
NASA Technical Memorandum 100646

/y-37

J f/

THE COMPUTATIONAL
MECHANICS TESTBED
MANUAL

STRUCTURAL
PROCEDURES

(',IA:,&-[_-I_'_*0._S&O'),,_:,_, . T_.4,::,........ F" ...... TAT, • ,, .,_

-,Ti:;,'JC:TUC'AL ,"4E_HANICS TESTr_:-) Piv,!bC":L)U_',_S

_Ai'_UA L (_,:,A) 557 _ CSCI 2 '_ K

:c: 2-i 7 3 3 _,

Uncl :_s

,J :.J J __ .,.: ,

Caroline B. Stewart, Compiler

December 1991

N/ /X
N;._lllOl)al Aufonaullcs aild

SI )ace A(I_ nlnislralJon

Langley Research Cenler

I tal nplon, Virginia 23665

https://ntrs.nasa.gov/search.jsp?R=19920008115 2020-03-17T13:02:08+00:00Z



Preface

Preface

The purpose of this manual is to document standard procedures of the Computational

Structural Mechanics (CSM) Testbed software system. A description of each procedure

including its function, commands, data interface, and use is presented.

Periodically, updates to this manual will be released which describe new procedures or

changes to existing procedures.

The contents of this manual were compiled by Caroline B. Stewart of Analytical Services

and Materials, Inc. Contributors include:

Lockheed Palo Alto Research Laboratory

David S. Kang

Bahram Nour-Ozifid

Shahram Nour-Omid

Charles R. Rankin

Marc E. Regelbrugge

Gary M. Stanley

Phillip Underwood

Mary A. Wright

NASA Langley

D. Dale Davis, Jr.
William tI. Greene

Norman F. Knight, Jr.
Jonathan B. Ransom

Lockheed Engineering and Scences Company

Christine G. Lotts

Steven C. Macy

Lise D. Maring

Susan L. McCleary

Analytical Services and Materials, Inc.

Mohammad A. Aminpour

T. Krishnamurthy

Awesome Computing, Inc.

Eugene L. Poole

Revised 12/19/91 CSM Testbed Procedures Manual i



Preface

UpdateLog

Initial draft

Revised draft

Date

June, 1989

May, 1990

ii CSM Testbed Procedures Manual Revised 12/19/91



Table of Contents

CSM Testbed Procedures Manual

Table of Contents

1.0 Introduction to CS_ Testbed Procedures Manual

1.1

1.2

1.3

1.4

1.5

1.6

1.7

CLAMP Directives

Executing Processors

Runstream Organization

Creating and Using Procedures

The Testbed Procedures Manual

Examples

References

2.0 Preprocessing Procedures

3.0

4.0

2.1

2.2

2.3

2.4

2.5

fEN_BEAM (Beams Modeled with Beam Elements)

GEN_CANTILEVER (Cantilevered Beams Modeled with Shell Elements)

QEN_CURVED RM (Curved Beams Modeled with Shell Elements)

GEN_PLATE (General Quadrilateral Plates)

GEN_SHELL (General Shells and Curved Surfaces)

Solution Procedures

3.1 L_DYNAMIC_0 (Linear Transient Dynamics using Modal Analysis)

3.2 L..DYNM_Ie_I (Linear Transient Dynamics using Newmark Algorithm)

3.3 L_STABIL_I (Linear Stability (Buckling) Analysis; Prescribed Prestress)

3.4 L_STABIL_2 (Linear Stability (Buckling) Analysis; Linearly-Computed

Prestress)

L_STATIC (Linear Static Analysis)

L_VIBRAT_O (Linear Vibration Analysis about an Unstressed State)

L_VIBRAT_I (Linear Vibration Analysis about a Prescribed Prestressed State)

L_YIBRAT_2 (Linear Vibration Analysis about a Linearly-Computed

Prestressed State)

NL_STATIC_I (Nonlinear Static Analysis with Arc-length Control)

NL_STATIC_2 (Advanced Riks Method)

NL_DYNAMIC_I (Nonlinear Dynamic Analysis)

3.5

3.6

3.7

3.8

3.9

3.10

3.11

Application Procedures

4.1 CLAMPED_BEAM (Transient Response of Clamped Beam)

4.2 COMPRESSED_CYL (Postbuckling of Compressed Cylindrical Shell)

4.3 C00K__tlER (Inplane Bending of Trapezoidal Membrane)

Revised 12/19/91 CSM Testbed Procedures Manual iii



Table of Contents

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

ELASTICA (Large Rotations of Cantilevered Beam)

EULER_COLUMN (Euler Column Buckling Problem)

FOCUS_PANEL

FREE_EDGE (Free Edge Stress Analysis of Composite Laminate)

¢EN_STF_PANEL (Buckling of Flat Stiffened Panels)

HINGED_CYL (Snap-Through of Hinged Cylindrical Shell)

PEAR_CYL (Buckling of Pear-Shaped Cylindrical Shell)

PINCHED_CYL (Bending of Pinched Cylindrical Shell)

PWHOLE (Isotropic Membrane with a Circular Hole)

I%ECT..PLATE (Rectangular Plate Problems)

I%HOMBIC_PLATE

TRUNCATED_CONE (Impulsively-Loaded Truncated Conical Shell)

VIB_2D (Vibration of Beams and Arch Usiug 2-D Elements)

5.0 Element Assessment Procedures

6.0

5.1 DISTORTED_PC (Distorted Pinched Cylinder)

5.2 DISTORTED_PC_3D (3-D Distorted Pinched Cylinder)

5.3 MH_BEAMS

5.4 MH_CYL (Thick-Walled Cylinder)

5.5 MH_PATCH (Patch Tests)

5.6 MH_PLATE

5.7 MH_SPHEKE

5.8 HH_ROOF

5.9 SKEWED_GRID

Postprocessing Procedures

6.1 HISTORY (Tabulate Response History in Database)

6.2 POST (Tabulate Selected Results in Database)

6.3 STRESS (Compute Stresses and/or Strains from Displacements)

6.4 TOTAL_LOAD (Sum Total Load for Applied Displacement Problems)

7.0 Utility Procedures

7.I

7.2

7.3

7.4

7.5

7.6

7.7

CONSTRAIN (Impose Scaled Applied Displacements)

COPY_DS (Copy a Dataset and Rename)

EIGEN (Perform Eigenvalue Analysis)

ES (Generic Element Processor Control)

FACTOR (Factor (Decompose) System Stiffness Matrix)

FORCE (Form Force Vectors)

IMPERFECTION (Superpose Initial Geometric Imperfection)

iv CSM Testbed Procedures Manual Revised 12/19/91



Table of Contents

7.8

7.10

7.11

7.12

7.13

7.14

7.15

INITIALIZE (Model Initialization)

MASS (Form Mass "" " '--_IvlaLrlA]

MODEL_SUMMARY (Model Summary Information)

PILINT_EFIL (Print Selected Segments of EFIL Dataset)
/"r_ _ _ _,T_ -]-1 _ .... 6:_

RK_51_UJ_NUJ_ !,l%eseque::itt:_ i_uu_* J:.Jtluo,,,Ju*L_ 1

SOLVE (Solve System of Equations)

STIFFNESS (Form Stiffness Matrix)

SWTTCH_DS (Switch Two Datasets)

Revised 12/19/91 CSM Testbed Procedures Manual v



Table of Contents

CSM TESTBED DOCUMENTATION SET

1. Introduction to tile ComputationM Structural Mechanics Testbed

NASA TM 89096, 1987

2. Utilities for Master Source Code Distribution: MAX and Friends

NASA CR 178383, 1988

3. The Computational Structural Mechanics Testbcd Architecture:

Volume I- The Language

NASA CR 178384, 1988

4. Tile Computational Structural Mechanics Testl)e(| Architecture:

Volume II - Directives

NASA CR 178385, 1988

5. The Computational Structural Mechanics Testbed Architecture:

Volume III- The Interface

NASA CR 178386, 1988

6. The Computational Structural Mechanics Testbed Architecture:

Volume IV - The Global-Database Manager GAL-DBM

NASA CR 178387, 1988

7. Tile Computational Structural Mechanics Testbed Architecture:

Volume V - The Input-Output Manager DMGASP

NASA CR 178388, 1989

8. Tile Computational Structural Mechanics Testbed User's Manual

NASA TM 100644, 1989

9. The Computational Structural Mechanics Testbed Data Library Description

NASA TM 100645, 1988

10. The Computational Structural Mechanics Testbed Generic

Structural-Element Processor Manual

NASA CR 181728, 1989

11. The Computational Structural Mechanics Testbed Procedures Manual

NASA CR 100646, 1990

12. The Computational Structural Mechanics Testbed Utility Manual

NASA CR XXXXXX, 1990

vi CSM Testbed Procedures Manual Revised 12/19/91



Introduction to CSM Testbed Procedures Manual

1.0 Introduction to CSM Testbed Procedures Manual

This manual is designed to assist users in defining and using command procedures to

perform structural analyses. It is expected that the user has read Chapters 1 and 2 of the
¢-te_/f rlp_otk_A TT_,,'c ]_/I ..... 1 (,-,,f,-,',_n,',_ 1 -1 _ It ;_ _,,rnaA ths.t the user is familiar with

terms such as CLIP, macrosymbol, processor, and dataset.

Runstreams are the vehicle used to perform structural analyses with the CSM Testbed.

The term "runstream" most commonly refers to the file (or files) used to perform a specific

analysis, although it may also refer to input at an interactive session. A runstream will

typically contain CLAMP directives and processor commands.

Directives, recognized and processed by CLIP, provide the user with, among other things,

a means of defining command procedures. These command procedures, defined using

the *PROCEDURE directive, bear some resemblance to FORTRAN subroutines. They may

contain branching and looping constructs (implemented using the *DO, *IF, and *WHILE

directives) as well as other directives and processor and macroprocessor commands. Com-

mand procedures may be given arguments which, unlike FORTRAN subroutine arguments,

may be assigned default values. When a command procedure is called (using the *CALL di-

rective) execution control shifts to the command procedure until the last directive (an *END

directive) in the procedure is encountered. Once the *END directive is encountered, control

returns to the input line in the calling procedure or runstream immediately following the

call.

Command procedures, while extremely useful, are not a requirement for performing many

types of simple analyses. A command procedure is only required if using the looping or

branching constructs (i.e., the *DO, *IF, and *WHILE directives). Procedures should not

be used to carry out the computationally intensive activities that are better performed by

processors.

This chapter begins with a discussion of CLAMP directives and continues with a discussion

of the mechanics of processor execution. A template for linear, static analyses is provided in

Section 1.3. Section 1.4 offers some suggestions for creating and using procedures and the

CSM Testbed Procedures Manual is described in Section 1.5. Some examples of command

procedures are given in Section 1.6.

Revised 12/19/91 CSM Testbed Procedures Manual 1.0- 1



Introduction to CSM TestbedProcedures Manual

THIS PAGE LEFT BLANK INTENTIONALLY.

1.0- 2 CSM Testbed Procedures Manual Revised 12/19/91



Introduction to CSM Testbed Procedures Manual CLAMP Directives

1.1 CLAMP Directives

Directives are special commands that are recognized and processed by CLIP and are not

transported to the processor. A directive is to CLIP like ordinary input is to the processor.
,,,,,,A ,.,,tqv_d 1_^ _:._,:.._ :_ _:_,- .... :oh. d ¢, .... A; ..... ;.... + k., _.=..;...;.....,;÷h = t-_y p ......... y

I.&ltlt_._lVU IO l.Al_kltt_t&lOtt%* tt_ttt _tuttt_tJ tIa_U_ _J _ttttttzt_ ,,tVtt _ *L_ ,,_t_

an asterisk. The keyword (directive verb) may be followed by a verb modifier, qualifiers,

and parameters, as required by the syntax of the specific directive. See references 1-2

and 1-3 for a complete description of the command language. An interactive help facility,

accessed by the *HELP directive, is built in to explain directives. For a complete list with

full descriptions, the user is directed to reference 1-3.

A summary of the most useful directives, grouped according to their function in the Testbed

execution environment is provided here for easy reference. Detailed descriptions of all

directives are provided in reference 1-3.

Table 1.1-1 CLAMP Directive Summary

*OPEN

*CLOSE

*TOC

*PRINT

*PACK

*COPY

*DELETE

*ENABLE

*FIND

*RENAME

Global Data Manager Interface

Open data library

Close data library

Print table of contents of library

Print table of contents, dataset record contents, or record

access table of data.set

Pack a data library, deleting disabled datasets

Copy datasets or dataset records

Delete (i.e., disable) dataset or record

Enable previously deleted or disabled data,sets or records

Returns information on libraries, datasets, or records

Renames data.set or record

*SET PLIB

*PROCEDURE

*CALL

Command Procedure Management

Set procedure library for residence of command procedures

Initiates definition of command procedure

Redirects input to a callable procedure ("calls" a procedure

with optional argument replacement)

.IF

,ELSE

,ELSEIF

,ENDIF

,DO

.ENDD0

Nonsequential Command Processing

Conditional branching construct

Looping construct

Revised 12/19/91 CSM Testbed Procedures Manual 1.1- 1

PRECEDING PAGE BLANK NOT FILMED



(',LAMP Directives Introduction to CSM Testbed Procedures Manual

*WHILE

*ENDWHILE

*JUMP

*RETURN

*END

*DEFINE

*UNDEFINE

*SHOW MACRO

*G2M

*M2G

Built-in

macrosymbols

*RUN

*STOP

*HELP

*SET

*SHOW

*ADD

*REMARK

*UNLOAD

*LOAD

Whilc_h)ol)ing construct

Transfer control to specilicd l_tbel

Force exit from command procedure

Terminate definition of command procedure

Macrosymbol Directives

Define a macrosymbol or macrosymbol array

Delete macrosymbol(s)

Show macrosymbols

Define a macrosymbol from a database entity

Create a database entity from the value of a macrosymbol

Common constants, mathematical functions,

generic fimctions, reserved variables, boolean

functions, logical functions, string catenator, string matchers,

and status macros

SuperClip Directives

Start execution of another program

Stops RUN-initiated execution and restarts the parent processor

General Directives

Lists information from NICE HELP file

Sets specified NICE control parameters

Shows specified NICE control parameters

Redirects input to a text file
Print remark line

Unload contents of GAL library to an ASCII file

Load contents of GAL library from an ASCII file

1.1- 2 CSM Testbed Procedures Manual Revised 12/19/91



Introduction to CSM Testbed Procedures Manual Executing Processors

1.2 Executing Processors

There are two types of analysis modules, or processors, associated with the Testbed: in-

ternal processors, which have been installed as part of the macroprocessor, and external

processors. _....._:'_-o-*.:r...... v...¢processor may b_........,,Yecuted usin_ the macroorocessor, execute

command, [XQT. The user merely appends the processor name to the [XqT and the named

processor will begin execution. For example,

[XQT INV

will start the execution of the processor INV. In order to use this method of execution

for external processors, the executable version of the processor must reside in the default

directory being used by the macroprocessor or in other pre-defined directories depending

on computer system syntax. In addition, the name of an external processor cannot be the

same as the name of any internal processor.

External processors may also be executed using the *RUN directive. When this directive

is used, a full pathname may be given so that external processors may be kept anywhere.

For example, under the VMS operating system,

*RUN duaO: [testbed. extp] INVX

will begin execution of processor INVX, located in duaO: [testbed. extp].

Once a processor (internal or external) is running, it will begin to accept input according

to the requirements of the individual processor as described in Chapters 4 through 14 of

the CSM Testbed User's Manual (Ref. 1-1). The processor will continue accepting input

until either another [Xt_T, a STOP, or a .STOP is encountered. If a STOP occurs, execution

will proceed to completion of the processor's assigned task after which the processor named

on the next [XQT command begins execution. If an [XQT occurs, execution will proceed to

completion of the processor's assigned task after which the processor named on that last

[XQT begins execution. A *STOP terminates processor execution immediately.

The following runstream provides an example of processor, macroprocessor, and CLIP in-

teraction. The linear, static analysis, a very simple example, with one procedure definition,

has been taken from the demonstration problem set library. The procedure is defined so

that the *DO directive may be used in defining joint locations (recall that the *DO directive

may only be used within a command procedure). Note also that the procedure is com-

pletely defined before it has been called. This is an absolute requirement - procedures

must be defined before they are called.

Revised 12/19/91 CSM Testbed Procedures Manual 1.2- 1



ExecutingProcessors Introduction to CSM Testbed Procedures Manual

*procedure demol

*open 1 demol.lO1 /new

[xqt TAB
START 5

JOINT LOCATIONS

*do $i = 1,5

node x y

<$i> O. O.

Z

<10.*<$i>>

*enddo

MATERIAL CONSTANTS

1 10.E+6 •3 •101 .1E-4

BEAM ORIENTATIONS

11111.

E21 SECTION PROPERTIES

TUBE ! 2. 2.25

CONSTRAINT DEFINITION I

ZERO 1 2 3 4 5 6

1

[xqt ELD

E21

1 2

2 3

3 4

4 5

[xqt TOPO

[xqt E

[xqt EKS

[xqt K

[xqt INV

ALPHA

CASE TITLES

1 'TRANSVERSE LOAD

2'AXIAL LOAD

SYSVEC

APPLIED FORCES

CASE I

I=2

J--5

1000.

CASE 2

I=3

J=5

10000.

[xqt SSOL

[xqt GSF

[xqt PSP

stop
*end

*call demol

[xqt exit

Directives

• Macroprocessor command to execute TAB

• Processor TAB input

• Directive to generate TAB input
. Comment

• TAB Input

• Directive to end input loop

• Direct TAB input

• Macroprocessor command to execute ELD

• Direct ELD Input

Hacroprocessor command to execute TOPO

Macroprocessor command to execute E

Macroprocessor command to execute EKS

Macroprocessor command to execute K

Macroprocessor command to execute INV

Direct AUS input

• Macroprocessor command to execute SSOL

• Macroprocessor command to execute GSF

• Macroprocessor command to execute PSF

• Macroprocessor command to exit

• Directive denoting procedure end

• Directive calling procedure demol

• Macroprocessor command to end execution

1.2- 2 CSM Testbed Procedures Manual Revised 12/19/91



Introduction to CSM Testbed Procedures Manual Executing Processors

It is i.,port_mt to note that while directiw.-s m_Ly be used to generate input data, the
directives theniselves do not provide input to the processors. The *DO directive, used in

the JOI'NT LOCATIONS subprocessor of processor TAB, provides the user with a means of

automatically generating TAB input; the line containing the *do $i = 1,5 provides no

information to processor _ A_ t..., • __,_, _,u, is meaningful ¢,- CLIP. The result of executing this *DO

directive is to produce five input lines for consumption by processor TAB.

Revised 12/19/91 CSM Testbed Procedures Manual 1.2- 3



ExecutingProcessors Introduction to CSM Testbed Procedures Manual

THIS PAGE LEFT BLANK INTENTIONALLY.

1.2- 4 CSM Testbed Procedures Manual Revised 12/19/91



Introduction to CSM Testbed Procedures Manual Runstream Organization

1.3 Runstream Organization

While the Testbed is highly modular, certain processors do depend on information gener-

ated by other processors, thus there is some degree of interdependence among the installed

processors. In many cases, the order in which processors must be executed is the same

as the order in which they appear in the CSM Testbed User's manual (ref. 1-1); this is

not entirely true when using one or more of the independent element processors. The

following section provides a template for performing a linear static analysis using one or

more independent element processors (Section 1.3.1).

1.3.1 RUNSTREAM FOR INDEPENDENT ELEMENT PROCESSORS

The generic element processor template was developed to provide greater flexibility to

element developers. It does however, add a level of complexity to the analysis, even to a

simple linear, static analysis. This complexity is kept hidden to the average user by the use

of a "cover procedure." The procedure name is ES and details of its use may be found in

reference 1-4. Essentially, procedure ES manages the execution of the independent element

processors, ESi.

Listed below is the order of processor and procedure execution for a lineax static analysis

using one or more of the independent element processors. Following the list is an example

(tiLe same example used in the previous section) which calls procedure ES.

1. Procedure E$. Call procedure ES to define element parameters and several global

macrosymbols which may be used to automate the definition of joint locations and

element connectivity. This call must be made for each different dement type in the

model, regardless of the number of element processors used.

2. Processor TAB. Define joint locations, constraints, reference frames.

3. Processor AUS. Build tables of material and section properties.

4. Processor LAU. Form constitutive matrix.

5. Processor ELD. Define elements. Element definitions include element connectivity,

element material reference frame number, element section type number.

6. Processor E. Initialize element datasets; create the dataset which will contain all

important element information (e.g., intrinsic coordinates, element-to-global transfor-

mations, intrinsic stiffness matrices).

7. Procedure ES. I,fitialize element matrices.

8. Procedure ES. Calculate element intrinsic stiffness matrices.

9. Processor RSEQ or PFM. Resequence nodes for minimum total execution time.

10. Processor TOPO. Form maps which guide the assembly and factorization of system
matrices.

Revised 12/19/91 CSM Testbed Procedures Manual 1.3- 1

PRECEDING PA_E _LAi',_K NOT FILE'/El)



Runstream Organization Introduction to CSM Testbed Procedures Manual

11. Processor K.

12. Processor INV.

13. Processor AUS.

14. Processor SSOL.

Assemble system stiffness matrix.

Factor system stiffness matrix.

Create applied nodal loadingl

Solve for static displacements.

15. Procedure ES. Calculate element stress resultants.

16. Post-process using any of the following processors:
T2PT.

VPRT, PRTE, PLOT, CONT,

1.3.2 EXAMPLE RUNSTREAM

The following runstream provides an example of a very simple linear static analysis. The

problem is to calculate the stress in an isotropic flat plate subjected to a uniform end-

shortening. One-fourth of the plate is modeled and symmetry boundary conditions are

applied.

*set echo=off

*add [testbed.proclib]GENUTIL.PRC

*open/nee 1, flat_plate

• Do not echo input

• ADD file containing procedure ES

• Open data library

*def/a es_name == 'EX91'

*def/a es_proc == 'ESl'

• Element name

• Element processor name

*call ES ( function = 'DEFINE ELEMENTS'; es,proc = <es_proc/p>; --

es_name = <es_name/p>)

[xqt TAB

START 25 6 • T_enty five nodes total, dof 6 zero

JOINT LOCATIONS • Enter joint locations

1 0.0 0.0 0.0 2.5 0.0 0.0 5 1 5

S 0.0 2.5 0.0 2.5 2.5 0.0

CONSTRAINT DEFINITION 1

tymm plane=l

symm plane=2

zero 3:1

nonzero 1 : 5,25,5

• Constraints:

. Plane 2,3 plane of symmetry

• Plane 1,3 plane of symmetry

• Constrain center

• Apply displacement at x=Ix edge

[xqt AUS • Material and Section properties

*def/e g = 3.84615e+6

TABLE(NI=16,N3=3): OMB DATA 1 1 . Table of material properties

I=1,2,3,4,5,6,7,8,9

J=l: lO.OE+6 .30 lO.OE+6 <g> <g> <g> 0.0 0.0 .1

1.3- 2 CSM Testbed Procedures Manual Revised 12/19/91



Introduction to CSM Testbed Procedures Manual Runstream Organization

• Table of section properties

TABLE (_i=3,NJ=l,itype=O): LAM OHB 1 1

J=l : 2 .1 0.00

[xqt LAU • Generate constitutive matrix

NOTE -- The macrosymbols es nip, es_nstr, es_nen, and es_opt

were all globally defined by procedure ES the first time

the procedure was called.

[xqt ELD • Define elements

*def/l nst = <<es_nip>*<es_nstr>>

EXPE <es_name> <es_nen> <es_opt> <es_nen> 6 <nst> 1 101 2

NSECT = 1

1 3 13 11 2 8 12 6 7 1 2 2

[xqt E . Initialize element datasets

stop

*open 1

*call ES (function='INITIALIZE') . Initialize element matrices

*call ES (function='FORM STIFFNESS/MATL') . Form intrinsic stiffness matrices

[xqt ESEQ

[xqt TOPO

[xqt K

[xqt INV

online=2

[xqt AUS

sysvec : appl mort

i=I: J=5,25,5: -0.001

[xqt SSOL

stop

*open 1

*call ES (function = 'FORM STRESS';

es_dis ds = STAT.DISP.I.1 )

[xqt VPRT

format=4

print STAT DISP

[xqt PRTE

reset segl=7,seg2=7

[xqt exit

• Resequence

• Create maps

. Assemble global stiffness matrix

• Form applied loading

. Solve for static displacements

-- . Calculate element stresses

. Print static displacements

• Print element stresses

Revised 12/19/91 CSM Testbed Procedures Manual 1.3- 3



RunstreamOrganization Introduction to CSM Testbed Procedures Manual

THIS PAGE LEFT BLANK INTENTIONALLY.

1.3- 4 CSM Testbed Procedures Manual Revised 12/19/91



Introduction to CSM Testbed Procedures Manual Creating and Using Procedures

1.4 Creating and Using Procedures

1.4.1 CREATING A PROCEDURE

Most directives are so simple that they may easily be entered from a keyboard terminal.

Oue could try to define simple procedures in exactly that manner. There are two problems

with this approach:

1. A keyed-in sequence of directives and commands is volatile and is not saved unless

a log file has been opened, although a procedure definition is compiled and saved.

2. Post-facto editing is impossible; once the return key it pressed, the line is gone.

These disadvantages become increasingly serious in long or involved procedures. The most

practical way to create most procedures is to use a text editor. Once the procedure source

text is ready on a data file, it can be inserted into the command source stream with the
*ADD directive.

1.4.2 RESIDENCE OF CALLABLE PROCEDURE ELEMENTS

When CLIP encounters a *PROCEDURE directive, it enters directive mode and does not exit

until the *END directive is detected. The result of this process is an "object" version of

the procedure, known as a callable procedure element. CLIP can store a callable procedure
element in one of two residence media:

1. An ordinary direct-access .formatted file created through a FORTRAN 77 OPEN state-

ment. All records of such a file have the same length (namely 80 characters) and

contMn one data lille. The file name is the same as the procedure name except on a

VMS VAX where a .DAT is appended to the procedure name to create the file name.

For example, a procedure named GEN_PLATE will generate a file named ¢EN_PLATE. DAT
on a VMS VAX and a file named GEN_PLATE on other machines. If the *SET PLIB

directive has not been used prior to the *PROCEDUI_E directive, direct-access files will

be created automatically.

2. A data library managed through the global data manager. A callable procedure is

stored as a text group. In order to store procedures in a data library, the *SET PLIB

directive must be used.

The text of a callable procedure element is basically a copy of the source procedure body,

prefaced by three linkage tables. These tables store argument names, argument default

text, labels (explicit or generated) and their locations within the body of the procedure.

NEVER tamper with a callable procedure element. If the procedure must be changed,

change the source and reprocess the file.

Revised 12/19/91 CSM Testbed Procedures Manual 1.4- 1



Crediting and Using Procedures Introduction to CSM Testbed Procedures Manual

1.4.3 USING A PROCEDURE

Callable procedure elements are accessed through the *CALL directive. Text substitution is

controlled by the argument specification mechanism. In a command procedure reference,

text is passed instead of addresses to data. The text supplied in the *CALL directive is

replaced before the command is interpreted. In addition, arguments not supplied in the

*CALL, assume the default values given in the *PROCEDURE definition. A procedure body

may include calls to other procedures, or may even call itself, with the ensuing call tree

extending down several levels.

1.4- 2 CSM Testbed Procedures Manual Revised 12/19/91



Introduction to CSM Testbed Procedures Manual The CSM Testbed Procedures Manual

1.5 The CSM Testbed Procedures Manual

A GAL library which contains the callable procedure elements for all of the procedures

described in the following sections (2-9) of this manual is read-accessible to all Testbed

users. Separate subdirectories under the pro directory contain solution procedures (see

Chapter 3), model generation procedures (see Chapter 2), utility procedures (see Chap-

ter 6), and postprocessing procedures (see Chapter 7). This directory structure is the

same across various computer systems with differences only in the description of the path

name for each subdirectory. On a VMS VAX computer, this file is referred to by the

name CSM_PRC:PROCLIB.GAL; on UNIX-type computers, it is referred to by the name

'$CSM_PRC/proclib.gal'. If the user does not need to define any new procedures for

use in a particularTestbed runstream, thisfilecan be used as the procedure libraryby

includingthe followingcommands in the runstrcam:

*set plib = 28
*open 28 CSM_PRC:PROCLIB.GAL /READ (on VMS)

or

*open 28 '$CSM_PRC/proclib.gal' /READ (on UNIX)

The source code for the procedures resides ill subdirectories under the one which contains

proclib, gal. These procedures are also read-accessible to all Testbed users. They can be

included in the user's private procedure library by placing commands like the following in

a Testbed runstream:

*set plib=28
*open 28 proclib.gal /NEW
*add GEN_UTIL:ES.CLP

or

*add '$GEN_UTIL:es.clp _

or alternatively;on UNIX:

cp $CSM_PRC/proclib.gal .
chmod 755 proclib.gal
testbed

*set plib=28

*open 28 proclib.gal
*add local.pro

(on VMS)

(on UNIX)

or on VMS:

$COPY CSM_PRC:PROCLIB.GAL
$Testbed

*set plib=28

*open 28 proclib.gal
*add local.prc

[]

where local.prc is the CLAMP source file for personal procedure(s).

Revised 12/19/91 CSM Testbed Procedures Manual 1.5- 1



The CSM Testbed Procedures Manual Introduction to CSM Testbed Procedures Manual

THIS PAGE LEFT BLANK INTENTIONALLY.

1.5- 2 CSM Testbed Procedures Manual Revised 12/18/91



Introduction to CSM Testbed Procedures Manual Examples

1.6 Examples

This section provides several examples of the use of procedures. For the sake of consistency,

where files are discussed, VAX/VMS filenames have been used• The filename convention

, ,,--, ,'1 .... :,i. _ , ,-ru _.,_,.,_;,, ..... _;,,_ _ _ingl,_ procedure, while a file with ause¢.l iS bllia, b a 11113 wit, At a "-. _.,. _ .......................... ,

*.PRC extension contains multiple procedures. The *ADD and the driving *CALL directives

typically appear in files with the *.C0M extension.

1.6.1 A SIMPLE EXAMPLE

As an introductory example, an annotated procedure is presented which may be used to

run a variety of elements through the same flat plate problem• In most applications, this

procedure would be kept in a file by itself and that file would be added (using the *ADD

directive) to a much shorter runstream located ill an execution control file. The procedure

and a VAX/VMS execution control file are listed in the following subsections•

1.6.1.1 The Procedure File

The following procedure is kept in a file named FLAT_PLATE. CLP.

*procedure FLAT_PLATE ( es_proc ; es_name )

ARGUMENTS:

es_proc: Independent element processor name

es_name: Element name

*if <ifeqs([es_name];E43)> /then

*def/i es_nen = 4

*else

*call ES ( function = 'DEFINE ELEMENTS'; es_proc = [es_proc];

es_name = [es_name])

*endif

[xqt TAB

START 25 6

JOINT LOCATIONS

• Twenty-five joints; dof 6 zero

• Define joint locations

1 0•0 0.0 0.0 2.5 0•0 0.0 5 1 5

5 0.0 2•5 0.0 2.5 2.5 0.0

CONSTRAINT DEFINITION 1

symm plane=l

symmplane=2

zero S: I

nonzero 1 : 5,25,5

. Constraints:

• Plane 2,3 plane of symmetry

• Plane 1,3 plane of symmetry

. Constrain center w

• Apply displacement at x=ix edge

Revised 12/18/91 CSM Testbed Procedures Manual 1.6- 1

PRECEDING PAGE ELA?IK NOT FILMED



Examples Introduction to CSM Testbed Procedures Manual

[xqt Aug

*def/e g = 3.84615e+6

TABLE(NI=16,NJ=3): OMB DATA 1 1 . Define material properties

1=1,2,3,4,5,6,7,8,9

J=l: 10.0E+6 .30 10.0E+6 <g> <g> <g> 0.0 0.0 .1

• Define Section properties

TABLE (NI=3,NJ=l,itype=O): LAM OMB 1 1

3=1 : 2 .1 0.00

[xqt LAU . Form constitutive matrix

*if <ifeqs([es_name];E43)> /then

reset SPAR=-1

*endtf

[xqt ELD

*if <ifeqa ( [as_name] ; E43) > /then

E43

*else

• Define elements

NflTE -- The macrosymbols as_nip, es_nstr, es_nen, and as_opt

were globally defined by procedure ES the first time

the procedure was called.

*def/i nat = <<es_nip>*<as_nstr>> . Number of stress resultants

EXPE [as_name] <ee_nen> <as_opt> <ee_nen> 6 <nat> I 101 2

*endlf

NSECT = I

*if < <es_nen> /eq 4 > /then

1276 1 4 4 • Element connectivity for 4-node elta

*elseif < <es_nen> /eq 9 > /then

1 3 13 11 2 8 12 6 7 1 2 2 . Element connectivity for 9-node elta
*endif

[xqt g

stop

*open I

• Initialize all element dataseta

*if <ifeqs([es_name];E43)> /then . Form intrinsic stiffness matrices:

[xqt EKS for E43

*else

*call ES (function='INITIALIZE')

*call ES (function='FORRSTIFFmESS/MATL') for other elements

*endif

[xqt RSEO
[xqt TOPO

[xqt K

[xqt AU5

sysvec : appl moti

i=I: 3=5,25,5: -0.001

• Resequence

• Create maps

• Assemble system stiffness matrix

• Form applied loading

1.6- 2 CSM Testbed Procedures Manual Revised 12/18/91



Introduction to CSM Testbed Procedures Manual Examples

[xqt INV

online=2

[xqt SSOL

stop

*open I

• Factor stiffness matrix

• Solve for static displacements

• Calculate stresses

for E43*if <ifeqs([es_name];E43)> /then

[xqt GSF

[xqt PSF

reset display=2

*else for other elements

*call ES ( function = 'FORM STRESS'; es_dis_ds = STAT.DISP.I.1 )

*endif

[xqt VPRT • Print displacements

format=4

print STAT DISP

*end

1.6.1.2 The Execution Control File

The file FLATPLATE. COM,listed below, contains no procedures, only the *ADD and the *CALL

to the procedure defined in the previous section•

$ testbed

*set echo off

*open 1 flat_plate.lO1

! Execute Testbed macroprocessor

• Open data library

*add flat_plate.tip • Add procedure file BEFORE call

*call FLAT_PLATE ( es_proc=ES1; es_name=Ex97 )

[xqt EXIT • Exit macroprocessor

1.6.2 MACROSYMBOL USAGE EXAMPLE

The runstream described in this section still contains only one procedure; that procedure is

somewhat more complicated than the procedure of the first section although the problem

to be solved is the same. The number of elements along z and V have been parameterized

to allow for mesh convergence studies for the various elements• The logic of the procedure

remains the same; there are simply more macrosymbol definitions• The procedure and the

execution control file are listed in the following subsections.

1.6.2.1 The Procedure File

Tile following procedure is kept in a file named FLAT_PLATE. CLP.

*procedure FLAT_PLATE ( es_proc=ES1; es_name=Ex97;-- )

Revised 12/18/91 CSM Testbed Procedures Manual 1.6- 3



Examples Introduction to CSM Testbed Procedures Manual

NEL x ; NEL_y )

ARGUMENTS:

es_proc:

es_name :

NEL_x:

NEL_y:

Independent element processor name

Element name

Number of elements in the x direction

Number of elements in the y direction

*if <ifeqs([es_name];E43)> /then

*def/i es_nen = 4

*else

*call ES ( function = 'DEFINE ELEMENTS'; es_proc = [es_proc];

ee_nue = lee_name])
*endif

Define necessary macrosymbols

*if << es_nen > /eq 4 > /then

*def/i nn_x = <<[NEL_x]> + 1 >

*def/i nn_y = <<[NEL_y]> + 1 >

*def/inn_total = <<nnx>*<nn_y>>

*elseif << es_nen > /eq 9 > /then

*def/i nn_x = <2*<[NEL_x]> + I >

*def/i nn_y = <2*<[NEL_y]> + I >

*def/i nlt_total = <<nnx>*<nn_y>>

*endif

• If 4-node elements are used:

Num. nodes in x-direction

Num. nodes in y-direction

• Num. nodes total

• If 9-node elements are used:

Num. nodes in x-direction

Num. nodes in y-direction

Num. nodes total

[xqt TAB

START <nn_total> 6 • Twenty-five joints; dof 6 zero

JOINT LOCATIONS • Define joint locations

1 0.0 0.0 0.0 2.5 0.0 0.0 <nn_x> 1 <nn_y>

<nn_x> 0.0 2.5 0.0 2.5 2.5 0.0

COMSTRAINT DEFINITION 1 . Constraints

symmplane=l . Plane 2,3 plane of symmetry

symmplane=2 . Plane 1,3 plane of symmetry

zero 3:1 . Constrain center w

nonzero I : <nnx>,<nn_total>,<nn_x> . Apply displacement at x=Ix edge

[xqt AUS

*def/e g = 3.84615e+6

TABLE(NI=16,NJ=3): OMB DATA 1 1 . Define material properties

I=1,2,3,4,5,6,7,8,9

J=l: IO.OE+6 .30 IO.OE+6 <g> <g> <g> 0.0 0.0 .I

• Define Section properties

TABLE (NI=3,NJ=l,itype=O): LAM OMB I I

J=l : 2 .I 0.00

1.6- 4 CSM Testbed Procedures Manual Revised 12/18/91



Introduction to CSM Testbed Procedures Manual Examples

[xqt LAU

*if <ifeqs([es_name]; E43)>/ then

reset SPAR=-I

*endtf

• Form constitutive matrix

[xqt ELD

*if <ifeqs(Ces name]; E43)>/ then

E43

*else

4e
• _AJ.AL_ UA._UL_ALUO

E43 elements

NOTE -- The macrosymbols es_nip, es_nstr, es_nen, and es_opt

were globally defined by procedure ES the first time

the procedure was called.

