
=~ . Debug_print switch
-- . Geom. Nonlin. Level (1]2)
=~ . Corotational Flag (leave on!!)
. Selected Qutput

)
sRemark e ——— - -
*Remark |
sRemark NL_DYNANIC _ 1
*Remark
sRemark CSM Testbed Procedure for Nonlinear Statics:
sRemark
sRenark o Corotational Newton/Raphson algoritha
sRemark o Linearized Crisfield/Riks arc-length comntrol
sRenark o Applied forces and/or displacements
*Remark
sRemark Authors: G.M. Stanley and C.C. Rankin
sRenark Version: MAR-03-1988
sRemark |
*Remark

. INITIALIZATION

sdef/1i ns_overwrite == <false>

sdet/i debug == [debug]

sdef/i max_step == <[beg_stepl+[max_steps]-1>
sdef/i num_iters == [des_iters]

sdef/a NOM_DB == [Nominal_DB]

sdef/a NON_DS =z [Nominal_DS]

sdef/i N_SELECT == [N_SELECT]

#def/i SEL_NODES[1:<N_SELECT>] == [SEL_NODES]
sdet/i SEL_DOFS[1:<N_SELECT>] == [SEL_DOFS]
sdet/i NL_GEOM == [NL_GEON]

sdef/i COROTATION == [COROTATION]

3.11-24 CSM Testbed Procedures Manual 5/24/90

Solution Procedures

NL'DYNAMIC'1

sdef/d beg_time s= [beg_time]
sdef/d max_time == [max_time]
sdef/d int_pars[1:4] = [int_pars]

« - « « . Set time integratiocn parametars

*def/d theta == <int_pars{i]>
sdef/d alpha == <int_pars[2]>
*def/d newm_bet == <int_pars[3]>
*def/d newm_gam sz <int_pars(4]>
« + » « « Initialize dataset names, constants
#CALL DEFND (STEP = [BEG_STEP]; ITER = 0)
»IF [BEG_STEP] /EQ 1 /THEN

sRemark INITIALIZATION:

scall NL_INITD

*dez/d t == [beg_time]

sdef/d dt =z [del_time]
selse

sif < [del_time] /eq 0.0 > /then

sdet/d dt == <dt_n>

selse
sdet/d dt == [del_time]
sendif
sdet/d == <t_n>
sondif

-« « « « Set initial step, initial iteration parameters
sdef/i pass == 1

sdet/i tot_iters == 1

sdef/i istep == [beg._step]

« « +» o Set initial time, basic time integration scalars

sdef/d one_p_alp == <1. + <alpha>>

def/d b _op.a z= <{<{nswR_betd><one_p_alp>>
sdef/d h_m_bet == <.5 - <newm_bet>>
sdef/d o_d_th =z <1./<theta>>

sdet/d o_m_odth == <1. - <o_d_th>

*det/d o_m_gam == <1. - <newm_gam>>

« « « » Reintery for problem restart on failure of convergence
e« + + « System is treated as a new initial value problem

:NEW_PASS . Re-entry point for step-size reduction

. « « . Set iteration and step-independent integration scalars

sdef/d th_dt z= <<theta>*<dt>>
sdef/d t_wils == <<t> + <th_dt>>
*def/d th_dt_sq == <<th_dt>s<th_dt>>

5/24/90 CSM Testbed Procedures Manual

3.11- 25

NL'DYNAMIC1 Solution Procedures

sdef/d th_b 2= <<newnm_bet>*<th_dt_sg>>
sdef/d a_th_b == <<th_b> & <alpha>>
sdef/d o.d_thb == <1./<th_ b>>

sdef/d £0_coef == <<b_op_a> - .5>

sdet/d k_coeff == <<th_dt_sq>*<b_op_ad>>
sdef/d v_n_coeff == <<dt>s<o_m_gam>>
sdet/d v_npi_coeff =z <<dt>s<neva_gam>>
sdet/d dtsq == <<dt>s<dt>>

sdef/d h_mb == <<dtsq>*<h_m_bet>>

sdef/d dt_b == <<dtsq>*<newm_bet>>
def/d h_mb_th a= <<th_dt_sq><h_m_bet>>

« « + « Set initial displacement estimate, first step
« « « . Set initial estimate of weighted out-of-balance forces

« « « . Compute external force weighting constant laambda_n(time)

scall [FT_proc] (T = <t> ; == . Problem time
FT_ args = [ft_args] ; -- . Force-time paremeters
F_mac = lambda_n) . External forcing scale factor
scall FORCE (type = EXTERNAL ;-
nl_geon [nl_geon] ;-
nl_load <true> ; --
displacement = <d_n>
rotation <T_n> ;-
corotation [corotation]
load_factor <lambda_n>
input_torce <F_ref> ; --
output_force = <F_ext>)

.+ « « Set internal force

scall FORCE (type = INTERNAL ; ==
nl_geon = [nl_geon] ; --
displacement = <d_n> ; --
rotation z <T_n> ; ==

corotation = [corotation] 7 -
output_force = <F_int>)
. stop_1 sstop

+ + + o+ Weighted difference between internal and external force

[xQT VEC

<a_th> <- <f_ext> ~ <f_int>

<f_bar> <- <h_n_bet> <F_ext> + <f0_coef> <F_int>
« « « « External force at time = T + <theta> = DT

scall [FT_procl (T = <t_wils> ; == . Problem time

FT_ args = [ft_args] ; -- . Force-time paremeters

F_mac = lambda_npi) . External forcing scale factor
scall FORCE (type = EXTERNAL ;-