*def/i nst = <<es_nip>*<es_nstr>> . Number of stress resultants

EXPE [es_name] <es_nen> <es_opt> <es_nen> 6 <nst> I 101 2

*endlf

NSECT = I

*if < <es_nen> /eq 4 > /then

*def/i jl = 1

*def/i j2 = 2

*def/i j3 = <<j2>+<nn_x>>

*def/i j4 = <<jl>+<nn_x>>

<jl> <j2> <j3> <j4>

• Use 4-node element mesh generator

• Element connectivity for 4-node elts

1 <[NEL_x]> <[NEL_y]>

*elseif < <es_nen> /eq 9 > /then

*def/i jl = I

*def/i j5 = 2

*def/i j2 = 3

*def/i j8 = <<jl> + <nn_x>>

*def/i j9 = <<iS> + <nn_x>>

*def/i j6 = <<j2> + <nn_x>>

*def/i j4 = <<j8> + <nn_x>>

*def/i j7 = <<j9> + <nn_x>>

*def/i j3 = <<j6> + <nn_x>>

• Use 9-node element mesh generator

• Element connectivity for 9-node elts

<jl> <j2> <j3> <j4> <iS> <j6> <jT> <j8> <j9> I <[NEL_x]> <[NEL_y]>

*endif

[xqtE

stop

*open 1

*if <ifeqs([es_name]; E43)>/ then

[xqt EKS

*else

*call ES (function='INITIALIZE')

• Initialize all element datasets

• Form intrinsic stiffness matrices

for E43

Revised 12/18/91 CSM Testbed Procedures Manual 1.6- 5



Examples Introduction to CSM Testbed Procedures Manual

*call ES (functlon='FORM STIFFNESS/HATL')

*endif

[xqt RSEq

[xqt TOPO

[xqt K

[xqt AUS

sysvec : appl moti

i=l: J=<nnx>,<nn_total>,<nn_x>:

[xqt INV
online=2

[xqt SSOL

stop

*open 1

for other elements

• Resequence

• Create maps

. Assemble system stiffness matrix

• Form applied loading

-0.001

• Factor stiffness matrix

• Solve for static displacements

• Calculate stresses

for E43*if <ifeqs([es_name]; E43)>/ then

[xqt GSF

[xqt PSF

reset display=2

*else for other elements

*call ES ( function = 'FORM STRESS'; es_dis_ds = STAT.DISP.I.I )

*endif

[xqt VPRT . Print displacements

format=4

print STAT DISP

*end

1.6.2.2 The Execution Control File

The file, FLATPLATE. C0/q, listed below contains no procedures, only the*ADD and the *CALL

to tile procedure defined in the previous section•

$ testbed

*set echo off

*open 1 flat_plate.101

! Execute Testbed macroprocessor

• Open data library

*add flat_plate.clp • Add procedure file BEFORE call

*call FLAT_PLATE ( es_proc=ES1;es_name=Ex97; --

Nel_x=4; Nel_y=4 )

[xqt EXIT • Exit macroprocessor

One may notice that, except for the two extra arguments (NEL_x and NEL_y) in the *CALL

directive, this file is the same as the FLATPLATE. C0M file of the last section.

1.6- 6 CSM Testbed Procedures Manual Revised 12/18/91



Introduction to CSM Testbed Procedures Manual Examples

1.6.3 A MULTIPLE PROCEDURE EXAMPLE

In many cases, it may be to the user's advantage to build and maintain a procedure library

which may be used for classes of problems. For example, in a solution library, one may

keep procedures for providing linear static solutions, buckling eigenvalues, and nonlinear

static solutions. In this section, the procedure of the previous section is split up into three

procedures - PLATE_MODEL, PLATE_BC, and L. STATIC - which generate the model, generate

the boundary conditions, and perform the linear, static solution respectively. The three

procedures are kept in two files: L_STATIC.CLP (contains only procedure L_STATIC) and

FLATPLATE.PRC (contains PLATE_MODEL and PLATE_BC). Finally, the file FLATPLATE.COM

uses the *ADD directive to add the two files and the *CALL directive to call the procedures.

1.6.3.1 The Model Generation Procedures

The following two procedures, PLATE_MODELand PLATE_BC, are, for the sake of the example

to be kept in a file named FLATPLATE. PRC. Note that the boundary conditions and applied

loads are both in the procedure PLATE_BC and that if other boundary conditions were

desired, this procedure could be decoupled from the model generation procedure and stored

in a separate file. In that case, the procedure name could be passed as an argument to

PLATE_MODEL which would then call the passed name instead of PLATE_BC.

*procedure PLATE_MODEL ( ea_proc ; es_name ; --

NEL_x ; NEL_y )

ARGUMENTS:

es_proc:

es_name :

gEL_x:

NEL_y:

Independent element processor name

Element name

Number of elements in the x direction

Number of elements in the y direction

*if <ifeqs([es_name];E43)> /then

*def/i es_nen = 4

*else

*call ES ( function = 'DEFINE ELEMENTS'; es_proc = [es_proc];

es_name = [es_name])

*endif

Define necessary macrosymbols

*if << es_nen > /eq 4 > /then

*def/i nn_x = <<[NEL_x]> + 1 >

*def/i nn_y = <<[NEL_y]> + 1 >

*def/i nn_total = <<nn_x>*<nn_y>>

*elseif << es_nen > /eq 9 > /then

*def/i nn_x = <2*<[NEL_x]> + 1 >

*def/i nn_y = <2*<[NEL_y]> + 1 >

*def/i nn_total = <<nn_x>*<nn_y>>

*endif

• If 4-node elements are used:

Num. nodes in x-direction

Num. nodes in y-direction

• Num. nodes total

• If 9-node elements are used:

Num. nodes in x-direction

Num. nodes in y-direction

Num. nodes total

Revised 12/18/91 CSM Testbed Procedures Manual 1.6- 7



Examples Introduction to CSM Testbed Procedures Manual

[xqt TAB

START <nn total> 6 • Twenty-five joints; dof 6 zero

JOINT LOCATIONS • Define joint locations

1 0.0 0.0 0.0 2.5 0.0 0.0 <nn_x> 1 <nn_y>

<nn_x> 0.0 2.5 0.0 2.5 2.5 0.0

• Call boundary condition procedure

*call PLATE_BC ( nn_x = <nn_x>; -- to set up loads and b.c.'s

nn_total = <nn_total> )

[xqt AUS

*def/e 8 = 3.84615e+6
TABLE(NI=16,NJ=3): OMB DATA 1 1 . Define material properties

I=1,2,3,4,5,6,7,8,9

J=l: 10.0E+6 .30 10.0E+6 <g> <g> <g> 0.0 0.0 .1

• Define Section properties

TABLE (NI=3,N3=l,itype=O): LAM OMB 1 1

J=l : 2 .1 0.00

[xqt LAU . Form constitutive matrix

*if <ifeqs([es_name]; E43)> /then

reset SPAR=-1

*endif

[xqt ELD

*if <ifeqs([es_name] ; E43)> /then

E43

*else

• Define elements

E43 elements

NOTE -- The macrosymbols es_nip, esnstr, es_nen, and es_opt

were globally defined by procedure ES the first time

the procedure was called.

*def/i nst : <<es_nip>*<es_nstr>> . Number of stress resultants

EXPE [es_name] <es_nen> <es_opt> <es_nen> 6 <nst>l 101 2

*endif

MSECT = 1

*if < <es_nen> /eq 4 > /then

*def/i jl = 1

*def/i j2 = 2

*def/i j3 = <<j2>+<nn_x>>

*def/i j4 = <<jl>+<nn_x>>

<jl> <j2> <j3> <j4>

• Use 4-node element mesh generator

• Element connectivity for 4-node elts

1 <[NEL_x]> <[NEL_y]>

*elseif < <es_nen> /eq 9 > /then

• Use 9-node element mesh 8enerator

1.6- 8 CSM Testbed Procedures Manual Revised 12/18/91



Introduction to CSM Testbed Procedures Manual Examples

*end

*def/i jl = I

*def/i j5 = 2

*def/i j2 = 3

*def/t j8 = <<Jl> + <nn x>>

*def/i j9 = <<jr> + <nn_x>>

*def/i j6 = <<j2> + <nn_x>>

*def/i j4 = <<j8> + <nn_x>>

*def/i j7 = <<j9> + <nn_x>>

*def/i j3 = <<j6> + <nn_x>>

• Element connectivity for 9-node elts

<jl> <j2> <j3> <j4> <iS> <jr> <jY> <j8> <j9> 1 <[NEL_x]> <[NEL_y]>

*endtf

*procedure PLATE_BC ( nn_x ; nn_total )

[xqt TAB

CONSTRAINT DEFINITION I . Constraints

syn plane=l . Plane 2,3 plane of symmetry

symm plane=2 . Plane 1,3 plane of symmetry
zero 3:1 . Constrain center w

nonzero 1 : [nn_x],[nn_total],[nn_x] _ Apply displacement at x=Ix edge

[xqt AUS

sysvec : appl moti

i=1 : J= [nn_x] , [nn_total], [nn_x] :

*end

• Form applied loading

-0.001

1.6.3.2 The Linear Static Analysis Procedure

Tile following procedure performs the linear static analysis for models using either SPAR

E43 elements or elements implemented using the generic element processors• The procedure

will be kept in a file named L_STATIC. CLP.

*procedure L_STATIC (es_name)

[xqt E

stop

*open 1

• Initialize all element datasets

Revised 12/18/91 CSM Testbed Procedures Manual 1.6- 9



Examples Introduction to CSM Testbed Procedures Manual

*if <ifeqs([es name]; E43)> /then . Form intrinsic stiffness matrices

[xqt EKS for E43

*else

*call ES (function='INITIALIZE')

*call ES (function='FORM STIFFNESS/MATL') for other elements

*endif

[xqt RSEQ

[xqt TOPO

[xqt K

[xqt INV

online=2

[xqt SSOL

atop

*open 1

• Resequence

• Create maps

• Assemble system stiffness matrix

• Factor stiffness matrix

• Solve for static displacements

• Calculate stresses

for E43*if <ifeqs([es_name]; E43)> /then

[xqt GSF

[xqt PSF

reset dlsplay=2

*else for other elements

*call ES ( ftmctlon = 'FORM STRESS'; es_dis_ds = STAT.DISF.I.I )

*endif

[xqt VPRT . Print displacements

format=4

print STAT DISP

*end

1.6.3.3 The Execution Control File

Tile following file, FLATPLATE. COM,contains no procedures; it adds the two procedure files

and calls the model generation and analysis procedures, PLATE_MODEL and L_STATIC.

$ testbed

*set echo off

*open 1 flat_plate.lO1

! Execute Testbed macroprocessor

. Open data library

*add flatplate.prc . Add procedure files BEFORE calls

*add l_static.clp

• Generate model

*call PLATE_MODEL ( es_proc=ESl; es_name=Ex97;--

nel_x=4; nel_y=4 )

• Solve for static solution

*call L_STATIC ( ee_name=Ex9T )

[xqt EXIT . Exit macroprocessor

It should be emphasized that the procedure L_STATIC may be used for _ linear, static

analysis using either the original SPAR elements or elements implemented using one or

more of the Independent Element Processors. Tile procedure is not limited to SPAR E43

1.6- 10 CSM Testbed Procedures Manual Revised 12/18/91



Introduction to CSM Testbed Procedures Manual Examples

elements as no element specific operations are being performed; element specific operations

are performed in the model definition procedure(s).

By splitting the analysis into procedures, the model generation and solution have been

decoup!ed allowing the solution procedure t.o be used for many different models. The

advantages of this approach include the fact that a solution procedure need only be written

once rather than once for each problem. It is highly recommended that the user organize

procedures in this fashion.

Revised 12/18/91 CSM Testbed Procedures Manual 1.6- 11



Examples Introduction to CSM Testbed Procedures Manual

TItIS PAGE LEFT BLANK INTENTIONALLY.

1.6- 12 CSM Testbed Procedures Manual Revised 12/18/91



Introduction to CSM Testbed Procedures Manual References

1.7 References

1-1 Stewart, Caroline B.: The Computational Structural Mechanics Testbed User's

Manual. NASA TM 100644, October 1989.

1-2 Felippa, Carlos A.: The Computational Structural Mechanics Testbed Architecture:

Volume 1 - The Language. NASA CR 178384, December 1988.

1-3 Felippa, Carlos A.: The Computational Structural Mechanics Testbed Architecture:

Volume H - Directives. NASA CR 178385, February 1989.

1-4 Stanley, Gary and Nour-O,nid, Shahram: The Computational StructuralMechanics
Testbed Generic Structural.Element Processor Manual. NASA CR 181728, March

1990.

Revised 12/18/91 CSM Testbed Procedures Manual 1.7- 1

PF_CEDii",]G PA_E E;..A?_K NOT FILMED



References Introduction to CSM Testbed Procedures Manual

THIS PAGE LEFT BLANK INTENTIONALLY.

1.7- 2 CSM Testbed Procedures Manual Revised 12/18/91



PreprocessingProcedures

2.0 Preprocessing Procedures

Tile five procedures documented in tiffs chapter are general modeling procedures for specific

structural geometries.

Table 2.0-1

Procedure Name

GEN_BEAM

Summary of Preprocessing Procedures

Preprocessing Function

Generate 1-D models of straight beams using beam

elements

GEN_CANTILEVER Generate 2-D models of a straight cantilever beam

using plate/shell elements. Using the default values
for the procedure arguments, the straight cantilever
beam problem from the MacNeal-Harder test cases is

generated.

GEN_CURVED_BM Generate 2-D models of a curved (circular) beam us-

ing plate/shell elements. Using the default values for
the procedure arguments, the curved beam problem

from the MacNeal-Ilarder test cases is generated.

GEN_PLATE Generates 2-D models for general quadrilateral

plates.

GEN_SHELL Generates 2-D models for general shells and curved

surfaces.

Revised 12/18/91. CSM Testbed Procedures Manual 2.0- 1

PRECEDING PAGE ELA;_K NOT FILMED



Preprocessing Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

2.0- 2 CSM Testbed Procedures Manual Revised 12/18/91



Pre-Processing Procedures Generic 1-D Beams

2.1 Procedure GEN_BEAM

2.1.1 GENERAL DESCRIPTION

This section describes a procedure wlfich generates models of a straight beam using one-
dimensional beam elements.

Revised 12/18/91 CSM Testbed Procedures Manual 2.1- 1

PRECEDING PAGE BLANK NGT FILMED



Generic 1-D Beams Pre-Processing Procedures

2.1.2 PROCEDURE USAGE

Procedure GEN_.BEAMmay be used by preceding the procedure name by the *call directive,

and following it by a list of arguments enclosed in parentheses. Procedure arguments are

order-independent, and most have default values thus making them optional. The formal

syntax is as follows:

*call GEN_BEAM ( argl = vall; arg2 = val2 ; ...)

where argl and arE2 represent argument names, and vall and val2 represent their cor-

responding values. Note that semi-colons are required between arguments, and a double

dash (--) may be used to continue the argument list on the next line.

The allowable arguments for procedure GEN_BEAM are summarized in the following table,

along with their default values (if they exist). Note that arguments without defaults are

generally mandatory, while those with defaults are generally optional. Exceptions to this

rule are noted in the following section under detailed argument descriptions.

Argument Default Value

ES_PROC ES6

ES_NAME E210

NODES_/ 3

LENGTH_X 10.

E 120.

NU O.

AREA 1.0

INERT_I 1.

INERT_2 10.

INERT_TORSIONAL 1.

BC_PROCEDURE BEAM_BC

Meaning

Select element processor

Select element within ELT_PR0C

Number of nodes in x-direction

Length of beam

Young's elastic modulus
Poisson's ratio

Cross-sectional area

Principal moment of inertia, I1

Principal moment of inertia, I2
Uniform torsion constant

Procedure for boundary conditions

2.1.3 ARGUMENT DESCRIPTIONS

2.1.3.1 AREA

Cross-sectional area of beam (default: 1.0).

2.1.3.2 BC_PROCEDURE

Boundary condition procedure name (default: CC_BC for specified forces; CCD_.BCfor spec-

ified displacements). The term "boundary conditions" refers both to displacement con-

straints and applied loading. Procedures CC_BC and CCD_BC both have the same zero

displacement constraints. The only difference is that the former procedure applies axial

forces to the simply supported edge, while the latter procedure prescribes non-zero axial

displacements on that edge. The argument BC..PR0CEDURE permits you to to supply your

own boundary condition procedure, but keep in mind that this may drastically change the

problem definition, and hence invalidate most of the discussion under Section 2.1.1.

2.1- 2 CSM Testbed Procedures Manual Revised 12/18/91



Pre-Processing Procedures Generic 1-D Beams

2.1.3.3 E

Young's elastic modulus (default: 120.0).

2.1.3.4 ES_NAME

Element name (default: E210). This is the name of the specific beam-element type you wish

to select, within the element processor defined by argument ES..PROC. The default element

type, E210, is a 2-noded beam element implemented in processor ESO, and described in

The Computational Structural Mechanics Testbed User's Manual (see ref. 2.1-1).

2.1.3.5 ES_PROC

Element Processor (default: ESO) This is the name of the structural element (ES) processor

that contains the shell element type you wish to employ in the model. The default shell-

element, processor ESO, is described in The Computational Structural Mechanics Testbed

User's Manual.

2.1.3.6 INERT_I

Principal moment of inertia (default: 1.0).

2.1.3.7 INERT_2

Principal moment of inertia (default: 10.0).

2.1.3.8 INERT_TORSION

Torsional constant (default: 1.0).

2.1.3.9 LENGTH_X

Length of the beam in the x-direction (default: 10.0).

2.1.3.10 NODES_X

Number of nodes along beam length (default: 3). Note that this number should be con-

sistent with the number of nodes per element. For example, NODES_X can be any number

greater than 1 for 2-node beam elements, whereas it must be an odd number greater than

1 for 3-node beam elements.

2.1.3.11 NNODES_C

Number of circumferential nodes (default: 7). This is the number of nodes you wish

to have along the circumferential direction of the cylindrical shell model, i.e., along 15

degrees of circular arclength. Note that this number should be consistent with the number

of nodes per element. For example, NNODES_C can be any number greater than 1 for 4-

node quadrilateral elements, whereas it must be an odd number greater than I for 9-node

quadrilateral elements.

Revised 12/18/91 CSM Testbed Procedures Manual 2.1- 3



Generic I-D Beams Pre-Processing Procedures

2.1.3.12 NU

Poisson's ratio (default: 0.0).

2.1.4 USAGE GUIDELINES AND EXAMPLES

Procedure GEN_BEAH may be used by preceding the procedure name by the ,call directive.

Procedure arguments may be changed from their default values by including any or all

of the arguments and their new values when the procedure is called. A space or blank

is required between the end of the procedure name and the left parenthesis. If the default

values of the procedure arguments are to be used, then only the procedure name is required.

*procedure GEN_BEAM ( es_proc = ES6 ; es_name = E210 ; --

nodes_x = 3 ;--

length_x =10. ;--

E=120.; PR=O. ; area = 1.0 ; --

inert_l=1. ; inert_2=lO. ; inert_torsion=l. ;--

BC_PROCEDURE = BEAM_BC )

(El) To perform an entire analysis using the default options, simply invoke the procedure

without any arguments, i.e.,

*call GEN_BEAM

2.1.5 LIMITATIONS

2.1.7

ERROR MESSAGES AND WARNINGS

PROCEDURE FLOWCHART

2.1.8 PROCEDURE LISTING

*procedure GEN_BEIM ( os_proc = ES6 ; os.name = E210 ; --

nodes_x = 3 ;--

longth_x =I0. ;--

E=120.; PR=0. ; area = 1.0 ; --

inert_l=1. ; inert_2=10. ; inort_torsion=l. ;--

BC_PROCEDUKE = BEIN_BC )

*call ES.DEFN ( es_proc=[es_proc]; es_name=[es_name]

[XQT TAB
*dof nodes_tot = < [nodes_x] >

2.1- 4 CSM Testbed Procedures Manual Revised 12/18/91



Pre-ProcessingProcedures Generic 1-D Beams

START <nodes_tot>

JLOC

• DEFINE NODIL C00RDINITES

*def/e dx = • [length_x] i ([l_odes_x]=l) >

*def/i node = O

*dells x = O.

*do _i = l,[nodes_x]

*def node = • <node> + I >

<node> •x)p 0., O.

*def x = • •x> + <dx> )

*enddo

• NODE DEFINITION

• DEFINE FICTITIOUS ELASTIC NATERIAL PROPERTIES

MATC

I [E] [PR]

• BEAN FICE ORIENTATION AND PROPERTIES

MREF

FORNAT=2

1 1 O. 1.0 O.

BA

GIVN 1 [inert_l] O. [inert_2] O. [area] [inert_torsion]

• DEFINE LOADS AND BOUNDARY CONDITIONS

*call [BC_PROCEDURE] ( nnx = [nodes,x] ; --

non = •es_nen> )

GENERATE ELENENTS

[ZqT ELD

<es_expe_cmd>

NSECT = 1

Define element nodal connectivity

*call BN_ELT_CONN (nnx=[nodos.x]; nen=_es_non>)

*end

• =DECK BH_ELT_CONN

*procedure BM_ELT_CONN ( nnx; non )

• Define Element Connectivity Kocord for ELD Processor

Revised 12/18/91 CSM Testbed Procedures Manual 2.1- 5



Generic 1-D Beams Pre-Processing Procedures

sir < Inert] /eq 2 > /then

*do Six = 1, <[nnx]-l>

*def/i nl = < Six >

*def/i n2 = < <nl> +

<nl> <n2)

ZSZ_ZSSIS

*enddo

*elseif < [hen] /oq 3 > /then

*do Six = 1, <[nnx]-2>, 2

*def/i nl = < Six >

*def/i n2 = < <nl> + 2 >

*def/i n3 = < <n2> - 1 >

<nl> <n2> <n3>

*enddo

*endif

*end

1 >

2.1.9 REFERENCES

2.1-1 Stewart, Caroline B.: The Computational Structural Mechanics Testbed User's

Manual. NASA TM-100644, October 1989.

2.1- 6 CSM Testbed Procedures Manual Revised 12/18/91



Pre-Processing Procedures Generic 2-D CANTILEVER Beam

2.2 Procedure GEN_CANTILEVER

2.2.1 GENERAL DESCRIPTION

• I • • 1 • • • 1 i i'1 1

wnlcnThis section describes a proceaure generates moaets of a s_rmgn_ canulever oeam

using two-dimensional plate/shell elements. Using the default values for the procedure

arguments, the straight cantilever beam problem from the MacNeal-Harder test cases (see

ref. 2.2-1) is generated. The model used for the MacNeal-Harder cantilever beam test

cases, is shown in figure 2.2-1.

L _ I

x m_cis
rectmagnxl_relements I

\ I \ / "} }

trapezoidal elements

/ / / / / ]

parzl!elogr_a eleme=ts

DIMENSIONS • h=.2 , L =6 , Thickness=.1

MATERIAL PROPERTIES • E -- 1.0 X 10 r , v = .30

Figure 2.2-1 Generic 2-D Cantilever Beam Finite Element Models.

Revised 5/24/90 CSM Testbed Procedures Manual 2.2- 1



Generic 2-D CANTILEVER Beam Pre-Processing Procedures

2.2.2 PROCEDURE USAGE

Procedure GE__CANTILEVER may be used by preceding the procedure name by the *call

directive, and following it by a list of arguments enclosed in parentheses. Procedure ar-

guments are order-independent, and most have default values thus making them optional.

The formal syntax is as follows:

*call GEN_CANTILEVER ( art1 = vall; arg2 = val2 ; ...)

where argl and arg2 represent argument names, and vall and val2 represent their cur-

responding values. Note that semi-colons are required between arguments, and a double

dash (--) may be used to continue the argument list on the next line.

The allowable arguments for procedure GEN_CANTILEVER are summarized in the following

table, along with their default values (if they exist). Note that arguments without defaults

are generally mandatory, while those with defaults are generally optional. Exceptions to

this r_le are noted in the following section under detailed argument descriptions.

Default ValueArgument

ES_PROC ES2

ES_NAME EX41

ES_PARS O.0

AUTO_DOF_SUP true

DRILLING_DOF false

NODES_X 7

NODES_Y 2

LENGTH_X 6.

LENGTH_Y .2

E I.E7

NU .3

THICKESS .I

DISTORT .07071

BC_PROCEDURE CANTILEVER_BC

Meaning

Select element processor
Select element with ELT..PROC

Set clement'research parameters

Automatic d.o.f, suppression

Number of nodes in x-direction

Number of nodes in y-direction

i Beam length (x-direction)
• Beam width (y-direction)

Young's elastic modulus

Poisson's ratio

Thickness

Procedure for boundary conditions

2.2.3 ARGUMENT DESCRIPTIONS

2.2.3.1 AUTO.OF_SUP

Automatic degree of freedom suppression flag (default: <true>). This option provides a

convenient way of suppressing any freedoms that do not have any (or adequate) stiffness

associated with them -- for example, at nodes used to prescribe geometry only; or drilling

freedoms in fine meshes composed of elements without normal rotational stiffnesses (see

argument DRILLING..DOF).

2.2- 2 CSM Testbed Procedures Manual Revised 12/18/91



Pre-Processing Procedures Generic 2-D CANTILEVER Beam

2.2.3.2 BC_PROCEDD_tE

Boundary condition procedure name (default: CANTILEVER_BC). The term "boundary con-

ditions" refers both to displacement constraints and applied loading. The argument

Rc PROCEDURE permits the users to supply their own boundary condition procedure, but

keep in mind that this may drastically change the problem definition.

2.2.3.3 DISTORT

Distorted mesh parameter (default: 0. 07071).

2.2.3.4 DRILLING_DOF

Drilling degree of freedom flag (default: <false>). Drilling freedoms are defined as rota-
tions normal to the surface of the shell. Leaving this flag off forces all drilling freedoms

in the model to be suppressed. Turning it on forces all drilling freedoms to be active --

unless they are automatically suppressed using use of the AOT0_DOF_UP argument. Note

that while many shell elements do not have any rotational stiffness associated with their

own surface-normal directions (at nodes), when shell elements are assembled as facets ap-

proximating an arbitrary shell surface, there is usually some misalignment between the
element normal and the actual shell normal. This is especially true of "flat" (e.g., 4-node)

elements. Hence, some rotational stiffness about the shell normal is usually present in

the model. (A clear exception to this is a flat plate, where element and shell normals

are identical.) For a cylindrical shell, the misalignment diminishes only as the number of
elements is increased. Most shell elements in the Testbed have their own misalignment

tolerance parameter, which determines when the AlYr0_DOF_SUP argument will automati-

cally suppress the drilling freedom. Note that for elements which have drilling stiffness,

the DI_ILLING_DOF argument should be set to <true> regardless of how AUT0..DOF_SUP is

set.

2.2.3.5 E

Young's elastic modulus (default: 1.0 x 107).

2.2.3.6 ES_NAME

Element name (default: EX41). This is the name of the specific shell-element type you

wish to select, within the element processor defined by argument ES_PI_0C. The default

shell-element type, EX41, is a 4-noded quadrilateral element implemented in Processor

gS2, and described in The Computational Structural Mechanics Testbed User's Manual

(see ref. 2.2-1).

2.2.3.7 ES_PARS

Element research parameters (default: 0., ... ). This argument allows an optional list of

element-dependent parameters that some elements provide, primarily when the element is

still undergoing research and refinement.

Revised 12/18/91 CSM Testbed Procedures Manual 2.2- 3



Generic 2-D CANTILEVER Beam Pre-Processing Procedures

2.2.3.8 ES_PROC

Element processor (default: ES2) This is the name of the structural element (ES) processor
that contains the shell element type you wish to employ in the model. The default shell-

element, processor ES2, is described in The Computational Structural Mechanics Testbed

User's Manual.

2.2.3.9 NODES_X

Number of nodes along x-direction (default: 7). This is the number of nodes you wish to

have along the axial direction of the beam shell model. Note that this number should be
consistent with the number of nodes per element. For example, NODES_X can be any number

greater than 1 for 4-node quadrilateral elements, whereas it nmst be an odd number greater

than 1 for 9-node quadrilateral elements.

2.2.3.10 NODES_Y

Number of nodes along y-direction (default: 2). This is the number of nodes you wish to

have along tile depth direction of the beam shell model. Note that this number should be

consistent with the number of nodes per element. For example, NBDES_Y can be any number

greater than I for 4-node quadrilateral elements, whereas it must be an odd number greater

than 1 for 9-node quadrilateral elements.

2.2.3.11 NU

l'oisson's ratio (default: 0.3).

2.2.3.12 THICKNESS

Beam thickness (default: O. 1).

2.2.4 USAGE GUIDELINES AND EXAMPLES

Procedure GEN_CANTILEVER may be used by preceding the procedure name by the ,call

directive. Procedure arguments may be changed from their default values by including any

or all of the arguments and their new values when the procedure is called. A space or blank

is required between the end of the procedure name and the left parenthesis. If the default

values of the procedure arguments are to be used, then only the procedure name is required.

*call GEN_CANTILEVER ( es_proc = ES2 ; es_name = EX41 ; --

es_pars = 0.0 ; --
auto_dof_sup = <true> ; --

drilling_dof = <false> ; --
nodes_x = 7 ; nodes_y = 2 ; --

length_x = 6. ; length_y = .2 ; --
E=I.E7 ; NU=.3 ; thickness = .1 ; --
distort =.07071; --

BC_PROCEDURE = CANTILEVERLEVER_BC )

2.2- 4 CSM Testbed Procedures Manual Revised 12/18/91



Pre-Processing Procedures Generic 2-D CANTILEVER Beam

(El) To perform an entire analysis using the default options, simply invoke the procedure

without any arguments, i.e.,

*call GEN_CANTILEVEK

2.2.5 LIMITATIONS

ERROR MESSAGES AND WARNINGS

2.2.7 PROCEDURE FLOWCHART

2.2.8 PROCEDURE LISTING

*procedure 6EN_CANTI ( es_proc = ES2 ; es_name = EX41 ;

es_pars = 0.0 ; --

auto_dof_sup = <true> ; --

drilling_dof = <false> ; --

nodes_x ffi 7 ; nodes_y

length_x = 6. ; lsngth_y

ffi 2 ; --

= .2 ; --

= .1 ; --EffiI.E7 ; NU=.3 ; thickness

distort _.07071; --

BC_PROCEDUEE = CANTILEVEn_BC )

Register Elenent and Define Macros: ELT_NEN, ELT_NIP, ELT_NSTR, etc.

*call ES ( function ffi 'DEFINE ELEHENTS' ; es_proo ffi [es_pro¢]; --

es_name ffi [es_name] ; es_pars ffi [es_pars] )

[XqT TAn
,des nodes_tot ffi • [nodes_x] . [nodes_y] >

START <nodes_tot>

JLOC

• DEFINE NODAL COORDINATES

*def/e dx = • [length_x] / ([nodes_x]-1) >

*def/e dy = < [length_y] / ([nodes_y]-l) >

*def/i node = 0

*def/e y = O.

*def/e skew = < -1. • [distort] >

*def/e dekew ffi< 2.0 • [distort] / ([nodes_y]-l) >

*do lj = 1,[nodes_y]

*def/@ x ffi O.

Revised 12/18/91 CSM Testbed Procedures Manual 2.2- 5



Generic 2-D CANTILEVER Beam Pre-Processing Procedures

*do $i = l,[nodee_x]

*def node = < <node> + 1 >

<node> <x>, <y>, O.

*def x = < <x> + <dx> >

*if < <$i> /eq I > /then

*def x = < <x> + <skev> >

*endif

*if < <$i> /eq <[nodes_x]-1> > /then

*def x = < [length_x] >

*endif

*enddo

*defy = < <y> ÷ <dy> >

*def skew = < <skew> + <dskew> >

*enddo

• NODE DEFINITION

• DEFINE FICTITIOUS ELASTIC MATERIAL PROPERTIES

• DEFINE LOADS AND BOUNDARY CONDITIONS

*call [BC_PROCEDURE] ( nnx = [nodes_x] ; nny = [nodes_y] ; --

non = <as_non> ; drilling_do/ = [drilling_doll )

• DEFINE REIL MATERIAL/SECTION PROPERTIES

[XqT AUS

. Build Table of Material Data

TABLE(NI=16,NJ=l): 0MB DATA 1 1

*def/e12.4 G = < [E] I (2.*(1.+[Nv])) >

I=1,2,3,4,5,6

J=l

[E] [NU] [E] <G> <G> <G>

• Build Laminate Data Tables

TABLE(NI=3,NJ=I,ITYPE=O): LAM OMB 1 1

I=1,2,3 . (material_type, layer_thickness, anglo(des.)

Jr1: 1 [THICKNESS] 0.0

[%QT LAU

. GENERATE ELEMENTS

[XqT ELD

Define number of intesration (stress) points based on element type

*dof/i nat = < <os_nip>e<es_nstr> >

2.2- 6 CSM Testbed Procedures Manual Revised 12/18/91



Pre-Processing Procedures Genetic 2-D CANTILEVER Beam

Define element attributes

<ES_EXPE_CND>

NSECT = 1

Define element nodal connectivity

*call CANTI_ELT_CONN (nnx=[nodes_x]; nny=[nodes_y]; nenffi<es_nen>)

Suppress DOFs not supported by elements

*iS < [IUTO_DOF_SUP] > /then

*call ES ( function = 'DEFINE FREEDOHS' )

*endif

*end

*procedure CANTI_ELT_CONN ( nnx; nny; non )

• Define Element Connectivity Record for ELD Processor

*if < [nen] /eq 4 > /then

*do Sly = 1, <[nny]-l>

*do Six = 1, <[nnx]-l)

*def/i nl = < (<$iy>-l)*[nnx] + <*ix> >

*def/i n2 = < <nl> + 1 >

*def/i nS = < <n2> + [nnx] >

*def/i n4 ffi < <nS> - 1 >

<nl) <n2> <n3) <n4)

*enddo

*enddo

*elseif <[nen]

*do $iy ffi I,

*do Six =

*def/i

*def/i n2

*def/i n3

*defli n4

*def/i n5

*def/i n6

*def/i n7

*def/i n8

*def/i n9

/eq 9 > /then

<[nny]-2>, 2

1, <[nnx]-2>, 2

nl = < (<$iy>-l)*[nnx] + <Six> >

= < <nl> + 2 >

ffi < <n2> + (2*[nnx]) •

= < <n3> - 2 >

ffi < <nl• + 1 >

ffi < <n2> + [nnx] •

= < <n4> + I >

= < <n6> - 2 >

= < <n8> + I >

============================================

<nl> <n2> <n3> <n4> <nS> <n6> <nT> <n8> <n9>

Revised 12/18/91 CSM Testbed Procedures Manual 2.2- 7



Generic 2-D CANTILEVER Beam Pre-Processing Procedures

*onddo

*enddo

*endif

*end

2.2.9 REFERENCES

2.2-1 MacNeal, R. H.; and ttarder, R. L.: "A Proposed Set of Problems to Test Finite

Element Accuracy," Finite Elements in Analysis and Design, Vol. 1, 1985, pp. 3-20.

2.2-2 Stewart, Caroline B.: The Computational Structural Mechanics Testbed User's

Manual. NASA TM-100644, October 1989.

2.2- 8 CSM Testbed Procedures Manual Revised 12/18/91



Pre-Processing Procedures Generic 2-D Curved Beam

2.3 Procedure GEN_CURVED_BM

2.3.1 GENERAL DESCRIPTION

This section describes a procedure which generates models of a curved (circular) beam

using two-dimensional plate/shell elements. Using the default values for the procedure

arguments, the curved beam problem from the MacNeal-Harder test cases (see ref. 2.3-1)

is generated. The MacNeal-Harder curved beam test case is shown in figure 2.3-1.

PROBLEM : Curved Beam

DIMENSIONS : Inner radius,, 4.12 Outer radius ,, 4.32
,, Thickness=. 1

MATERIAL PROPERTIES : E= 1X107 v = 25

30UNDARY CONDITIONS : Cante!ever beam fixed at y.C}

LOADING : Unit forces ap01ied at free end;
1) in-plane (verJcal) -- y-direc'Jon (case 1)
2) ouPof-plane -- :-cirec:icn (case 2)

Figure 2.3-1 Generic 2-D Curved Beam Problem.

Revised 5/24/90 CSM Testbed Procedures Manual 2.3- 1



Generic 2-D Curved Beam Pre-Processing Procedures

2.3.2 PROCEDURE USAGE

Procedure GEN_CURVED_BM may be used by preceding the procedure name by the *call

directive, and following it by a list of arguments enclosed in parentheses. Procedure ar-

guments are order-independent, and most have default values thus making them optional.

The formal syntax is as follows:

*call GEN_CURVED_BM ( argl = vall ; arg2 = val2 ; ...)

where argl and arg2 represent argument names, and vall and val2 represent their cor-

responding values. Note that semi-colons are required between arguments, and a double

dash (--) may be used to continue the argument list on tile next line.

Tile Mlowable arguments for procedure GEN_CURVED_BM are summarized in the following

table, along with their default values (if they exist). Note that arguments without defaults

are generally mandatory, while those with defaults are generally optional. Exceptions to
this rule are noted in the following section under detailed argument descriptions.

Argument Default Value

ES_PROC ES2

ES_NAME EX41

ES_PARS O.0

AUTO_DOF_SUP <true>

DRILLING_DOF <false>

NODES_T 7

NODES_R 2

RIN 4.12

ROUT 4.32

E 1.E7
i

NU .25

THICKNESS .I

BC_PROCEDURE CURVED_BC

Meaning

Select element processor
Select element within ELT..PROC

Set element-research parameters

Automatic d.o.f, suppression

Number of nodes in tangential direction

Number of nodes in radial direction

Inner radius

Outer radius

Young's elastic modulus
Poisson's ratio

Thickness

Procedure for boundary conditions

2.3.3 ARGUMENT DESCRIPTIONS

2.3.3.1 AUTO_DOF_SUP

Automatic degree of freedom suppression flag (default: <true>). This option provides a

convenient way of suppressing any freedoms that do not have any (or adequate) stiffness

associated with them -- for example, at nodes used to prescribe geometry only; or drilling

freedoms in fine meshes composed of elements without normal rotational stiffnesses (see

argument DRILLING_DOF).

2.3- 2 CSM Testbed Procedures Manual Revised 12/18/91



Pre-Processing Procedures Generic 2-D Curved Beam

2°3°3,2 Be_PROCEDURE

Boundary condition procedure name (default: CURVED_BC). The term "boundary con-

ditions" refers both to displacement constraints and applied loading. The argument

BC_PR0CEDURE permits you to to supply your own boundary condition procedure, but

keep in mind that this may drastically change the problem definition.

2.3.3.3 DRILLING_DOF

Drilling degree of freedom flag (default: <false>). Drilling freedoms are defined as rota-
tions normal to the surface of the shell. Leaving this flag off forces all drilling freedoms

in the model to be suppressed. Turning it on forces all drilling freedoms to be active --

unless they are automatically suppressed using use of the AUT0_DOF_SUP argument. Note

that while many shell elements do not have any rotational stiffness associated with their

own surface-normal directions (at nodes), when shell elements are assembled as facets ap-

proximating an arbitrary shell surface, there is usually some misalignment between the

element normal and the actual shell normal. This is especially true of "flat" (e.g., 4-node)

elements. Hence, some rotational stiffness about the shell normal is usually present in

the model. (A clear exception to this is a flat plate, where element and shell normais

are identical.) For a cylindrical shell, the misalignment diminishes only as the number of

elements is increased. Most shell elements in the Testbed have their own misalignment

tolerance parameter, which determines when the AUT0_DOF_SUP argument will automati-

cally suppress the drilling freedom. Note that for elements which have drilling stiffness,

the DRILLING_DOF argument should be set to <true> regardless of how AUT0_DOF_SUP is

set.

2.3.3.4 E

Young's elastic modulus (default: t. 0 × 107).

2.3.3.5 ES_NAME

Element name (default: EX41). This is the name of the specific shell-element type you

wish to select, within the element processor defined by argument ES_PROC. The default

shell-element type, EX41, is a 4-noded quadrilateral element implemented in Processor

ESt, and described in The Computational Structural Mechanics Testbed User's Manual

(see ref. 2.3-1).