3.11- 26 CSM Testbed Procedures Manual 5/24/90

Solution Procedures NL'DYNAMIC1

nl_geom = [nl_geon] ;-
nl_load = <{true> ;-
displacement = <d_n> ;-
rotation = <T_n> ;-
corotation = [corotation] § -
load_factor = <lambda_npi> HIED
input_force = <F_ref> ; --
output_force = <F_ext>)

+ « » « Add correction to external force

[(xQT VEC
<f_bar> <- <f_bar> + <newm_bet> <F_ext>
<f_bar> <- <th_dt_sq> <f_bar>

« « « o Initial estimate of displacements

<delta> <~ <th_dt> <v_n>

<d_npi_i> <- <d_n> + <delta>

ROTATE <T_n> * <delta> -> <T_npi1_i>

<d_tilde> <- <d_npi_i>
+ « « « Scaling displacement increment for convergence check
. stop_2 estop

PROD <inv_mass> <a_th> -> <d_inc_i>

<d_inc_1i> <- <h_mb_th> <d_inc_i> + <delta>

« + +» o Mass * Displacements + scaled out-of-balance force

PROD <mass> <d_npl_i> -> <f_tilde>
<f_tilde> <~ <f_tilde> + <f _bar>

« +« « o BEGIN STEP_LOOP e

*D0 :STEP_LOOP $n = <istep>, <[max_steps]-1>
*def/i step == <$n>

*Remark

T ORATK o e—————

sremark

sRemark BEGINNING STEP <STEP>

sremark -

eremark

scall CONSTRAIN (load_factor = <lanbda_npl > ; --
applied_motion = <d_spec> ; --
displacement = <d_npi_i>)

« « . Form Stiffness based on Predictor

5/24/90 CSM Testbed Procedures Manual 3.11-27

NL'DYNAMIC'1 Solution Procedures

scall STIFFNESS (type = TANGENT ; ==
nl_geon = [nl_geon] R
nl_load = [load_stift] ; --
load_factor = <lambda_npi> ; --
displacement = <d_npi_i> ; ==
rotation = <T_npi_i> 3 --
corotation = [corotation] ; -
stiffness = <K_asm>) . output

. « . Combine MASS and STIFFNESS into one matrix <M_p_K>

scall MASS_STIFF (mass = <nass> ;i == . Mass vector
stif = <K_asa> i =~ . Assembled Stiffness
zult = <k_coeff> ; -- . Stiffness Multiplier
M_p_K = <{_p. K>) . The dynamic operator

. .« . Factor DYNAMIC OPERATOR

scall FACTOR (input_matrix = <M_p_K> ; --
output_matrixz <M_p_K>)

+ . Obtain MASS RESIDUAL

scall FORCE (type = INTERNAL ;-
nl_geon = [nl_geon] ;-
displacement = <d_npi_i> ;-
rotation = <T_npi_i> ;-
»

corotation = [corotation]
<F_int>)

output_tforce

. stop_3 sstop

[xQr VEC
PROD <mass> <d_npi_i> -> <R_npi_i>
<R_np1_i> <- <f_tilde> - <R_np1_i>
<R_npi_i> <- <R_npi_i> - <k_coeff> <F_int>

« « + Initialize Convergence Criteria

scall CHKCNVD (STEP =1 HIC
ITER =1 ; -=
Residual _force = <R_npi_i> HEEE
displacement_inc = <d_inc_i>)

. == BEGIN ITERATION LOOP SERBES SR EREE BESERES BESESSERE

. stop_4 sstop
*echo,on,na,nd
DO :ITER_LOOP $i = 1, [max_iters]

3.11- 28 CSM Testbed Procedures Manual 5/24/90

Solution Procedures NL'DYNAMIC'1

sdei/i iter as <L$id+i>
sdet/i tot_iters == <(<Ctot_iters>+1>

« +« « + . Compute Basic Displacement Iteration (delta_th)

#call SOLVE (rhs = <R_npi_i>; soln = <delta_th>; matrix = <M_p_K>)

« « +« » +» Update Displacements, Rotations, Increments
[xqQT VEC
<d_npi1_ip1> <~ <d_npi_i> + <delta_th>
ROTATE <T_np1_i> = <delta_th> -> <T_npi_ip1>
scall CONSTRAIN (load_factor = <lambda_npi>; --
applied_motion = <d_spec> ; -
displacement = <d_np1_ipi1>)
sif < <DEBUG> > /then
sprint 1, <d_npi_ip1>
sprint 1, <T_npi_ip1>
sendif

+ « + » » Compute DYNAMIC RESIDUAL

scall FORCE (type = INTERNAL ; -
nl_geom = [nl_geonm] ; --
displacement = <d_npl_ip1> ; -
rotation = <T_npi_ipD> 3 --
?

corotation = [corotation]
output_force = <F_int>)

[xqT VEC

PROD <mass> <d_npl_ipi1> -> <R_npi_ip1>
<R_npi_ip1> <- <2_tilde> - <R_npi_ip1>
<R_npi_ip1> <- <R_np1_ip1> - <k_coeff> <F_int>

« « + +» « CHECK CONVERGENCE

*call CHKCNVD (step = <step> ; =- . input
iter = <iter> ; --
Residual_force = <R_npl_ip1> ; -~
displacement_inc = <delta_th> HIR
tol_e = [tol_e] ;-
max_iters sz [max_iters] ; --
convergence = CONVERGENCE ; == . output
divergence = DIVERGENCE)

sif <CONVERGENCE> /eq <TRUE> /then
sjump to :CONVERGED
selseif <DIVERGENCE> /eq <TRUE> /then
»if <pass> /le [max_cuts] /then
sjump to :REPEAT
selse
sRemark Maximum number of automatic step cuts exhausted.