2.3.3.6 ES_PARS

Element research parameters (default: 0., ... ). This argument allows an optional list of

element-dependent parameters that some elements provide, primarily when the element is

still undergoing research and refinement.

2.3.3._" ES_PR0C

Element processor (default: ES2) This is the name of the structural element (ES) processor

that contains the shell element type you wish to employ in the model. The default shell-

element, processor ES2, is described in The Computational Structural Mechanics Testbed

User's Manual.

Revised 12/18/91 CSM Testbed Procedures Manual 2.3- 3



Generic 2-D Curved Beam Pre-Processing Procedures

2.3.3.8 NODES ._

Number of radial nodes (default: 2). This is the number of nodes you wish to have along the

radial direction of the curved beam shell model. Note that this number should be consistent

with the number of nodes per element. For example, NODE$_/t. can be any number greater

than 1 for 4-node quadrilateral elements, whereas it must be an odd number greater than

1 for 9-node quadrilateral elements.

2.3.3.9 NODES_T

Number of tangential nodes (default: 7). This is tile nuinber of nodes you wish to have

along the tangential direction of the curved beam shell model. Note that this number

should be consistent with the number of nodes per element. For example, NODES_T can be

any number greater than 1 for 4-node quadrilateral elements, whereas it must be an odd

nmnber greater than 1 for 9-node quadrilateral elements.

2.3.3.10 NU

Poisson's ratio (default: 0.2S).

2.3.3.11 RIN

Inner radius of curved beam (default: 4.12).

2.3.3.12 ROOT

Outer radius of curved beam (default: 4.32).

2.3.3.13 THICKNESS

Beam thickness (default: 0.1).

2.3.4 USAGE GUIDELINES AND EXAMPLES

Procedure GEN_CURVED_BM may be used by preceding the procedure name by the .call

directive. Procedure arguments may be changed from their default values by including

any or all of tile arguments and their new values when the procedure is called. A space or

blank is required between the end of the procedure name and the left parenthesis. If the

default values of the procedure arguments are to be used, then only the procedure name

is required.

*procedure GEN_CURVED_BM (elt_proc = ES2 ; elt_name = EX41 ; --
elt_pars = 0.0 ; --
auto_dof_sup = <true> ; --

drilling_dof = <false> ; --
nodes_t = 7 ; nodes_r = 2 ; --
rin = 4.12 ; rout = 4.32 ; --

E=I.E7 ; PR=.25 ; thick = .1 ; --
BC_PROCEDURE = CURVED_BC )

2.3- 4 CSM Testbed Procedures Manual Revised 12/18/91



Pre-Processing Procedures Generic 2-D Curved Beam

(El) To perform an entire analysis using the default options, simply invoke the procedure

without any arguments, i.e.,

*call GEN_CURVED_BM

2.3.5 LIMITATIONS

2.3.6 ERROR MESSAGES AND WARNINGS

None.

2.3.7 PROCEDURE FLOWCHART

2.3.8 PROCEDURE LISTING

eproceduro 6EN_CURVED (es_proc = ES2 ; es_name = EX41 ;

es_pars = 0.0 ; --

auto_dof_sup = •true> ; --

drilllng_dof = •false> ; --

nodes_t = 7 ; nodos_r = 2

rln = 4.12 ; rout = 4.32

Efl.E7 ; NU=.25 ; thickness = .1 ; --

BC_PROCEDURE ffi CURVED_BC )

....................................................................

Register Element and Define Macros: ELT_NEN, ELT_NIP, ELT_NSTR, etc.
....................................................................

*call ES ( function = 'DEFINE ELEMENTS' ; es_proc = [es_proc]; --

es_name = lee_name] ; es_pars ffi los_pars] )

[lOT TAB

*def nodes_tot = • [nodes_t] * [nodes_r] >

START •nodes_tot>

JLOC

FORMAT = 2 . use cylindrical coordinate system

• DEFINE NODAL COORDINATES

edef/o dx = < 90. / ([nodes_t]-l) >

*dof/e dy ffi < • [rout] - [rim] > / ([nodes_r]-1) >

*def/i node = 0

*def/e r ffi [rln]

*do Sj = l,[nodes_r]

*def/e theta ffi 90.

ode $i ffi 1,[nodes_t]

*def node ffi • <node> + 1 >

Revised 12/18/91 CSM Testbed Procedures Manual 2.3- 5



Generic 2-D Curved Beam Pre-Processing Procedures

<node) <r>p <theta), O.

*def tbeta = < <theta) - <dx) >

*enddo

*defr = < <r) ÷ <dy> )

*enddo

• NODE DEFINITION

• DEFINE FICTITIOUS ELASTIC MITERIAL PROPERTIES

Define DOF Directions

JREF

NREF = -1

1 (nodes_tot)

Use local cylindrical basis vectors

for nodal DOFS:

u,v,w = radial, circumfer., axial

same convention for all nodes

• DEFINE LOADS AND BOUNDARY CONDITIONS

*call [BC_PROCEDURE] ( nnx = [nodes_t] ; nny = [nodes_r] ; --

nen= <es_nen> ; drilling_dof = [drilling_dof] )

• DEFINE REAL MATERIAL/SECTION PROPERTIES

[XQT AUS

• Build Table of Material Data

TABLE(NI=16,NJ=1): ONB DATA 1 1

*def/e12.4 G = < [E] / (2.*(I.÷[NU])) >

I=1,2,3,4,5,6

J=l

[E] [NU] [E] <G> <G> <G>

• Build Laminate Data Tables

TAELE(NI=3,NJ=I,ITTPE=O): LAN OMB 1 1

I=1,2,3 . (material_type, layer_thickness, angle(deg.)

J=l: 1 [THICKNESS] O.O

[XQT LAU

• GENERATE ELEMENTS

[XQT ELD

Define number of integration (stress) points based on element type

*def/i nst = < <es_nip>*<_nstr> >

2.3- 6 CSM Testbed Procedures Manual Revised 12/18/91



Pre-Processing Procedures Generic 2-D Curved Beam

Define element attributes

<ES_EXPE_CMD>

NSECT = I

Define element nodal connectivity

*call CURV_ELT_CONN (nnx=[nodes_t]; nny=[nodes_r]; nen=<es_nen>)

Suppress DOFs not supported by elements

.......................................

*if < [AUTO_DOF_SUP] • /then

*call ES ( function = 'DEFINE FREEDOMS' )

eendif

*end

*procedure CURV_ELT_CONN ( nnx; nny; nen)

• Define Element Connectivity _ecord for ELD Processor

=----=----Z=Z=======.--.--------==----=z-------- :Z z----

*if <[nen] /eq 4 • /then

*do $iy = 1, <[nny]-l•

edo Six = 1, <[nnx]-l•

*def/t nl = < (<$iy>-l)e[nnx] + <Six> >

*def/i n2 = < <nl• + 1 >

*def/i n3 = < <n2• + [nnx] >

*def/i n4 = < <n3> - 1 >

<nl> <n2> <n3> <n4>

......................

......................

*enddo

*enddo

*elseif <[nen]

*do $iy = 1,

*do Six =

*def/i

edef/i

edef/i

*def/i

*def/i

*def/i

*def/i

edef/i

*def/i

/eq 9 > /then

<[nny]-2>, 2

1, <[nnx]-2•, 2

nl - < (<$iy>-l)*[nnx] + <Six> •

n2 = < <nl• + 2 >

n3 = < <n2• + (2*[nnx]) •

n4 = < <n3> - 2 >

n5 = < <nl> + 1 >

n6 = < <n2> + [nnx] >

n7 = < <n4> + 1 >

n8 = < <n6> - 2 >

n9 = < <n8> + 1 >

:::::==:=::======:=:::=:=====:======::===:::

<nl> <n2> <n3> <n4> <nS> <n6> <nT> <n8> <n9>

Revised 12/18/91 CSM Testbed Procedures Manual 2.3- 7



Generic 2-D Curved Beam Pre-Processing Procedures

*enddo

*enddo

*endif

*end

2.3.9 REFERENCES

2.3-1 MacNeal, R. H.; and Harder, R. L.: "A Proposed Set of Problems to Test Finite

Element Accuracy," Finite Elements in Analysis and Design, Vol. 1, 1985, pp. 3-20.

2.3-2 Stewart, Caroline B.: The Computational Structural Mechanics Testbed User's

Manual. NASA TM-100644, October 1989.

2.3- 8 CSM Tcstbed Procedures Manual Revised 12/18/91



Pre-Processing Procedures General Quadrilateral Plates

2.4 Procedure GEN_PLATE

2.4.1 GENERAL DESCRIPTION

Procedure GEN_PLATE is used to generate flat or warped 4-sided plate finite element models.

The plate edges are defined to be straight with the surface defined as the bi-linearly

interpolation of the edges. This type of interpolated surface is also known as a Coon's

surface (see refs. 2.4-2 and 2.4-3).

2.4.2 PROCEDURE USAGE

Procedure GEN_PLATE may be used by preceding the procedure name by the *call directive,

and following it by a list of arguments enclosed in parentheses. Procedure arguments are

order-independent, and most have default values thus making them optional. The formal

syntax is as follows:

*call GEN_PLATE ( argl = vall ; arg2 = val2 ; ...)

where argl and arg2 represent argument names, and vall and va12 represent their cor-

responding values. Note that semi-colons are required between arguments, and a double

dash (--) preceded by a space may be used to continue the argument list on the next line.

The allowable arguments for procedure GEN_PLATE are summarized in the following table,

along with their default values (if they exist). Exceptions to this rule are noted in the

following section under detailed argument descriptions.

Revised 12/18/91 CSM Testbed Procedures Manual 2.4- 1



General Quadrilateral Plates Pre-Processing Procedures

Argument Default Value

ES_PROC ES1

ES_NAME EX97

ES_PARS O.0

XYZ1 1,0,0

XYZ2 1,0,1

XYZ3 1,90,1

XYZ4 1,90,0

NODES_I 7

NODES_2 7

EDGE_WEIGHTS 1,1,1,1

BC_PROCEDURE J

DRILLING_DOF <true>

AUTO_DOF_SUP <true>

SECTION_PRC ' '

NSECT 1

Meaning

Generic element processor
Genetic element name

Element research parameters

Cartesian coordinates of point 1.

Cartesian coordinates of point 2.

Cartesian coordinates of point 3.

Cartesian coordinates of point 4.

Number of nodes along edge 1

Number of nodes along edge 2

including duplicate nodes if plate doses

Plate section property procedure

Boundary condition procedure

Drilling dof suppression flag

Automatic dof suppression flag

Plate section property procedure

Plate section property number

The following values not used if SECTION_PRC is specified.

E 30. E6 Young's Modulus

NU O. 3 Poisson's ratio

WTDEN O. 1 Weight Density

THICKNESS .1 Plate thickness

2.4.3 ARGUMENT DESCRIPTIONS

2.4.3.1 AUT0_DOF_SUP

Automatic degree of freedom suppression flag (default: <true>). This option provides a

convenient way of suppressing any freedoms that do not have any (or adequate) stiffness

associated with them -- for example, at nodes used to prescribe geometry only; or drilling

freedoms in fine meshes composed of elements without normal rotational stiffness (see

argument D_ILLING_DOF).

2.4.3.2 BC_PROCEDURE

Name of user provided boundary condition procedure (default: ' '). The term "boundary

conditions" refers both to displacement constraints and applied loading. If a boundary

conditions procedure is provided, the following call will be performed. The macrosymbol

<es_nen> equals the number of element nodes.

*call [BC_PROCEDURE] (nodes_l = [nodes_l] ; --
nodes_2 = [nodes_2] ; --

es_nodes = <es_nen> ; --

drilling_dof = [drilling_doll )

No action is taken if a boundary condition procedure name is not provided.

2.4- 2 CSM Testbed Procedures Manual Revised 12/18/91



Pre-Processing Procedures General Quadrilateral Plates

2.4.3.3 DRILLING_DO_F

Drilling degree of freedom flag (default: <true>). Drilling freedoms are defined as rotations

normal to the surface of the plate. Setting this flag set to <false> forces all drilling

freedoms in the model to be suppressed. Setting it to true forces all drilling freedoms to be

active -- unless they are automatically suppressed by use of the Avr0_DOF_SUP argument.

Note that while many plate elements do not have any rotational stiffness associated with

their own surface-normal directions (at nodes), when plate elements are assembled as facets

approximating an arbitrary plate surface, there is usually some misalignment between the

element normal and the actual plate normal. This is especially true of "fiat" (e.g., 4-node)

elements. Hence, some rotational stiffness about the plate normal is usually present in

the model. (A clear exception to this is a fiat plate, where element and plate normals are

identical.) For a curved plate, the misalignment diminishes only as the number of elements
is increased. Most plate elements in the Testbed have their own misalignment tolerance

parameter, which determines when the AUTI]_DI3F_SUP argument will automatically suppress

the drilling freedom. Note that for elements which have drilling stiffness, the DI_ILLING_DOF

argument should be set to <true> regardless of how AUT0_.DOF_SUP is set.

2.4.3.4 E

Young's modulus (default: 30.E6). This argument is ignored if SECTION_PRC parameter is

specified. See the description for SECTI0__Pae for more detail.

2.4.3.5 EDGE_WEIGHTS

Node placement can be weighted along each surface edge according to the EDGE_WEIGHTS

parameter. The input format requires a list of four edge-node placement weightings rep-

resenting the node weighting for edgel, edge2, edge3, and edge4 (default: 1.,1.,1.,1.).

The weighting value for a given edge represents the length of the last element divided by

the length of the first element along that edge. The edge orientation arrows in figure 2.4-1

point from the first element to the last element along each edge. In the case of 9-node

quad elements, the midside and center nodes are positioned at the appropriate locations

based on the elements natural coordinate system.

The procedure interprets negative weight values to mean the positive reciprocal. For

example, a value of -5.0 is identical to a value of 0.2.

2.4.3.6 ES_NAME

Element name (default: EX97). This argument is the name of the specific plate-element

type you wish to select, within the element processor defined by argument ES_PROC. The de-

fault plate-element type, EX97, is a 9-node quadrilateral element implemented in processor

ES1, and described reference 2.4-1.

2.4.3.7 ES_PARS

Element research parameters (default: 0., ... ). This argument is an optional list of

element-dependent parameters that some elements provide, primarily when the element is

still undergoing research and refinement.

Revised 12/18/91 CSM Testbed Procedures Manual 2.4- 3



General Quadrilateral Plates Pre-Processing Procedures

2.4.3.8 ES_PKOC

Element processor (default: ES1) This argument is the name of the structural element

(ES) processor that contains the plate element type you wish to employ in the model.
The default plate-element, processor ES1, is described in The Computational Structural

Mechanics Testbed User's Manual.

2.4.3.9 NODES_I

Number of nodes on edge 1 including the nodes at tile surface corners (default: 7). This

argument is also the number of nodes on edge 3. This number should be consistent with

the element type selected. For example, NODES_I can be any number greater than 1 for

4-node quadrilateral elements, whereas it must be an odd number greater than I for 9-node

quadrilateral elements.

2.4.3.10 NODES_2

Number of nodes on edge 2 including the nodes at the surface corners (default: 7). This

argument is also the number of nodes on edge 4. This number should be consistent with

the element type selected. For example, NODES_2 can be any number greater than 1 for

4-node quadrilateral elements, whereas it must be an odd number greater than I for 9-node

quadrilateral elements.

2.4.3.11 NSECT

Plate section property number (default: 1). The NSECT value is required when defining the

element using the processor ELD. See the description of $ECTION_PR¢ for more detail.

2.4.3.12 NU

Poisson's ratio (default: 0.3). This argument is ignored if the SECTION_PKC input parameter

is specifed. See the description of SECTION_PRC for more detail.

2.4.3.13 XYZI

The cartesian coordinates (z, y, z) which define corner number I of the model surface. The

form of the input is three real values, each separated by a comma (default: 1.,0.,0.). The

surface is defined by four edges which are defined as a linear interpolation in cartesian

coordinates of four endpoints, or "corner" points.

2.4.3.14 XYZ2

The cartesian coordinates (z, y, z) defining the corner number 2 of the model surface (de-

fault: I.,0.,I.).

2.4.3.15 XYZ3

The cartesian coordinates (z, y, z) defining the corner number 3 of the model surface (de-

fault: 1.,90.,I.).

2.4- 4 CSM Testbed Procedures Manual Revised 12/18/91



Pre-Processing Procedures General Quadrilateral Plates

2.4.3.16 XYZ4

The cartesian coordinates (z,y, z) defining the corner number 4 of the model surface (de-

fault: 1,90.,0.).

2.4.3.i7 SECTION_PRC

Name of a user supplied procedure to define tile plate section properties (default = ' '). If

a section properties procedure is provided, the following call will be performed.

*call [section_prc] (nsect = Insect] )

The effect of the default is to allow the procedure to generate an isotropic material section

based on the input parameters E, NU, WTDEN, and THICKNESS. The section number is defined

by the input parameter NSECT. If the call parameter SECTION_PRC is defined by the user,

then call parameters E, NU, WTDEN, and THICKNESS are ignored by procedure GEN_PLATE.

2.4.3.18 THICKNESS

Thickness of the plate wall (default = 1.0). This argument is ignored if SECTION_PRC

parameter isspecified.See the descriptionforSECTION_PRC formore detail.

2.4.3.19 WTDEN

Weight density expressed in lb/in, s (default: 0.1 lb/in.3). This argument is ignored if the

SECTION..PRC input parameter is specified. Processor LAU will convert the weight density

to mass density using the gravitational acceleration constant 386.4 in/see u.

2.4.4 USAGE GUIDELINES AND EXAMPLES

Procedure GEN_PLATE may be invoked using the ,call directive. Procedure arguments may

be changed from their default values by inchding any or alLof the arguments and their

new values in the procedure call. A space or blank is required between the end of the

procedure name and the left parenthesis. If the default values of the procedure arguments

are to be used, then only the procedure name is required.

*procedure GEN_PLATE ( ES_PROC = ESI ; ES_NAME = EX97 ; ES_PARS - 0.0 ; --
XYZ1 = 0.,0.,0. ; --
XYZ2 = I.,0.,0. ; --

XYZ3 = I.,1.,0. ; --

XYZ4 = 0.,1.,0. ; --
NODES_I = 3 ; --
NODES_2 = 3 ; --
EDGE_WEIGHTS = 1.,1.,1.,I. ; --

BC_PROCEDURE = ' ' ; -- Boundary condition procedure
DKILLING_DOF = <true> ; --
AUTO_DOF_SUP = <true> ; --

SECTION_PKC = ' ' ; -- Plate section property procedure
NSECT = 1 ; -- . Plate section property ID

The following values not used if SECTION_PRC specified

Revised 12/18/91 CSM Testbed Procedures Manual 2.4- 5



General Quadrilateral Plates Pre-Processing Procedures

E = 30.E6 ; --
NU= .3; --
THICKNESS = .1 --

Young's Modulus
Poissons ratio
Plate thickness

2.4.4.1 Mesh Generation

The method of surface generation used by procedure GEN_PLATE is described in the section.

Terminology depicted on figure 2.4-1 provides a visual interpretation of the parameters used

to generate a general plate surface. Node generation capability is provided by the Testbed

processor MESH.

To define the plate surface, the user defines four coordinate positions in the cartesian ref-

erence frame. These coordinate positions represent the corners of a stralght-sided quadri-

lateral region. The surface of the region is defined as the bi-linear interpolation of the four

sides (see refs. 2.4-2 and 2.4-3).

corner 4

edge 3

corner 3

edge 2

edge 4

edge 1

.._ corner 2

corner 1

Figure 2.4-1 Generic Plate Surface Topology.

2.4- 6 CSM Testbed Procedures Manual Revised 5/25/90



Pre-Processing Procedures General Quadrilateral Plates

The connectivity of the surface is defined in figure 2.4-1. The user provides the coordinates

for corners I "^_,,4. _'_"°_,_1 ,,_̂¢ the region starts at corner 1 and enus_ at corner 2. The

remaining edges are defined in a similar manner. The arrows indicate the orientation of

the edges and the direction of increasing node numbers.

rl_l.._ t^_l ..... f _,L ...... It:---- _--'_.- -1 ..... * _.'J 1 • , 1 •
J. xtu tuJ_uJtu_ qJ. tUU IU-'_ttlt, lll_ l#.Jtxlt, U Ul_lilt_llt _I'IU i _' ueplcteo in r_'lgure 2.4-2. Nodes are

created first along edge 1, then in successive lines terminating along edge 3. The user
defines the number of nodes along edges 1 and 2, which also defines the number of nodes

for edges 3 and 4. The relative position of the nodes along each edge may be controlled
using the edge weighting parameter EDGE_WEIGHTS.

corner 3
25

corner 4 23/-''_4''_''''_

17

16

element 3

element 1

7

8

19

18

element 4

element 2

9

8

2o

lo

s

4

_.-----"_/ corner 2

corner 1

Figure 2.4-2 Node and Element Topology.

Revised 5/25/90 CSM Testbed Procedures Manual 2.4- 7



General Quadrilateral Plates Pre-Processing Procedures

2.4.4.2 Flat Plates

In this section are presented examples of how procedure GEN_PLATE may be used to create

two-dimensional finite element plate models.

In the following example, procedure GEN.YLATE is used to generate a fiat rectangular plate

with length of 10 inches and width of 5 inches using 4-noded quadrilateral elements (see

figure 2.4-3).

*call GEN_PLATE ( es_proc = 'ESI' ; es_name =

xyzl = 0.,0.,0. ; --
xyz2 ffi10.,0.,0. ; --

xyz3 ffi 10.,5.,0. ; --
xyz4 = 0.,5.,0. ; --
nodes_l ffi 9 ; --
nodes_2 = 5 )

'EX47' ; --

25

17

L-q

IA

I

Z6 Z? Z8 ZS _ 31 _-

IS 19 20 ZI ZZ Z3 Z4

IO II IZ 13 14 IS IG

II 12 i._ 14 IK li_ I?

Z 3 4 5 S ? S

? _ ? el

Figure 2.4-3 Rectangular Plate

2.4- 8 CSM Testbed Procedures Manual Revised 5/25/90



Pre-Processing Procedures General Quadrilateral Plates

This example demonstrates the use of the EDGE_WEIGHTSparameter and how it affects both

the 4-node and 9-node quadrilateral element mapping (see figure 2.4-4). The v.V_v_i/ggGItTS

specifies elements at the ends of edges 1 through 4 to be 5 times longer than elements at

the beginning of the edges.

•,-,..,,11 _I:'N DTaTI_. ( e5 _"'_" ffi _l;'q4

xyzt ffi 0.,0.,0. ; --
xyz2 = 10.,0.,0. ; --
xyz3 ffi 10.,5.,0. ; --
xyz4 ffi 0.,5.,0. ; --
nodes_l ffi 9 ; --
nodes_2 ffi 5 ; --
edge_weights = 5. ,-5. ,-5.,5. )

- 'EX97' ; --

(a) 4-node elements

o •

f
(b) 9-node elements

Figure 2.4-4 Rectangular Plate With Weighted Elements

Revised 5/25/90 CSM Testbed Procedures Manual 2.4- 9



General Quadrilateral Plates Pre-Processing Procedures

The following example produced the skewed fiat plate shown in figure 2.4-5.

*call GEN_PLATE ( es_proc = 'ESI' ; es_na,.e ffi 'EX47' ; --
xyzl = 0.,0.,0. ; --

xyz2 ffi10.,1.,0. ; --
xyz3 = 7.,6.,0. ; --
xyz4 = 2.,8.,0. ; --
nodes_l = 13 ; --
nodes_2 ffi 11 )

Figure 2.4-5 Skewed Flat Plate

2.4- 10 CSM Testbed Procedures Manual Revised 5/25/90



Pre-Processing Procedures General Quadrilateral Plates

2.4.4.8 Warped Plates

In the following example, procedure GEN_PLATE is used to generate the highly warped
surface shown in figure 2.4-6.

*call GEN_PLATE ( es_proc = 'ESI' ; --
xyzl
xyz2
xyz3
xyz4
nodes_l
nodes_2

; es_nmae = 'EX47'
= 0.,0.,0. ; --
= 5.,5.,0. ; --
= 5.,0.,5. ; --
= 0.,5.,5. ; --
=21;--
=23)

\

Figure 2.4-6 Warped Plate

Revised 5/25/90 CSM Testbed Procedures Manual 2.4- 11



General Quadrilateral Plates Pre-Processing Procedures

2.4.5 LIMITATIONS

None.

2.4.6 ERROR MESSAGES AND WARNINGS

None.

2.4.7 PROCEDURE FLOWCHART

GEM_PLATE

[BC_PROCEDURE]

[SECTION_PRC]

(Plate generation procedure)

(user supplied boundary conditions/loads procedure)

(user supplied section property generation procedure)

2.4.8 PROCEDURE LISTING

*procedure GEN_PLATE ( es_proc = esl ; es_name = ex97 ; es_pars = 0.0 ;

xyzl = 0.,0.,0. ; --

xyz2 = 1.,0.,0. ; --

xyz3 ffi 1.,1.,0. ; --

xyz4 ffi 0.,1.,0. ; --

nodes_l = 3 ; --

nodes_2 : 3 ; --

edge.weights : 1.,1.,1.,1. ; --

online = 0 ; -- . suppress nodes and elenent output

be_procedure ffi ' , ; -- . Boundary condition procedure

drilling_dof = <true> ; --

auto.dof_sup = <true> ; --

section_prc = ' ' ; -- . Shell section property procedure

The following values used only if seotion_prc not specified

nsect ffi 1 ; -- . Shell section property ID

E = 30.E6 ; -- . Young's Modulus

NU ffi .3 ; -- . Poisons ratio

WTDEN = .1 ; -- . Weight Density

thickness ffi .I -- . Shell thickness

• general purpose clip procedure to create the finite elenent

mesh for a plate with arbitrary straight sides using 4 or

9 noded quadrilateral elenents.

If a procedure to generate shell section properties is not provided,

the isotropic section described by E, NU, WTDEN, and THICKNESS will

2.4- 12 CSM Testbed Procedures Manual Revised 12/18/91



Pre-Processing Procedures General Quadrilateral Plates

be automatically generated. (see [section_prc] parameter)

£ boundary condition procedure should be provided but is

optional. If not provided, no boundary conditions will be

defined. (see [bc_procoduro] parameter)

*def/i

*def/i

*def/e

*def/e

*def/e

*deflo

*def/e

*defle

*def/e

*def/e

nl ffi [nodes_l]

n2 ffi [nodes_2]

xyzl[l:3] = [xyzl]

xym2[l:3] ffi [xyz2]

xyz3[l:3] = [xyz3]

xyz4[l:3] = [xyz4]

g[l:4] = ledge_weights]

rc[l:4] = <xyzl[1]>,<xyz2[1]>,<xyz3[1]>,<xyz4[1]>

tc[l:4] ffi <xyzl[2]>,<xyz2[2]>,<xyz3[2]>,<xyz4[2]>

zc[l:4] ffi <xyzl[3]>,<xyz2[3]>,<xyz3[3]>,<xyz4[3]>

Register Element and Define Macros: ES_NEN, ES_NIP, ES_NSTR, etc.

*call ES ( function = 'DEFINE ELEMENTS' ; es_proc ffi [es_proc]; --

es_name = [os_na_e] ; es_pars = los_pars] )

Define nodal coordinates and element connectivities into

separate formatted files. These files are gauranteed to have

unique names that are not currently in use in the current

directory.

*def/i chk_closuro = 0

[xqt mesh

*if <mesh_err> Ithon

*remark Error occurred during MESH processor execution.

*remark GEN_PLITE procedure terminated.

*eof

*endlf

Construct Model Data-base _ith TESTBED Processors

[IqT TAB

START <tot_nodes>

ONLINE = [online]

JLOC

*sho_ macros node_file

*add <node_fiie>

Revised 12/18/91 CSM Testbed Procedures Manual 2.4- 13



General Quadrilateral Plates Pre-Processing Procedures

Define Load/Boundary Conditions If Procedure Supplied

*if <not(<ifelse([bc_procedure]; ;1;0)>)> /then

*call [BC_PKOCEDURE] ( nodes_l = <nl> ; --

nodes_2 = <n2> ; --

es_nodes = <es men> ; --

drillin__dof = [drilling_doll )

*else

eremark *e+*eeee***eeeeeee*e*e****ee**eee

*remark BOUNDARY CONDITIONS NOT SPECIFIED

*remark 8,,ee**ee**************e*********

*endif

===============================

Define Shell Section Properties

*if <no_(<ifelse([soction_prc]; ;1;0)>)> /then

*call [section_prc] ( nsect = [nsect] )

*else

==================================================

Define the default Material and Section Properties

edef/e G = < [E]/(2.*(I+[NU])) >

[XQT AUS

Build Table of Material Data

TIBLE(nI=I6,nJ=I): ONB DITI 1 1

i = 1,2,3,4,5,6,7,8,9

= 1
Ell NU12 E22 G12 G13 G23 ALPHll ILPHI2 WTDEN

[E] [NU] [E] <G> <G> <G> O. O. [WTDEN]

Build Laminate Data Tables

TIBLE(ni=3,nj=l,itype=O): LIM OMB [nsect] 1

i = 1,2,3

j = 1 marl # layer thickness marl angle

1 [thickness] O.

[X_T LIU

ONLINE = 2

*endif

Generate Elements

2.4- 14 CSM Testbed Procedures Manual Revised 12/18/91



Pre-ProcessingProcedures GeneralQuadrilateral Plates

[XQT ELD

<ES_EXPE_CND>

NSECT = Insect]

Define element nodal connectivity

*show macros elem_file

*add <elem__ile>

Suppress DOFs not supported by elements

*if < [AUTO.DOF_SUP] > /then

*call ES ( function = 'DEFINE FREEDOMS' )

*endif

*end

2.4.9 REFERENCES

2.4-1 Stewart, Caroline B.: The Computational Structural Mechanic8 Testbed User's

Manual. NASA TM-100644, October 1989.

2.4-2 Cook, William A.: "Body Oriented (Natural) Coordinates For Generating Three-

Dimensional Meshes." International Journal For Numerical Method_ in Engineer.

ing, 1974, Volume 8, pp. 27-43.

2.4-3 Forrest, A. R.: On Coon_ and Other Methods ]or the Representation of Curved

Surfacen. Computer Graphics and Image Processing, 1972, Volume 1, pp. 341-359.

Revised 12/18/91 CSM Testbed Procedures Manual 2.4- 15



General Quadrilateral Plates Pre-Processing Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

2.4- 16 CSM Testbed Procedures Manual Revised 12/18/91



Pre-Processing Procedures General Shells and Curved Surfaces

2.5 .... ..41 .... _ _'_ 1%T _ T..lr I_.T Tq_r J._ J. _1 _ u.# .ILJL Jl,._Jl.,I JLJ

2.5.1 GENERAL DESCRIPTION

Procedure GEN_SHELL is used to generate a class of curved shell finite element models. All

surfaces are modeled as bi-linearly interpolated surfaces (i. e., Coon's surfaces) in cylindrical

coordinate space (see refs. 2.5-2 and 2.5-3). Interpolation in cylindrical coordinates is

especially well suited for generating shells of revolution, such as cylinders, cones, annular

plates, and spiraling surfaces.

2.5.2 PROCEDURE USAGE

Procedure GEN_SHELL may be used by preceding the procedure name by the *call directive,

and following it by a list of arguments enclosed in parentheses. Procedure arguments are

order-independent, and most have default values thus making them optional. The formal

syntax is as follows:

*call GEN_SHELL ( argl = vall ; arg2 = val2 ; ...)

where argl and t_g2 represent argument names, and vall and val2 represent their cor-

responding values. Note that semi-colons are required between arguments, and a double

dash (--) preceeded by a space may be used to continue the argument list on the next

line.

The allowable arguments for procedure GEN_SHELL are summarized in the following table,

along with their default values (if they exist). Exceptions to this rule are noted in the

following section under detailed argument descriptions.

Revised 12/18/91 CSM Testbed Procedures Manual 2.5- 1

PRECEDING PAGE BLANK NOT FILMED



General Shells and Curved Surfaces Pre-Processing Procedures

Argument Default Value

ES_PROC ES1

ES_NAME EX97

ES_PARS 0.0

RTZ1 1,0,0

RTZ2 1,0,1

R.TZ3 1,90,1

RTZ4 1,90,0

HODES_I 7

NODES_2 7

EDGE_WEIGHTS 1,1,1,1

JREF ' '

BC_PROCEDURE '

DRILLING_DOF <false>

AUTO_DOF_SUP <false>

SECTION_PRC ' '

NSECT 1

Meaning

Generic element processor

Generic elementl name

Element research parameters

Cylindrical coordinates of point 1.

Cylindrical coordinates of point 2.

Cylindrical coordinates of point 3.

Cylindrical coordinates of point 4.

Number of nodes along edge 1

Number of nodes along edge 2

including duplicate nodes if shell closes

Shell section property procedure

Joint dof reference frame

Boundary condition procedure

Drilling dof suppression flag

Automatic dof suppression flag

Shell section property procedure

Shell section property number

The following values not used if SECTION_PRC is specified.

E 30. E6 Young's Modulus

NU 0.3 Poisson's ratio

WTDEN O. 1 Weight Density

THICKNESS .1 Shell thickness

2.5.3 ARGUMENT DESCRIPTIONS

2.5.3.1 AUT0_DOF_SUP

Automatic degree of freedom suppression flag (default: <false>). This option provides a

convenient way of suppressing any freedoms that do not have any (or adequate) stiffness

associated with them -- for example, at nodes used to prescribe geometry only; or drilling

freedoms in fine meshes composed of elements without normal rotational stiffness (see

argument DRILLING_DOF).

2.5.3.2 BC_PROCEDURE

Name of user provided boundary condition procedure (default: ' '). The term "boundary

conditions" refers both to displacement constraints and applied loading. If a boundary

condition procedure is provided, the following call will be performed. The macrosymbol

<es_nen> equals the number of element nodes, while the macrosymbols <nl> and <n2>

equal the number of nodes actually generated along edges one and two.

*call [BC_Plt0CEDURE] ( nodes_l = <nl> ; --
nodes_2 = <n2> ; --

es_nodes = <es_nen> ; --

2.5- 2 CSM Testbed Procedures Manual Revised 12/18/91



Pre-Processing Procedures General Shells and Curved Surfaces

_I..L J. J. A. J. JLt_) _L _ .1. -- L'J..L J. J.._ _. &L_) t-L v J. J /

No action is taken if a boundary condition procedure name is not provided.

2533 _.vTYv_n nn_

Drilling degree of freedom flag (default: <false>). Drilling freedoms are defined as rota-
tions normal to the surface of the shell. Leaving this flag set to <false> forces all drilling

freedoms in the model to be suppressed. Turning it on forces all drilling freedoms to be

active -- unless they are automatically suppressed by use of the AUT0_DOF_SUP argument.

Note that while many shell elements do not have any rotational stiffness associated with

their own surface-normal directions (at nodes), when shell elements are assembled as facets

approximating an arbitrary shell surface, there is usually some misalignment between the
element normal and the actual shell normal. This is especially true of "flat" (e.g., 4-node)

elements. Hence, some rotational stiffness about the shell normal is usually present in

the model. (A clear exception to this is a flat plate, where element and shell normals

are identical.) For a cylindrical shell, the misalignment diminishes only as the number of

elements is increased. Most shell elements in the Testbed have their own misalignment

tolerance parameter, which determines when the AUT0_DOF_SUP argument will automati-

cally suppress the drilling freedom. Note that for elements which have drilling stiffness,

the DRILLING_I)0F argument should be set to <true> regardless of how AUTO_DOF_SUP is

set.

2.5.3.4 E

Young's modulus (default: 30.E6). This argument is ignored if SECTION_FRC parameter is

specified. See the description for SECTION_PRC for more detail.

2.5.3.5 EDGE_WEIGHTS

Node placement can be weighted along each surfaceedge according to the EDGE_WEIGHTS

parameter. The input format requiresa listof four edge-node placement weightings rep-

resentingthe node weighting foredge1, edge2, edge3, and edge4 (default:1.,1.,1.,1.).

The weighting value for a given edge represents the length of the last element divided by

the length of the first element along that edge. The edge orientation arrows in figure 2.5-1

point from the first element to the last element along each edge. In the case of 9-node

quad elements, the midside and center nodes are positioned at the appropriate locations

based on the elements natural coordinate system.

The procedure interprets negative weight values to mean the positive reciprocal. For

example, a value of -5.0 is identical to a value of 0.2.

2.5.3.6 ES_NAME

Element name (default: EX97). This argument is the name of the specific shell-element type

you wish to select, within the element processor defined by argument ES..PROC. The default

shell-element type, EX97, is a 9-node quadrilateral element implemented in processor ES1,

and described reference 2.5-1.

Revised 12/18/91 CSM Testbed Procedures Manual 2.5- 3



General Shells and Curved Surfaces Pre-Processing Procedures

2.5.3.7 ES_PM%S

Element research parameters (default: 0., ...). This argument is an optional list of

element-dependent parameters that some elements provide, primarily when the element is

still undergoing research and refinement.

2.5.3.8 ES_PKOC

Element processor (default: ESI) This argument is tile name of the structural element

(ES) processor that contains the shell element type you wish to employ in the model.

Tile default shell-element, processor ESl, is described ill Tile Computational Structural

Mechanics Testbed User's Manual.

2.5.3.9 JREF

Joint degree of freedom (dof) reference frame (default: -1 for global cylindrical). The user

may provide any alternate frame which has been created prior to calling this procedure.

A ncg_ttive value causes the frame to be interpreted as a cylindrical reference frame.

2.5.3.10 NODES_I

Number of nodes on edge 1 including tile nodes at the surface corners (default: 7). This

argument is also the number of nodes on edge 3. This number should be consistent with

the element type selected. For example, NODES_I can be any number greater than 1 for

4-node quadrilater',d elements, whereas it must be an odd number greater than I for 9-node

quadrilateral elements.

2.5.3.11 NODES_2

Number of nodes on edge 2 including the nodes at the surface corners (default: 7). This

argument is also the number of nodes on edge 4. This number should be consistent with

the element type selected. For example, _0DES_2 can be any number greater than 1 for

4-node quadrilateral elements, whereas it must be an odd number greater than 1 for 9-node

quadrilateral elements.

2.5.3.12 NSECT

Shell section property nunll,er (default: [). The NSECT value is required when defining the

element using the processor ELD. See tile description of SECTION_PRC for more detail.

2.5.3.13 NU

l'oisson's ratio (default: 0.3). This argument is ignored if the SECTION_PRC input parameter

is specified. See tile description of SECTION_PRC for more detail.

2.5.3.14 RTZI

The cylindrical coordinates (r, O, z) which define corner number 1 of the model surface (0

in degrees). The form of tile input is three real values, each separated by a comma (default:

1.,0.,0.). The surface is dc/ined by four edges which are defined as a linear interpolation

in cylindrical coordinates of four endpoints, or "corner" points.

2.5- 4 CSM Testbed Procedures Manual Revised 12/18/91



Pre-Processing Procedures General Shells and Curved Surfaces

2.5.3.15 RTZ2

The cylindrical coordinates (r, 0, z) defining the corner number 2 of the model surface

(default: 1.,0.,1.).

2.5.3.16 RTZ3

The cylindrical coordinates (r, 0, z) defining the corner number 3 of the model surface

(default: 1.,90.,1.).

2.5.3.1'/" RTZ4

The cylindrical coordinates (r, 8, z) defining the corner number 4 of the model surface

(default: 1.,90.,0.).

2.5.3.18 SECTION_PRC

Name of a user supplied procedure to define the plate section properties (default = ' '). If

a section properties procedure is provided, the following call will be performed.

*call [section_pro] (nsect = [nsoct] )

The effect of the default is to allow the procedure to generate an isotropic material section

based on the input parameters E, NU, WTDEN, and THICKNESS. The section number is defined

by the input parameter NSECT. If the call parameter SECTION_PRC is defined by the user,

then call parameters E, NU, WTDEN, and THICKNESS are ignored by procedure GEN_SHELL.

2.5.3.19 THICKNESS

Thickness of the shell wall (default = 1.0). This argument is ignored if SECTION_PRC

parameter is specified. See the description for SECTION_PRC for more detail.

2.5.3.20 WTDEN

Weight density expressed in lb/in. _ (default: 0.1 lb/in.3). This argument is ignored if the

SECTION_PRC input parameter is specified. Processor LAU will convert the weight density

to mass density using the gravitational acceleration constant 386.4 in/see 2

2.5.4 USAGE GUIDELINES AND EXAMPLES

Procedure GEN_SHELL may be invoked using the *call directive. Procedure arguments may

be changed from their default values by including any or all of the arguments and their

new values in the procedure call. A space or blank is required between the end of the

procedure name and the left parenthesis. If the default values of the procedure arguments

are to be used, then only the procedure name is required.

*procedure GEN_SHELL ( ES_PROC = ES1 ; ES_NAME = EX97 ;
RTZ1 = 1.,0.,0. ; --
RTZ2 = 1.,0.,I. ; --

ES_PARS = 0.0 ;

Revised 12/18/91 CSM Testbed Procedures Manual 2.5- 5



(;enerM Shells and Curved Surfaces Pre-Processing Procedures

RTZ3 = I.,90.,i. ; --

KTZ4 = 1.,90.,0. ; --

NODES_I = 7 ; --

NODES_2 = 7 ; --

EDGE_WEIGHTS = I.,I.,i.,I. ; --

BC_PKOCEDURE = ' ' ; -- Boundary condition procedure

DRILLING_DOF = <true> ; --

AUTO_DOF_SUP = <true> ; --

SECTION_PRC = ' ' ; -- Shell section property procedure

NSECT = 1 ; -- Shell section property ID

The following values not used if SECTION_PKC specified

E = 30.E6 ; -- Young's Modulus

NU = .3 ; -- Poissons ratio

THICKNESS = .I -- Shell thickness

)

2.5.4.1 Mesh Generation

The method of surface generation used by procedure GEN_SHELL is described in the section.

Tcrn lology depicted on figure 2.5-1 provides a visual interpretation of the parameters used

to generate a curved surface.

To the define the shell surface, tile user deftness four coordinate positions in a cylindrical

reference frame. These four positions represent four corners of a four sided region. The

sides of the region (which will also be referred to as edges) are defined by hnearly inter-

polating between the coordinate values of the corner points. The surface of the region is

defined as a bi-linear interpolation of the four sides, also known as a Coon's surface (see

refs. 2.5-2 and 2.5-3). It must be remembered that since interpolations are performed in

cylindrical coordinates, the surface and its edges will not generally be flat or straight, but

rather curved.

2.5- 6 CSM Testbed Procedures Manual Revised 12/18/91



Pre-Processing Procedures General Shells and Curved Surfaces

- Y CIIRIPI

CIlRI_R Z

CORNER 3

EI](;E_Z

EDGE I

EDGE 3

EDGE 4 ............
.+-

|" - ................. . .

CORNER 4

Figure 2.5-1 Generic Shell Surface Topology.

The connectivity of the surface is defined in figure 2.5-1. The user provides the coordinates

for corners 1 to 4. Edge 1 of the region starts at corner 1 and ends at comer 2. The

remaining edges are defined in a similar manner. The arrows indicate the orientation of

the edges and the direction of increasing node numbers.

The topology of the resulting finite element grid is depicted in Figure 2.5-2. Nodes are

created first along edge 1, then in successive lines terminating along edge 3. The user

defines the number of nodes along edges 1 and 2, which also defines the number of nodes

for edges 3 and 4. The relative position of the nodes along each edge may be controlled

using the edge weighting parameter EDGE_WEIGHTS.

J

Revised 5/24/90 CSM Testbed Procedures Manual 2.5- ?



General Shells and Curved Surfaces Pre-Processing Procedures

(()RI_R 2

L-- ___lj___._ -_-

.U

E_

E!

CORH_R I

_5

'4

_4

E4
_3

E9 'Z

..17

,z

:!

Figure 2.5-2 Node and Element Topology.

Recognizing that the surfaces generated by procedure GFAI_SIIELL axe four sided surfaces

in cylindrical coordinates, it will be shown, by example, how to generate segments of

cylinders, cones, aJanulax plates, spirals, and more general surfaces. For applications which

require a complete axisymmetric surface, such as a 360 degree cylinder, the procedure has

the capability of joining the resulting finite element mesh where two sides of the region axe

coincident. Closure occurs automatically but is checked only along edges 1 and 3. Closure

will not occur between edges 2 and 4. Note also that the user must request the number of

nodes along edge 2 as though the surface were not closed. This requirement is to say that

the user should not presume closure will occur.

2.5- 8 CSM Testbed Procedures Manual Revised 5/24/90



Pre-Processing Procedures General Shells and Curved Surfaces

,_.O.6J:o,_ Ik../_IIIIUHL-I_UI_LI _tllCl| t._q_ulblUIlL_t

In this section there axe presented examples of how procedure GEN_SHELL may be used to

create various shell segments on a right circular cylindrical surface.

In the following example, procedure _EN_SHELL is used to generate a cylindrical segment

with radius of 5 inches and length of 10 inches. Only 90 degrees of the cylinder is generated

(see figure 2.5-3).

*call dEN_SHELL ( es_proc ffi'ESI' ; es_name = 'EX47' ; --
rtzl = 5.,0.,0. ; --

rtz2 = 5.,0.,10. ; --
rtz3 = 5.j90.,10. ; --
rtz4 ffi5.,90.,0. ;--

nodes_l = 5 ; --
nodes_2 = 7 )

i

..f

r"

jJ "o

o

o

o

jJ

(a) 4-node elements (b) 9-node elements

Figure 2.5-3 90 Degree Cylindrical Segment

Revised 5/24/90 CSM Testbed Procedures Manual 2.5- 9



General Shells and Curved Surfaces Pre-Processing Procedures

This example creates a complete 360 degree cylindrical shell using 9-node quadrilateral

dements (see figure 2.5-4). Note that midside nodes are not shown. The input specifies

elements at the end of edges I and 3 to be 5 times longer that elements at the beginning

of the same edges. Closure of the cylinder is obtained by defining corner points 1 and 4,

and corner points 2 and 3, to be coincident in the r and z directions, with a difference in

0 of 360 degrees.

*call GEN_SHELL ( es_proc = 'ESI' ; es_name ffi'EX97' ; --

rtzl = 5.,0.,0. ; --
rtz2 ffi 5.,0.,10. ; --
rtz3 ffi 5. ,360. ,10. ; --
rtz4 ffi5.,360.,0. ; --
nodes_l ffi 11 ; --
nodes_2 = 25 ; --
edge_weights ffi 5. ,1.,5.,1. )

¥

Figure 2.5-4 Right Circular Cylinder - 9-node Elements

2.5- 10 CSM Testbed Procedures Manual Revised 5/24/90



Pre-Processing Procedures General Shells and Curved Surfaces

By simply increasing the z coordinate vaJues for corner points 3 and 4, the cylinder wall

can be made to spiral about the z axis. Tile following example illustrates this technique.

The resulting spiral is shown in figure 2.5-5. This configuration may be used to model a

spring.

*call GEN_SHELL ( es_proc - 'ESI' ; es_name ffi
rtzl ffi 5.,0.,0. ; --
rtz2 = 5.,0.,2. ; --
rtz3 = 5.,720. p12. ; --
rtz4 ffi 5.,720.,10. ; --
nodes_l ffi 5 ; --
nodes_2 = 37 )

'F_47' ;--

Figure 2.5-5 Spiraling Cylinder Wall

Revised 5/24/90 CSM Testbed Procedures Manual 2.5- 11



General Shells and Curved Surfaces Pre-Processing Procedures

The following example produced the cylinder of skewed elements shown in figure 2.5-6.

*call GF.JI_SHELL ( es_proc = 'ESI' ; es_name ffi
rtzl ffi 5.,0.,0. ; --
rtz2 = 5.,90.,10. ; --
rtz3 = 5.,450.,10. ; --
rtz4 = 5.,360.,0. ; --
nodes_l ffi 7 ; --
nodes_2 = 25 )

'F._47' ; --

,,." ,/ / // / I I..?!

Figure 2.5-6 Cylinder With Skewed Elements

2.5- 12 CSM Testbed Procedures Manual Revised 5/24/90



Pre-Processing Procedures General Shells and Curved Surfaces

2.5.4.3 Conical _ne,.... Sections

In this section, examples of how procedure GE_/_SHELL may be used to create shell segments

on a conical surface are presented.

This example creates a complete 360 degree conical shell using 9-node quadrilateral ele-

ments (see figure 2.5-7). Elements are defined at the top of the cones to be 1/5 as long

axially as those at the base. Closure of the cone is obtained by defining corner points 1

and 4, and corner points 2 and 3, to be coincident in r and z directions, with a difference

in # of 360 degrees.

*call GEN_SHELL ( es_proc = _ESI' ; es_name = _EX97 _ ; --
rtzl ffi5.,0.,0. ; --

rtz2 ffi1.,0.,10. ; --

rtz3 ffi1.,360.,10. ; --
rtz4 ffi 5.,360.,0. ; --

nodes_l = 9 ; --
nodes_2 ffi 25 ; --
edge_weights = -4.,1.,-4.,1. )

Y

Figure 2.5-7 Conical Shell - 9-Node Elements

Revised 5/24/90 CSM Testbed Procedures Manual 2.5- 13



General Shells and Curved Surfaces Pre-Processing Procedures

In the following example, procedure GEN_SHELL is used to generate an unusual shell which

lies on the conical surface of the previous example. The shell spans 360 degrees at the top

but only spans 180 degrees at the base (see figure 2.5-8).

*call GEN_SHELL ( es_proc = 'ESI' ; es_name ffi'EX47' ; --

rtzl = 5.,90.,0. ; --
rtz2 ffi 1.,0.,10. ; --
rtz3 = 1.,360.,10. ; --
rtz4 ffi5.,270.,0. ; --
nodes_l ffi11 ; --

nodes_2 ffi21 ; --

edge_weights = -3.,1.,-3.,1. )

Y

Figure 2.5-8 Unusual Conical Shell

2.5- 14 CSM Testbed Procedures Manual Revised 5/24/90



Pre-Processing Procedures General Shells and Curved Surfaces

2.5.4.4 _ffi..i,,.,,A.... in_ Plates

In this section examples of how procedure GEN_SHELLmay be used to create annular shell

segments are presented.

This example creates a 90 degree annular shell segment using 9-node quadrilateral elements

(see figure 2.5-9). Note that the midside nodes are not shown. The plate has an inner radius

of I inch and the outer radius of 5 inches. Element size weighting is also demonstrated.

*call GEN_SHELL ( es_proc = 'ESI' ; es_name = _EX97'

rtzl i I.,0.,0. ; --
rtz2 ffiS.,O.,O. ; --

rtz3 i 5.,90.,0. ; --
rtz4 = 1.,90.,0. ; --
nodes_l : 11 ; --
nodes_2 ffi 11 ; --

edge_weights ffi6.,1.,6.,1. )

i'

Figure 2.5-9 Flat Annular Shell

Revised 5/24/90 CSM Testbed Procedures Manual 2.5- 15



General Shells and Curved Surfaces Pre-Processing Procedures

By simply increasing the z coordinate values for corner points 3 and 4, the annular surface

can be made to spiral about the z axis. The following example illustrates this technique.

The resulting spiral is shown in figure 2.5-10.

*call GE__SHELL ( es_proc = 'ESI' ; es_name = 'EX47' ; --
rtzl = 3.,0.,0. ; --

rtz2 = 5.,0.,0. ; --

rtz3 = 5.,720.,10. ; --
rtz4 ffi3.,720.,I0. ; --

nodes_l ffi 5 ; --

nodes_2 = 33 )

Figure 2.5-10 Spiraling Shell

2.5- 16 CSM Testbed Procedures Manual Revised 5/24/90



Pre-Processing Procedures General Shells and Curved Surfaces

2.5.4.5 Exotic Shell Sections

In this section examples of how procedure GF__SItELL may be used to create unusual shell

segments are presented.

This example creates a spiraling surface which changes from a fiat to a vertical shell while

increasing in z direction and decreasing in rarlius (see figure 2.5-11).

*call GEN_SHELL ( os_proc = 'ESI' ; es_name = 'EX97' ; --
rtzl ffi3.,0.,0. ; --

rtz2 = 5.,0.,0. ; --

rtz3 ffiI.,720.,12. ; --
rtz4 - I.,720.,10. ; --

nodes_l = 5 ; --
nodes_2 ffi 45 )

Figure 2.5-11 Exotic Spiral Shell

Revised 5/24/90 CSM Testbed Procedures Manual 2.5- 17



General Shells and Curved Surfaces Pre-Processing Procedures

In the following example, procedure GEN_SHELL is used to generate a vertical coiled shell

(see figure 2.5-12).

*call GEN_SHELL ( es_proc = 'ESI' ; es_name ffi'El47' ; --

rtzl ffi 0.,0.,0. ; --
rtz2 ffi 0.,0.,1. ; --
rtz3 = 3.,1080.,1. ;
rtz4 = 3.,1080.,0. ;

nodee_l = 5 ;)--nodes_2 85

_w

Figure 2.5-12 Vertical Coiled Shell

2.5- 18 CSM Testbed Procedures Manual Revised 5/24/90



Pre-Processing Procedures General Shells and Curved Surfaces

'_L: ...... I- u_ colieu sneu (see i_igure 2.5-13).- i._ _._.._,._ uses procedure GEN_SHELL to 8enerate a " .... "' " ' "

*call GEN_SHELL ( es_proc = ,ES1 _ ; es_name =

rtzl = 0.,0.,0. ; --

rtz2 ffiI.,0.,0. ; --

rtz3 = 9.,720.,0. ; --

rtz4 = 5.5,720.,0. ; --

nodes_1 ffi5 ; --
nodes_2 = 51 )

'EX47' ; --

/

/

/

Figure 2.5-13 Flat Coiled Shell

Revised 5/24/90 CSM Testbed Procedures Manual 2.5- 19



General Shells and Curved Surfaces Pre-Processing Procedures

Finally, an arbitrary shell is created to demonstrate the generality of the procedure

GEN_SHELL (see figure 2.5-14).

*call GEN_SHELL ( es_proc = 'ESI' ; es_name ffi'EX47' ; --
rtzl
rtz2

rtz3

rtz4

nodes_l

nodes_2

= -2.,-25.,0. ; --
= 7.,190.,-3. ; --
= -2.,230.,7. ; --
= 6.,0.,10. ; --

= 25 ; --
ffi 25 )

Figure 2.5-14 Arbitrary Shell

2.5- 20 CSM Testbed Procedures Manual Revised 5/24/90



Pre-Processing Procedures General Shells and Curved Surfaces

2.5.5 LIMITATIONS

As previously stated, to obtain closed axisymmetric surface models, the user must define

edges 1 and 3 to be the coincident edges.

2.5.6 ERROR MESSAGES AND WARNINGS

None.

2.5.7 PROCEDURE FLOWCHART

GEN_SHELL

[BC_PROCEDURE]

[SECTION_PRC]

CYL_NODES

CYL_ELT_CONN

(Shell generation procedure)

(user supplied boundary conditions/loads procedure)

(user supplied section property generation procedure)

(surface node generation procedure)

(element connectivity definition procedure)

2.5.8 PROCEDURE LISTING

*procedure 6EN_SHELL ( es_proc = esl ; es_name = ex97 ; @s_pars ffi O. ;

rtzl ffi 1.,0.,0. ; --

rtz2 = 1.,0.,1. ; --

rtz3 = I.,90.,I. ; --

rtz4 ffi 1.,90.,0. ; --

nodes_l ffi 7 ; --

nodes_2 ffi 7 ; --

odge_veights = 1.,1.,1.,1. ; --

Jref = -1 ; -- . Joint dof reference frame

bc_procedure ffi p ' ; -- . Boundary condition procedure

online ffi0 ; -- . supress nodes/elts output

drilling_dof ffi<true> ; --

auto_dof_sup = <true> ; --

section_prc = ' ' ; -- . Shell section property procedure

The folloeing values used only if section_prc not specified

nsect = 1 ; -- . Shell section property ID

E = 30.E6 ; -- . Young's Modulus

NU © .3 ; -- . Poisons ratio

WTDEN ffi .1 | -- . Weight Density

thickness ffi .1 -- . Shell thickness

Model Definition Procedure for 6ENeric Shell in cylindrical coordinates

I general purpose clip procedurs to create the finite element

Revised 12/18/91 CSM Testbed Procedures Manual 2.5- 21



General Shells and Curved Surfaces Pre-Processing Procedures

mesh for a partial or complete cylindrical shell using 4 or

9 nodod quadrilateral elements.

Note that when generating a 360 degree closed shell,

the caller should specify the number of circumferential nodes as

if the cylindrical shell were not closed, or in other words,

the line of nodes where closure occurs should be counted twice.

There will only be one set of nodes actually create where

closure occurs.

There is no verification performed to detect overlapping or

otherwise improbable element generation. This should be done

prior to calling this utility.

If a procedure to generate shell section properties is not provided,

the isotropic section described by E, NU, WTDEN, and THICKNESS will

be automatically generated. (see [section_pro] parameter)

• boundary condition procedure should be provided but is

optional. If not provided, no boundary conditions will be

defined. (see [bc_procedure] parameter)

*dofli

*def/i

*defle

*defle

*defle

*def/o

*deflo

*def/o

*def/e

*dof/e

nl = [nodes_l]

n2 = [nodes_2]

rtzl[l:3] = [rtzl]

rtz2[1:3] = [rtz2]

rtzS[l:3] = [rtz3]

rtz4[l:3] = [rtz4]

w[1:4] = [edge_weights]

rc[1:4] = <rtzl[1]>,<rtz2[1]>,<rtz3[1]>,<rtz4[1]>

tc[1:4] = <rtzl[2]>,<rtz2[2]>,<rtz3[2]>,<rtz4[2]>

zc[1:4] = <rtzl[3]>,<rtz2[3]>,<rtz3[3]>,<rtz4[3]>

=================================================================

Register Element and Define Macros: ES_NEN, ES_NIP, ES_NSTR, etc.

*call ES ( function = 'DEFINE ELEMENTS' ; es_proc = [es_proc]; --

as_name = [es_na_e] ; as_pars = [as_pars] )

==============================================================

Define nodal coordinates and element connectivities into

separate formatted files. These files are gauranteed to have

unique names that are not currently in use in the current

directory.

==============================================================

*def/i chk_closure = 1

[xqt mesh

*if <mesh_err> /then

2.5- 22 CSM Testbed Procedures Manual Revised 12/18/91



Pre-Processing Procedures General Shells and Curved Surfaces

*remark

*remark

*eel

*endif

Error occurred during MESH processor execution.

GEN_SHELL procedure terminated.

Construct Hodel Data-base gith TESTBED Processors

[I_T TAB
START <tot_nodes>

ONLINE = [online]

JLOC

FOKNAT = 2

*sho_ macros node_file

*add <node_file>

• use cylindrical coordinate system

Define DOF Directions

J_EF

NKEF = [jrof]

1 (tot_nodes>

Use local cylindrical basis vectors

for nodal DOFS:

u,v,_ = radial, circuafer., axial

same convention for all nodes

Define Load/Boundary Conditions If Procedure Supplied

*if <not(<ifelse([bc_procedure]; ;1;O)>)> /then

*call [BC_PROCEDUKE] ( nodes_l = <nl> ; --

nodes_2 = <n2> ; --

ca_nodes = <es.nen> ; --

drilling_dof = [drilling_dof]

*else

*remark *********************************

*remark BOUNDARY CONDITIONS NOT SPECIFIED

*remark *********************************

*endif

Define Shell Section Properties

*if <not(<ifelse([section_prc]; ;1;0)>)> /then

*call [section_prc] ( nsect = [nsoc$] )

eels@

Define the default Material and Section Properties

Revised 12/18/91 CSM Testbed Procedures Manual 2.5- 23



General Shells and Curved Surfaces Pre-Proeessing Procedures

*def/e G = < [E]I(2.*(I+[N_])) >

[XOT AUS

Build Table of Naterial Data

TIBLE(ni=16,nj=I): ONB DITI 1 1

i = 1,2,3)4,5,6,7,8,9

j=l
Ell NU12 E22 G12 G13 G23 ILPHI11LPBI2 WTDEN

[E] [NU] [E] <G> <G> <G> O. O. [WTDEN]

Build Lasinate Data Tables

TIBLE(ni=3,nj=l,itype=O): LIN OHB Insect] 1

i = 1,2,3

j : 1 marl I layer thickness natl angle

I [thickness] O.

[XQT LAU

ONLINE = 2

*endif

=================

Generate Elenents

[XQT ELD

<ES_EIPE_CMD>

NSECT = [nsect]

Define element nodal connectivity

*show macros elen_file

*add <elem_file>

=======================================

Suppress DOFs not supported by elements

*if < [IUTO_DOF_SUP] > /then

*call ES ( function = 'DEFINE FREEDOMS'

*endif

*end

2.5- 24 CSM Testbed Procedures Manual Revised 12/18/91



Pre-Processing Procedures General Shells and Curved Surfaces

2.5.9 REFERENCES

2.5-1 Stewart, Caroline B.: The Computational Structural Mechanics Testbed User's

M'_anua!. NASA TM-100644, October 1989.

2.5-2 Cook, William A.: "Body Oriented (Natural) Coordinates For Generating Three-
Dimensional Meshes." International Journal For Numerical Methods in Engineer.

ing, 1974, Volume 8, pp. 27-43.

2.5-3 Forrest, A. R.: On Coons and Other Methods for the Representation of Curved

Surfaces. Computer Graphics and Image Processing, 1972, Volume 1, pp. 341-359.

Revised 12/18/91 CSM Testbed Procedures Manual 2.5- 25



General Shells and Curved Surfaces Pre-Processing Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

2.5- 26 CSM Testbed Procedures Manual Revised 5/24/90



Solution Procedures

The procedures documented in this chapter are for specific analysis tasks. These procedures

provide examples of how to perform common structural analysis tasks (e.g., static solution,

eigensolution) using the command language and processors available in the CSM Testbed

Software System.

A summary of the procedures found in this chapter is provided in Table 3.0-1.

Procedure Name

L_DYNAMIC_O

Table 3.0-1 Solution Procedures

Analysis Description

Linear transient dynamic analysis using modal anal-

ysis

L_DYNAHIC_I Linear transient dynamic analysis using Newmark al-

gorithm

L_STABIL_I Linear stability (buckling eigenvalue) analysis with

prescribed prestress

L_STABIL_2 Linear stability (buckling eigenvalue) analysis with

linearly-computed prestress

L_STATIC Linear static analysis

L_VIBKAT_O Linear vibration (eigenvalue) analysis about un-

stressed state

L_VIBRAT_I Linear vibration (eigenvalue) analysis about a pre-

scribed prestressed state

L_VIBRAT_2 Linear vibration (eigenvalue) analysis about a linearly-

computed prestressed state

NL_STATIC_I Nonlinear static analysis; modified Newton iteration

with arc-length control

NL_STATIC_2 Advanced Riks method

NL_DYNAMIC_I Nonlinear Dynamic Analysis

Revised 5/18/90 CSM Testbed Procedures Manual 3.0- 1

PRECEDLNG PAGE BLANK NOT FILMED



Solution Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

3.0- 2 CSM Testbed Procedures Manual Revised 5/18/90



Solution Procedures L_DYNAMIC_0

3.1 Processor L_DYNAMIC_0

THIS SECTION UNDER PREPARATION

5/24/90 CSM Testbed Procedures Manual 3.1- 1

PRECEDING PAGE ELA,_K NOT FILMED



L..DYNAMIC_O Solution Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

3.1- 2 CSM Testbed Procedures Manual 5/24/90



Solution Procedures Linear Transient Dynamic Analysis

3.2.1 GENERAL DESCRIPTION

Procedure L_DYNAHIC_I performs a linear transient dynamic analysis using either the

Newmark-_ implicit direct time integration procedure outlined in reference 3.2-1. When

Procedure L._YNAMIC_I is called, a transient response calculation by direct integration

of the system equations with a fixed time step is performed. Procedure L_DYNAMIC calls

Procedure NEIDD,ILK which implements the well-known Newmark integration method for

second order, coupled systems. Parameters such as the names of the system stiffness and

mass matrices, the time step, and the total number of time steps in the analysis are formal

arguments to Procedure L..VYIA/4IC_I. In Procedure $Eh'RARK, extensive use is made of the

CLAMP macro expression capability for calculating integration constants and controlling

the algorithm. The initial acceleration at time t = 0 is calculated from the given initial

displacement and velocity vectors. This is done by using processor AUS to set up the
equations of motion at t=0, and processors INV and SSOL to solve for the acceleration.

At each subsequent time step, processor AUS is used to set up the recursion relations, and

processor SSOL is used to solve for the displacement vector at the next time step. Then

velocity and acceleration vectors are calculated and selectively printed.

3.2.2 THEORY

3.2.2.1 Introduction

The equations of motion for an undamped, linear elastic structure at time t -k At are

where

M

K

Ut+At

iit+At

Mii,+_ + Ku_+_t = P,+_

is the mass matrix

is the linear elastic stiffness matrix

is the load vector at time t + At

is the displacement vector at time t + At

is the acceleration vector at time t + At

(3.2- 1)

3.2.2.2 Newmark-_ Method

The Newmark-_ method is an implicit direct time integration procedure that is based on

the following assumptions:

dr+At = dt + [(1 - 7)ii, + Tilt+At ]At (3.2 - 2)

Ut+At : Ut + Atdt + [(2 -/3)iit +/3iit+At ](At) 2 (3.2 - 3)

where

Revised 5/18/90 CSM Testbed Procedures Manual 3.2- 1

PRECEDING PAGE B._.ANK NOT FILMED



Linear Transient Dynamic Analysis Solution Procedures

fit+At is the velocity vector at time t + At

At is time step size

1 andThe parameters 3' and ]3 determine integration accuracy and stability. When 7 -
]3= 1_, the linear acceleration method is obtained (i.e., the acceleration is assumed to vary

1 and fl = 1linearly over a time step). When 7 = _ _, Newmark's original, constant-average-

acceleration method (also called the trapezoidal rule) is obtained.

3.2.3 ALGORITHM

The Procedure L..DYNAHIC_I closely follows the computational procedure presented in ref-

erence 3.2-1. Briefly, an outline of the procedure is as follows:

1. Select time step size, At, and parameters 7 and ft. Calculate integration constants:

1 1 1

]3_> ;

1 7 I

ao = ; al = fiat' a2 = ;

1 7__1; At(_ 2)as = 2--fl - 1; a4 --= ]3 as : -_- -- ;

ae=At(1-7); aT=TAt

2. Initialize displacements Uo, velocities do, and accelerations iio.

3. Form effective stiffness matrix I(

= K + aoM

4. Decompose I_

= LDL T

For each time step:

5. Calculate effective loads Rt+at

Rt+At = Pt+At + M(aoUt + a2fl, 4- ali_l,)

6. Solve for displacements at time t + At

LDLTut+At = I{.t+At

7. Calculate accelerations and velocities at time t 4- At

_lt+A, = ao(Ut+At -- ut)-- a2tlt -- a3iit

Ut+At : flit 4- a6iit 4- aTut+At

3.2- 2 CSM Testbed Procedures Manual Revised 5/18/90



Solution Procedures Linear Transient Dynamic Analysis

3.2 4 PROCEDURE ,Tu A_

Procedure L_DYNAMIC_I is used by preceding the procedure name by the *call directive.

Procedure arguments may be changed from their default values by including any or all

of the arguments and their new values when the procedure is called. A space or blank

is required between the end of the procedure name and the left parenthesis. If the default

values of the procedure arguments are to be used, then only the procedure name is required.

*call L_DYNANIC_I ( argl = vall ; arg2 = val2 ; ...)]

where argl and arg2 represent argument names, and vall and va12 represent their cor-

responding values. Note that semi-colons are required between arguments, and a double

dash (--) may be used to continue the argument list on the next line.

The allowable arguments for Procedure L-DYNAMIC_I are summarized in the following table,

along with their default values (if they exist). Note that arguments without defaults are

generally mandatory, while those with defaults are generally optional. Exceptions to this

rule are noted in the following section under detailed argument descriptions.

For Procedure L_DYNAMIC_I, the following table lists each argument, its default value and

meaning.

Argument

DELT

NSTEP

Default Value
Meaning

Time increment, At

Number of time steps

BETA 0.25

(]ANNA 0.50
Time integrator parameter

Time integrator parameter

3.2.S ARGUMENT DESCRIPTION

3.2.5.1 BETA

Newmark-_ time integrator parameter, fl (default: I/4).

3.2.5.2 DELT

Time step size. This argument specifies the size of the time step to be used in the analysis.

A constant step size is assumed per procedure call.

3.2.5.3 GAMMA

Newmark-/3 time integrator parameter 3' (default: 1/6).

Revised 5/18/90 CSM Testbed Procedures Manual 3.2- 3



Linear Transient Dynamic Analysis Solution Procedures

3.2.5.4 NSTEP

Number of time steps to march. This argument specifies the number of time steps to march

in the transient response prediction using a constant time step size of DELT.

3.2.6 PROCEDURE FLOWCHART

L_DYL_MIC_I (main procedure)

NEWMtItK (Newmark-fl time integration)

3.2.7 LIMITATIONS

None.

3.2.8 ERROR MESSAGES AND WARNINGS

None.

3.2.9 USAGE GUIDELINES AND EXAMPLES

Procedure L_DYNtMIC_I is used by preceding the procedure name by the *call directive.

Procedure arguments may be changed from their default values by including any or all

of tile arguments and their new values when the procedure is called. A space or blank

is required between the end of the procedure name and the left parenthesis.

*call L_DYNAMIC_I ( delt = 0.02 ; --

nstep = 100 ; --
beta = 0.25 ; --
ga_na = 0.50 )

3.2.10 PROCEDURE LISTING

3.2.11 REFERENCES

3.2-1 Bathe, K. J., Finite Element Procedures in Engineering Analysis, Prentice-Hall,

Inc., Englewood Cliffs, New Jersey, 1982, pp. 511-512.

3.2- 4 CSM Testbed Procedures Manual Revised 5/18/90



Solution Procedures Procedure L_STABIL_I

__ P_'nt'_'J11v'_ _ Sq'IA 'I:tTT. 1

3.3.1 GENERAL DESCRIPTION

Procedure L_STtBIL_I performs linear stability analysis using an eigensolver selected by the

global macrosymbol eigensolver_name (e.g., EIG2, LAN, LANZ) and structural element

(ESi) processors based on the generic element processor template. The procedure assumes

that the finite element model, loads, and boundary conditions have already been generated,

that the prebuckling stress state has been specified, and that the buckling loads and mode

shapes need to be calculated. The prebuckling stress state (i.e., prestress state) is specified

by prescribing values for procedure L_STtBIL_I arguments. A linear stability analysis is

performed using this prescribed stress state.

3.3.2 THEORY

Linear elastic stability analyses may be formulated using the concept of adjacent equilib-

rium. Membrane forces in beams, plates, and shells result in an equilibrium configuration

in which the deformation pattern is tangent to the midsurface of the structure. However,

another equilibrium configuration involving out-of-plane deflections and rotations may be

adjacent to this membrane state. Buckling occurs when this membrane strain energy is

converted to bending strain energy. The linear elastic stability analysis is an eigenvalue

problem to calculate the critical load for the bifurcation in the solution (e.g., change from

a membrane state to a bending state). This eigenvalue problem can be written as

Kqb i + )qKg(tr)d_ i = 0 i = 1,2,... (3.3- 1)

where
K = assembled linear elastic stiffness matrix

= assembled geometric stiffness matrix

= i-th eigenvector or modeshape

= i-th eigenvalue or buckling load factor

The matrix denoted by Kg has been called the initial stress stiffndss matrix, the differential

stiffness matrix, the geometric stiffness matrix, and the stability coefficient matrix (e.g.,

see ref. 3.3-1). It is independent of the elastic properties of the structure and dependent

on the geometry, displacement field, and state of stress. Herein the matrix K 9 will be

referred to as the geometric stiffness matrix.

A general formulation for the geometric stiffness matrix is presented in reference 3.3-1.
Strains can be written as It

E -: tSL + tSNL (3.3 - 2)

where eL contains the linear strain-displacement terms and eNL contains the higher-order

or nonlinear strain-displacement terms. For a given stress state tr0, elastic strain energy

5/24/90 CSM Testbed Procedures Manual 3.3- 1



Procedure L_STABILA Solution Procedures

is stored and can be expressed as

where

U : UL-_- UNL (3.3-3)

1/vU : _ _TcrodV (3.3 - 4a)

1 /v eTcr°dV (3.3 -4b)UL =

1 Iv eTLcr°dV (3.3 -- 4c)UNL --

The geometric stiffness matrix is derived from the strain energy produced by stresses acting

through displacements associated with the nonlinear strain-displacement relations. These

relations couple the membrane and bending effects. Typically the strain-displacements

relations are written using index notation as

1 [a_uj + ajui + a_ukaju_] (3.3 - 5)
_ij --=

where ui = (u,v,w) for i = 1,2,3, respectively, ai denotes differentiation with respect to
ith coordinate direction and summation over repeated indices is implied. Let d denote the

nodal degrees of freedom, then

6-Gd (3.3-6)

where

= {_zU, _y_, _z u, _zV, _yV, _z _, _zW, GQ¥_O, _zltO}

The coefficients of G are obtained by differentiating the element shape functions. Finally

the matrix Q is defined as

Q

"a,u 0 0 a.v 0 0 O.w 0 0

0 ayu 0 0 a_v 0 0 a_w 0

0 0 O.u 0 0 a,v 0 0 O._w

a,_ a,_ 0 a_v a,v o o_ a,_ o

o.u o O,u 8,v 0 O,v O,w 0 O,w

(3.3- 7)

With these definitions the nonlinear strains given by equation (3.3-2) can be written as

(3.3-8)

The vector of initial stresses is

o'o= {a.o _o a,o r,_owy,or.,o} (3.3-9)

3.3- 2 CSM Testbed Procedures Manual 5/24/90



Solution Procedures Procedure L_STABIL_I

Ce._ "+1.__21._'__ 1¢'1 _1 _ /'¢b ¢1 _ /_ • _.

oubshtu,ng equations go.o-v} through (o.o-_] into equation (o.3-ac] gives

UNL : ldT(/V GTQTo'0 dV) (3.3- 10)

However, the term QT _ro can be written as

where

[.o!]QTff0: 0 S

0 0

m

6 = S(_r0)6 (3.3 - 11)

O'z0 "rzy0 TzzO 1
s= "r=_o O'_o 'ryzo (3.3- 12)

"rzz0 Tyz0 O'z0

With these expressions, a general form of the geometric stiffness matrix can be written as

Kg(_r) =/v GTg(_r°)GdV (3.3- 13)

which is symmetric and explicitly dependent on the stress state.

The stress state used to form the geometric stiffness matrix may be obtained in two ways.

The first way is first to perform a linear static stress analysis for the given load set and

constraint set. This way is used in procedure L_STABIL_2. The second way is to specify, in

advance, the values of the stress components given in equation (3.3-11) (i.e., specify the

prestress state). This way is used in procedure L_STIBIL_I.

3.3.3 ALGORITHM

The algorithm used to solve equation (3.3-1) depends on the value of the global macrosym-

bol eigensolver_nmae. Processor EIG2 isused ifeigensolver_nmae isdefinedto be EIG2.

This processor uses a nodal-block sparse matrix approach as described in reference 3.3-2.

Processor LAN is used if eigensolver_aame is defined to be LAN. Processor LANZ is used

if eigensolver_na=e is defined to be LANZ. These processors are based on the Lanczos

algorithm as described in references 3.3-2 to 3.3-4.

3.3.4 PROCEDURE USAGE

Procedure L_STABIL_I may be invoked by the *call directive, and following it by a list of

arguments separated by semicolons(;) and enclosed in parentheses. Procedure arguments

are order-independent, and most have default values thus making them optional. The

formal syntax is as follows:

*call L_STABIL_I ( axgl =vall; arg2 = va12; ...)]

5/24/90 CSM Testbed Procedures Manual 3.3- 3



Procedure L_STABIL_I Solution Procedures

where argi are argument names and vali are the corresponding values. The foUowing

are valid arguments for procedure L_STABIL_I; note that those arguments without default

values are mandatory, while the others are optional.

Argument

PS_I

PS_2

PS_3

Default Value Meaning

Prebuclding membrane stress resultant N °

Prebuckling membrane stress resultant N_

Prebuckling membrane stress resultant N°_
BCON_SET 1

EILq.0R_T0L .000 t

FUNCTION ALL

INIT_VECTOR 0

IsEQ o
LDI i

LOAD_SET I

KNAME K

MAX_ITERS 20

N_GROUPS 1

N_MODES I

PRINT <false>

RENUMBER <true>

SHIFT O.0

Constraint set for buckling analysis

Convergence criterion for eigenvalues

Select function to be performed by procedure

Number of initial vectors used to span the subspace

Resequencing method to be used
Local device index

Load set number

First word of the name of the data.set containing the
assembled stiffness matrix

Maximum number of iterations allowed

Number of eigenvalues to converge

Flag to print displacement solution, internal forces, and

element stresses, and eigenvectors

Flag to resequence node numbers for equation solver

Eigenvalue shift

Tables 3.3-1, 3.3-2, and 3.3-3 list the datasets used or created by procedure L_STABIL_I,

the procedures invoked by procedure L_STABIL_I, and the processors invoked by procedure

L_STABIL_I, respectively.