5/24/90 CSM Testbed Procedures Manual 3.11- 29

NL'DYNAMIC'1

Solution Procedures

sjump to :DIVERGED
sendif

sendit
:ITER_LOOP
:NEUTRAL
sif <pass> /le [max_cuts] /then

sjump to :REPEAT
*else

sRenark Maximum number of automatic step cuts exhausted.
sendif

sRemark NON-CONVERGENCE AT STEP <step>. REVISE STRATEGY.
sjump to :EXIT

¢REPEAT

sdet/i pass =z < <pass>+l >

sdet/d dt a= <<dt>*.6>

sRemark

sRemark CONVERGENCE DIFFICULTIES; REPEATING STEP <step>
sRemark with half original time step
sRemark New TIME increment is <dt>
sRenark Pass: <pass>
sjunp to :NEW_PASS
¢:DIVERGED
sRenark DIVERGENCE AT STEP <STEP>. REVISE STRATEGY.
*jump to :EXIT
:CONVERGED
*Remark CONVERGENCE AT STEP <STEP>.
:NEXTSTEP
sdet/i num_iters 2z <iter>
sdef/d path_scale == <[des_iters]}/<num_iters>>
sdet/d lam_n == <lambda_np1>
sdet/i sign_det_n == <sign_det>
sdef/i load_dir_.n == <load_dir>

« + + . Compute current acceleration

[xqr VEC
sif <<theta> /ne 1.0> /then

<a_th> <~ <o_d_th> <d_npi_ip1> - <o_d_th> <d_tilde>
<a_np1> <- <o.d_th> <a_th> + <o_odth> <a_n>

selse

<a_np1> <~ <o_d_th> <d_npi1_ip1> - <o_d_th> <d_tilde>

sendit
. « . Update velocity vector

<a_th> <- <v_n_coeff> <a_n> + <v_npi_coeff> <a_npi>
<v_npi> <- <v_n> + <a_th>

« . . Por strange (non-unity) values of Wilson’s parameter, update

. o displacements to step n+i

*if <<theta> /me 1.0> /then

<a_th> <- <h_mb> <a_n> + <dt_b> <a_npl>

3.11- 30 CSM Testbed Procedures Manual

5/24/90

Solution Procedures NL'DYNAMIC1

<delta> <~ <dt> <v_n> + <a_th>

<d_mpi_i> <- <d_n> + <delta>

ROTATE <T_n> * <delta> -> <T_npi_i>
sendif

« « « « Postprocess and save results of computations st <<STEP> + 1>
*call POSTSTPD (step=<step>; iter=<iter>)

¢« « « « Reset iteration counters

sdef/i pass == 1

sdef/i tot_iters == 1

¢ « « « Update current time

sdef/d t_vils ss <<t> + <th_dt>>

sdef/d t z= <<t> + <dt>> . can be altered by path_scale
*stop

« « « . Check for max time and max steps

sif <<t> /gt <max_time> > /then

Sremark Ssssssssssss sEesesee LTI TITEI PR PR LS PR PR T T TP PP
sremark * *
srenark * Maximum problem time <max_time> reached or exceeded. *
sremark = Computation terminated *
sremark * *
sremark e seesEssES sEesRE e |
sjump to :EXIT
sendif
*if <<step> /eq <<max_steps>- 1>>/then
sremark seEnsene I T T TR
sremark @ *
sremark * Haximum steps <max_steps> exceeded. .
eremark * Problem time is <t> *
*remark = * |
STORATK SISAEMLRLRRRLEEEFEEREESEFERRREREEEI SRS ST AESES SEREERBBRRRR SRS |
sjump to :EXIT
sendif

« « « » Reset step counter for datasets to step <<step> + 1>
scall DEFND (STEP = <<STEP> + 1>; ITER=1)

+ + « «» Compute new "historical" displacement d_tilde

[xqQT VEC

<a_.th> <~ <th_dt> <v_n> + <h_mb_th> <a_n>

<d_tilde> <- <d_n> + <a_th>

« « « . Compute new external force for step n+i

5/24/90 CSM Testbed Procedures Manual 3.11-31

NL'DYNAMIC'1

Solution Procedures

scall [FT_proc] (T = <t_wils>
FT_ args = [ft_args]

-- ., Problem time

F_mac = lambda_npi) . External forcing scale factor

scall FORCE (type = EXTERNAL HE

nl_geom = [nl_geon] i

nl_load = <true> ; --

displacement = <d_n> ; -

rotation = <T_n> HEEL

corotation = [corotation] ; --

load_factor = <lasbda_npl> HIE S

input_force = <F_ref>
output_force = <F_ext>)

. « . . Set internal force if Wilson’s constant is not unity

sif<<theta> /ne 1.> /then

scall FORCE (type = INTERNAL ;.-
nl_geon = [nl_geon] ;-
nl_load = {true> ; ==
displacement = <d_n> ; -~
rotation = <T_n> ; -
corotation = [corotation] ; --
load_factor = <lambda_npi> 3 --
input_force = <F_ref> ;-
output_force = <F_int>)

sendif

« « « « Weighted sum of internal and external force
[xqQT VEC

<f_bar> <- <th_b> <F_ext> + <a_th_b> <F_int>

PROD <mass> <d_n> -> <f_tilde>

<f_tilde> <- <f_tilde> + <f_bar>
« « . . Compute new initial estimate, displacements
[xqT VEC

<delta> <- <d_tilde> - <d_n>

<delta> <- <delta> + <th_b> <a_n>

<d_npi1_i> <~ <d_n> + <delta>

ROTATE <T_.n> & <delta> -> <T_npi_i>

+ « « « End Step LOOP
:STEP_LOOP
<EXIT

*end

. =DECK CHKCNVD

== . Porce-time paremeters

sprocedure CHKCNYD (STEP ; -- . input
ITER HEE
DISPLACEMENT_INC ;-
RESIDUAL_FORCE HEC
TOL_E HED
3.11- 32 CSM Testbed Procedures Manual 5/24/90

Solution Procedures

NL'DYNAMIC'1

BAX_ITERS
CONVERGENCE=CONVERGENCE ; -~ . output
DIVERGENCE =DIVERGENCE)

e we

[xQT VEC
. . Initialize

*def/i [CONVERGENCE] == <FALSE>
sdef/i [DIVERGENCE] == <FALSE>
sif [ITER] /gt 1 /then ‘
sdef/d12.4 ERR_E_I == <ERR_E_IP1>
sendif
. » Compute Current Incremental Energy Norm
DOT [RESIDUAL_FORCE] * [DISPLACEMENT_INC] -> INC_E_IP1
»if [ITER] /le 1 /then
«if <ABS(<INC_E_IP1>)> /gt <REF_E> /then
*def/d12.4 REF_E a= <ABS(<INC_E_IP1>)>
wendif
*def/1 num_diverges == 0
sondif

+ + Compute Error Norms

sdef/d12.4 ERR_E_RAW == < <INC_E_IP1>/<REF_E> >
#def/d12.4 ERR_E_IP1 == < <ABS(<ERR_E_RiW>)>~ .5 >

« « Check for displacement convergence
sif < <ERR_E_IP1> /le [TOL_E] > /then
« + o Step Converged

sDEP/I [CONVERGENCE] == <TRUE>
sjump to :BOTTOM_LINE

sendif

#if < [ITER] /le 1 > :BOTTOM_LINE

« « « Step Not Converged; Check for Divergence

*IF < <ERR_E_IP1>/<ERR_E_I> /GT 1.0 > /THEN
*def num_diverges == < <num_diverges>+1 >
*if <num_diverges> /gt 1 /then
sDEF/I [DIVERGENCE] == <TRUE>
sENDIF
=ENDIP
¢:BOTTOM_LINE
*def/e12.4 load_factor = <lambda_npi>

sremark

sremark ___ _ oo

sremark ITER=[ITER] T=<t> LD=<load_factor>
sremark ERR=<err_e_ip1> REF=<ref_e>

5/24/90 CSM Testbed Procedures Manual

3.11- 33

NL'DYNAMIC'1 Solution Procedures

sremark

sremark

*END

. =DECK DEFND

sprocedure DEFND (step; iter)

. Purpose: Define basic macro_symbols for NL_DYNAMIC procedure
sdet/i npi = [step]

sdef/i n = < <npi1>~1 >

»it [iter] /eq 0 /then . run initialization

sdef/i NS_1di s 1
sdef/i NOM_ldi == 3
sdef/1i iset s 1
sdet/1 icon sz 1

sdef/a f_spec sz APPL.FORC.<iset>.1
sdef/a d_spec == APPL.MOTI.<iset>.1

. Check for Specified Displacement Loading

sfind dataset <NS_1di> <d_spec> /seq=ids

*if < <ids> /gt 0 > /then
sRemark Note: Specified displacement dataset <d_spec> will be used
sdef/i spec_disp_flag == <true>

selse

sdef/i spec_disp_flag == <false>
sendif
sdef/a F_ref == REF.FORC
sdef/a f_ext == EIT.FORC
sdef/a £ _int == INT.FORC
sdef/a mass == NM.DIAG

sdef/a inv_mass =z NINV.DIAG
sdef/a R.npi_i == RES.FORC
sdef/a R_npi_ip1 == RES.FORC
sdef/a d_inc_i == INC.DISP

sdet/a d_inc_ip1 == INC.DISP
sdef/a v_inc_i ==z INC.VEL

sdef/a v_inc_ip1l == INC.VEL

sdef/a delta_TH == THET.DISI
sdef/a a_TH == THET.ACC
sdef/a delta == TOT.DISI
sdef/a d_tilde == TILD.DISP
*def/a £_tilde == TILD.FORC
*det/a f_bar == BAR.FORC

sdef/a K_asm zz K
sdef/a K_fac == K
*det/a M_p_K == MpK

. Retrieve Control Parameters from DATA_BASE

»if [step] /eq 1 /then
sdef/d t_n =z <beg_time>

3.11- 34 CSM Testbed Procedures Manual 5/24/90

Solution Procedures

NL'DYNAMIC'1

sel

*on
sondif

. Define Global Datasets for Upcoming Step

sdef/a
sdef/a
sdet/a
sdet/a
sdet/a
sdef/a
sdef/a
sdef/a
sdef/a
sdef/a
send

=def/1 sign_det == 1
sdet/d ref_e
sdef/d lambda_n == 0.0
STARTING PARAMETERS INITIALIZED.

sRemark
e

== 0.0

sopen <NOM_1di> <NOK_DB>
*find dataset <nom_ldi> <nom_ds> /seq=nom_ids

*g2n /namezzt_n

*g2a /name==lambda_n
*g2n /names=zref_e

sclose <NON_1di>

*Remark
sromark

/typesD <nom_1di> <nom_ids> TIXE.<n>
*g2n /namezzsign det_n /typesl <nom_1di> <nom_ids> SIGN_DET.<n>
/type=D <nom_1di> <nom_ids> LOAD.<n>
/type=D <nom_1di> <nom_ids> REF_ERR.<n>

sremark
*Remark
sRemark
*Remark
sRemark
sremark
sremark

RE-START PARAMETERS:

TIME
SIGN_DET (n)
LOAD

<t_n>
<sign_det_n>
<lambda_n>

dif

d.n
d_npi_1i
d_npt_ip1
v.n
v_npil
a_n
a_npi
T.n
T_np1_i
T_np1_ip1

. =DECK PT_ZERO
sprocedure FT_ZERO (t ; ft_args ;

« « « + Provide for zero dependence of force on time (no external forces)

TOT.DISP.<n>
TOT.DISP.<np1>
TOT.DISP.<np1>
TOT.VEL.<n>
TOT.VEL.<np1>
TOT.ACC.<n>
TOT.ACC.<np1>
TOT.ROTN.<n>
TOT.ROTN.<np1>
TOT.ROTN.<npi>

sdet/d [F_mac] =z= 0.