3.3- 4 CSM Testbed Procedures Manual 5/24/90



SolutionProcedures Procedure L_STABIL_I

Table 3.3-1

Dataset

AMAP..ic2.isize

Datasets input/Output by procedure L_STABIL_I

Description Input Output

Factorization Map for INV _/

BUCK.EVAL.i.jt Buckling eigenvalues _/

BUCK.MODE.i.jt Buckling eigenvalues _/

<ES_NAME>.EFIL.0.nnod Element Computational Data _/ v /

ES.SUMMARY ES Processor Status _/ _/

DEF.<ES_NAME>.0.nnod Element Definition (Connectivity) _/

DIR.<ES_.NAME>.0.nnod Element EFIL Directory _/

INV.KSHF.j_ Factored Shifted System Matrix _/

INV.<KNAME>.j_ Factored System Matrix _/

JDF1.BTAB.1.8 Model Summary _/

KG.SPAR.jdf2 Assembled geometric stiffness matrix _/

KMAP..ic2.isize Model Connectivity Map _/

<KNAME>.SPAR.jdf2 Assembled system matrix

i = <load_set> and j = <cons_set>

,/

Table 3.3-2

Procedure

ES

Sub-Procedures Invoked by procedure L_STABIL_I

L_STABIL_I

Type

External

Function

Element utility procedure

Internal

FACTOR External Factors assembled stiffness matrix

Main procedure

5/24/90 CSM Testbed Procedures Manual 3.3- 5



Procedure L_STABIL_I Solution Procedures

Table 3.3-3

Procedure Type

AUS Internal

E

EIG2

Processors Invoked by procedure L_STABIL_I

Internal

Internal

Function

Arithmetic Utilities

Initializes EFIL datasets

Solve eigenvalue problem using subspace iteration

Element processors based on GEPESi External

K Internal Assemble system matrix

LAN External Solve eigenvalue problem using Lanczos method

LANZ External Solve eigenvalue problem using Lanczos method

Internal Resequences nodes for equation solvingRSEQ

TOPO Internal

VPRT Internal

Generates nodal topology maps

Print SYSVEC system vectors

3.3.5 ARGUMENT DESCRIPTION

3.3.5.1 BCOg_SET

Constraint set number for buckling analysis (default: 1). This argument selects which

constraint set to use in solving the linear stability problem.

3.3.5.2 ERROK_TOL

Convergence criterion for eigenvalues (default: 0.0001). For the k-th iteration, the error

measure for the i-th eigenvalue is

k is smaller than EIL_0R_TOL.The i-th eigenvalue is converged if ei

3.3.5.3 FUNCTION

Select function to be performed by procedure L_STABIL_I (default: ALL). This procedure

may be used to perform two functions. For FUNCTION=ALL, the element data are initialized

and elemental stiffness matrices formed; nodal resequencing may be performed, the mesh

3.3- 6 CSM Testbed Procedures Manual 5/24/90



Solution Procedures Procedure L_STABIL_I

topology is analyzed, the system stiffness matrix is assembled and factored, and the eigen-

problem is solved. For F_ICTIONffiEIGEN, procedure L_STABIL_I uses a prescribed prestress

state in solving the eigenvalue problem. Using the FUNCTION argument, the user may solve

for a variety of constraint (boundary conditions) sets on a given model subjected to a

variety of loading conditions.

3.3.5.4 INIT_VECTOR

Number of initial vectors used to span the subspace (default: 0). This argument defines

the number of trial vectors used to initiate the subspace iteration. If INIT_VECTOR=0, the

number of initial vectors will be calculated by the procedure as

INIT_VECTOR=MINIMUM (2*N..MODES, LMODES + 8)

3.3.5.5

Resequencing method to be used (default: 0). If the argument ItENORBEIt is <true>,

then nodal resequencing will be performed using processor RSEQ. The method used by

processor RSEQ to resequence the nodes depends on the value of ISEQ. If the argument

ISEQ is greater than or equal to zero, then that method will be used (i.e., method=0,1,2,3;

see Section 6.1 of the CSM Testbed User's Manual, ref. 3.3-2).

3.3.5.6 KNAI_

First word of the dataset name containing the assembled stiffness matrix (default: K).

3.3.5.7 LD....I.I

Logical device index (default: t).

3.3.5.8 MAX_ITERS

Maximum number of iterations (default: 20). This argument specifies the maximum num-

ber of iterations that can be used per call to eigensolver.

3.3.5.9 N_GKOUPS

3.3.5.10 N_MODES

Number of converged eigenvalues desired (default: 1). This argument specifies the number

of eigenvalues to calculate to a convergence criterion of EILROIt_TOL.

3.3.5.11 PRINT

Flag to print modeshapes (default: <false>). If printing of these computed results is

requested, processor VPRT will be used to print the buckling modeshapes.

5/24/90 CSM Testbed Procedures Manual 3.3- 7



Procedure L'STABIL'I Solution Procedures

3.3.5.12 PS_I

Prescribed membrane stress resultant N ° for the prestressed state.

3.3.5.13 PS_2

Prescribed membrane stress resultant N_ for the prestressed state.

3.3.5.14 PS____.3_3

Prescribed membrane stress resultant N°y for the prestressed state.

3.3.5.15 RENUMBER

Flag to resequence node numbers prior to equation solving (default: <true>). If the argu-

ment RENUMBERffi<true>, then processor RSEQ will be used to perform nodal resequencing,

otherwise no resequencing will be performed. Note that the nodal resequencing may greatly

reduce the time required to factor and solve the linear system of equations.

3.3.5.16 SHIFT

Eigenvalue shift (default: 0.0). Converged eigenvalue will only be obtained for eigenvalues

greater than SHIFT. The shift parameter refers to the shift in the buckling load factor.

3.3.6 PROCEDURE FLOWCHART

L_STABIL_I

INITIALIZE

STIFFNESS

STIFFNESS

FACTOR

EIGEN

(main procedure)

(initialize)

(form K)

(form Kg)

(factor using buckling boundary conditions)

(perform eigenvalue analysis)

3.3.7 LIMITATIONS

None.

3.3.8 ERROR MESSAGES AND WARNINGS

None.

3.3- 8 CSM Testbed Procedures Manual 5/24/90



Solution Procedures ProcedureL_STABIL_I

3.3.9 USAGE GUIDELINES AND EXAMPLES

ProcedureL_STABIL_I may be used by preceding the procedure name by the *call direc-

tive. Procedure arguments may be changed from their default values by including any or

all the arguments and their new values when the procedure is called. A space or blank

is required between the end of the procedure name and the left parenthesis.

*call L_STABIL_I ( FUNCTION = ALL ; -- Select function

BCON_SET = 1 ; -- Select buckling constraint set
ERROR_TOL = .0001 ; -- Eigenvalue convergence criterion
INIT_VECTOR = O ; -- . Number of initial vectors

ISEQ = -1 ; -- Select resequencing method
KNAME = K ; -- . First word of stiffness matrix

HAX_ITERS = 20;

N_MODES = I ;
N_GROUPS = 1 ;

PS_I ; --
PS_2 ; --

PS_3 ; --
PRINT = <true> ;
RENUMBER = <true> ;
SHIFT

-- . dataset name
-- Maximum number of iterations

-- Number of eigenvalues

-- . PRINT flag

-- . RESEQUENCING fla 8
0.0 ; Eigenvalue shift

)

Before procedure L_STABIL_I is called, the global macrosymbol eigensolver_name should

be defined as described in Section 3.3.3; otherwise, the default value of EIG2 will be used.

3.3.10 PROCEDURE LISTING

3.3-2

3.3-3

3.3-4

REFERENCES

Cook, Robert D.: Concepts and Applications of Finite Element Analysis. (Second

Edition). John Wiley and Sons, Inc., New York 1981.

Stewart, Caroline B.: The Computational Structural Mechanics Testbed User's

Manual. NASA TM-100644, October 1989.

Bostic, S. W. and Fulton R. E.: A Lanezos Eigenvalue Method on a Parallel Corn-

puter. AIAA Paper No. 87-0725-CP.

Jones, Mark T. and Patrick, Merrell L.: The Use o� Lanczos's Method to Solve

the Large Generalized Symmetric Definite Eigenvalue Problem. NASA CR-181914,

September 1989. (Also available as ICASE Report No. 89-69).

3.3- 95/24/90 CSM Testbed Procedures Manual



Procedure L_STABIL_I Solution Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

3.3- 10 CSM Testbed Procedures Manual 5/24/90



Solution Procedures Procedure L_STABIL._

3.4 Procedure L_STABIL_2

3.4.1 GENERAL DESCRIPTION

Procedure L_STABIL_2 performs linear stability analysis using an eigensolver selected by the

global macrosymbol eigensolver_name (e.g., EIG2, LAN, LANZ) and structural element

(ESi) processors based on the generic element processor template. The procedure assumes

that the finite element model, loads, and boundary conditions have already been generated,

and that the nodal displacements, reaction forces, element stresses, and buckling loads

and mode shapes need to be calculated. The applied loads may be due to a combination

of specified forces and displacements, and one constraint (i.e., boundary condition) set

is permitted per procedure call. A linear elastic stress analysis is performed first using

procedure L_STATIC (see Section 3.5) to calculate the prebuckling stress state (i. e., prestress

state). After the linear static solution, a linear stability analysis is performed.

3.4.2 THEORY

Linear elastic stability analyses may be formulated using the concept of adjacent equilib-

rium. Membrane forces in beams, plates, and shells result in an equilibrium configuration

in which the deformation pattern is tangent to the midsurface of the structure. However,

another equilibrium configuration involving out-of-plane deflections and rotations may be

adjacent to this membrane state. Buckling occurs when this membrane strain energy is

converted to bending strain energy. The linear elastic stability analysis is an eigenvalue

problem to calculate the critical load for the bifurcation in the solution (e.g., change from

a membrane state to a bending state). This eigenvalue problem can be written as

where

K_i + ,_iKg(o')dpi = 0 i = 1,2,...

K

Kg( )
= assembled linear elastic stiffness matrix

= assembled geometric stiffness matrix

= i-th eigenvector or modeshape

= i-th eigenvalue or buckling load factor

(3.4- 1)

The matrix denoted by K 9 has been called the initial stress stiffness matrix, the differential

stiffness matrix, the geometric stiffness matrix, and the stability coefficient matrix (e.g.,

see ref 3.4-1). It is independent of the elastic properties of the structure and dependent on

the geometry, displacement field, and state of stress. Herein the matrix K 9 will be referred

to as the geometric stiffness matrix.

A general formulation for the geometric stiffness matrix is presented in reference 3.4-1.

Strains can be written as

e : eL + eNL (3.4 -- 2)

5/24/90 CSM Testbed Procedures Manual 3.4- 1

PRI_CED|NG PAGE DLANK NOT FILMED



ProcedureL_STABIL_2 Solution Procedures

where eL contains the linear strain-displacement terms and _NL contains the higher-order

or nonlinear strain-displacement terms. For a given stress state _r0, elastic strain energy

is stored and can he expressed as

where

U : UL _- UNL

U = _ eT_rodV

1 fv eTtrodVUL=:

1 fv ET"_°dVUNL = :

(3.4-3)

(3.4 - 4a)

(3.4 -4b)

(3.4- 4c)

The geometric stiffness matrix is derived from the strain energy produced by stresses acting

through displacements associated with the nonlinear strain-displacement relations. These
relations couple the membrane and bending effects. Typically the strain-displacements

relations are written using index notation as

1 [aluj 4-_iu, + _iu,asu, j
eij : :

(3.4-5)

where ui = (u, v,w) for i = 1,2, 3, respectively, 01 denotes differentiation with respect to

ith coordinate direction and summation over repeated indices is implied. Let d denote the

nodal degrees of freedom, then

where

6=Gd (3.4-6)

The coefficients of G are obtained by differentiating the element shape functions. Finally

the matrix Q is defined as

q __

"O,u 0 0 O,v 0 0 O,w 0 0

o o,_, o o o,,, o o o,,,, o
0 0 Ozu 0 0 Ozv 0 0 Ozw

o o,_, o,_, o o,_ o,_ o o,w o,1o
Ozu 0 O._ O,v 0 O,v O,w 0 O,w

(3.4- 7)

With these definitions the nonlinear strains given by equation (3.4-2) can be written as

1

eNL = :QGd (3.4 - 8)

3.4- 2 CSM Testbed Procedures Manual 5/24/90



Solution Procedures Procedure L_STABIL_2

The vector of initial stresses is

,To= { z0  .y0

Substituting equations (3.4-6) through (3.4-9) into equation (3.4-4c) gives

UNL = IRT(/v GTQTo'0 dV)

However, the term QT cro can be written as

(3.4-9)

(3.4-10)

where

i 0!jQTo" 0 = s

0
6 = S(cro)6 (3.4 - 11)

I O'z0 TzyO Tzz0 ]
s = r_o _o ryzo (3.4- 12)

Tz zO Tll zO O'z 0

With these expressions, a general form of the geometric stiffness matrix can be written as

Kg(cr) = Iv GTg(_r°)GdV (3.4-13)

which is symmetric and explicitly dependent on the stress state.

The stress state used to form the geometric stiffness matrix may be obtained in two ways.

The first way is first to perform a linear static stress analysis for the given load set and

constraint set. This way is used in procedure L_STABIL_2. The second way is to specify, in

advance, the values of the stress components given in equation (3.4-11) (i.e., specify the

prestress state). This way is used in procedure L_STABIL_I.

3.4.3 ALGORITHM

The algorithm used to solve equation (3.4-1) depends on the value of the global macrosym-

bol eigensolver_name. Processor EIG2 is used if eigensolver_name is defined to be EIO2.

This processor uses a nodal-block sparse matrix approach as described in reference 3.4-2.

Processor LAN is used if eigensolver_name is defined to be LAg. Processor LANZ is used

if eigeasolver_name is defined to be LANZ. These processors are based on the Lanczos

algorithm as described in references 3.4-2 to 3.4-4.

5/24/90 CSM Testbed Procedures Manual 3.4- 3



ProcedureL_STABIL_2 Solution Procedures

3.4.4 PROCEDURE USAGE

Procedure L_STABIL_2 may be invoked by the *call directive, and following it by a list of

arguments separated by semicolons(;) and enclosed in parentheses. Procedure arguments

are order-independent, and most have default values thus making them optional. The

formal syntax is as follows:

*call L_STABIL_2 ( argl ffivall; arg2 ffival2; "")l

where axgi are argument names and vali are the corresponding values. The following

are valid arguments for procedure L_STABIL_2; note that those arguments without default

values are mandatory, while the others are optional.

Argument Default Value

BCON_SET 1

CONS_SET 1

DIRECTION 0

ERROR_TOL .0001

FUNCTION ALL

INIT_VECTOR 0

ISEq 0
KNAME K

LDI 1

LOAD_SET 1

LOCATION CENTROIDS

MAX_ITERS 20

N_MODES 1

NVAL_METH 3

PRINT <false>

REACTION <false>

RENUMBER <true>

RHS APPL.FORC

SHIFT 0.0

SMOOTH <false>

SOLN STAT.DISP

STRESS <false>

Meaning ,

Constraint set for buckling analysis

Constaint set number for prestress analysis

Direction for element stress output

Convergence criterion for eigenvalues

Select function to be performed by procedure

Number of initial vectors used to span the subspace

Resequencing method to be used

First word of the name of the dataset containing the
assembled stiffness matrix

Logical device index
Load set number

Location of the evaluation points for element stresses
Maximum number of iterations allowed

Number of eigenvalues to converge

Method to be used for global smoothing

Flag to print displacement solution, internal forces,

element stresses, and eigenvectors

Flag to compute internal forces or reactions

Flag to resequence node numbers for equation solver
First two words of the dataset name for the

right-hand side system vector

Eigenvalue shift

Flag to compute smoothed global stresses
First two words of the dataset name for the

displacement solution

Flag to compute element stresses (resultants)

Tables 3.4-1, 3.4-2, and 3.4-3 list the datasets used or created by procedure L_STABIL_2,

the procedures invoked by procedure L_STABIL_2, and the processors invoked by procedure

L_STABIL_2, respectively.

3.4- 4 CSM Testbed Procedures Manual 5/24/90



Solution Procedures Procedure L_STABIL_2

Table 3.4-1

Dataset

AMAP..ic2.isize

IDatasets Input/Output by procedure L_STABIL_2
I I I

Input OutputDescription

Factorization map for INV

APPL.FORC.i.lt Applied force vector J

APPL.MOTI.i.lt Specified displacement vector _/

BUCK.EVAL.i.j_ Buckling eigenvalues

BUCK.MODE.i.j_ Buckling eigenvalues

<ES..NAME>.EFIL.0.nno_ Element Computational Data

ES.SUMMARY ES Processor Status

DEF.<ES_NAME>.0.nnod ]Element Defn. (Connectivity) _/

DIR.<ES_NAME>.0.nnod Element EFIL Directory _/

System Internal Force VectorINT.FORC.i.fl

INV.KSHF.j_ Factored Shifted System Matrix

INV.<KNAME>.fl Factored System Matrix

JDF1.BTAB.1.8 Model Summary

KG.SPAR.jdf2 Assembled geometric stiffness matrix

KMAP..ic2.isize !Model connectivity map

<KNAME>.SPAR.jdf2 Assembled system matrix

STAT.DISP.i.fl System Displacement Vector

STAT.REAC.i.fl System Reaction Force Vector

STRS.<ES..NAME>.i.fl Element Stresses

i = <load.set> and j = <cons_set>

|

J

J

v/

J

,/

5/24/90 CSM Testbed Procedures Manual 3.4- 5



ProcedureL_STABIL_2 Solution Procedures

Table 3.4-2

Procedure

Sub-Procedures Invoked by procedure L_STABIL_2

L_STATIC

Type

External

Function

Element utility procedureES

FACTOR External Factors assembled stiffness matrix

L_STABIL_2 Internal Main procedure

Internal Linear static analysis

Table 3.4-3 Processors Invoked by procedure L_STABIL_2

Procedure Type Function

AUS Internal Arithmetic Utilities

E Internal Initializes EFIL datasets

EIG2 Internal Solve eigenvalue problem using subspace iteration

ESi External Element processors based on GEP

K Internal Assemble system matrix

LAN External Solve eigenvalue problem using Lanczos method

LANZ External Solve eigenvalue problem using Lanczos method

RSEQ Internal Resequences nodes for equation solving

TOPO Internal Generates nodal topology maps

VPRT Internal Print system vectors

3.4.5 ARGUMENT DESCRIPTION

3.4.5.1 BCON_SET

Constraint set number for buckling analysis (default: 1).

constraint set to use in solving the linear stability problem.

This argument selects which

3.4.5.2 CONS_SET

Constraint set number for prestress solution (default: 1). This argument selects which

constraint set to use in solving the linear system of equations.

3.4- 6 CSM Testbed Procedures Manual 5/18/90



Solution Procedures Procedure L_STABIL_2

3 4 5 3 DIRECTION

Direction for the element stress (stress resultant) output (default: 0). The element stress

coordinate system will be used if direction=0. The material axes (z,,_, y_, z,_) will be

used if direction=l; the material axes (y,_, zm, z,_) will be used for direczionffi2; and

the material axes (z,_, z,_, y,_) will be used for direction=3. For isotropic materials, the

first material axis is replaced by the corresponding global axis (see Section 4.3.3.9 of the

CSM Testbed User's Manual, ref. 3.4-2).

3.4.5.4 ERROR_TOL

Convergence criterion for eigenvalues (default: 0.0001). For the k-th iteration, the error

measure for the k-th eigenvalue is

The i-th eigenvalue is converged if e I is smaller than E1LztOR_TOL.

3.4.5.5 FUNCTION

Select function to be performed by procedure L_STABIL_2 (default: ALL). This procedure

may be used to perform four functions. For FUNCTIONffiALL,the element data are initialized

and elemental stiffness matrices formed; nodal resequencing may be performed, the mesh

topology is analyzed, the system stiffness matrix is assembled and factored, the displace-

ment solution is obtained, optionally element stresses (stress resultants) and internal nodal

forces (reactions) computed and the eigenproblem is solved. For FgNCTIONfFACT_SOLV, pro-

cedure L,STLBIL_2 assumes that the system stiffness matrix has previously been assembled

and that nodal resequencing has been performed. The procedure then proceeds to factor

the system stiffness matrix, solves for the displacement solution, optionally computes the

element stresses (stress resultants) and internal nodal forces (reactions) and solves the

eigenproblem. For FUNCTIONffiSOLY, procedure L_STABIL_2 assumes that the system stiff-

ness has previously been formed and factored. The procedure then proceeds to solve for

the displacement solution, optionally computes the element stresses (stress resultants) and

internal nodal forces (reactions) and solves the eigenproblem. For FUNCTIOHffiEIGEN, pro-

cedure L_STABIL_2 uses a previously computed prestress state in solving the eigenvalue

problem. Using the FUNCTION argument, the user may solve for a variety of constraint

(boundary conditions) sets on a given model subjected to a variety of loading conditions.

3.4.5.6 INIT_VECTOR

Number of initial vectors used to span the subspace (default: 0). This argument defines

the number of trial vectors used to initiate the subspace iteration. If INIT_VECTORffiO, the

number of initial vectors will be calculated by the procedure as

INIT_VECTOR=MINIMUM (2*N_MODES, N_MODES ÷ 8)

5/18/90 CSM Testbed Procedures Manual 3.4- 7



Procedure L_STABIL_2 Solution Procedures

Resequencing method to be used (default: 0). If the argument RENUMBER is <true>,

then nodal resequencing will be performed using processor RSEQ. The method used by

processor RSEQ to resequence the nodes depends on the value of ISE0. If the argument

ISEQ is greater than or equal to zero, then that method will be used (i.e., method=0,1,2,3;

see Section 6.1 of the CSM Testbed User's Manual, ref. 3.4-2).

3.4.5.8 KNAME

First word of the dataset name containing the assembled stiffness matrix (default: K).

3.4.5.9 LD____II

Logical device index (default: 1).

3.4.5.10 LOAD_SET

Load set number (default: 1). This argument selects which load set to use as a right-hand

side vector.

3.4.5.11 LOCATION

Location of the evaluation points for the element stresses or stress resultants (default:

CF_TROID5). The element stresses or stress resultants are optionally computed by call-

ing procedure STI_5S (see Section 6.4). This argument may have four values. For

L0CATIONfIFrEG_PTS, the element stresses are computed at the element integration points.

For L0CATI011ffiCENTI_0IDS, the element stresses are computed at the element centroid. For

LOCATIONffiNODES,the element stresses are extrapolated from the integration points to be

dement nodes. These dement nodal stresses will be discontinuous across interelement

boundaries. For LOCATIONfALL, the element stresses are computed at the element integra-

tion points, dement centroid, and element nodes.

3.4.5.12 MAX_ITERS

Maximum number of iterations (default: 20). This argument specifies the maximum num-

ber of iterations that can be used per call to eigensolver.

3.4.5.13 N_MODES

Number of converged eigenvalues desired (default: 1).This argument specifies the number

of eigenvalues to calculate to a convergence criterion of ERIt01LTOL.

3.4- 8 CSM Testbed Procedures Manual 5/24/90



Solution Procedures Procedure L_STABIL_2

3.4.5.14 NYAL__,ETH

Select method to be used for computing the smoothed global stresses (default: 3). Proces-

sor NVAL is used to compute the smoothed global stresses using the method defined by the

interpolation of the dement centroidal stresses is performed, and the element stresses must

have been computed using LOCATIONfCENTROIDS. If NVAL_HETHffi2, a projected least-squares

interpolation of the element centroidal stresses is performed, and the stresses must have

been computed using LOCATIONfCFJITROIDS. If $VIL..ggTH=3, the element nodal stresses

(discontinuous across interelement boundaries) are averaged, and the dement stresses must

have been computed using LOCITIONfNODES. Using LOCATIONfALL will generate element

stresses at the element centroids, element nodes, and element gauss points. Acceptable

values of LOCATION for specific values of NVAL_NETHare as follows:

NVAL_METH LOCATION

1 CENTROIDS, ALL

2 CENTROIDS, ALL

3 NODES, ALL

3.4.5.15 PRINT

Flag to print displacement solution, internal forces and element stresses (default: <false>).

If printing of these computed results is requested, processor VPRT will be used to print

the displacement solution and internal forces and processor PESR will be used to print the
element stresses.

3.4.5.16 REACTION

Flag to compute the internal nodal forces (default: <true>) If the argument ILEAC-

TI01=<true>, then the internal forces will be computed by calling procedure INT_FORC

(see Section 6.2).

3.4.5.17 REI_RBER

Flag to resequence node numbers prior to equation solving (default: <true>). If the argu-

ment RF.J/URBEg=<true>, then processor RSEQ will be used to perform nodal resequencing,

otherwise no resequencing will be performed. Note that the nodal resequencing may greatly

reduce the time required to factor and solve the linear system of equations.

3.4.5.18 IUt___$

First two words of the dataset name for the right-hand side system vector (default:

APPL. FORC).

3.4.5.19 SHIFT

Eigenvalue shift (default: O. 0). Converged eigenvalues will only be obtained for values

greater than SHIFT. The shift parameter refers to the shift in the buckling load factor.

5/24/90 CSM Testbed Procedures Manual 3.4- 9



Procedure L.STABIL_2 Solution Procedures

3.4.5.20 SMOOTH

Flag to compute smoothed global stresses (default: <false>). If the argument

SM00THf<true>, then smoothed global stresses will be computed by processor NVAL using

the method defined by the argument NVAL_HETH.

3.4.5.21 SOLN

First two words of the dataset name for the displacement solution (default: STAT.DISP).

3.4.5.22 STP,ESS

Flag to compute element stresses or stress resultants (default: <false>). If the argument

STP,ESSffi<true>, then the element stresses will be computed at the location and in the

direction specified by the arguments LOCATION and DIRECTION, respectively, by calling

procedure STRESS (see Section 6.4).

3.4.6 PROCEDURE FLOWCHART

L..STABIL_2

L_STATIC

ES

FACTOR

SOLVE

STRESS

ES

INT..FORCE

ES

ES

FACTOB.

(main procedure)

(linear static analysis procedure)

(initialize, form K)

(factor assembled stiffness matrix)

(solve linear system of equations)

(stress/strain recovery procedure)

(calculate element and nodal stress/strain)

(internal force procedure)

(internal force calculation)

(form Kg)

(factor using buckling boundary conditions)

3.4.7 LIMITATIONS

None.

3.4.8 ERROR MESSAGES AND WARNINGS

None.

3.4- 10 CSM Testbed Procedures Manual 5/24/90



Solution Procedures Procedure L_STABIL_2

3.4.9 USAGE GUIDELINES AND EXAMPLES

Procedure L_STABIL_2 may be used by preceding the procedure name by the *call direc-

tive. Procedure arguments may be changed from their default values by including any or

all the arguments and their new values when the procedure is called. A space or blank

is required between the end of the procedure name and the left parenthesis.

*call L_STABIL_2 ( FUNCTION = ALL ; -- . Select function

CONS_SET = I ; -- Select constraint set

BCON_SET = 1 ; -- Select buckling constraint

DIRECTION = 0 ; --

ERROR_TOL = .0001 ; --

INIT_VECTOR = 0 ; --

ISEQ = 0 ; --

KNAME = K ; --
9 --

LOAD_SET =

LOCATION =

MAX_ITERS =

N_MODES =

NVAL_METH =
PRINT =

REACTION =

RENUMBER =

RHS =

SHIFT =

SMOOTH =

SOLN =

STRESS =

set
Select direction for element stresses

Select resequencing method
First word of stiffness matrix

dataset name

1 ; -- Select load set

CENTROIDS ; -- Select location of element

-- . stress evaluation points

20; -- Maximum number of iterations

i ; -- Number of eigenvalues

3 ; --

<false> ; -- . PRINT flag

<false> ; -- REACTIONS flag

<true> ; -- RESEQUENCING flag

APPL. FORC ; -- . First two words of RHS
-- . vector dataset

0.0 ; Eigenvalue shift

<false> ; -- compute smoothed global stresses?

STAT. DISP ; -- . First two words of SOLN
-- . dataset

<false> -- . STRESS flag
)

Before procedure L_STABIL_2 is called, the global macrosymbol eigensolver_name should

be defined as described in Section 3.4.3; otherwise, the default value of EIG2 will be used.

0

3.4.10 PROCEDURE LISTING

3.4.11 REFERENCES

3.4-1 Cook, Robert D.: Concepts and Applications of Finite Element Analysis. (Second

Edition). John Wiley and Sons, Inc., New York 1981.

3.4-2 Stewart, Caroline B.: The Computational Structural Mechanics Testbed User's

Manual. NASA TM-100644, October 1989.

3.4-3 Bostic, S. W. and Fulton R. E.: A Lanczos Eigenvalue Method on a Parallel Com-

puter. AIAA Paper No. 87-0725-CP.

5/28/90 CSM Testbed Procedures Manual 3.4- 11



Procedure L_STABIL_2 Solution Procedures

t

.!

3.4-4 Jones, Mark T. and Patrick, Merrell L.: The Use of Lanczos's Method to Solve

the Large Generalized Symmetric Definite Eigenvalue Problem. NASA CR-181914,

September 1989. (Also available as ICASE Report No. 89-69).

r

j,

1

,i

,?

3.4- 12 CSM Testbed Procedures Manual 5/28/90



Solution Procedures Procedure L_STATIC

p, 1PI .... J .... T l_ rl'_ A rlPTrl
_Io0 JL'-rU_II_U.UI.-_ a'--o .m.t_J. _._

3.5.1 GENERAL DESCRIPTION

Procedure L_STATIC performs linear static analysis, using an equation solver selected by

defining the global macrosymbol solver_name (e.g., INV, BAND, ITER, SPK) and user

specified structural element (ESi) processors based on the generic element processor tem-

plate. The procedure assumes that the finite element model, loads, and boundary condi-

tions, have already been generated, and that the nodal displacements, reaction forces, and

element stresses need to be calculated. The applied loads may be due to a combination

of specified forces and displacements, and one constraint (i.e., boundary condition) set is

permitted per procedure call.

i

3.5.2 THEORY

Mathematically, procedure L_STATIC solves the linear static problem:

Kd = f (3.5- 1)

where
K = assembled linear stiffness matrix_

d = generalized displacement vector

f = external force vector

Note that both the translational and rotational displacements in d are assumed to be in-

finitesimally small (linear strain-displacement relations are employed), and that the mate-

rial (stress-strain relation) is assumed to be both linear and elastic. Once the displacement

vector, d, is computed by solution of equation (3.5-1), the reaction forces are computed by

multiplying those rows of the stiffness matrix K at which the displacements are prescribed

(zero or non-zero) by the generalized displacement vector d. Finally, element stresses may

be optionally computed.

3.5.3 ALGORITHM

The algorithm used to solve equation 3.5-1 depends on the value of the global macrosymbol
solver__namo. Processors INV and SSOL are used if solver_name is defined to be INV.

These processors use nodal-block sparse matrix approach as described in references 3.5-1,

3.5-2 and 3.5-3. Processor BAND (moth=28) is used if solver_name is defined to be BAND.

This algorithm is a LDL T direct method based on an Choleski variable bandwidth method

with loop unrolling as described in references 3.5-1 and 3.5-4. Processor ITER (moth=0)

is used if solver_name is defined to be ITER. This algorithm is an iterative method based

on a conjugate gradient method with diagonal scaling and sparse storage of the system
matrix as described in references 3.5-1 and 3.5-4. Processor SPK is used if solver_namo

is defined to be SPK. This algorithm uses the vector-sum column Cholesky algorithms to

5/24/90 CSM Testbed Procedures Manual 3.5- 1



Procedure L_STATIC Solution Procedures

factor a general sparse matrix as described in references 3.5-1 and 3.5-5. Processor SPK

contains a subset of the SPARSPAK-A package of FORTRAN programs designed to solve

effectively large sparse systems of linear equations by direct methods (see reference 3.5-6).

3.5.4 PROCEDURE USAGE

Procedure L_STATIC may be invoked by the *call directive, and following it by a list of

arguments separated by semicolons(;) and enclosed in parentheses. Procedure arguments

are order-independent, and most have default values thus making them optional. The

formal syntax is as follows:

*call L_STATIC ( argl =vall; arg2 = val2; ...)[

where axgi are argument names and vali are the corresponding values. The following are

valid arguments for procedure L_STATIC; note that those arguments without default values

are mandatory, while the others are optional.

Argument Default Value

CONS_SET I

DIRECTION 1

FUNCTION ALL

ISEQ -i

KNAME K

LDI 1

LOAD_SET 1

LOCATION NODES

NVAL_METH 3

PRINT <false>

REACTION <false>

RENUMBER <true>

RHS APPL.FORC

SMOOTH <false>

SOLN STAT.DISP

STRESS <false>

Meaning

Constraint set number

Direction for element stress output

Select function to be performed by procedure

Resequencing method to be used

First word of the name of the dataset containing the
assembled stiffness matrix

Logical device index
Load set number

Location of the evaluation points for element stresses

Method to be used for global smoothing

Flag to print computed results

Flag to compute internal forces or reactions

Flag to resequence node numbers for equation solver

First two words of the dataset name for the fight-hand

side system vector

Flag to compute smoothed global stresses

First two words of the dataset name for the displacement
solution

Flag to compute element stresses (resultants)

Tables 3.5-1, 3.5-2, and 3.5-3 list the datasets used or created by procedure L_STATIC,

the procedures invoked by procedure L_STATIC, and the processors invoked by procedure

L_STATIC, respectively.

3.5- 2 CSM Testbed Procedures Manual 5/24/90



Solution Procedures Procedure L_STATIC

Table 3.5-1

Data.set

AMAP..ic2.1size

APPL.FORC./.lt

APPL.MOTI.i.lt

i

Datasets Input/Output by procedure L_STATIC
l

Output

STRS.<ES_NAME>.i.jt

i = <load_set> and j =

Input!Description

Factorization Map for INV

,/

J

Applied force vector

J

Specified displacement vector

<ES_.NAME>.EFIL.0.nnod Element Computational Data _/ _/

ES.SUMMARY ES Processor Status J _/

DEF.<ES_2NAME>.0.nnod Element Defn. (Connectivity) x/

DIR.<ES..NAME>.0.nnod Element EFIL Directory _/

INT.FORC.i.j_ System Internal Force Vector x/

INV.<KNAME>.i.jt Factored System Matrix _/

JDF1.BTAB.1.8 Model Summary _/

JLOC.BTAB.2.5 Nodal Coordinates _/

,KMAP..ic2.isize Model Connectivity Map x/

<KNAME>.SPAR.jdf2 Assembled System Matrix x/

PROP.BTAB.* Material/Section Properties .,/

QJJT.BTAB.2.9 Nodal Transformations J

STAT.DISP.i.jt System Displacement Vector _/

STAT.REAC.i.j_ System Reaction Force Vector _/

Element Stresses J

<cons_set>

5/24/90 CSM Testbed Procedures Manual 3.5- 3



Procedure L_STATIC Solution Procedures

Table 3.5-2
I

Procedure
I u

_ES

IFACTOR

INT.FORCE

L_STATIC

SOLVE

STRESS

i ,.,

Sub-Procedures Invoked by procedure L_STATIC
II

Type

External

Fhnction

Element utility procedure

External Factors assembled stiffness matrix

External Computes internal forces

Internal Main procedure

External Solves for the displacement solution

External Computes element stresses

Table 3.5-3
in

Procedure

E

Processors Invoked by procedure L_STATIC

Type Function

Internal
t i !

iInitializes EFIL datasets

ESi External IElement processors based on GEP

K Internal Assemble material stiffness matrix

[ '
RSEQ Internal Resequences nodes for equation solving

[TOPO Internal Generates nodal topology maps

VPRT Internal Print SYSVEC-format vectors

3.5.5 ARGUMENT DESCRIPTION

3.5.5.1 CONS_SET

Constraint set number (default: 1). This argument selects which constraint set to use in

solving the linear system of equations.

3.5.5.2 DIRECTION

Direction for the element stress (stress resultant) output (default: 1). The element stress

coordinate system will be used if DIRECTION=O. The material axes (zm, Ym, zm) will be

used if DII_ECTION=I; the material axes (ym, zm, zm) will be used for DIRECTIONffi2; and

the material axes (zm, z,,_, y,,_) will be used for DIRECTION=3. For isotropic materials, the

first material axis is replaced by the corresponding global axis (see Section 4.3.3.9 of the

CSM Testbed User's Manual, ref. 3.5-1).

3.5- 4 CSM Testbed Procedures Manual 5/24/90



Solution Procedures Procedure L_STATIC

3.5.5.3 ruat;_-u.

Select function to be performed by procedure L_STATIC (default: ALL). This procedure

may be used to perform three functions. For FI_ICTIONffiALL, the dement data are ini-

ummeu and ezezzze.,,_ ,.,,.L-c_,.. ,._,,,.,,.._," J.,..,z.zcu, uuu.-, resequencing may z.^o_t'_,,"-_,._.,-^-r.... ._

the mesh topology is analyzed, the system stiffness matrix is assembled and factored, the

displacement solution is obtained and optionally element stresses (stress resultants) and

internal nodal forces (reactions) computed. For FUNCTION=FACT_SOLV, procedure L_STATIC

assumes that the system stiffness matrix has previously been assembled and that nodal re-

sequencing has been performed. The procedure then proceeds to factor the system stiffness

matrix, solves for the displacement solution, and optionally computes the element stresses

(stress resultants) and internal nodal forces (reactions). For F_ICTION=SOLV, procedure

L_TATIC assumes that the system stiffness has previously been formed and factored. The

procedure then proceeds to solve for the displacement solution and optionally computes

the element stresses (stress resultants) and internal nodal forces (reactions). Using the

FUNCTION argument, the user may solve for a variety of constraint (boundary conditions)

sets on a given model subjected to a variety of loading conditions.

s.s.5.4

Resequencing method to be used (default: -1). If the argument RENOMBER is <true>,

then nodal resequencing will be performed using processor RSEQ. The method used by

processor RSEQ to resequence the nodes depends on the value of ISEQ. If the argument

ISEq is greater than or equal to zero, then that method will be used (i.e., method=0,1,2,3;

see Section 6.1 of the CSM Testbed User's Manual, ref. 3.5-1). If the argument ISEq has

a value of -1, then a default method will be used depending on the value of the global

macrosymbol <solver_name>.

These default value are as follows:

<solver_name> ISEQ

INV

BAND

ITER

SPK

0

2

1

1

3.5.5.5 KNAME

First word of the dataset name containing the assembled stiffness matrix (default: K).

3.5.5.6 LD__!

Logical device index (default: 1).

3.5.5.7 LOAD_SET

Load set number (default: 1). This argument selects which load set to use as a right-hand

side vector.

5/24/90 CSM Testbed Procedures Manual 3.5- 5



ProcedureL_STATIC Solution Procedures

3.5.5.8 LOCATION

Location of the evaluation points for the element stresses or stress resultants (default:

NODES). The element stresses or stress resultants are optionally computed by calling proce-

dure STRESS (see Section 6.4). This argument may have four values. For

LOCATIONffiINTEG_PTS, the element stresses are computed at the element integration points.

For LOCATIONfCENTROIDS, the element stresses are computed at the element centroid. For

LOCATIONffiNODES,the element stresses are extrapolated from the integration points to be
element nodes. These dement nodal stresses will be discontinuous across interelement

boundaries. For LOCATIONfALL, the element stresses are computed at the element integra-

tion points, element centroid, and element nodes.

3.5.5.9 NVAL_METH

Select method to be used for computing the smoothed global stresses (default: 3). Proces-

sor NVAL is used to compute the smoothed global stresses using the method defined by the

argument NVAL_METH (see Section 12.5 of reference 6.4-1). If NVAL_METH=t, a topological

interpolation of the element centroidal stresses is performed, and the dement stresses must

have been computed using LOCATION=CENTROIDS. If NVAL_METH=2, a projected least-squares

interpolation of the element centroidal stresses is performed, and the stresses must have

been computed using L0CATIONfCENTROIDS. If NVAL_METH=3, the element nodal stresses

(discontinuous across interelement boundaries) are averaged, and the element stresses must

have been computed using LOCATIONfNODES. Using LOCATIONfALL will generate element

stresses at the element centroids, element nodes, and element gauss points. Acceptable

values of LOCATION for specific values of NVAL_METHare as follows:

NVAL_METH LOCATION

i CENTROIDS, ALL

2 CENTROIDS, ALL

3 NODES, ALL

3.5.5.10 PRINT

Flag to print computed results such as the displacement solution, internal forces, and

dement and nodal stresses (default: <false>). If printing of these computed results is

requested, processor VPRT will be used to print the displacement solution and internal

forces, processor PESR will be used to print the element stresses and processor PNSR will

be used to print nodal stresses.

3.5.5.11 REACTION

Flag to compute the internal nodal forces (default: <true>) If the argument REAC-

TION=<truo>, then the internal forces will be computed by calling procedure INT..FORCE

(see Section 6.2).

3.5- 6 CSM Testbed Procedures Manual 5/24/90



Solution Procedures Procedure L_STATIC

3.5.5.12 RENORBER

Flag to resequence node numbers prior to equation solving (default: <true>)• If the

argument RENI_IBERf<true>, then processor RSEQ will be used to perform nodal rese-

quencing, otherwise no resequencing will be performed " .... _._, ,!._ --._-I• ,_o_e _,_ _,t_ ,,u_,_ resequencing

may greatly reduce the time required to factor and solve the linear system of equations

given by equation 3.5-1.

3.5.5.13 RH__S

First two words of the dataset name for the right-hand side system vector (default:

APPL. FORe).

3.5.5.14 SMOOTH

Flag to compute smoothed global stresses (default: <false>). If the argument

SM00Tli=<true>, then smoothed globalstresseswillbe computed by processorNVAL using

the method defined by the argument NVAL_ETH.

3.5.5.15 SOLN

Firsttwo words of the data.setname for the displacement solution(default:STAT.DISP).

3.5.5.16 STRESS

Flag to compute dement stresses or stress resultants (default: <false>). If the argument

STRESS is defined to be <true>, then the element stresses will be computed at the location

and in the direction specified by the arguments LOCATION and DIRECTION, respectively, by

calling procedure STRESS (see Section 6.4).

3.5.6 PROCEDURE FLOWCHART

L_STATIC

ES

FACTOR

SOLVE

STRESS

ES

INT_FORCE

ES

(main procedure)

(initialize, form K)

(factor assembled stiffness matrix)

(solve linear system of equations)

(stress/strain recovery procedure)

(calculate dement stresses and/or strains)

(internal force procedure)

(internal force calculation)

5/24/90 CSM Testbed Procedures Manual 3.5- 7



Procedure L_STATIC Solution Procedures

3.5.7 LIMITATIONS

Procedure L_STATIC assumes that all datasets either required or generated reside on library

one (LDI=I).

3.5.8 ERROR MESSAGES AND WARNINGS

None.

3.5.9 USAGE GUIDELINES AND EXAMPLES

Procedure L_STATIC may be used by preceding the procedure name by the *call directive.

Procedure arguments may be changed from their default values by including any or M1 the

arguments and their new values when the procedure is called. A space or blank is required

between the end of the procedure name and the left parenthesis.

*call L_STATIC ( FUNCTION = ALL ; --

CONS_SET = 1 ; --

DIRECTION = 0 ; --

ISEQ = -1 ; --

KNAME ffi K ; --

LOAD_SET ffi 1 ; --
LOCATION = CENTROIDS

PRINT = <true> ;

REACTION ffi <false> ;

RENUMBER = <true> ; --

RItS = APPL. FORC ;

SOLN = STAT. DISP ;

STRESS ffi <false> --

Select function

Select constraint set

Select direction for element stresses

Select resequencing method

First word of stiffness matrix

dataset name

Select load set

; -- Select location of element

-- stress evaluation points

-- PRINT flag

-- REACTIONS flag

• RESEQUENCING flag
-- . First two words of RHS

-- . vector dataset

-- . First two words of SOLN

-- . dataset

STRESS flag
)

Before procedure L_STATIC is called, the global macrosymbol solver_name should be de-

fined as described in Section 3.5.3; otherwise, the default value of IN'/will be used.

3.5.10 PROCEDURE LISTING

3.5- 8 CSM Testbed Procedures Manual 5/24/90



Solution Procedures Procedure L_STATIC

8.5.11 ........ _'_"

3.5-1 Stewart, Caroline B.: The Computational Structural Mechanics Testbed User's

Manual. NASA TM-100644, October 1989.

3.5-2 Whetstone, W. D.: "Computer Analysis of Large Linear Frames": Journal of the

Structural Division, ASCE, Vol. 95, No. STll, November 1969, pp. 2401-2417.

3.5-3 Regelbrugge, M. E. and Wright, M. A.: The Computational Structural Mechanics

Testbed Matriz Processors Internal Logic and Dataflow Descriptions. NASA CR-

181742, March 1989.

3.5-4 Poole, Eugene L. and Overman, Andrea L.: The Solution of Linear Systems of

Equations with a Structural Analysi_ Code of the NAS Cray._. NASA CR-4159,

September 1988.

3.5-5 Chu, Eleanor and George, J. Alan: Sparse Matriz Methods Research Using the

CSM Testbed Software System. NASA CR-4219, March 1989.

3.5-6 Chu, E.C.H.; George, J. A.; Liu, W-H.; and Ng, E. G-Y.: User's Guide for

SPARSPAK-A: Waterloo Sparse Linear Equations Package. Technical Report CS-

84-36, University of Waterloo, Waterloo Ontario, Canada, 1984.

3.5-7 Stewart, Caroline B.: The Computational Structural Mechanics Testbed Data Li.

brary Description. NASA TM-100645, October 1988.

5/24/90 CSM Testbed Procedures Manual 3.5- 9



Procedure L_STATIC Solution Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

3.5- 10 CSM Testbed Procedures Manual 5/24/90



Solution Procedures ProcedureL_VIBRAT_O

3._ D .... _1,,,.,,,._ T. "_TT'I_'I_ Arl "_ NJL JLq,+pq_q_q.JJ. ul_JU._,.* .g___ v .L.nh_.LUt_.d_Ldh. ___P

3.6.1 GENERAL DESCRIPTION

Procedure L_VIBRAT_0 performs a linear vibration analysis about an unstressed state. The

eigensolver is selected by defining the global macrosymbol eigensolver_aa=e to be the

name of the desired processor (e.g., EIG2, LAN, LANZ), and the structural element pro-

cessors (ESi) form the elemental stiffness and mass matrices. The procedure assumes that

the finite element model and boundary conditions have already been generated and that

the vibration modeshapes and frequencies need to be calculated.

3.6.2 THEORY

Linear vibration analyses are formulated using the equations of motion for an undamped

structure. For the case of no external forces, the equations of motion are

Mii + Ku = 0

where

M = assembled mass matix (consistent or diagonal)

K = assembled linear stiffness matrix

ii = acceleration vector

u = displacement vector

If harmonic motion is assumed, then

u = dpi sin wit

where

i = 1,2,...

_bi = ith eigen modeshape

COl= ith circular frequency (radians per second)

The ith cyclic frequency fi (in hertz) is

and the period Ti (in seconds) is
1

Substituting equation (3.6-2)in equation (3.6-1) gives

where

(K - )tiM)_bi :0 i = 1,2,...

(3.6- 1)

(3.6-2)

(3.6-3)

5/24/90 CSM Testbed Procedures Manual 3.6- 1

PRECEDING PAGE BLANK NOT FILMED



Procedure L_VIBRAT_0 Solution Procedures

2
)li = tOi •

If the user has specified the reset parameter GgAV in processor LAU to a value of unity then

the matrix M has the meaning of a "weight" matrix instead of a "mass" matrix. This

reset parameter is important for interpreting the eigenvalues calculated by the various

eigensolvers.

3.6.3 ALGORITHM

The algorithm used to solve equation (3.6-1) depends on the value of the global macrosym-

bol eigensolver_aame. Processor EIG2 is used if eigensolver_name is defined to be EIG2.

This processor uses a nodal-block sparse matrix approach as described in reference 3.6-2.

Processor LAN is used if eigensolver_aame is defined to be LAN. Processor LANZ is used

if eigensolver_name is defined to be LANZ. These processors are based on the Lanczos

algorithm as described in references 3.6-2 and 3.6-3. If this global macrosymbol is not

defined, procedure L_VIBRAT_0 will set it to EIG2.

3.6.4 PROCEDURE USAGE

Procedure L_VIBRAT_0 may be invoked by the *call directive, and following it by a list of

arguments separated by semicolons(;) and enclosed in parentheses. Procedure arguments

are order-independent, and most have default values thus making them optional. The

formal syntax is as follows:

,call L_VIBRAT_O ( axgl - vall; arg2 ffival2; ...)I

where axgi are argument names and vali are the corresponding values. The following

are valid arguments for procedure L_VIBRAT_0i note that those arguments without default

values are mandatory, while the others are optional.

Argument Default Value

EKKOR_TOL .0001

FUNCTION ALL

INIT_VECTORS 0

ISEQ 0

LDI I

KNAME K

MASS_TYPE CONSISTENT

MAX_ITERS 20

N_MODES 1

PRINT <false>

RENUMBEg <true>

SHIFT 0.0

VCON_SET 1

Meaning

Convergence criterion for eigenvalues

Select function to be performed by procedure

Number of initial vectors used to span the subspace

Resequencing method to be used

Logical device index

First word of the name of the dataset containing the
assembled stiffness matrix

Type of mass matrix
Maximum number of iterations

Number of eigenvalues to converge

Flag to print eigenvectors

Flag to resequence node numbers for equation solver

Eigenvalue shift

Constraint set for vibration analysis

3.6- 2 CSM Testbed Procedures Manual 5/24/90



Solution Procedures Procedure L_VIBRAT_0

,JLIm_t-_JL(;::l:lO._-.I. 10.U-_) ¢$.1tu _,L).V--,,*.m,l..mlobI.,NF.L_u(3i,mb_o_t,D t.4m.;:),1[;;'..4tu.mm.I..L'UGb_'..,tU,ly .]_m,l.m.vv,.,._,..,u.u.,m..,.,dk,m_w.mr,.,mk_,,mkb,m,m.,i._v)

the procedures invoked by procedure L_YIBI_T_O, and the processors invoked by procedure

L_VIBI_T_O, respectively.

Table 3.6-1

Dataset

AMAP..ic2.islze

Datasets

CEM.SPAR

<ES..NAME>.EFIL.0.nnod

ES.SUMMARY

DEF. <ES..NAME >.0.nnod

DEM.DIAG

DIR.<ES_NAME>.0.nnod

INV.KSHF.jt

INV.<KNAME>.fl

JDF1.BTAB.1.8

KG.SPAR.jdf2

KMAP..ic2.isize

<KNAME>.SPAR.jdf2

VIBR.EVAL.I.it

VIBR.MODE.I.jt

t j = <cons_set>

Input/Output by procedure L_VIBRAT_0

Description

Factorization Map for INV

Consistent Mass Matrix

Element Computational Data

ES Processor Status

Element Defn. (Connectivity)

Diagonal (Lumped) Mass Matrix

Element EFIL Directory

Factored Shifted System Matrix

Factored System Matrix

Model Summary

Assembled geometric stiffness matrix

Model Connectivity Map

Assembled system matrix

I

yibrat]on eigenvalues

Input )utput

,/

,/ ,/

,/ ,/

,/

,/

,/

,/

,/

,/

,/

,/

,/

,/

[Vibration eigenvalues

5/24/90 CSM Testbed Procedures Manual 3.6- 3



Procedure L_VIBRAT_0 Solution Procedures

Table 3.6-3

Procedure Type

AUS Internal

ii

Processors Invoked by Procedure L_VIBRAT_0

VPRT

Function

Arithmetic utilities

Initializes EFIL datasetsE iInternal

EIG2 Internal Solve eigenvalue problem using subspace iteration

ESi External Element processors based on GEP

K Internal Assemble system matrix

LAN External Solve eigenvalue problem using Lanczos method

LANZ External Solve eigenvalue problem using Lanczos method

RSEQ Internal Resequences nodes for equation solving

TOPO Internal Generates nodal topology maps

Internal Print SYSVEC system vectors

3.6.5 ARGUMENT DESCRIPTION

3.6.5.1 ERR[}R_TOL

Convergence criterion for eigenvalues (default: 0.0001). For the k-th iteration, the error

measure for the i-th eigenvalue is

k is smaller than ERROIt_TOL.The i-th eigenvalue is converged if • i

3.6.5.2 FUNCTION

Select function to be performed by procedure L_VIBRAT_O (default: ALL). This procedure

may be used to perform two functions. For FUNCTION--ALL, the element data are initialized

and elemental stiffness matrices formed; nodal resequencing may be performed, the mesh

topology is analyzed, the system stiffness matrix is assembled and factored, and the eigen-

problemis solved. For FUNCTItlN=EIGEN, procedure L_VIBI_AT_O uses a previously computed

prestress state in solving the eigenvalue problem. Using the FUNCTION argument, the user

may solve for a variety of constraint (boundary conditions) sets on a given model.

3.6- 4 CSM Testbed Procedures Manual 5/24/90



Solution Procedures Procedure L_VIBRAT_0

3.6.5.3 IN1T_VJ_U£mt

Number of initial vectors used to span the subspace (default: 0). This argument defines

the number of trial vectors used to initiate the subspace iteration. If INIT_VECT01_=O, the

nu,_lher t. :,,__ .... • ...... :11be --'-'"-'-J L_. ,L ...... ._....U I |]LLLk] )'tin VC_kU.IL_ WJLNLL L.O,J.L, ULJ.rLkqi::L& Uy _J.JLC _£u_Ctm£_.mLe

INIT_VECTOR=MINIMUM (2*N_MODES, N_modes + 8)

S.6.5.4 ISE0

Resequencing method to be used (default: 0). If the argument RENUMBER is <true>,

then nodal resequencing will be performed using processor RSEQ. The method used by

processor RSEQ to resequence the nodes depends on the value of ISEq. If the argument

ISEQ is greater than or equal to zero, then that method will be used (i.e., method=0,1,2,3;

see Section 6.1 of the CSM Testbed User's Manual, ref. 3.6-1).

3.6.5.5 LDI

Logical device index (default: 1).

$.6.5.6 KNARE

First word of the dataset name containing the assembled stiffness matrix (default: K).

3.6.5.7 MASS_TYPE

Type of mass matrix (default:CONSISTENT). IfMASS_TYPE=CONSISTENT, the element pro-

cessorwill generate consistent element mass matrices that will be assembled by processor

K to form the system mass matrix. If MASS_TYPE=DIAGONAL, the element processor will

generate a diagonal or lumped mass matrix.

3.6.5.8 MAX_ITEMS

Maximum number of iterations (default: 20). This argument specifies the maximum num-

ber of iterations that can be used per call to eigensolver.

3.6.5.9 N.MODES

Number of converged eigenvalues desired (default: I). This argument specifies the number

of eigenvalues to calculate to a convergence criterion of ERROR_TOL.

3.6.5.10 PRINT

Flag to print displacement solution, internal forces and dement stresses (default: <false>).

If printing of these computed results is requested, processor VPRT will be used to print

the vibration modeshapes.

3.6.5.11 RENIDIBER

Flag to resequence node numbers prior to equation solving (default: <true>). If the argu-

ment ILENUHBER=<true>, then processor RSEQ will be used to perform nodal resequencing,

otherwise no resequencing will be performed. Note that the nodal resequencing may greatly

reduce the time required to factor and solve the linear system of equations.

5/24/90 CSM Testbed Procedures Manual 3.6- 5



Procedure L_VIBKAT_0 Solution Procedures

3.6.5.12 SHIFT

Eigenvalue shift (default: 0.0). Converged eigenvalue will only be obtained for eigenvulues

greater than SHIFT. The shift parameter refers to the frequency squared (i.e., w _) for

vibration problems.

3.6.5.13 VCON_SET

Constraint set number for vibration analysis (default: 1). This argument selects which

constraint set to use in solving the linear vibration problem.

3.6.6 PROCEDURE FLOWCHART

L_VIBRAT_0

ES

FACTOR

(main procedure)

(initialize, form K and M)

(factor using vibration boundary conditions)

3.6.7 LIMITATIONS

None.

3.6.8 ERROR MESSAGES AND WARNINGS

None.

3.6.9 USAGE GUIDELINES AND EXAMPLES

Procedure L_VIBI_AT_0 may be used by preceding the procedure name by the *call direc-

tive. Procedure arguments may be changed from their default values by including any or

all the arguments and their new values when the procedure is called. A space or blank

is required between the end of the procedure name and the left parenthesis.

3.6- 6 CSM Testbed Procedures Manual 5/24/90



Solution Procedures Procedure L_VIBRAT_0

*call L YIBEAT 0 ( Fum_,_ua = aLL''";

BCON_SET ffi 1 ; --
EBAOR_TOL ffi .0001
INIT VECTOR = 0 ;

KNANE ffi K ;

HAX_ITERS = 20;

N_MODES = I ;
PRINT =
RENUMBER ffi

SHIFT ffi

Selec_ ........---- X ttn_;_ _l.o_t

Select vibration constraint set

; -- . Eigenvalue convergence criterion
-- Number of initial vectors

1 ,l----- A A_ q'_DA_A_q_U _A4"_

-- First word of stiffness matrix

-- dataset name
-- Maximum number of iterations

-- Number of eigenvalues

<true> ; -- . PRINT flag
<true> ; -- . RESEQUENCING flag

0.0 -- . Eigenvalue shift
)

Before procedure L_VIBItAT_0 is called, the global macrosymbol eigensolver_name should

be defined as described in Section 3.6-3; otherwise, the default value of EIG2 will be used.

3.6.10 PROCEDURE LISTING

3.6.11 REFERENCES

3.6-1 Stewart, Caroline B.: The Computational Structural Mechanics Testbed User%

Manual. NASA TM-100644, October 1989.

3.6-2 Bostic, S. W. and Fulton R. E.: A Lanezos Eigenvalue Method on a Parallel Com-

puter. AIAA Paper No. 87-0725-CP.

3.6-3 Jones, Mark T. and Patrick, Merrell L.: The Use of Lanczos's Method to Solve

the Large Generalized Symmetric Definite Eigenvalue Problem. NASA CR-181914,

September 1989. (Also available as ICASE Report No. 89-69).

k
5/24/90 CSM Testbed Procedures Manual 3.6- 7



Procedure L_VIBRAT_O Solution Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

3.6- 8 CSM Testbed Procedures Manual 5/24/90



Solution Procedures Procedure L_VIBRAT_i

J. | JL- KLJil._CUtUA-qi_ JI.J_ ¥ JI.3.J.IL_,._L.JL _1

8.7.1 GENERAL DESCRIPTION

Procedure L_VlBIL_T_I performs a linear vibration analysis about a prescribed prestressec:

state. The eigensolver is selected by defining the global macrosymbol eigensolver_nams

to be the name of the desired processor (e.g., EIG2, LAN), and the structural element pro-

cessors (ESi) form the elemental stiffness and mass matrices. The procedure assumes that

the finite element model and boundary conditions have already been generated, that the

prestressed state has been prescribed, and that the vibration modeshapes and frequencies
need to be calculated.

3.7.2 THEORY

Linear vibration analyses are formulated using the equations of motion for an undamped

structure. For the case of prestressed state, the equations of motion are

Mii + Ku + Kg(_)u = 0 (3.7 - 1)

where

M = assembled mass matix (consistent or diagonal)

K = assembled linear stiffness matrix

Kg(o') = assembled geometric stiffness matrix for given stress state

ii = acceleration vector

u = displacement vector

¢r = prestress state

The prestressed state may be defined in several ways. Procedure L_VIBRtT_I assumes that

a membrane prestressed state (Nffi°, N_, N_y) is explicitly prescribed.

If harmonic motion is assumed, then

u = c_i 8in wit

where

i= 1,2,... (3.7-2)

_i = ith eigen modeshape

wi = ith circular frequency (radians per second)

The ith cyclic frequency fi (in hertz) is

and the period Ti (in seconds) is
1

5/24/90 CSM Testbed Procedures Manual 3.7- 1

PRECED|NG PAGE BLANK NOT FILMED



Procedure L_VIBRAT_I Solution Procedures

Substituting equation (3.%2) in equation (3.%1) gives

where

(K + Kg(_ ) - _iM)_ i = 0

h i : (g_.

i = 1,2,... (3.7-3)

If the user_has specified the reset parameter GltaV in processor LAU to a value of unity then

the matrix M has the meaning of a "weight" matrix instead of a "mass" matrix. This

reset parameter is important for interpreting the eigenvalues calculated by the various

eigensolvers.

3.7.3 ALGORITHM

The algorithm used to solve equation (3.7-1) depends on the value of the global macrosym-

bol eigensolver_aame. Processor EIG2 is used if eigensolver_name is defined to be EIG2.

This processor uses a nodal-block sparse matrix approach as described in reference 3.7-2.

Processor LAN is used if eigensolver_atme is defined to be LA_I. Processor LANZ is used

if eigensolver_aame is defined to be LANg. These processors are based on the Lanczos al-

gorithm as described in references 3.7-2 to 3.7-3. If this global macrosymbol is not defined,

procedure L_VIBRAT_I will set it to EI¢2.

3.?.4 PROCEDURE USAGE

Procedure L_VIBRAT_I may be invoked by the *call directive, and following it by a list of

arguments separated by semicolons(;) and enclosed in parentheses. Procedure arguments

are order-independent, and most have default values thus making them optional. The

formal syntax is as follows:

[*call L_VIBIIAT_I ( argl = vail; arg2 = val2; ...)[

where argi are argument names and vali are the corresponding values. The following

are valid arguments for procedure L_VIBRAT_I; note that those arguments without default

values are mandatory, while the others are optional.

3.7- 2 CSM Testbed Procedures Manual 5/24/90



Solution Procedures Procedure L_VIBRAT_I

Argument

PS_1

PS_2

PS_3

n_r_,,1, Value

--o

m--

_m

_v_ztzlA_

Prescribed membrane stres resultant N °

Prescribed membrane stres resultant N_

ERROR_TOL .0001

FUNCTION ALL

INIT_VECTORS 0

ISEQ 0

LDI I

KNAME K

MASS_TYPE CONSISTENT

MAX_ITERS 20

N_GROUPS I

NJ_ODES 1

PRINT <false>

RENUMBER <true>

SHIFT 0.0

VCON_SET I

Convergence criterion for eigenvalues

Select function to be performed by procedure

Number of initial vectors used to span the subspace

Resequencing method to be used

Logical device index

First word of the name of the data.set containing the
assembled stiffness matrix

Type of mass matrix
Maximum number of iterations

Number of eigenvalues to converge

Flag to print eigenvectors

Flag to resequence node numbers for equation solver

Eigenvalue shift

Constraint set for vibration analysis

Tables 3.7-1, 3.7-2, and 3.7-3 list the data.sets used or created by procedure L_VIBRAT_I,

the procedures invoked by procedure L_VIBRAT_I, and the processors invoked by procedure

L_VIBRAT_I, respectively.

5/24/90 CSM Testbed Procedures Manual 3.7- 3



ProcedureL_VIBRAT_I Solution Procedures

Table 3.7-1

Dataset

AMAP..ic2.isize

Datasets Input/Output by procedure L_VIBRAT_I

Input OutputDescription

Factorization Map for INV

CEM.SPAR Consistent Mass Matrix

<ES_NAME>.EFIL.0.nnoJ Element Computational Data _/

ES.SUMMARY ES Processor Status _/

DEF.<ES..NAME>.O.nnod Element Defn. (Connectivity) v /

DEM.DIAG Diagonal (Lumped) Mass Matrix

DIR.<ES_NAME>.0.nnod Element EFIL Directory v /

INV.KSHF.jt Factored Shifted System Matrix

INV.<KNAME>.fl Factored System Matrix

JDF1.BTAB.1.8 Model Summary v/

KG.SPAR.jdf2 Assembled geometric stiffness matrix

KMAP..ic2.isize Model Connectivity Map

<KNAME>.SPAR.jdf2 Assembled system matrix

VIBR.EVAL.I.fl Vibration eigenvalues

VIBR.MODE.I.fl Vibration eigenvalues

j = <vcon.set>

,/

Table 3.7-2

Procedure

ES

FACTOR

L_VIBRAT_I

Sub-Procedures Invoked by procedure L_VIBRAT_I

Type

External

External

Internal
i

Function

Element utility procedure

Factors assembled stiffness matrix

Main procedure

3.7- 4 CSM Testbed Procedures Manual 5/24/90



Solution Procedures ProcedureL_VIBRAT_I

Table 3.T-8

Procedure

AUS

Processors Invoked by Procedure L_VIBRAT_I
m._mm.mmim_.mmm

Type

Internal

Function

Arithmetic utilities

E Internal iInitializes EFIL datasets

EIG2 Internal Solve eigenvalue problem using subspace iteration

ESi External Element processors based on GEP

K Internal Assemble system matrix

LAN External Solve eigenvalue problem using Lanczos method

LANZ External Solve eigenva]ue problem using Lanczos method

RSEQ Internal Resequences nodes for equation solving

TOPO Internal Generates nodal topology maps

VPRT Internal Print SYSVEC system vectors

3.T.5 ARGUMENT DESCRIPTION

3.7.5.1 EI_0R_TOL

Convergence criterion for eigenvalues (default: O. 000t). For the k-th iteration, the error

measure for the i-th eigenvaiue is

-
= II  II

k is smaller than F..I_O1LTOL.The i-th eigenvalue is converged if e_

3.T.5.2 FUNCTION

Select function to be performed by procedure L_VIBRAT_I (default: ALL). This procedure

may be used to perform two functions. For FUNCTIONfALL, the element data are initialized

and elemental stiffness matrices formed; nodal resequencing may be performed, the mesh

topology is analyzed, the system stiffness matrix is assembled and factored, and the eigen-

problem is solved. For F0_/CTIONffiEIGEN, procedure L_VlBRAT_I uses a prescribed prestress

state in solving the eigenvalue problem. Using the FUNCTION argument, the user may solve

for a variety of constraint (boundary conditions) sets on a given model.

5/24/90 CSM Testbed Procedures Manual 3.7- 5



ProcedureL_VIBRAT_I SolutionProcedures

3.7.5.3 INIT_VECTOR

Number of initial vectors used to span the subspace (default: 0). This argument defines

the number of trial vectors used to initiate the subspace iteration. If INIT_VECT01_=0, the

number of initial vectors will be calculated by the procedure as

INIT_VECTOR=MINIMUM (2*N_MODES, N_modes + 8)

3.7.5.4

Resequencing method to be used (default: 0). If the argument ItENORBF._ is <true>,

then nodal resequencing will be performed using processor RSEQ. The method used by

processor RSEQ to resequence the nodes depends on the value of ISEQ. If the argument

ISEQ is greater than or equal to zero, then that method will be used (i.e., method=0,1,2,3;

see Section 6.1 of the CSM Testbed User's Manual, ref. 3.7-1).

3.7.5.5 LD_._I

Logical device index (default: 1).

3.7.5.6 KNAME

First word of the data.set name containing the assembled stiffness matrix (default: K).

3.T.5.T MASS_TYPE

Type of mass matrix (default: CONSISTENT). If MASS_TYPEffiCONSISTENT, the dement pro-

cessor will generate consistent element mass matrices that will be assembled by processor

K to form the system mass matrix. If MASS_TYPE=DIAGONAL, the element processor will

generate a diagonal or lumped mass matrix.

3.T.5.8 N_GROUPS

Element group number (default: 1).

3.7.5.9 MAX_ITERS

Maximum number of iterations (default: 20). This argument specifies the maximum num-

ber of iterations that can be used per call to eigensolver.

3.T.5.10 N.MODES

Number of converged eigenvalues desired (default: 1). This argument specifies the number

of eigenvalues to calculate to a convergence criterion of ERROR_TOL.

3.7.5.11 PRINT

Flag to print modeshapes (default: <false>). If printing of these computed results is

requested, processor VPRT will be used to print the vibration modeshapes.

3.7- 6 CSM Testbed Procedures Manual 5/24/90



Solution Procedures ProcedureL_VIBRAT_I

3.7.5.12 PS_I

Prescribed membrane stress resultant N ° for the prestressed state.

3.7.5.13 PS_2

Prescribed membrane stress resultant N_ for the prestressed state.

3.7.5.14 PS_3

Prescribed membrane stress resultant Nffi°yfor the prestressed state.

3.7.5.15 RENUMBER

Flag to resequence node numbers prior to equation solving (default: <true)). If the argu-

ment Rg_4BgR=<true>, then processor RSEQ will be used to perform nodal resequencing,

otherwise no resequendng will be performed. Note that the nodal resequencing may greatly

reduce the time required to factor and solve the linear system of equations.

3.T.5.16 SHIFT

Eigenvalue shift (default: 0.0). Converged eigenvalue will only be obtained for eigenvalues

greater than SHIFT. The shift parameter refers to the frequency squared (i.e., _a2) for

vibration problems.

3.T.5.1T VCON_SET

Constraint set number for vibration analysis (default: 1). This argument selects which

constraint set to use in solving the linear vibration problem.

3.7.6 PROCEDURE FLOWCHART

L_VIBRAT_I

ES

ES

FACTOR

(main procedure)

(initialize, form K and M)

(form Kg)

(factor using vibration boundary conditions)

3.7.7 LIMITATIONS

None.

ERROR MESSAGES AND WARNINGS

5/24/90 CSM Testbed Procedures Manual 3.7- 7



Procedure L.VIBRAT_I Solution Procedures

3.7.9 USAGE GUIDELINES AND EXAMPLES

Procedure L_VIBRAT_I may be used by preceding the procedure name by the *call direc-

tive. Procedure arguments may be changed from their default values by including any or

all the arguments and their new values when the procedure is called. A space or blank

is required between the end of the procedure name and the left parenthesis.

*call L_VIBRAT_I ( FUNCTION = ALL ; -- . Select function
VCON_SET = 1 ; -- Select vibration constraint set

EP_OR_TOL ffi .0001 ; -- Eigenvalue convergence criterion
INIT_VECTOR = 0 ;

ISEQ - o ;
K_AME = K ;

MAX_ITERS = 20;
N_MODES = I ;

N_GROUPS = I ;
PS_I ; --

PS_2 ; --

PS_3 ; --
PRINT = <true>
RENUMBER = <true>

-- Number of initial vectors

-- Select resequencing method
-- . First word of stiffness matrix
-- dataset name

-- Maximum number of iterations

-- Number of eigenvalues

; -- PRINT flag

; -- RESEQUENCING flag
SHIFT = 0.0 ; Eigenvalue shift

)

Before procedure L_VIBRAT_I is called, the global macrosymbol eigensolver_name should
he defined as described in Section 3.7-3; otherwise, the default value of EIG2 will be used.

3.7.10 PROCEDURE LISTING

3.7.11 REFERENCES

3.7-1 Stewart, Caroline B.: The Computational Structural Mechanics Testbed User's

Manual. NASA TM-100644, October 1989.

3.7-2 Bostic, S. W. and Fulton R. E.: A Lanczos Eigenvalue Method on a Parallel Com-

puter. AIAA Paper No. 87-0725-CP.

3.7-3 Jones, Mark T. and Patrick, Merrell L.: The Use o� Lanczos'n Method to Solve

the Large Generalized Symmetric Definite Eigenvalue Problem. NASA CR-181914,

September 1989. (Also available as ICASE Report No. 89-69).

3.7- 8 CSM Testbed Procedures Manual 5/24/90



Solution Procedures ProcedureL_VIBRAT_2

3.8 Procedure L_VIBRAT_2

3.8.1 GENERAL DESCRIPTION

Procedure L_VIBIUtT_2 performs a linear vibration analysis about a prescribed prestressed

state. The eigensolver is selected by defining the global macrosymbol eigensolver..name

to be the name of the desired processor (e.g., EIG2, LAN), and the structural element pro-

cessors (ESi) form the elemental stiffness and mass matrices. The procedure assumes that

the finite element model and boundary conditions have already been generated, that the

prestressed state has been prescribed, and that the vibration modeshapes and frequencies
need to be calculated.

: 3.8.2 THEORY

Linear vibration analyses are formulated using the equations of motion for an undamped

structure. For the case of prestressed state, the equations of motion are

Mii + Ku + Kg(tr)u = 0 (3.8 - 1)

where

M = assembled mass matix (consistent or diagonal)

K = assembled linear stiffness matrix

Ke(o" ) = assembled geometric stiffness matrix for given stress state

ii = acceleration vector

u = displacement vector

= prestress state

The prestressed state may be defined in several ways. Procedure L_VIBBAT_2 assumes that

the prestressed state will be first calculated using procedure L_STATIC.

If harmonic motion is assumed, then

u = Oi sin wit

where

i= 1,2,... (3.8- 2)

_bi = ith eigen modeshape

wi = ith circular frequency (radians per second)

The ith cyclic frequency fi (in hertz) is

and the period Ti (in seconds) is
1

T/= m

5/24/90 CSM Testbed Procedures Manual 3.8- 1



ProcedureL_VIBRAT.2 Solution Procedures

Substituting equation (3.8-2)in equation (3.8-1) gives

where

(K + Kg(tr) - AiM)$ i = 0

2
Ai = w i •

i = 1,2,... (3.8- 3)

If the user has specified the reset parameter GRAVin processor LAU to a value of unity then

the matrix M has the meaning of a "weight" matrix instead of a "mass" matrix. This

reset parameter is important for interpreting the eigenvalues calculated by the various

eigensolvers.

3.8.3 ALGORITHM

The algorithm used to solve equation (3.3-1) depends on the value of the global macrosym-

bol eigensolvor_name. Processor EIG2 is used if eigensolver_name is defined to be EIG2.

This processor uses a nodal-block sparse matrix approach as described in reference 3.3-2.

Processor LAN is used if eigensolver_.uame is defined to be LAN. Processor LANZ is used

if eigensolver_name is defined to be LANZ. These processors are based on the Lanczos al-

gorithm as described in references 3.3-2 to 3.3-3. If this global macrosymbol is not defined,

procedure L_VlBRAT_2 will set it to EIG2.

3.8.4 PROCEDURE USAGE

Procedure L_VIBRAT_2 may be invoked by the *call directive, and following it by a list of

arguments separated by semicolons(;) and enclosed in parentheses. Procedure arguments

are order-independent, and most have default values thus making them optional. The

formal syntax is as follows:

*call L_VIBRAT_2 ( axgl = vall; v.rg2 = val2; ...)]

where axgi are argument names and vali are the corresponding values. The following

are valid arguments for procedure L_VlBRAT_2; note that those arguments without default

values are mandatory, while the others are optional.

3.8- 2 CSM Testbed Procedures Manual 5/24/90



Solution Procedures Procedure L_VIBRAT_2

Argument _,_.,,u._n^¢_--l"Value

CONS_SET 1

DIRECTION 0
E'DD nB _MT _t_f_4

FUNCTION ALL

INIT_VECTORS 0

ISEq 0

LDI I

KNAME K

LOAD_SET 1

MASS_TYPE CONSISTENT

HAX_ITERS 20

N_GROUPS 1

N_MODES 1

PRINT <false>

REACTION <false>

RENUMBER <true>

SHIFT 0.0

STRESS <false>

VCON_SET 1

_,.eanlng

Constaint set number for prestress analysis

Direction for element stress output

Select function to be performed by procedure

Number of initial vectors used to span the subspace

Resequencing method to be used

Logical device index

First word of the name of the dataset containing the
assembled stiffness matrix

Load set number

Type of mass matrix
Maximum number of iterations

Number of eigenvalues to converge

Flag to print computed solutions

Flag to compute internal forces or reactions

Flag to resequence node numbers for equation solver

Eigenvalue shift

Flag to compute element stresses (resultants)

Constraint set for vibration analysis

Tables 3.8-1, 3.8-2, and 3.8-3 list the datasets used or created by procedure L_VIBPAT_2,

the procedures invoked by procedure L_VIBRAT_2, and the processors invoked by procedure

L_VIBRAT_2, respectively.

5/24/90 CSM Testbed Procedures Manual 3.8- 3



ProcedureL_VIBRAT_2 SolutionProcedures

Table 3.8-1 Datasets Input/Output by procedure L_VIBRAT_2

Data.set

AMAP..ic2.isize

CEM.SPAR

<ES_NAME>.EFIL.0.nnod

ES.SUMMARY

DEF.<ES_.NAME>.0.nnod

DEM.DIAG

DIR.<ES_NAME>.0.nrwd

INV.KSHF.jt

INV.<KNAME>.jt

JDF1.BTAB.1.8

KG.SPAR.jdf2

KMAP..ic2.1size

<KNAME>.SPAR.jdf2

VIBR.EVAL.I.jt

VIBR.MODE.I.jt

Description

Factorization Map for INV

Consistent Mass Matrix

Element Computational Data

ES Processor Status

Element Defn. (Connectivity)

Diagonal (Lumped) Mass Matrix

Element EFIL Directory

Factored Shifted System Matrix

Factored System Matrix

Model Summary

Assembled geometric stiffness matrix

Model Connectivity Map

Assembled system matrix

Vibration eigenvalues

Vibration eigenvalues

Input _)utput

J

J

J J

J J

J

J

J

J

J

,/

J

J

J

J

J

t j = <vcon_set>

']['able 3.8-2

Procedure

ES

Sub-Procedures Invoked by procedure L_VIBRAT_2

Type

External

Fanction

Element utility procedure

FACTOR External Factors assembled stiffness matrix

L_STATIC Internal Static solution procedure

L_VIBRAT_2 Internal Main procedure

3.8- 4 CSM Testbed Procedures Manual 5/24/90



Solution Procedures Procedure L_VIBRAT.2

Table 3.8-3 Processors Invoked by Procedure L_VIBRAT..2

Procedure

AUS

.type

Internal

lcl ,,

] _UnCHOn

Arithmetic utilities

E Internal Initializes EFIL datasets

EIG2 Internal Solve eigenvalue problem using subspace iteration

ESi External Element processors based on GEP

K Internal Assemble system matrix

LAN External Solve eigenvalue problem using Lanczos method

LANZ External !Solve eigenvalue problem using Lanczos method

RSEQ Internal Resequences nodes for equation solving

TOPO Internal Generates nodal topology maps

VPRT Internal Print SYSVEC system vectors

8.8.5 ARGUMENT DESCRIPTION

3.8.5.1 CONS_SET

Constraint set number for prestress solution (default: 1). This argument selects which

constraint set to use in solving the linear system of equations.

3.8.5.2 DIRECTION

Direction for the element stress (stress resultant) output (default: 0). The element stress

coordinate system will be used if directionffi0. The material axes (z,,, y,n, z,_) will be

used if direction,,1; the material axes (y,_, z,,, z,,) will be used for direction=2; and

the material axes (z,_, z,_, Ym) will be used for directionffi3. For isotropic materials, the

first material axis is replaced by the corresponding global axis (see Section 4.3.3.9 of the

CSM Testbed User's Manual, ref. 3.4-2).