*ond

. =DECK FT_LIN
sprocedure FT_LIN (t ; ft_args ;

F_mac)

F_mac)

+ + + « Provide piecevise linear forcing function

sdet/d tt_args[1:5] = [ft_args]

5/24/90

CSM Testbed Procedures Manual

3.11- 35

NL'DYNAMIC'1

Solution Procedures

sif <[t] /1le <ft_args(2]1>> /then
sdet/d [F_mac] == 0.
selseif <[t] /1t <ft_args[3]>> /then
sdef/d c_tact = <<ft_args[3]>-<ft_args[2]>>
*if <<c_fact> /le 0.> /then
sdef/d [F.mac] == <ft_args[1]>
*else
sdef/d [F_mac] == <<<[t]-<ft_args[2]>> » --
<ft_args[11>>/<c_tact>>
sendif
selseit <[t] /1le <tt_args{4]>> /then
sdet/d [F_mac] == <ft_args[i]>
selseif <[t] /1t <ft_args[6]>> /then
sdet/d c_fact = <<ft_args[E1>-<ft_args[4]1>>
#if <<c_fact> /le 0.> /then
sdet/d [F_mac] == 0.
selse
*def/d [F_mac] == <<<<ft_args[6]> - [t]> » --
<tt_args[1]1>>/<c_fact>>
sendift
selse
sdet/d [F_mac] == 0.
sendift

send
. =DECK FT_SIN
sprocedure FT_SIN (t ; ft_args ; F_mac)

sdet/d ft_args[1:6] = [ft_args]
..... Piecewise sinusoidal forcing function

»if <[t] /ge <ft_args[6]1>> /then
sdef/d [F_mac] = 0.
selseif <[t] /ge <ft_args[61>> /then
*if <<ft_args[3]> /le 0.> /then
sdet/d [F_mac] == 0.
*else

sdef/d tc = <<<[t] - <ft_args[4]1>>#<pi>>/<tt_args{3]>>
sdef/d [F_mac] == <<ft_args[2]> + <cos(<tc>)> » <ft_args[1]1>>

sendif
selse

sdef/d [F_mac] == 0.
sondit

sond
. zDECK FT_EXP .
sprocedure FT_EXP (t ; ft_args ; F._mac)

. Exponential docay

3.11- 36 CSM Testbed Procedures Manual

5/24/90

Solution Procedures o NL'DYNAMIC'1

*det/d tt_args{1:3] = [ft_args]

sif <[t] /1t <tt_args(2]1>> /then
sdef/d [F_mac] == 0.
Selse
sdef/d apl = <.6931471806/<tt_args[3]>>
sdef/d axl = <<apl>s<[t] - <ft_args[2]>>»
sdef/d [FP_mac] s= <<ft_args[1]>* <EIP(-<ax1>)>>
sendif

send

=DECK NL_INITD

sprocedure NL_INITD (1di=1)

.

PERFORM STANDARD INITIALIZATION

*call INITIALIZE (constraint_set = <icon>)

CLEAR INITIAL DISPLACEMENTS AND ROTATIONS (n =0)
*g2n /namesnum_nodes /type=i [1di] MODEL.SUMMARY NUM_NODES
*g2a /nameznum_dofs /type=i [1di] MODEL.SUMMARY NUM_DOFS
sRemark Problem Dimensions: N_nodes = <nua_nodes>, N_dofn = <num_dofs>
efind dataset <NS_1di> <d_n> /seq=ids_disp
sif < <ids_disp> /gt 0 > /then
*Remark Note: Initial displacement dataset <d_n> will be used
*else
INIT_VEC <d_n> <num_dofs> BY <num_nodes> . Zeroize translations
sRemark Displacements (<d_n>) initialized.
sendif
#find dataset <NS_1ldi> <T_n> /seq=ids_rotn
»if < <ids_rotn> /gt 0 > /then
sRemark Note: Initial rotation dataset <T_n> will be used

selse
INIT_VEC <T_.n> 3 BY <num_nodes> . Zeroize rotation pseudovectors
*Remark Rotations (<T_n>) initialized.

sendif

sfind dataset <NS_1di> <v_n> /seqzids_vel
*if < <ids_vel> /gt 0 > /then
sRemark Note: Initial velocity dataset <v_n> will be used
“else
INIT_VEC <v_.n> <num_dofs> BY <num_nodes> . Zeroize velocity
sRemark Velocities (<v_n>) initialized.
sendif
sfind dataset <NS_1di> <a_n> /seq=ids_acc
*if < <ids_acc> /gt 0 > /then
sRemark Note: Initial acceleration dataset <a_n> will be used

solse :
INIT_VEC <a_n> <num_dofs> BY <num_nodes> . Zeroize acceleration
sRemark Accelerations (<a_n>) initialized.

sendif

5/24/90 CSM Testbed Procedures Manual 3.11- 37

NL'DYNAMIC'1 Solution Procedures

. FORM INITIAL (BASE-LOAD) EXTERNAL-FORCE VECTOR

scall FORCE (type s EXTERNAL ; --
input_force = <f_spec> ;
output_force = <F_ref>)