3.8.5.3 ERROR_TOL

Convergence criterion for eigenvalues (default: 0. 0001). For the k-th iteration, the error

measure for the i-th eigenvalue is

k

k is smaller than ER.ROR_TOL.The i-th eigenvalue is converged if e_

5/24/90 CSM Testbed Procedures Manual 3.8- 5



Procedure L_VIBRAT_2 Solution Procedures

3.8.5.4 FUNCTION

Select function to be performed by procedure L_VIBRAT_2 (default: /iLL). This procedure

may be used to perform four functions. For FUNCTION=ALL, the element data are initialized

and elemental stiffness matrices formed; nodal resequencing may be performed, the mesh

topology is analyzed, the system stiffness matrix is assembled and factored, the displace-

ment solution is obtained, optionally element stresses (stress resultants) and internal nodal

forces (reactions) computed and the eigenproblem is solved. For FUNCTIONffiFACT_SOLV, pro-

cedure L_VIBRIT_2 assumes that the system stiffness matrix has previously been assembled

and that nodal resequencing has been performed. The procedure then proceeds to factor

the system stiffness matrix, solves for the displacement solution, optionally computes the

element stresses (stress resultants) and internal nodal forces (reactions) and solves the

eigenproblem. For FI_/CTIONffiSOLV, procedure L_VIBKAT_2 assumes that the system stiff-

ness has previously been formed and factored. The procedure then proceeds to solve for

the displacement solution, optionally computes tile element stresses (stress resultants) and

internal nodal forces (reactions) and solves the eigenproblem. For FI_ICTIONfEIGEN, pro-

cedure L_VlBRAT_2 uses a previously computed prestress state in solving the eigenvalue

problem. Using the FUNCTION argument, the user may solve for a variety of constraint

(boundary conditions) sets on a given model subjected to a variety of loading conditions.

3.8.5.5 INIT_VECTOR

Number of initial vectors used to span the subspace (default: 0). This argument defines

the number of trial vectors used to initiate the subspace iteration. If INIT_VECTOR=0, the

number of initial vectors will be calculated by the procedure as

INIT_VECTOR=MININUM (2*N_MODES, N_modes + 8)

8.8.5.0 _sz0

Resequencing method to be used (default: -1). If the argument REN_RBER is <true>,

then nodal resequencing will be performed using processor RSEQ. The method used by

processor RSEQ to resequence the nodes depends on the value of ISE0. If the argument

ISEQ is greater than or equal to zero, then that method will be used (i.e., methodffiO, 1,9,3;

see Section 6.1 of the CSM Testbed User's Manual, ref. 3.8-1).

3.8.5.7 KNANE

First word of the dataset name containing the assembled stiffness matrix (default: K).

3.8.5.8 LD__!

Logical device index (default: 1).

3.8.5.9 LOAD_SET

Load set number (default: 1). This argument selects which load set to use as a right-hand
side vector.

3.8- 6 CSM Testbed Procedures Manual 5/24/90



Solution Procedures Procedure L_VIBRAT_2

8.8.5.10 HASS_TYPE

Type of mass matrix (default: CONSISTENT). If MASS_TYPE,,CONSISTENT, the dement pro-

cessor will generate consistent element mass matrices that will be assembled by processor

K to form the system mass matrix. If HASS_TYPEfDIAGONAL, the element processor will

generate a diagonal or lumped mass matrix.

3.8.5.11 HAX_ITERS

Maximum number of iterations (default: 20). This argument specifies the maximum num-

ber of iterations that can be used per call to eigensolver.

3.8.5.12 N_MODES

Number of converged eigenvalues desired (default: 1). This argument specifies the number

of eigenvalues to calculate to a convergence criterion of Eglt01t_TOL.

3.8.5.13 PRINT

Flag to print modeshapes (default: <false>). If printing of these computed results is

requested, processor VPRT wUl be used to print the vibration modeshapes.

8.8.5.14 REACTION

Flag to compute the internal nodal forces (default: <trus>) If the argument ItEAC-

TION=<true>, then the internal forces wiU be computed by calling procedure INT_FOItC

(see Section 6.2).

3.8.5.15 ItEI_HBER

Flag to resequence node numbers prior to equation solving (default: <true>). If the argu-

ment _Egf<true>, then processor RSEQ will be used to perform nodal resequencing,

otherwise no resequencing will be performed. Note that the nodal resequencing may greatly

reduce the time required to factor and solve the linear system of equations.

3.8.5.16 SHIF_____!

Eigenvalue shift (default: 0.0). Converged eigenvalue will only be obtained for eigenvalues

greater than SHIFT. The shift parameter refers to the frequency squared (i.e., w 2) for

vibration problems.

3.8.5.17 STRESS

Flag to compute element stresses or stress resultants (default: <false>). If the argument

STP_SSffi<true>, then the element stresses will be computed at the location and in the

direction specified by the arguments LOCATION and DIRECTION, respectively, by calling

procedure STILESS (see Section 6.4).

5/24/90 CSM Testbed Procedures Manual 3.8- 7



Procedure L'VIBRAT'2 Solution Procedures

3.8.5.18 VCON_SET

Constraint set number for vibration analysis (default: 1). This argument selects which

constraint set to use in solving the linear vibration problem.

3.8.6 PROCEDURE FLOWCHART

L_VIBRAT_2

L_STATIC

ES

FACTOR

SOLVE

STRESS

ES

INT_FORCE

ES

ES

FACTOR

(main procedure)

(linear static analysis procedure)

(initialize, form K and M)

(factor assembled stiffness matrix)

(solve linear system of equations)

(stress/strain recovery procedure)

(calculate element and nodal stress/strain)

(internal force procedure)

(internal force calculation)

(form Kg)

(factor using vibration boundary conditions)

3.8.7 LIMITATIONS

None.

8.8.8 ERROR MESSAGES AND WARNINGS

None.

3.8.9 USAGE GUIDELINES AND EXAMPLES

Procedure L_VIBRAT_2 may be used by preceding the procedure name by the *call direc-

tive. Procedure arguments may be changed from their default values by including auy or

all the arguments and their new values when the procedure is called. A space or blank

is required between the end of the procedure name and the left parenthesis.

*call L_VIBRAT_2 ( FUNCTION = ALL ; -- . Select function
VCON_SET = 1 ; -- Select vibration constraint set

ERROR_TOL = .0001 ; -- . Eigenvalue convergence criterion
INIT_VECTOR = 0 ; -- Number of initial vectors

ISEq = -1 ; -- . Select resequencing method

3.8- 8 CSM Testbed Procedures Manual 5/24/90



Solution Procedures Procedure L_VIBRAT_2

KNAME = K ; -- . First word of stiffness matrix
-- . dataset name

MAX_ITERS = 20; -- Maximum number of iterations

N_HODES = I ; -- Number of eigenvalues
_U.___A = I _ --- • Selec_ Gons_raln_........... set
DIRECTION = 0 ; -- . Select direction for element stresses

LOAD_SET = I ; -- . Select load set

REACTION - <false> ; -- REACTIONS flag
STRESS = <false> -- STRESS flag

PRINT = <true> ; -- . PRINT flag
RENUMBER - <true> ; -- RESEQUENCING flag

SHIFT = 0.0 ; Eigenvalue shift
)

Before procedure L_VIBRAT_2 is called, the global macrosymbol eigensolver_aame should

be defined as described in Section 3.8-3; otherwise, the default value of EIG2 will be used.

3.8.10 PROCEDURE LISTING

3.8.11 REFERENCES

3.8-1 Stewart, Caroline B.: The Computational Structural Mechanics TeJtbed UJer':

Manual. NASA TM-100644, October 1989.

3.8-2 Bostic, S. W. and Fulton R. E.: A Lanczo8 Eigenvalue Method on _ Parallel Com-
puter. AIAA Paper No. 87-0725-CP.

3.8-3 Jones, Mark T. and Patrick, Merre]l L.: The U_e o/ Lanczoa 'a Method to Solve

the Large Generalized Symmetric Definite Eigenvalue Problem. NASA CR-181914,

September 1989. (Also available as ICASE Report No. 89-69).

5/24/90 CSM Testbed Procedures Manual 3.8- 9



Procedure L_VIBRAT_2 Solution Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

3.8- 10 CSM Testbed Procedures Manual 5/24/90



Solution Procedures NL_STATIC_I

t'rocedure _'" _''" m..-..iN t ,_;_ .IL./-LJL Jl._;_ JL

3.9.1 GENERAL DESCRIPTION

Procedure NL_STATIC_I, written by G. M. Stanley of Lockheed Palo Alto Research Labora-

tory, performs nonlinear static analysis based on a modified Newton/Raphson incremental

strategy for automatic load-step control (e.g., ref. 3.1). Procedure NL_STATIC_I relies on

the Generic Element Processor (i.e., structural element processors, ESi) and hence has a

corotational option for geometric nonlinearity that enables arbitrarily large rotations.

Procedure liL_STATIC_I solves a nonlinear algebraic equation system of the form:

fi,,(d ) = feffit(_) (3.9- i)

where fint is the nonlinear internal force vector for the discrete (i.e., finite element) system,

fe=t is the external force vector, d is the displacement vector, and ), is a load factor. The

basic modified Newton/Raphson procedure solves this system of equations by linearizing

it at each load level (i.e., fixed $), leading to the solution of the following linear equations:

K xA(i+_) Ja(i)
_Un+ 1 = r_Un+l, )_n+l)

d(i+l) d(i) xd(i+l)
n+l = _rt+l "31-_n-I-1

(3.9- 2)

within an iteration loop where n+l is the current (fixed) load-step number, i+1 is the itera-

tion number at that load-step, gd is the iterative displacement change, and r = fezt _ fint

is the nonlinear residual force vector. K is the effective tangent stiffness matrix, which

is updated only at the first iteration of selected load steps (though typically at every

step). Iteration is continued until the inner product of 5d and r become smaller than a

user-specified error tolerance.

An arc-length constraint is added to the above equations so that i) the user doesn't have

to select the load increment (A_ = )_,_+1 - )_,,), and ii) the solution algorithm can auto-

maticaUy traverse limit points - maxima and minima in the load-displacement "curve".

The user need only specify the initial load factor, _1; the constraint equation converts

this to an "arc-length" increment in load-displacement space, and adaptively adjusts this

increment based on the iterative performance of the algorithm. Details of this algorithm

are given in the theory and algorithm sections.

3.9.2 THEORY

3.9.2.1 Introduction

Procedure NL_STATIC_I performs a quasi-static analysis of a system of nonlinear equi-

librium equations using an adaptive arc-length-controlled Newton/Raphson incremen-

tal/iterative solution algorithm. The arc-length method adopted here is based on a variant

5/22/90 CSM Testbed Procedures Manual 3.9- 1

PRECEDING PAGE BLANK I_JOT FILMED



NL_STATIC_I Solution Procedures

of Crisfield's algorithm (ref. 3.1), where instead of using a nonlinear (quadratic) arc-

length constraint equation in conjunction with the linearized equilibrium equations, the

constraint equation is consistently linearized as well. This eliminates the pitfalls associ-

ated with quadratic root selection in Crisfield's algorithm. By combining this modification

with i) polynomial extrapolation of converged solutions to obtain step-predictor solutions,

ii) an energy error norm that properly weights translational and rotational freedoms, and

iii) generalization to large rotations, specified displacements and live loads; the present

algorithm is both more general and more robust than the basic algorithm. Additional
enhancements to overcome hard singularities at limit and bifurcation points are currently

under development; and will be incorporated as procedures at a later date.

3.9- 2 CSM Testbed Procedures Manual 5/22/90



Solution Procedures NL_STATIC_I

d

6d

Ad

d_

Sd

Al

ezt

fint

r

K

6d

5d*

num_cuts

num_div

Cr_

_-re f

¢tol

A_

K us

8

d °

NOTATION

Displacement vector.

Iterative change in d.

Incremental (load-step) change in d.

Displacement vector at iteration i of step n.

A,1(i+ 1) ,i(0 -d,_Incremental (step) change in d. "-"_n+l = "_n+l

Tangential displacement = K-If _t

Incremental arc-length (step) parameter.

External force vector - base load.

Internal force vector.

Residual force vector.

Stiffness matrix.

Basic (fixed-load) iterative change in d.

Linear combination of _d and 5d.

Number of times load step has been cut in half at current step.

Number of consecutive iterations at which divergence occurs.

Extrapolation coefficient corresponding to step n.

Relative error in energy norm.

Absolute error in energy norm.

Reference value of e; initialized as zero.

Relative error tolerance (default: 10-4).

Load factor.

Incremental (load-step) change in A.

Stiffness submatrix coupling specified (s) displacement components with force

components corresponding to unknown (u) displacements.

Base value of specified displacement vector.

Current value of specified displacement vector, d ° = _ d°.

3.9.2.2 Nonlinear Equations

The set of nonlinear equations solved by the present algorithm consist of: i) the system

of equilibrium equations for the discrete (finite element) model, and ii) a single constraint

equation governing the maximum "arc-length" to be traversed in a single solution incre-

ment along a curve in load-displacement space. These equations may be expressed as
follows:

r(d,A) = 0 (Equilibrium) (3.9 - 3)
c(d, A) = 0 (Arc-length Constraint)

5/22/90 CSM Testbed Procedures Manual 3.9- 3



NL_STATIC_I Solution Procedures

where d is the displacement vector representing all of the degrees-of-freedom (DOFs) for the

discrete model, and _ is an external load parameter. In conventional load- or displacement-

controlled solution algorithms, _ is usually specified by the user. In an arc-length controlled

algorithm like the present one, _ is treated as an additional unknown. Thus, there are

just as many independent equations in equation 3.9-3 as there are unknowns. The vec-

tor r represents the residual (or out-of-balance) force vector, which is identically zero at

equilibrium.

For the special case of:

• Displacement-independent loading

• Proportional (one-parameter) force loading

• Load-independent arc-length constraint

r and c take on the following form:

= A'f"ffi'- fi' t(d)

c(d,)0 = IIAdll -
(3.9-4)

where ._e_t is a normalized (base-value) external load vector, fint is the nonlinear internal

force vector, Ad is an incremental displacement vector, defined as

Ad = d - d,_ (3.9-5)

in which dn is the known displacement vector at a nearby (previous) configuration, and

Al is a prescribed arc-length parameter defining the size of the increment.

The problem statement then is to solve equation 3.9-3 for a statically connected set of con-

figurations, (d,_), representing the load-displacement "history" of the structural model.

Note that due to the nonlinear nature of the equations, this history is not always unique.

For example, at pure bifurcation points, the present algorithm cannot determine the cor-

rect path, unless some sort of imperfection or "trigger" is introduced by the user - thus

converting the bifurcation point into a limit point. Limit points (i.e., local maximums and

minimums in the load-displacement curve) cause no difficulty for the present algorithm -

except when a load-step happens to lie "too close" to the actual limit point (see procedure

tlL_STATIg_2 for a solution to this rare but frustrating problem).

3.9.2.3 Linearized Equations

To solve the above nonlinear equations, we use the modified Newton/Raphson algorithm,

which requires their linearization - i.e., first-order Taylor series expansion of the simultane-

ous equations. The solution to the linearized equations is then used to update the nonlinear

solution in an iterative process that continues until convergence has been obtained at a

given configuration. Furthermore, the final configuration is typically obtained as a series

of steps, or increments, with a new iteration cycle occuring within each step; and with in-

formation from preceding steps used to predict a starting solution at the new step. (This is

3.9- 4 CSM Testbed Procedures Manual 5/22/90



Solution Procedures NL_STATIC_I

commonly called an "incrementa]/iterative" algorithm.) Uote that the iterative changes in

displacement and load-factor, which we shall denote 8d and 6_, respectively, are different

than the incremental changes, denoted by Ad and A),. The incremental load/displacement

changes are used to advance from one converged so!ution (d,._),_.) to another (d._+1_ _.+I,

while the iterative changes all refer to successive approximations ta(0 _(0_",_+1, ,_+a) of the same

target configuration (d_,+a,g,,+a). Thus, _d converges to zero at a given configuration,

while Ad converges to a value dictated by the arc-length constraint equation 3.9-4b*

Linearization of equations 3.9-4 about a reference configuration (d,X) results in the fol-

lowing expressions:

0r )t) 5_ 0r(d,_) ._ r(-d,_) + (d,_)Sd + _-_(d, =

Oc - _)Sd + 0
c(d,_) ._ c(d,]) + _-_(d, _-_(d,)_)6), =

(3.9-6)

where for the special assumptions listed in Section 3.9.9.1, the partial derivatives in equa-
tion 3.9-6 become:

_r w

_--_(d,_) = -K(-d),

Oc ) 2A-d,
_-_(d, =

_-(d, =

0c

_-_-(d,_) = 0

(3.9- 7)

where K = 0fi'_t/0d is the tangent stiffness matrix. Substituting equation 3.9-7 into

equation 3.9-6 leads to the simultaneous linear equations:

K'$d = F + _ ._e_t

2Ad • _d =
(3.9-8)

where

-- / K(_) for True NewtonF = r(_],_--), _ = c(_[,]), K = . K(d,,) for Modified Newton

Solving the first of equations 3.9-8 for 8d leads to

(3.9-9)

where
m--1

_d = K

m A

= 8d +5d6_ (3.9- 10)

(3.9- 11)

* The reason for using a series of increments, instead of solving for the final solution in one

single increment, is that the Newton/Raphson method converges only if the starting solution

is sufficiently "close" to the final solution.

5/22/90 CSM Testbed Procedures Manual 3.9- 5



NL_STATIC_I Solution Procedures

Similarly, we can solve for _A, by substituting equation 3.9-10 into equation 3.9-8b, i.e.,

which yields

+ 2_a. "63 + 2(_. _3)_ = 0 (3.9- 12)

_A = -_--2Ad" 5d : Al 2-11Adli 2_ -^2Ad.6d (3.9-13)
2Ad./_d 2Ad • _d

3.9.2.4 Update Procedure

The solution update procedure - from one iteration to the next at a fixed arc-length

increment from a converged solution - consists of the following two (sequential) equations:

At_ - 2_-IIA_II _
_) 6_ = 2A_. 6_
2) 6d = _d + _d_

(3.9- 14)

where _d and 5d are first computed using equation 3.9-11, and Ad is the displacement

increment from the previous converged solution to the previous iterate of the current

solution, i.e., d -d,,.

Then we simply apply the update formulas:

d=d+gd
_ (3.9- 15)

A=A+_A

where special consideration must be given to equation 3.9-15a in the case of problems with

large-rotational degrees-of-freedom (see Section 3.9.2.10).

3.9.2.5 Predictor Solutions; arc-length-Constraint and Extrapolation Techniques

To obtain a prediction for d,,+l and A,_+l at the beginning of step rt + 1 (so that the

Newton iterations may occur within a sufficiently small neighborhood of the converged

solution), we use one of the following two procedures:

1) The arc-length constraint equation 3.9-4b

or

2) Quadratic extrapolation of a series of converged solutions

3.9- 6 CSM Testbed Procedures Manual 5/22/90



Solution Procedures NL_STATIC_I

The first approach (arc-ien9th constraint) leads to the following predictor equations:

d(a) - d. + AXO) $d.+1
n+l .... n+l

(1)
Ad.+l

n+l --
+ A£n+a

118d.+111

A_(I)
w,+l

(3.9- 16)

where the sign in front of A_ in equation 3.9-16b is taken as the sign of the determinant

of K. Equation 3.9-161 was obtained by noting that

A a(1) x'4(1) (3.9 - 17)")%+1 = v'n+l

which from equation 3.9-10 can be written as

£A(1) = _-O) ,g_(l) $d,_+1 (3.9 - 18)6_,,+a + "-,_+1""in+ 1

since

and

A_O) 6d,,+1= "_"n+ 1

i = K r_ = K 0 = 0 (3.9-19)

(_X(1) AI(a) (3.9 - 20)
"*n-I-I = *-'"n+l

Then, equation 3.9-16b follows by substituting equation 3.9-16a into the arc-length con-

straint equation

(') (3.9 21)IlAd.+,ll _-- Ae

The second approach (quadratic eztrapolation) leads to the following predictor equations:

d0) = end,, + c,-ld_-i + c,,-2d,,-2
n-I-I

._(a) = c,,._,_ + c,_-a A,_-a + c,_-2 A.-2
n+l

(3.9-22)

where (dn, g,_), (d._,,Ay,_a), and (d,_-2,)h_-2) are the converged solutions at the three

previous (consecutive) load steps, and the ci are the quadratic Lagrange interpolation
functions:

(e,,+l - l,,-2)(e.+l - e,,-1)

(t.-2 - t,,_a)(t._2 - e,,)

5/22/90 CSM Testbed Procedures Manual 3.9- 7



NL_STATIC_I Solution Procedures

The arc-length parameter, t, is computed by arbitrarily setting t,_-2 = 0, and accumulating

the incremental parameters, At. Thus,

tn-2 = 0

t,,-I = At,,-1

&, = t,,-1 + At,,

t_,+_ = t,, + At,,+1

(3.9-24)

where the arc-length increments, Ag_,-z, At,,_1, Ate,, and At,_+l are defined by the adap-

tive algorithm described in Section 3.9.2.6.

Note that unlike the arc-length-based predictor equations 3.9-16, the above extrapolation

formulas do not require any additional information to determine the direction (i.e., sign)

of the load increment. This is because the curvature of the quadratic polynomial used

for extrapolation automatically senses, and enables the traversal of, turning points in the

solution path.

Quadratic extrapolation is usually much more efficient than the arc-length constraint ap-

proach for computing the predictor solutions. In some cases, extrapolation can reduce the

number of load steps by up to an order of magnitude. However, in other cases - e.g.,

around very sharp turns in load-displacement space - quadratic extrapolation may be too

smooth to capture the sudden changes. In such cases, small, arc-length-controned predictor

steps may be the most practical strategy for getting through the critical phases. (Adaptive

algorithms for selectively switching between extrapolation and arc-length step predictors

are recommended as a topic for future research.)

3.9.2.6 Adaptive Load-Step (arc-length) Selection

To advance the solution from one load-step (n) to the next (n+l), it is also necessary to

select a new arc-length increment, Atn+l. Note that this parameter, which represents a

distance traversed along the load-displacement "curve", is (by definition) always positive,*

but may grow or shrink depending on solution difficulty. To automate the process, we use

the following simple, but fairly robust, heuristic algorithm suggested by Crisfield (ref. 3.1):

Desired number of iterations

At,_+1 = Actual number of iterations x At,_ (3.9 - 25)

where actual refers to the number of iterations required for convergence at the previous

step (n), and the deJired number of iterations is user-specified and typically around 4.

This causes the step-size to grow or shrink in direct proportion to the convergence rate

of the nonlinear solution, and generally leads to a nearly constant number of iterations

(i.e., computations) per step. In fact the number of load-steps will automatically adjust

according to the curvature of the load-displacement curve, with more steps being required

around turning points (high curvature) and less along smooth stretches (low curvature).

* This is in contrast to conventional load-controlled algorithms, which require explicit selection

of the load increment, - a parameter that may change sign at limit or bifurcation points.

3.9- 8 CSM Testbed Procedures Manual 5/22/90



Solution Procedures NL_STATIC_I

Note that the initial value of the arc-length increment, All, must be specified - at least

indirectly - by the user. However, since the user typically has no physical insight about the

magnitude of At1, we employ the arc-length constraint equation 3.9-10 to compute it in

terms of the initial load-factor, AA! - which the user can typically estimate based on some

prior linear analysis. The expression used to compute the initial arc-length increment is
thus

A_I _ )tl ]]_dl[] (3.9- 26)

which was derived by rewriting equation 3.9-16b as

At,_+l = AA,_+I llSd,_+ll] (3.9- 27)

setting n = 0 and noting that

AAI = AI-A0 = A1 (3.9-28)

The "tangential" displacement, 5dl, in equation 3.9-26 is simply the linear solution ob-

tained with the normalized external load vector as right-hand-side, i.e.,

= K-,(o)?"z' (3.9- 29)

3.9.2.7 Specified Displacements

The presence of specified-displacement loads (in addition to specified-force loads) af-

fects the above algorithm in three subtle - but important - ways:

i) It modifies the definition of the residual force vector, r, since the internal force

vector, fi_t, becomes a function of the load-factor, A.

ii) Due to the above dependence, the derivative of r with respect to A gains an ad-

ditional term , which in turn modifies the definition of the tangential displacement

vector, _d.

iii) The specified displacement components must be included in all displacement norms

and inner products appearing in the arc-length constraint equation, and in the

computation of nonlinear error estimates.

The above modifications can be expressed mathematically as follows. First, define a spec-

ified displacement vector, d', which has zeros everywhere except in the components that

are user-specified. Further assume that this specified displacement vector is scaled by the

same load-factor, A, as the external force vector, i.e.,

d" -- Ad° (3.9- 30)

where d" is a normalized vector containing the reference (_ = 1) values of specified displace-

ment. The expression for the residual force vector, equation 3.9-4, can then be re-written

as
Aezt

r(d,A) = Af - fi"'(d,d °) (3.9-31)

5/22/90 CSM Testbed Procedures Manual 3.9- 9



NL_STATIC_I Solution Procedures

and its derivative with respect to A in equation 3.9-7 becomes

Or _ezt Of in_ Od" _ _ez, Of int
0A - 0d ° 0A 0d ° _° (3.9 - 32)

But:
0fint

- K "° (3.9 - 33)0d °

where K _'° is the partition of the tangent stiffness matrix that couples specified displace-

ment increments to unknown force increments, i.e., the eztended stiffness matrix may be

partitioned as

K* = K°,, Ko,

where K "u is the active block of the stiffness matrix, i.e., in the present terminology:

K = K"" (3.9 - 35)

Thus, the new load-derivative of the residual force vector may be expressed as

Or __ ._ezt [- K "° d° (3.9 - 36)

and the corresponding tangential displacement vector from equation 3.9-11b becomes:

= g-'8"" (3.9- 37)

where the superposed bar is defined in equation 3.9-9.

Note that the solution indicated in equation 3.9-37 is much like what is required for linear

analysis with specified displacements: The right-hand-side is modified by multiplying a

part of the extended stiffness matrix times the (normalized) specified displacements. This

is in contrast to the solution for 6d in equation 3.9-11a, where specified displacements are

accounted for exclusively through their nonlinear dependence in the residual force vector,

3.9.2.8 General Loading (e.q., "Live" Loads)

The last restriction we shall lift is the simple form of the external force vector given in

equation 3.9-4a, i.e., we shall replace:

by

f ,t =

fe,t = A?effit(d)

(3.9-38)

(3.9-39)

3.9- 10 CSM Testbed Procedures Manual 5/22/90



SolutionProcedures NL_STATIC_I

This allows for the kind of displacement-dependent(or "live") loading that arises from

hydrostatic, or follower, forces. The residual force vector then becomes

and the only modifications to equations 3.9-7 are that i) the tangent stiffness matrix

acquires a load.stiffneJJ contribution, i.e.,

Or _(K,n_tl KZoad)
O-'d=-K = + K °'°'_ + (3.9-41)

where
Of e-_

K l°'d -- (3.9 - 42)
ad

and ii) the external-force contribution to the tangent load vector, r x, is no longer a con-

stant, i.e.,

Or=
0A fe_(d)- K_°(d)d" (3.9-43)

Note that we have not allowed for a general external-load history, in which both the

magnitude and direction of the external force vector may change from step to step, e.9.,

fe_,z = f_ffit(d,A ) (3.9-44)

Nor have we allowed for multiple load-factors, _a, _b, • • •, which can arise when several inde-

pendent load systems are acting on a structure. Such complications require straightfoward

generalization of the present arc-length algorithm, and will be considered as necessary for

future applications.

3.9.2.9 Convergence Criteria

As a measure of the error in the nonlinear equilibrium equations (not including discretiza.

tion errors), we use an energy norm, which is the inner product of the residual force vector

and the iterative displacement-change vector. This is effective for two reasons: i) it involves

only a single error norm, in contrast to algorithms that check displacement and residual

errors independently; and ii) the inner product of force and displacement introduces a

natural scaling of different types of generalized freedoms (for example rotational freedoms

versus translational freedoms) - by weighting each generalized displacement with its cor-

responding (conjugate) generalized force. Thus, sensitivity to physical units and choice of

independent variables is minimized.

Convergence of the nonlinear solution process at a given load-step, n + 1, is checked by

evaluating the following energy error norm at each iteration, i:

II lln+Ilerr°rlI(i) i / (i) £A(i): Vrn+l • v,,..n+ 1
(3.9-45)

5/22/90 CSM Testbed Procedures Manual 3.9- 11



NL_STATIC_I Solution Procedures

and comparing it with some user-specified fraction of a reference error norm. Thus, con-

vergence is defined as satisfaction of the condition:

re!Ilerrorll  + ___tolerance x Ilerrorll +, (3.9 - 46)

where tolerance is the user-specified fraction, and the reference error is defined as:

,-,y MAX(llerrorll +)l, IlerrorllTI)Ilerrorll,,+l = (3.9 - 47)

Note that at the first load-step, Ilerrorll/y) is assumed to be zero.

The above convergence criterion can be very sensitive to the user-specified error tolerance.

Typically, a value of 10 -s is adequate, but for some problems this may be an order of

magnitude too large - or even too small (i.e., causing more iterations than are actually

needed). More adaptive and robust error tolerances are a recommended topic for future
research.

3.9.2.10 Large Rotations

In problems involving rotational freedoms, e.g., with beam or shell elements, the following

modification to equation 3.9-15a is used when the rotation angles become large (say greater

than 10 degrees). First, note that the system displacement vector, and its iterative change,

are typically partitioned by nodes, i.e.,

{d/ / }d2 _d2
d = . , 5d : . (3.9-48)

dNnodes 6dNnodes

where Nnodes is the total number of nodes in the problem. At nodes with both translational

and rotational freedoms we can further partition:

{}UA 6dA = (3.9-- 49)
dA = TA ' _OA

in which
uA = translation at node A

5uA = iterative change in translation at node A

TA = rotation triad at node A

60A = iterative change in rotation pseudo-vector at node A

Thus the total displacement, dA, is represented by the combination of a nodal translation,

and a nodal triad that describes the orientation of a "rigid body" attached to the node. The

iterative change in displacement, _dA, is represented by an iterative change in translation,

and an iterative change in a rotation pseudo-vector. The latter quantity uniquely describes

iterative changes in the rotation triad.

3.9- 12 CSM Testbed Procedures Manual 5/22/90



Solution Procedures NL_STATIC_I

With the above definitions, the modified version of equation 3.9-15a at an individual node

may be written as follows. For the translational freedoms we simply have:

UA : U--A+ /_UA (3.9--50)

whereas for the rotational freedoms we use:

{TA = eZp(5OA)TA ] (3.9- 51)

where ezp(50A) is the ezponential of 50A, which is an orthogonal (rotation) matrix whose

rotation angle and direction correspond to the magnitude and direction of the pseudo-

vector g0A. The following explicit expression for this matrix is known as as "Rodriguez'

formula" (see, e.g., ref. 3.2):

sinO (1 - cos O) ®2 (3.9-52)
ezp(O) = I + _0 + 02

where 0 is the skew-symmetric matrix corresponding to the pseudo-vector, O, i.e.,

for any vector h, so that

Oh = 0 × h (3.9-53)

0 -0s 02]
® = 0a 0 -01 ,

-02 01 0

and 0 is the magnitude of 0, i.e.,

{01}0 = 02 (3.9 - 54)
0s

0 - II011= V/0 + o22+ og (3.9 - 55)

where Oi(i = 1,2, 3) are Cartesian components of 0. Note that the pseudovector, 0, behaves

as a true vector in all ways except for vector addition - since the sum of two arbitrary large

rotations is not a vectorial sum (see refs. 3.3or 3.4for the rules of rotation pseudovector

addition).

The rotation update formula given by equation 3.9-19 need only be performed at nodes

with rotational freedoms. It may also be used to perform incremental updates as well as

iterative updates, i.e.,

T_ +1 = ezp(AOA)T_ (3.9- 56)

The above relation is employed in the computation of the predictor solutions described by

equations 3.9-16 or 3.9-22. For the eztrapolated predictor (equation 3.9-22), the extrapo-

lated rotation triads are obtained by: i) extrapolating the rotational components of the

displacement vector precisely as indicated by equation 3.9-22a; ii) computing the rotation

increments between steps n and n -k 1 by subtracting the rotational components of dn

from those of the extrapolated vector, d,_+l; and iii) plugging the corresponding rotation-

increments (AOA) into equation 3.9-56. Note that while the rotation components of the

"total" displacement vectors, d_ and d_ +1 are meaningless for large rotations, the differ-

ence between these to vectors defines a valid incremental rotation pseudo-vector, AOA.

5/22/90 CSM Testbed Procedures Manual 3.9- 13



NL_STATIC_I Solution Procedures

3.9.3 ALGORITHM

General Algorithm

(1) STEP LOOP: for n = 2, 3, 4... (step = n+l)

(1.1) Extrapolate Solution for Predictor

call EXTRAP ( At,_+l,Atn, At._l ---,

:_(1) -- c.A. + c.-1A.-1 + c,_-2A.-2
n+l --

d(1) -- c.d. + c.-ld.-i + c.-2d._2
n+l --

Ad(:)l -- d(1)n+l -dn

A_(1) _(1) A."'n+l _ "'n+l-

Cn_Cn--l_Cn--2 )

q,(1) _ R(Ad_)1)T.)_" n-F1 --

(1.2) Solve for Tangential Displacement based on Predictor

16a = K-l_d(l), [_..t
]

(1.3) Form Residual based on Predictor

rO) __a(1) x(1) _ _(i) _e_t fl.traO) ,_
n+l _ rl, u.+l'".+l/ = "'n+l-- -- _,_.+11

.0) ^aO) _1),callCHK_CONV ( .._Fl,_-_--._t_l,ere f ---+ ¢-ref )

(2) ITERATION LOOP: i = 1, 2,...(iter = i+1 = 2, 3,...)

(2.1) Solve for Basic Iterative Displacement Change

I I6d K-lrdO) _ _(0
--" k n+l/ l'n+l

(2.2) Solve Linearized arc-length Constraint Eqn for New Load Factor

Al 2 Ad (0 Aa(/) (/)- .+I " _,+1 - 2(Ad.+l " 6d)
8A=

(0
2(Ad.+ I • 6a)

A(/+I) x(O
.+I = "'.+I + 6A

3.9- 14 CSM Tcstbed Procedures Manual 5/22/90



Solution Procedures NL_STATICA

(2.3) Update Displacements

d(i+l) A(1) ['i_(i+1) R(Sd) 'v(1)n+l = "_n+l +6d k--,,+l = --,,+11

A,.I(i+I) Aa(i)
_n+l = "-'-n+l+6d

(2.4) Compute New Residual

r(i+l) _[a(i-I-1) 1(i+1)_ ),(i+ 1 _F'_fezt fint{tt(i+l)_
n+l = r[Un+l _"n+l I = "*n+l " "- - k'_n+l I

(2.5) Check Convergence

call CHK_CONV ( r(_),6d,_i),e,.,f,Ftoh num_div

_i+_), <CONVERGED>, <DIVERGED> )

if ( <CONVERGED> ) then

num_iters_required = iter

At,,+2 = Al,,+l/' num_iters_desired
\ num_iters_xequired)

n+--n+l

go to (1) STEP LOOP

elseif ( <DIVERGED> .or. (iter > max_iters) ) then

if ( hum_cuts < max_cuts ) then

At,,+1 = At,,+1/2

num_cuts = hum_cuts + 1

go to (1.1)

else

endif

else

endif

STOP

i_---i+l

go to (2) ITER LOOP

5/22/90 CSM Testbed Procedures Manual 3.9- 15



N _Sl A'I IC_ Solution Procedures

Starting Procedure: Step 1 (n--0)

Replace Algorithm Steps (1.1)-(1.2) by:

d_°) = 0

_ = K_](d_0) ) [_e_t + K_,_°]

_I) = )_.ta.t (user specified)

de, = A_')IlSdll

d_') = Ad]')

( Also, form K(d_ ')) before next solve. )

Starting Procedure: Step 2 (n:l)

Replace Algorithm Steps (1.1)-(1.2) by:

d_ °) == d,

,a : _ ,/<0,)It"+_-.a']

A_a)

Ad_ 1)

d_ 1)

:: zxe_/llSall

= )_1 + A,_(21)

:dl + Ad_ 1) (T_I) : R(Ad_I)T1)

( But don't reform K(d_ ])) until step 3. )

3.9- 16 CSM Testbed Procedures Manual 5/22/90



Solution Procedures NL_STATIC_I

CIIK_CONV: Procedure to '_---'-•.,,,_c_ Convergence

Input: r, bd, _i), ereI, e"tol, hum_cUr, iter

uu_puL: e"'-', num_mv, <._ul_vr_r_r_, <DIVERGED>

(1) Compute Energy Error Norm: e(I+1) =

(2) Normalize: _i+I) fee(i+I)
= V r 7.1

(3) Check Convergence / Divergence:

if ( e"(i+1) < e'zol ) then

<CONVERGED> = TRUE

else

if( e-'(i+I)> e-'(1)) then

num.fliv = num_div + 1

if ( num_div > 1 ) then

endif

[r. gdl

endif

endif

<DIVERGED> = TRUE

Modification for Iteration : 1 (i=O):

(1.5) if ( iter = I ) then

if (cO) > e,._! ) then

ere f = e0)

endif

endif

5/22/90 CSM Testbed Procedures Manual 3.9- 17



f, r'_ "1N I,_S I A 1 IC_I Solution Procedures

EXTRAP: Procedure to Compute Quadratic Extrapolation Coefficients

Input: Agn+l, Aln, Aln__1

Output: cn, On-l, On--2

grt- l _" lXg--n- !

g,, = e,_-i + Ae,_

g,_+_ :-- gn -)- Agn+_

Agt,,L _:, g_,)-i -- g.... l

(e.+,)(Ae,o,)
_" = (e.)(Ae.,)

_lr_ -- 1 ---.s

(gn-_ l)(Aen+l)

(e._,)(zxe.)

(Agn-)l )( Agtot)

c.__ = (e._,)(e.)

3.9-18 CSM Testbed Procedures Manual 5/22/90



SolutionProcedures NL_STATIC_I

3.9.4 pl_n_'_.l'tTTll_E USAGE

Procedure NL_STATIC_I may be invoked by the *call directive:

*call NL_STATIC_I ( argl =vall; ar82 = val2; "")1

where argi are argument names and vali are the corresponding values you wish to give

them. The following are valid arguments for procedure NL_STATIC_I; note that those

without default values are mandatory, while the others are optional.

Argument

BEG_LOAD

BEG_STEP

MAX_LOAD

HIN_LOAD

MAX_STEPS

Default Value Meaning

Starting load factor (>0.)

Starting step number (>0)

Upper_bound on load factor
Lower_bound on load factor

Maximum steps to compute
COROTATION 1

DES_ITERS 4

EXTRAPOLATE <true>

FAC_STEPS I

MAX_ITERS 9

MAX_CUTS 3

NL_GEOM 2

NOMINAL_DB NOMINAL.GAL

NOMINAL_DS RESPONSE.HISTORY

N_SELECT 0

PATH_SCALE 1.