. Form mass and inverse mass (diagonal form)

sremark
sremark MASS bypassed for testing purposes defined in BASE.DBC
sremark
. ®call MISS (type = DIAGONAL ; --
nass = <mass>)
[xqT VEC

DIAG_INV <mass> -> <inv_mass>
*ond
. =DECK MASS_STIFF

sprocedure MASS_STIFF (mass -- . diagonal mass vector

;
stif ; == . assembled stiffness
mult ; == . the dynamic weighting factor
M_p_K) . the dynamic operator

[(xQT AUS
DEFINE N = <NS_1di> M DIAG
DEFINE X = <NS_1di> [STIF] SPAR 36
(M_p_K] SPAR 36 = SUM(M, [XULT] K)
send
. =DECK POSIRES
sprocedure POSTRES (step)
[xqT VEC
s2ind dataset <NOM_LDI> <NOM_DS> /seq=post_ids
sif < <post_ids> /le 0 > /then
sput dataset <NOM_LDI> <NOM_DS> /mrat=2000 /seq=post_ids
sendif

. Save selected displacements on nominal data-base
sdef/a dof_names = U, V, W, RU, RV, RW

sdo $isel = 1, <N_SELECT>
sdef/i node = <SEL_NODES[<$isel>]>
sdef/i dot = <SEL_DOFS[<$isel>]>
sdef/a dof_nane = <dof_names{<dot>]>
COMPONENT <node> <dof> TOT.DISP.[step] -> DISP
sdef/a recd_name = DISP_<dof_name>_<node>.[stepl
sRemark <recd_name> = <DISP>
*a2g /namez=disp /typezd <mom_1di> <post_ids> <recd_name>

. Save Reaction Forces for Current Step

3.11- 38 CSM Testbed Procedures Manual 5/24/90

Solution Procedures NL.DYNAMIC_1

REAC.FORC.[step] <- INT.FORC
sif < [step] /eq 0 > /then
REAC.FORC.0 <- 0.0
wendif
$if < <spec_disp_fiag> > /ihen
COMPONENT <node> <dof> REAC.FORC.[step] -> FORCE
*def/a recd_name = FORCE_<dof_name>_<node>.[step]
*Remark <recd_name> = <FORCE>
*a2g /namezforce /type=d <nom_ldi> <post_ids> <recd_name>
sendif
senddo
send
. =DECK POSTSTPD
sprocedure POSTSTEP (step; iter)

sRemark

sRemark STEP [step] SUMMARY :

sRemark ——— —
*Remark Load Factor - <lambda_np1>

sRemark Stiffness determinant _____________ <coef_det> * 10 - <expl0_det>
sRemark Number of negative roots _________ <num_neg>

*Remark Relative energy error ____________ <err_e_ipi1>

sRemark Number of Iterations _____________ <num_iters>

*Remark Number of Step Cuts . _____________ <<Kpass>-1>

sRemark Total Number of Iterations _______ <tot_iters>

sRemark _—

sopen <NOM_1di> <NOM_DB>
sif < [step] /eq 1 > /then

scall POSTRES (step = 0)

sdef/d load_0=0.

*n2g /name=load_0 /type=d <NOM_LDI> <NOM_DS> LOAD.0:0
sendif
scall POSTRES (step=[step])
»find dataset <NOM_LDI> <NOM_DS> /seq=nom_ids
*n2g /namezlambda_npi /type=d <mom_1di> <nom_ids> LOAD.[STEP]
*n2g /name=err_e_ipl /type=d <nom_1di> <nom_ids> ERROR.[STEP]
*n2g /namexzref_e /type=d <nom_1di> <nom_ids> REF_ERR. [STEP]
*a2g /name=sign_det /type=i <nom_ldi> <nom_ids> SIGN_DET.[STEP]
*n2g /namezcoef_det /type=d <nom_ldi> <nom_ids> COEF_DET.[STEP]
*n2g /name=exp10_det /type=i <mom_ldi> <nom_ids> EXP10_DET.[STEP]
*p2g /name=num_neg /type=d <nom_1di> <nom_ids> NEG_RODTS.[STEP]
*n2g /nameznum_iters /typesi <nom_ldi> <nom_ids> NUM_ITERS.[STEP]
sa2g /name=ztot_iters /type=i <nom_1di> <nom_ids> TOT_ITERS.[STEP]
*a2g /namest /type=i <nom_1di> <nom_ids> TIME. [STEP]
sdef/i passmi = <<pass>-1>
*n2g /namezpassmi /type=i <nom_1di> <nom_ids> NUM_CUTS.[STEP] . cgl, 7/26/88
sclose <NOM_ldi>
*end

5/24/90 CSM Testbed Procedures Manual 3.11- 39

NL_DYNAMIC_1 Solution Procedures

3.11.12 REFERENCES

3.11-1 Almroth, B.O., Brogan, F.A., and Stanley, G.M., “Structural Analysis of General
Shells, Volume II, User’s Instructions for STAGSC-1,” Lockheed Palo Alto Research
Laboratory, Palo Alto, CA, Rept. #LMSC-D633873, December 1982.

3.11-2 Hilber, H.M. and Hughes, T.J.R, “Colocation, Dissipation and Overshoot for Time
Integration Schemes in Structural Dynamics,” Earthquake Engineering and Struc-
tural Dynamics, Vol. 6, pp. 99-118, 1978.

3.11-3 Newmark, N.M., “A Method of Computation for Structural Dynamics,” Journal
of the Engineering Mechanics Division, ASCE, pp. 67-94, 1959.

3.11-4 Hilber, H.M., Hughes, T.J.R., and Taylor, R.L., “Improved Numerical Dissipation
for Time Integration Algorithms in Structural Dynamics,” Earthquake Engineering
and Structural Dynamics, Vol. 5, pp. 283-292, 1977.

3.11-5 Bathe, K.J., and Wilson, E.L., “Stability and Accuracy Analysis of Direct Inte-

gration Methods,” Earthquake Engineering and Structural Dynamics, pp. 283-291,
1973.

3.11-6 Wilson, E.L., “A Computer Program for Dynamic Stress Analysis of Underground
Structures,” SESM Report No. 68-1, Division of Structural Engineering and Struc-
tural Mechanics, University of California, Berkeley, 1968.

3.11- 40 ' CSM Testbed Procedures Manual 5/24/90

A
%,

(]
>
=)
e

The procedures documented in this chapter are representative of the types of procedures
that may be written to solve specific application (structural analysis) problems. Many of
these high-level procedures invoke other (lower-level) procedures to perform preprocessing,
solution, and postprocessing functions; which are described elsewhere in this manual. The
use of procedures to perform structural analysis applications can provide users flexibility
for parameterizing geometric data (e.g., stiffener spacing) as well as spatial discretization
parameters (e.g., number of elements). The problems represented here are also intended
to serve as part of a standard series of test problems to assess new structural elements

installed in the CSM Testbed.

A summary of the procedures found in this chapter is provided in Tables 4.0-1.

Revised 5/24/90 CSM Testbed Procedures Manual 4.0-1

Application Procedures

Table 4.0-1. Summary of Application Procedures

Procedure Name Problem Description

CLAMPED BEAM Transient response of a clamped beam modeled with 2-D
shell elements.

COMPRESSED_CYL Classical buckling and postbuckling analysis of an axially
compressed cylindrical shell; modeled with shell elements
and initial imperfections.

COOKS_MEM Linear in-plane bending response of a wing-like trape-
zoidal plate modeled with shell elements. (Referred to
as Cook’s membrane problem in the literature.)

ELASTICA Classical large rotation analysis of a cantilevered beam

with an applied end moment. Final configuration is a
complete circle — with 360 degrees rotation at the free

edge. Modeled with shell elements.

EULER_COLUMN Inplane buckling of a column modeled with 2-D shell ele-
ments. An overall Euler buckling modeshape is obtained.

FOCUS_PANEL Analysis of the composite blade-stiffened panel with a dis-
continuous center stiffener.

FREE_EDGE Free-edge stress analysis of a 4-ply composite laminate.

GEN_STF_PANEL Linear buckling analysis of stiffened panel configurations
subjected to combined in-plane compression and shear
loading. Configurations considered include flat rectangu-
lar panels with hat-stiffeners, z-stiffeners and blade stiff-
eners, as well as a corrugated panel. Modeled with shell
elements.

HINGED_CYL Postbuckling (nonlinear) analysis of a hinged cylindrical

shell subjected to concentrated transverse load. Shell ex-
hibits snap-through buckling behavior and requires a so-
lution algorithm employing arc-length step control. Mod-
eled with shell elements.

4.0-2 CSM Testbed Procedures Manual Revised 5/24/90

Application Procedures

Procedure Name

Problem Description

PEAR_CYL

Buckling analysis of a pear-shaped cylindrical shell sub-
jected to axial compression. Modeled with shell elements.

PINCHED_CYL

Linear inextensional bending of a thin pinched cylindri-

cal shell. Modeled with shell elements; two opposing
radial forces applied at center; and both free and rigid-

diaphragm edges considered. (MacNeal-Harder case)

PW_HOLE

Linear elastic stress analysis of a rectangular isotropic
plate with a central circular hole.

RECT_PLATE

Eigenvalue (vibration and buckling) analyses of a rect-
angular plate subjected to various inplane loading condi-
tions.

RHOMBIC_PLATE

Linear bending of a simply supported rhombic plate under
constant pressure. (MacNeal-Harder case)

TRUNCATED_CONE

Linear transient dynamic analysis of impulsively loaded
truncated cone.

VIB_2D

Vibration analysis of a bar, beam, or ring modeled with
2-D shell elements.

Revised 5/24/90

CSM Testbed Procedures Manual

4.0-3

Application Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

4.0- 4

CSM Testbed Procedures Manual

Revised 5/24/90

Application Procedures CLAMPED_BEAM

4.1 Processor CLAMPED BEAM

THIS SECTION UNDER PREPARATION

5/24/90 ' CSM Testbed Procedures Manual 41-1

PRECEDiING PAGE BLANMNK NOT FILMED

CLAMPED.BEAM Application Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

4.1-2 CSM Testbed Procedures Manual 5/24/90

Application Procedures Compressed Cylinder

4.2 Procedure COMPRESSED CYL

4.2.1 GENERAL DESCRIPTION

4.2.1.1 Problem Description

This application problem involves the static buckling and postbuckling analysis of a thin
cylindrical shell (R/t ~ 300) simply supported along its edges, and subjected to uniform
axial compression (see Figure 4.2-1). It is a particularly important classical problem for
testing linear and nonlinear performance of shell elements, as well as solution algorithms
capable of traversing non-monotonic load-displacement curves. A noteworthy feature of
the problem is that the buckling eigenvalues of the cylindrical shell are very closely spaced,
even though the mode shapes are radically different. This can pose a challenge for both
eigensolvers and nonlinear solution algorithms — which are expected to find and maintain
the physically dominant (lowest-energy) mode. (It is interesting that the buckling char-
acteristics of this simple cylindrical shell problem have much in common with the more
practical problem of an optimally-stiffened cylinder, which also has many diverse mode
shapes occurring at the same critical load level.) Another noteworthy feature is that such
problems are notoriously imperfection sensitive. Thus, a small initial geometric imperfec-
tion can cause a substantial reduction in the peak axial load capacity, compared with the
classical critical buckling load corresponding to a perfect cylinder. This implies that the
model must be refined enough to represent the initially imperfect configuration, as well as
the finally deformed configuration.

h = .125

R = 36.

L = 100
7

E =10x10

v =.3

Figure 4.2-1 Compressed Cylinder Problem.
Revised 5/22/90 CSM Testbed Procedures Manual 42-1

PRECEDING PAGE BLANK NOT FILMED

Compressed Cylinder Application Procedures

4.2.1.2 Model Description

Procedure COMPRESSED_CYL employs a partial (L/10x15°) shell-element based model of the
cylindrical shell to capture both linear and nonlinear response. A typical model is shown
in Figure 4.2-2. The mesh is rectangular in topology, and restricted to quadrilateral shell
elements of either 4- or 9-node variety. Symmetry conditions on all but the one edge that
is simply supported enable the model to represent the lowest energy buckling mode with a
relatively small number of elements. This particular (“diamond”) mode shape consists of
5 axial half-waves and 12 circumferential whole waves over the entire cylinder (in classical
terminology: m=>5, n=12). Thus, the partial model will contain 1 axial quarter-wave and
1 axial half-wave, and less than 10 shell elements should be required in each direction to
obtain engineering accuracy. The axial force is distributed evenly and consistently on the
simply supported edge; and is scaled so that the magnitude corresponds to the classical
buckling load.

4.2.1.83 Analysis Description

The analysis is conducted in stages, some of which are optional. First, a linear buck-
ling (eigenvalue) analysis is performed (using procedure L_STABIL_1). Due to the selected
magnitude of the applied load, the lowest eigenvalue should be close to 1 (for a sufficiently
refined mesh). Next, the buckling mode corresponding to the lowest (critical) eigenvalue
is scaled and used to perturb the geometry. This is achieved by adding the scaled radial
displacements to the initial finite element nodal coordinates. The scale factor is selected
so that the maximum radial perturbation is some percentage of the shell thickness (see
procedure IMPERFECTION). This initial imperfection is necessary to trigger a realistic post-
buckling response in the nonlinear analysis. Due to the extreme imperfection sensitivity
of thin axially-compressed cylinders (e.g., see ref. 4.2-3) as little as a 1%-thickness im-
perfection is adequate to trigger such a response (although a 10%-thickness imperfection
is recommended). The nonlinear (postbuckling) analysis is then begun (using procedure
NL_STATIC_1). A reasonable description of the load-displacement history can usually be
obtained with about 20-30 load steps, from a starting load of about one-tenth of the
classical buckling load.

4.2.1.4 Available Solutions

Analytical solutions are available for the buckling (eigenvalue) analysis (e.g., see ref. 4.2-
1). Several of the buckling modes corresponding to the classical stability solution are
shown in Figure 4.2-2 (Figure 6.9 of ref. 4.2-2) using finite-element meshes. Note that the
critical loads (or eigenvalues) for these diverse mode shapes — smooth, axisymmetric, and
diamond-pattern — are within 5% of one another. While there are no closed-form solutions
for the nonlinear postbuckling response of the axially-compressed cylindrical shell, there
are approximate solutions for the “knock-down” factor corresponding to a given initial
imperfection, and various numerical solutions are given in the CSM Testbed Applications
Manual (see ref. 4.2-4). Figure 4.2-3 gives a sampling of these numerically obtained
response curves, for different magnitudes of initial imperfection (50%, 10% and 1% of
the shell thickness). Note that with only a 10%-thickness imperfection, the peak load is
“knocked-down” to approximately 70% of the value for a perfect (unattainable) shell.

4.2-2 CSM Testbed Procedures Manual Revised 5/22/90

Application Procedures Compressed Cylinder

(Same Eigenualue: A = P, }

Figure 4.2-2 Buckling of Axially-Compressed Cylinder:
Generic Problem Description

Figure 4.2-3 Postbuckling of Axially-Compressed Cylinder:

Revised 5/22/90 CSM Testbed Procedures Manual

4.2-3

Compressed Cylinder Application Procedures

4.2.2 PROCEDURE USAGE

Procedure COMPRESSED_CYL may be used by preceding the procedure name by the *call
directive, and following it by a list of arguments enclosed in parentheses. Procedure ar-
guments are order-independent, and most have default values thus making them optional.
The formal syntax is as follows:

*call COMPRESSED.CYL (argl = vall ; arg2 = val2 ; ...)

where argl and arg?2 represent argument names, and vall and val2 represent their cor-
responding values. Note that semi-colons are required between arguments, and a double
dash (~-) may be used to continue the argument list on the next line.

The allowable arguments for procedure COMPRESS_CYL are summarized in the following
table, along with their default values (if they exist). Note that arguments without defaults
are generally mandatory, while those with defaults are generally optional. Exceptions to
this rule are noted in the following section under detailed argument descriptions.

Argument Default Value Meaning

ES_PROC ES1 Element Processor

ES_NAME EX97 Element name

ES_PARS 0. Element research parameters

NNODES_A 5 Number of axial nodes

NNODES.C 5 Number of circumferential nodes

SPEC_DIS <false> Specified displacements

PRE_STRESS <false> Constant pre-stress

AUTO_DOF_SUP <true> Automatic d.o.f. suppression

DRILLING_DOF <false> Drilling (normal rotational) freedoms

BC_PROCEDURE CC_BC Boundary condition procedure

NSTEPS 30 Number of non