SEL_NODES 0

SEL_DOFS 0

TOL_E 1.E-3

Corotational Update Option

Number of iterations per step desired

Perform quadratic extrapolation of solution

Steps_per_refactoring

Maximum iterations per step

Maximum number of successive step cuts

Geometric Nonlinearity Level (1 or 2)
Results database file

Results dataset

Number of nodes for selected disp. output

arc-length scale factor for restarts

List of nodes for selected output

Corresponding list of nodal freedoms (1-6)

Relative error tolerance in energy norm

In the above definitions, the term step refers to a load step. The total response is auto-

matically subdivided into load steps, with the starting load factor prescribed by the user

- using BEG_LOAD. Subsequent load step sizes are automatically selected by the algorithm,

using an arc-length constraint, as described in the theory section.

5/22/90 CSM Testbed Procedures Manual 3.9- 19



NL_STATIC_I Solution Procedures

Table 3.9-1

Dataset

< ES..N AME>.EFIL.O.nnod

Datasets Input/Output by procedure NL_STATIC_I

ES.SUMMARY.O.nnod

D EF. <ES_N AME>.O.nnod

D IR. < ES_N AME>..O.nnod

INC.DISP

INT.FORC.step

JDF1.BTAB.1.8

JLOC.BTAB.2.5

PROP.BTAB.,

QJJT.BTAB.2.9

TOT.DISP.ste p

TOT.ROTN.step

Description

Element Computational Data

ES Processor Status

Element Defn. (Connectivity)

Element EFIL Directory

System Displacement Vector

Nodal Rotation Pseudovectors

Model Summary

Nodal Coordinates

Material/Section Properties

Nodal Transformations

System Displacement Vector

System Force Vector

Lib Input Output

1 q q

1 _/ V/

i q

1 q

1 _/ _/

1 v/ _/

1 q

1 q

1 q q

where step is the load-step number, and ranges consecutively from 1 to the total number

of steps computed.

3.9- 20 CSM Testbed Procedures Manual 5/22/90



Solution Procedures NL_STATIC_I

Table 3.9-2

Procedure

NL_STATIC_I

Sub-Procedures Invoked by procedure NL_STATIC_I

Type

:Internal

Function

Main procedure

CHKCONV Internal Check convergence

DEFNS Internal Defines recursive macrosymbols

ES External Element utility procedure

EXTRAP Internal Quadratic extrapolation for next load step

INITIAL Internal Initialize displacements and rotations

POSTSTEP Internal Print load step summary

POSTRESS Internal Archiveload step data

RESIDUAL Internal Forms residual-force vector

SOLVE Internal Solves linear equation systems

STIFFNESS Internal Forms and factors stiffness matrix

InternalTANDIS Solves for tangential displacements

3.9.5 ARGUMENT DESCRIPTION

3.9.5.1 BEG_LOAD

Starting load factor ()u) for the nonlinear analysis. For applied force loading, this factor

is multiplied by the reference applied force vector to obtain the starting load vector, i.e.,

_=* = A, i""

where _.ezt is the reference applied force vector stored in data.set APPL.FORC.1. For

applied displacement loading, the starting load factor is applied to the reference applied

displacement vector, which is then used to compute the initial internal force vector, i.e.,

f_nt(1) = fln,(A I _eft)

where _,,t is the reference applied displacement vector stored in dataset APPL.MOTI.1.
i

Note that this argument is irrelevant for re-start runs (i.e., BEG_STEP > 1).

5/22/90 CSM Testbed Procedures Manual 3.9- 21



NL_STATIC_I Solution Procedures

3.9.5.2 BEG_STEP

This argument defines the number of the first step to be computed in a given nonlinear

analysis intervM. It is important primarily for analysis re-starts. Initially, BEG_STEP should

be set to 1. To continue an analysis in a subsequent run, after having computed and saved

"n" steps in the previous run, one would typically set BEG_STEP equal to "n+l". For

example, if the 10th step was successfully completed in the first run, then it could be

continued in a second run by setting BEG_STEP : 11. However, it is not necessary for

BEG_STEP to be larger than any previously computed step. That is, you may re-compute a

sequence of steps by setting BEG_STEP to the number of the first step to be re-computed.

The procedure will automatically use those steps which immediately precede BEG_STEP

(e.g., BEG_STEP-I, BEG_STEP-2 and BEG_STEP-3) to smoothly effect the restart.

3.9.5.3 COROTATION

Corotational update switch for large-rotation problems (default: <true>). This switch

should be set to <true> when the model involves finite elements that require corotation

for geometric nonlinearity. This is true of most beam and shell dements, and may be

true for some solid (3D) elements used to model shell structures. Consult the appropriate

element processor (ESi) section in the CSM Testbed User's Manual (see ref. 3.9-5) for

specific guidelines.

3.9.5.4 DEBUG

Procedure debug switch (default: <false>). This switch should only be turned on to

obtain additional diagnostic printout for procedure debugging.

3.9.5,5 DES_ITERS

Desired number of iterations allowed for convergence at a given load step (default=4).

This parameter is used to adaptively adjust the arc-length increment from one load step

to the next, by comparing DES_ITERS with the actual number of iterations required for

convergence at the last step.

3.9.5.6 EXTRAPOLATE

Solution extrapolation switch (default: <true>). Extrapolation here refers to a technique

for predicting the displacement vector and load factor at the beginning of a new load step,

by fitting a quadratic curve through the converged solutions at the three previous load

steps. It has been found to be a very effective strategy for accelerating traversal of the

load-displacement "curve", i.e., far fewer load steps axe usually required with extrapolation

turned on, than with it turned off. One exception is near very sharp turns in the load-

displacement curve, where extrapolation may be too smooth to follow the curve, and may

have to be temporarily suppressed. (Note: EXTRAPOLATE = <false> option has not been

fully tested.)

3.9- 22 CSM Testbed Procedures Manual 5/22/90



Solution Procedures NL_STATIC_I

3.9.5.7 FAC_STEPS

Number of load steps between updating (formation and re-factoring) of the stiffness matrix

default --- 1). FAC_STEPS ----n implies that re-factoring will be performed every rt steps,

starting with the first step of the analysis interval (BEE_STEP). Best results are often ob-

tained by allowing the procedure to re-factor at the beginning of each load step (FAC_STEPS

- 1).

3.9.5.8 MAX_CUTS

Maximum number of step cuts permitted during the current nonlinear analysis interval

(default:3). A step cut refers to a halving of the arc-length increment used to advance

the solution from one step to the next. Step cuts are performed only if the maximum

number of iterations are exceeded without converging at a given load step. Note that the

relationship between the increment in "arc-length" and the increment in the load-factor,

_, is computed internally by the procedure.

3.9.5.9 MAX_ITERS

Maximum number of iterations allowed for convergence at a given load step. This param-

eter is used to terminate the iteration process at a given load level. If convergence hasn't

been obtained after MAX_ITEltS iterations, the load (i.e., arc-length) increment is cut in

half and the step is repeated - until either convergence has been obtained or HAI_CUTS has
been exceeded.

3.9.5.10 MAX_LOAD

Maximum load factor. This sets an upper limit on the load level, and thus provides a

convenient way of terminating the arc-length controlled solution algorithm. Since the load

factor is actually an unknown in procedure NL_STATIC_I, there is no way of knowing a-

priori how many load steps will be required to attain a particular load level. The nonlinear

analysis is terminated when either MAX_LOAD,MIN_LOAD, NAX_STEPS or I_X_CU'rS is exceeded
- whichever comes first.

3.9.5.11 MAX_STEPS

Maximum number of load steps to compute in the current nonlinear analysis run. This

provides an implicit limit on analysis run-time. Since the load factor is actually an unknown

in procedure NL_STATIC_I (controlled by the arc-length constraint), there is no way of

knowing a-priori how many load steps will be required to attain a particular load level.

The nonlinear analysis is thus terminated whenever I_tX_STEPS, HIN_LOAD, MAX_LOADor

HAX_CWrSis exceeded - whichever comes first.

3.9.5.12 MIN..LOAD

Minimum load factor. This sets a lower limit on the load level, and thus provides a

convenient way of terminating the arc-length controlled solution algorithm. Since the load

5/22/90 CSM Testbed Procedures Manual 3.9- 23

ORI_;_-':_._. _._,'SE IS

OF POOR (_UALITY



NL_STATIC_I Solution Procedures

factor is actually an unknown in procedure NL_STATIC_I, there is no way of knowing

priori how many load steps will be required to attain a particular load level. The nonlinear

analysis is terminated when either NIN_LOAD, HAX_LOAD, MAX_STEPS or NAX_CUTS is exceeded
- whichever comes first.

3.9.5.13 NL_GEOH

Geometric nonlinearity level: 0, 1, or 2 (default :2). A value of zero means that the

problem is geometrically linear; a value of one means that the geometric nonlinearity will

be handled globally (i.e., using corotational updates only); and a value of two means that

the nonlinear element strain-displacement relations will be used in addition to any global

treatment of geometric nonlinearity. If C01_0TATION = <true>, options 1 and 2 refer to

first-order and second-order corotation, respectively. The latter option can be significantly

more accurate than the former for a given finite element model - depending on which

element types are involved.

3.9.5.14 NOHINAL_DB

Name of database (GAL file) where a step-wise history of important solution parameters

and selected response variables is to be stored (default = NOHINAL. GAL).

3.9.5.15 NOHINAL_DS

Name of dataset, within database defined by argument HONINAL_DB, where a step-wise

history of important solution parameters and selected response variables is to be stored

(default = ItESPONSE.HISTORY). See the CSM Testbed Dataset Manual (ref. 3.9-6), under

dataset RESPONSE. HISTORY, for a description of the individual data records stored in this
dataset.

3.9.5.16 LSELECT

Number of user-selected displacement components to be saved in the dataset specified

by argument NOHINAL_DS (default =0). Values for these displacement components, the

locations and directions of which are specified by arguments SEL_NODES and SF.L_DOFS,

respectively, are stored at every load-step.

3.9.5.17 PATH_SCALE

This floating point number represents a scale factor to be applied to the incremental

arclength (or pathlength) used for the first step of an analysis re-_tart run (default :1.0).

If the default (1.0) is used, the arc-length increment from the previous step BEG_STEP-1

will be used for the first step BEG_STEP. Note that this may lead to a different load-step

size than if the analysis had continued to step BEG_STEP without a re-start. To eliminate

this difference, the user can set:

[PATH_SCALE] ffi[DES_ITERS] / act_iters

where "act_iters" is the actual number of iterations required for convergence at step

[BEG_STEP] -1.

3.9- 24 CSM Testbed Procedures Manual 5/22/90



Solution Procedures NL_STATIC_I

_.w.5.18 SEL_DOFS

List of nodal degrees-of-freedom at which displacement histories are to be saved in dataset

NOHINAL_DS (default =1.0). There should be N_SELECT numbers in the list, in correspon-

dence with the node numbers specified by argument SELJODES. Values of each number

in the list must range between 1 and 6, in correspondence to the nodal degree-of-freedom

sequence (e.g., u, v, w, 0ffi,0y, 0z) specified by the START command of processor TAB.

3.9.5.19 SEL__ODES

List of node numbers at which displacement histories are to be saved in data.set NOMINAL_DS

(default =0). There should be LSELECT numbers in the list, and node numbers can

be repeated if more than one nodal degree-of-freedom is to be saved at a node. The

corresponding nodal degree-of-freedom for each entry is specified by argument SEL_DOFS.

3.9.5.20 TOL_E

Error tolerance used to establish convergence of the nonlinear equilibrium iteration proce-

dure at each load step (default =1. e-3). The iteration loop at a given step is terminated

whenever the following condition is met:

< [TOL _-]

where

Jr(/). $d (i)

= Vr(1 ) 6d (1)

is the relative energy error norm, r is the residual force vector, _d is the iterative displace-

ment change, and i is the iteration counter.

5/22/90 CSM Testbed Procedures Manual 3.9- 25



NL_STATIC_I Solution Procedures

3.9.6 PROCEDURE FLOWCHART

NL_STABIL_I

DEFNS

INITIAL

ES

EXTRAP

STIFFNESS

TANDIS

SOLVE

RESIDUAL

ES

CHKCONV

POSTSTEP

POSTRESS

(main procedure)

(define recursive macrosymbols)

(initial displacements and rotations)

(initialize element data)

(quadratic extrapolation for next load step)

(form and form stiffness matrix)

(solve for tangential displacements)

(solve linear system of equations)

(form residual-force vector)

(calculate residual)

(check convergence)

(print load step summary)

(archive load step data)

3.9- 26 CSM Testbed Procedures Manual 5/22/90



Solution Procedures NL_STATIC_I

I JIIVII .L J_L.JL lv, J J._l ,_P

3.9.7.1 Number of Database Libraries

(i.e., file), and that file is expected to be attached to logical device index 1 before calling

procedure NL_STATIC_I. Additionally, important analysis statistics and re-start parame-

ters, as well as selected post-processing data, will be deposited in a separate data library,

which is automatically opened by procedure NL_STATIC_I on logical device index 3. The

name of this secondary library is user-specified using procedure argument NOMINAL_DB,

which has the default setting: NOHINAL_DB ffi NOMINAL.aAL.

3.9.7.2 Element Types

Only shell elements have been tested thus far with procedure NL_STATIC_t. While the

procedure is potentially compatible with beam and solid elements too, minor modifications

to the generic element processor may be required to handle geometric nonlinearity for these
elements.

3.9.7.3 Number of Load/Constraint Systems

Only one set of loads and constraints is accommodated by procedure NL_STATIC_I. Fur-

thermore, they must be referred to as load set 1 and constraint set 1 in the database.

3.9.7.4 Specified Rotations

Specified (non-zero) rotational freedoms are currently not implemented in procedure

NL_STATIC_I -unless rotation angles remain moderately small (i.e., less than 10 degrees).

For larger rotations, the specification of rotation components constitutes a nonlinear con-

straint, which must be translated into the motion of nodal rotation triads, and requires

a modification to the linearized equilibrium equations. This capability is planned for a

¢"' .... version "r ..... .I.... NL_TATIC_I.
J, t4 U_A _, W._, J_'L V_,I.A tAA 1.t

3.9.7.5 Material Nonlinearity

Only geometric nonlinearity is accounted for by procedure NL_STATIC_I. However, this lim-

itation is really due to current limitations within the generic element processor; the global

nonlinear solution algorithm doesn't particularly care about the 8ource of the nonlinearity,

as long as it is properly represented by the tangent stiffness matrix and the residual force

vector.

3.9.7.6 Re-Startlng from Step 1

It is currently not permitted to re-start the analysis from step 1 (i.e., re-run the problem

from the beginning) unless you either: i) delete the database and recreate the model, or ii)

*enable the original APPL.MOTI and APPL.FORC datasets. The reason for this is that

the original APPL.MOTI and APPL.FORC datasets are copied into new datasets - and

marked for deletion - by procedure NL_STATIC_I whenever BEG_STEP = 1. This limitation

will be removed in the next version of NL_STATIC_I.

5/22/90 CSM Testbed Procedures Manual 3.9- 27



NL_STATIC_I Solution Procedures

3.9.7.7 EXTRAPOLATE Must be Turned On

Extrapolation is the only form of load/displacement step prediction that has been thor-

oughly tested. Without extrapolation, procedure NL_STATIC_I is supposed to use the arc-

length constraint equation to generate a predictor solution (see theory section), and use

information regarding the sign of the stiffness determinant to determine the load direction

(increasing or decreasing) between one step and the next. However, the no-extrapolation

option has not yet been quality assured. Note that the extrapolation option is the recom-

mended approach anyway.

3.9.7.8 True-Newton Iteration

Only modified Newton/Raphson iteration is provided by the current version of procedure
NL_STATIC_I. This means that the stiffness matrix is re-formed and re-factored only at the

beginning (first iteration) of every FAC_STEPS load steps (where FAC_STEPS = 1 by default).

In the next version, we plan to implement the option for true Newton/Raphson iteration,

in which the stiffness matrix can be updated at each iteration of sdected load steps. This

option can be useful for problems with limit points that are nearly as sharp as bifurcation

points.

3.9.7.9 Constant Load-Increments

Currently, all load increments (except the first one) are computed automatically by proce-

dure NL_STATIC_I, using the arc-length constraint equation. Therefore, it is not possible

for the user to fix the load increment, as is done in conventional load-controlled algorithms.

Since this option may be useful for benchmarking (and research) purposes, we plan to in-

dude it in a future version of the procedure, wherein the arc-length constraint equation

will be selectively bypassed.

3.9.7.10 Singularities due to Limit Points and Bifurcations

Procedure $L_STATIC_I cannot handle singularities in the stiffness matrix that arise when

the load-stepping algorithm lands too close to a limit point, or attempts to traverse a

bifurcation point. (Note: Singularities due to limit points are overcome by procedure

NL_STATIC_2. )

3.9.8 ERROR MESSAGES AND WARNINGS

3.9.8.1 "Non-Convergence at Step n. Revise Strategy."

This message means that the maximum number of nonlinear iterations (MILITEItS) has

been exhausted, as well as the maximum number of step cuts (MtLclrrs), and convergence

still hasn't been obtained at step n. A possible cure is to re-start the analysis from several

steps back, and decrease the arc-length increment at that point (using the PATILSCALE

argument). However, just increasing MAI_ITERS or MAX_ClrrS, or even TOL_E, may also

solve the problem. In other words, re-think the definition of all solution parameters based

on the observed behavior of the solution algorithm just prior to the break-down.

3.9- 28 CSM Testbed Procedures Manual 5/22/90



Solution Procedures NL_STATIC_I

3.9.8.2 "Divergence at Step n. Revise Strategy."

This message has similar implications to the previous message, but it occurs when the

error grows instead of decreases during two successive nonlinear iterations. The difference

h,_tffi,,.- ,_;,_,-'g,'nce _.,4 non-convergence is ,L_, .,: ......... ,.................. _l,_,_ uiw,8_._ cmanot be curea by increasing

I_X_ITERS; and probably should not be "cured" by increasing TOL_E. It generally means

that the step-size is too big - or that the error tolerance (TOL_E) has been too big all

along, so that changes are occurring suddenly that should have been detected by the

solution algorithm at earlier load steps. Thus, you might try re-starting from an earlier

step, reducing PATH_INC, and possibly reducing TOL_E as well.

3.9.8.3 "Specified Displacements are Identically Zero"

This is not necessarily an abortive error. As long as either nonzero specified displacements

or specified forces are defined, the solution can proceed - in which case the message should

be taken merely as a warning.

3.9.8.4 "Specified Forces are Identically Zero"

This is not necessarily an abortive error. As long as either nonzero specified displacements

or specified forces are defined, the solution can proceed - in which case the message should

be taken merely as a warning.

3.9.9 USAGE GUIDELINES AND EXAMPLES

Procedure HL_STATIC_I may be used by preceding the procedure name by the *call di-

rective. Procedure arguments may be changed from their default values by including any

or all the arguments and their new values when the procedure is called. A space or blank

is required between the end of the procedure name and the left parenthesis.

*call NL_STATIC_I ( --

beg_step =1 ; --
max_steps=l ; --
max iters=9 ; --
des_iters=4 ; --

fac_steps=l ; --
n_x_cutsf3 ; --
tol_e=l.E-3 ; --
beg_load ; --
max_load ; --
min_ioad ; --
path_scale=l.; --
extrapolate=<true>
line_search=l.;--

debug=<FALSE>; --
NL_GEON = 2 ; --

Starting step number (>0)

• Maximum steps to compute
• Maximum iterations per step
• Number of iterations desired

Steps_per_refactoring
• Maximum number of step cuts
• Energy error tolerance
• Starting load factor (>0.)
• Upper_bound on load factor
• Lower_bound on load factor
• Path_inc scl_factor (restart)

Initial line-search parameter
• Debug_print switch
• Geom. Nonlin. Level (112)

COROTATION=I ; -- . Corotational Flag (leave on!!)
Nominal.DB = NOHIN£L.GAL ; -- Selected Output
Nominal_DS = RESPONSE.HISTORY ; --
N_SELECT ; SEL_NODES; SEL_DOFS )

5/22/90 CSM Testbed Procedures Manual 3.9- 29



NL_STATIC_I Solution Procedures

3.9.9.1 Starting an Analysis

To begin a nonlinear static analysis with procedure NL_STATIC_I, it is only necessary that
the finite element model be defined. This does not require pre-formation of element stiffness

matrices, node renumhering for optimal factorization time, or any form of linear analysis

(unless initial geometric imperfections are based on linear displacement modes). Only

nodal coordinates/transformations, material properties and element connectivity are pre-

requisite to nonlinear analysis. To invoke procedure NL_STATIC_I, only those arguments

that don't have default values (see procedure usage section) need be specified.

For example, suppose you wanted to start an analysis with an initial load-factor of .1, a

maximum load-factor of 1., a minimum load-factor of 0., and compute no more than 20

load-steps. You could then invoke the procedure as follows:

•call NL_STATIC_I (BEG_STEP = 1 ; MAX_STEPS = 20 ; --

BEG_LOAD = .I ; MAX_LOAD = 1. ; MIN_LOAD = O. )

Keep in mind that the number of load-steps actually performed during the above run

will depend on the number of adaptively-sized arc-length increments needed to attain the

maximum load level. Since it may be difficult to estimate this in advance, you may want

to start with only a few load-steps (e.g., set MAX_STEPS = 3) to get some experience, and

later re-start the analysis with more steps allowed.

3.9.9.2 Re-Starting (or Continuing) an Analysis

To re-start an analysis from a previously computed, converged solution, you need only

specify the first step to compute as argument BEG_STEP. If the EXTI_P0LATE argument is

activated (which is the default), the three solution steps immediately preceding the one

you wish to compute must be resident on the database. If the EXTRAPOLATE argument is

turned off, only one preceeding solution step is required. Thus, to continue an analysis

that has already produced ten load steps, you could issue the call:

•call NL_STATIC_I (BEG_STEP = 11; MAX_STEPS = 100 ; --

MAX_LOAD = I. ; MIN_LOAD = O. )

Note that the argument BEG_LOAD is not necessary for a continuation (or re-start) run;

the new load level is automatically computed using the preceeding value of the arc-length

increment. However, you can modify the new increment, by using the PATH_SCALE argu-

ment, which is a scale factor applied to the previous arc-length increment to generate the
new increment. The default value of PATH_SCALE is 1.0.

3.9- 30 CSM Testbed Procedures Manual 5/22/90



Solution Procedures NL_STATIC_I

Furthermore, on analysis continuations/restarts, you are free to modify any of the other

solution parameters (i.e., procedure arguments). For example, you may want to increase

IUtX_ITERS, reduce TOL_E, or even change DES_ITF_£S. The default values for these solu-

tion parameters are not suitable for all problems; they are useful primarily for gaining

experience by trial and error.

3.9.10 PROCEDURE LISTING

=DECK NL_STATIC_I

*procedure NL_STATIC_I ( --

beg_step =1

max_steps=l
max_itersffi9

des_iters=4

fac_steps=l
max_cuts=3
tol_e=1.E-3

beg_load
max_load"

n_n_load

; -- . Starting step number (>0)

; -- . Maximum steps to compute
; -- . maximum iterations per step
; -- . Number of iterations desired

; -- . Steps_per_refactoring
; -- . Maximum number of step cuts

; -- . Energy error tolerance
; -- Starting load factor (>0.)

; -- . Upper bound on load factor
; -- . Loser_bound on load factor

*Remark

path_scale=l.; -- . Path_inc scl_factor (restart)

extrapolatef<true> ; --

line_search=l.;-- Initial line-search parameter

debug=<FALSE>; -- . Debug_print switch

NL_GEON = 2 ; -- . Geom. Nonlin. Level (112)

COROTATION=I ; -- . Corotational Flag (leave on!!)

Nominal_DB = NONINAL.GAL ; -- . Selected Output

Nominal_DS = RESP0NSE.HISTORY ; --

N_SELECT ; SEL_NODES; SEL_DOFS --

*Remark l

*Remark
*Remark
*Remark

*Remark

*Remark

*Remark
*Remark

*Remark

*Remark
*Remark

*Remark l
*Remark

NL_ STATIC_ 1

CSH Testbed Procedure for Nonlinear Statics:

o Corotational Newton/Raphson algorithm

o Linearized Crisfield/Riks arc-length control

o Applied forces and/or displacements

Authors: G.M. Stanley and C.C. Rankin
Version: MAR-03-1988

5/22/90 CSM Testbed Procedures Manual 3.9- 31



NL_STATIC_I Solution Procedures

3.9-2.

3.9-3.

3.9-4.

3.9-5.

3.9-6.

REFERENCES

Crisfield, M. A.: "A Fast Incremental/Iterative Solution Procedure that Handles

Snap-Through." Computers and Structures, Vol. 13, 1983, pp. 55-62.

Kane, T. R.; Likins, P. W.; and Levinson, D. A.: Spacecraft Dynamics, McGraw-

Hill Book Co., New York, 1983.

Argyris, J. H.: "An Excursion into Large Rotations." International Journal for

Numerical Methods in Engineering, Vol. 32, 1982, pp. 85-155.

Rankin, C. C. and Brogan, F. A.: "An Element-Independent Corotational Proce-

dure for the Treatment of Large Rotations." In Collapse Analysis of Structures,

edited by Sobel, L.H. and Thomas, K., ASME, New York, 1984, pp. 85-100.

Stewart, Caroline B.: The Computational Structural Mechanics Testbed User's

Manual. NASA TM-100644, October 1989.

Stewart, Caroline B.: The Computational Structural Mechanics Testbed Data Li-

brarlt Description. NASA TM-100645, October 1988.

3.9- 32 CSM Testbed Procedures Manual 5/22/90



Solution Procedures NL_STATIC_2

3.10 _ _ -L- roceuure NL_STATIC_2

3.10.1 GENERAL DESCRIPTION

NL_STATIC_2 is a modification to NL_STATIC_I Riks arclength strategy that allows solu-

tion of a limit point problem in the immediate neighborhood of a critical point. Developed

and written by C. C. Rankin in consultation with E. Riks, this modified algorithm avoids

the singularity in the stiffness matrix at the critical point, thereby permitting a smooth

continuation of the solution even when a solution point coincide8 ezactly with the critical

point. NL_STATIC_2 is preferred over NL_STATIC_I whenever solution points are desired

very near the critical area, or when the singularity of the stiffness is likely to persist over

some distance along the solution path. In the absence of numerical difficulties, however,

NL_STATIC_I and NL_STATIC_2 produce identical results.

3.10.2 PROCEDURE USAGE

Procedure NL_STATIC..2 may be invoked by the *call directive:

J'call _IL_STATIC_2 ( argl = vat1; arg2 = vat2; ...)]

where axgi are argument names and vali are the corresponding values you wish to give

them. The following are valid arguments for NL_STATIC_I; note that those without

default values are mandatory, while the others are optional.

Argument

BEG_LOAD

BEG_STEP

MAX_LOAD

MIN_LOAD

MAX_STEPS

Default Value Meaning

Starting load factor (>0.)

Starting step number (>0)

Upper_bound on load factor
Lower_bound on load factor

Maximum steps to compute

COROTATION 1

DES_ITERS 4

EXTRAPOLATE <true>

FAC.STEPS 1

MAX_ITERS 9

MAX_CUTS 3

NL_GEOM 2

NOMINAL..DB NOMINAL.GAL

NOMINAL_DS RESPONSE.HISTORY

N_SELECT 0

PATH_SCALE 1.

SEL_NODES 0

SEL..DOFS 0

TOL-E 1.E-3

ADV_RIKS <false>

Corotational Update Option

Number of iterations per step desired

Perform quadratic extrapolation of solution

St eps_per_refactoring

Maximum iterations per step

Maximum number of successive step cuts

Geometric Nonlinearity Level (1 or 2)
Results database file

Results dataset

Number of nodes for selected disp. output

Arclength scale factor for restarts

List of nodes for selected output

Corresponding list of nodal freedoms (1-6)

Relative error tolerance in energy norm

If true, advanced Riks; else, do NL_STATIC_I

Revised 5/23/90 CSM Testbed Procedures Manual 3.10- 1



NL_STATIC_2 Solution Procedures

3.10.3 ARGUMENT GLOSSARY

The only additionalargument that NL_STATIC_2hasis ADV.P_IKS.All other arguments
areidentical in nameand function as their counterparts in NL_STATIC_I.

3.10.3.1 ADV_RIKS

This is a logical parameter, that, when set to <true;>, invokes the advanced Riks option.

Otherwise, NL_STATIC.2 reduces to NL_STATIC_I.

3.10- 2 CSM Testbed Procedures Manual Revised 5/23/90



Solution Procedures NL_STATIC_2

3.10.4 INPUT/OUTPUT DATASETS

The input/output requirements of NL_STATIC_2 are identical to NL_STATIC_I.

Revised 5/23/90 CSM Testbed Procedures Manual 3.10- 3



NL_STATIC.2 Solution Procedures

3.10.5 SUB-PROCEDURES AND PROCESSORS

Table 3.10-2

Procedure

NL_STATIC_2

Sub-Procedures Invoked by Procedure NL_STATIC_2

Type

Internal

_?unction

Main Procedure

CHK_CONV Internal Check convergence

DEFNS iInternal Defines recursive macrosymbols

ES External Element utility Procedure

FACT_STIFF Internal Factors Stiffness Matrix

FORM_STIFF Internal Forms Stiffness Matrix

RESIDUAL Internal Forms residual-force vector

SOLVE Internal Solves linear equation systems

STIF_COLMN Internal

InternalTWO_BY_TWO

Fixes Freedom I, Extracts Stiffness CoL I

Computes Advanced Riks Reduced Coefficients

Table 3.10-3

Procedure

AUS

Processors Invoked by Procedure NL_STATIC_2

Type

Internal

Fanction

Extracts column I of Stiffness

E Internal Initializes EFIL datasets

ESi External Element Processors based on GEP

INV Internal Factors stiffness matrix

]SSOL Internal i Solves linear equation systems

InternalVEC Performs all vector/pseudo-vector algebra

3.10- 4 CSM Testbed Procedures Manual Revised 5/23/90



Solution Procedures NL_STATIC.2

3.10.6 LIMITATIONS

NL_STATIC_2 has the all the limitations that are listed in Section 4.1.6. However, whereas
'_ _ _ I I.¢1r, la" 1- ....... _--..1 ....',tL "kTT _q'_ArlDT_I 1 ....... :_..'--1 _:--4 _^ _I".Q_

numenca_ QIIncuILIeS ¢:u uc c_pc_cu wltxt ,'_,_o.,.zx.tx_.__l u_,x _ _xztA_a,t Fuzu% uu Luxtt-

culties whatsoever should be expected with NL_STATIC_2 near limit (as opposed to bi-

furcation points). There are two additional software limitations described in the next two
subsections.

3.10.6.1 AUS Limitation

Due to hard wired data set naming conventions in processor AUS for system matrices

(e.g.K.SPAR.36), the number of DOF's per node specified on the START command of

processor TAB is presently restricted to be 6. AUS is currently essential to NL_STATIC_2

for computing the product of the stiffness with an elementary vector to extract row I of
the stiffness matrix. This restriction wiU be removed when we make the connection to the

Generic Matrix Processor.

3.10.6.2 First Two Steps

Because of the way the extrapolation is set up, NL_STATIC-2 operates as NL_STATIC_I

for the first two steps for a new (not restart) analysis. This limitation is not important,

since it is highly unlikely that a critical point wiU be reached at the very beginning of a

solution sequence.

3.10.T ERROR MESSAGES

All error messages have the same meaning as in NL_STATIC_I (section 4.13).

3.10.8 USAGE GUIDELINES AND EXAMPLES

As they are identical to NL_STATIC_I, please consult section 4.1.8 for usage guidelines.

3.10.9 THEORY

3.10.9.1 Introduction

Procedure NL_STATIC_2, like NL_STATIC-1, performs a quasi-static analysis of a sys-

tem of nonlinear equilibrium equations using an adaptive arclength-controUed New-

ton/Raphson incremental/iterative solution algorithm. The function of the arclength con-

straint, the stepsize selection, and convergence criteria are identical to NL_STATIC_I.

Because almost all of the theory underlying NL_STATIC.2 is covered in Section 4.1.9, only

the matrix partitioning and pivoting process that avoids the factoring of a singular or near

singular stiffness matrix is covered here.

Revised 5/23/90 CSM Testbed Procedures Manual 3.10- 5



NL_STATIC_2 Solution Procedures

3.10.9.2 The Block Pivot Strategy

The difficulties that occur in NL_STATIC_I can be readily seen by examining Eq. (8).

KSd = ???rbbold + 6)_f ett

2 Ad • _d =
(3.10-1)

• zt
where F is the residual, _ is the external load, _ is the arclength parameter, and 5d is

the desired displacement increment. Clearly, if K is singular, we will have a problem in

solving this pair of equations. For limit points, however, the extended equation system

containing the constraint (second of (57)) is non-singular. A simple and robust method of

overcoming the singularity is to select out the equation for a particular freedom and treat

it the same way as the constraint equation, solving three rather than two sets of equations,

as illustrated by the following

r Kll _f]_t

ci 0

5dl
(3.10-2)

where K is the stiffness matrix with row and column I removed. The hats over vectors

also indicate that row I has been deleted. ]g is column I of the stiffness, with Kll being

the diagonal element for freedom I. The same partitioning also applies to the external

force ft_t and the constraint equation c.

If we formally solve the first of (58) for 6d and substitute the result into the remaining

two equations, we obtain the following two-by-two nonsymmetric system of equations for

gdl and 5)_:

¢)TR-lyzt -- f_zt [ _di (3.10-3)

One additional forward/backsolve is required with this algorithm. After each factoring of

the stiffness matrix, one must solve the pair

_g_ =._,t (3.10 -4)

for vector $9 and _@. 6_ corresponds to/fd in the second of (11). 6d is also used for 6_r

in the description of the NL_STATIC_2 algorithm. The following vector must be solved

every iteration:

Kfi=_ (3.10-5)

3.10- 6 CSM Testbed Procedures Manual Revised 5/23/90



Solution Procedures NL_STATIC_2

rr_t.: ...... +,t:__ d 1.^ +.'I.+ _.+1. ^r ¢+-i'_ by .... +" /_n'_-...o ,;,t,,_,,luu correspon s ,,, ,.._ ..o, ,,, X"). The two- -twu _y-,cm _o_,) becomes

IA,IA,2][++,]LA2, A22 L J R2

(3.10 -6)

We have rewritten the first of (62) with the notation used in the description of the algo-

rithm, where the coefficients Aij and Ri are the reduced Riks coefficients and residuals,

respectively; a comparison of the first of (62) with the second yields their values.

Once 6di and _)_ are known, the full solution becomes the sum

"_d = _ - gdz_'_ + 6_g_r (3.10- 7)

6d is then expanded by one freedom and the explicit value gdz previously solved for is

inserted. The advantage of (62) is that this system, in contrast to (8) is never singular at

a limit point, provided that the component I does not correspond to a zero entry in the

tangent displacement vector at the critical point.

3.10.9.3 Selecting Freedom I and the Vector _t

A simple method for ensuring a nonsingular reduced stiffness _: is to look at the difference

between the last converged solution and the predicted solution for the current step. We

choose that particular component with the largest absolute value; its index becomes I,

and the stiffness column belonging to that freedom becomes tg with diagonal KII. In

practice, after we have selected the proper index, we generate an elementary vector that is

zero except for unity in position I. ft is just the product of the stiffness matrix with the

elementary vector, tg is this same column with row I deleted.

3.10.9.4 Constructing the Solution

Immediately after the stiffness matrix has been factored, we solve (60) for _9 and 6_.

Solution for 6_ is treated like the corresponding solution for 6d in (37), with specified

displacements being handled exactly as in NL_STATIC_I. The only difference is that the

new stiffness has one additional freedom held fixed. In practice, entry I is added to the

specified displacement list (and if I has changed since the last step, the previous freedom

b "released" or "unfized"). The solutions _, g@ are full system vectors with a zero in

the Ith slot. At each iteration, a new basic displacement increment fi is also solved for

(62). After solution of the reduced two-by-two system (62), (63) is used to construct

the full displacement increment. This is followed by direct insertion of the increment for

component I.

Revised 5/23/90 CSM Testbed Procedures Manual 3.10- 7



NL_STATIC.2 Solution Procedures

3.10.9.5 Computing the Stiffness Determinant

The determinant of the stiffness K is not equal to that of the original, unconstrained

stiffness. However, since our algorithm is a special case of a block Gauss elimination_it is

a simple matter to compute it. The full determinant of the stiffness matrix is the product

Det(K) = Det(E:)All (3.10-8)

Note that when A11 vanishes, the stiffness determinant also vanishes. However, the system

(62) is still nonsingular whenever the off diagonal reduced coefficients are nonzero (the

extended system).

3.10- 8 CSM Testbed Procedures Manual Revised 5/23/90



Solution Procedures NL_STATIC_2

3.10.10 ALGOItlTkiM FLOW CHART

General Algorithm

(1) STEP LOOP: n = 2, 3, 4... (step : n+l)

(1.1) Extrapolate Solution for Predictor

call EXTRAP ( At,_+l,Al,_,Al,__l ---, c,,,c,,-1,c,_-2 )

n-t-I --

d(1) -- cndn + Cn-ldn-I + cn-2dn-2
n-I-I

A.iO) .IO) -d,_ t'v(l) -- R(Ad_)1)T,0_n-l-I = "_n-[-I k'_'n--}-I

"'n+l = "'n+l-

(1.2) Form and Assemble Stiffness

(1.3) Find Index of Largest Tangent Component

Extract Column I from Stiffness (including diagonal)

I = Arg{m_z IAd(k)_+)l 1}

_: = Kex

(1.4) Fix freedom I to give constrained K (_:)

(1.5) Solve for Tangential Displacement based on Predictor

(1.6) Solve for perturbation displacement _

169 @-lla(1 ) __z [

(1.7) Solve for ttiks reduced system coefficients

_I = 0.

6_ = 0.
^I

An = fl __I.6_

,,._zg
A_=-f_ +_.(_a-a °)

-0). Ad ° )A_1 = 2(Ad(/)_+_ - ,_+1 "_v)

A22= 2Ad_+)_•5a

Revised 5/23/90 CSM Testbed Procedures Manual

C-.5

3.10- 9



NL_STATIC.2 Solution Procedures

(1.7) Form Residual based on Predictor

rO) ,.rdO) _O) _ _(1) ._t ¢i,,tr,_(1 )
n+l _-" A_, n+l,_,n+l/ _- "'n+l" ---- X_'n+I/

.(1) (1) _1),call CHK_CONV ( -,_+1, Ad,_+l,_,_/ --* _/ )

(2) ITERATION LOOP:i = 1, 2,...(iter = i+1 = 2, 3,...)

(2.1) Solve for Basic Iterative Displacement Change

1(_" .-IraO) , -(i) 1= k_,n+l ! rn+l

(2.2) Solve for Reduced r.h.s.

_RI = 0.

(i)
R, = r(/)n+, --f I. 5d

R2 Al 2 Ad (i) Aa(0 (i)= - n+l "'-'_n+s - 2Adn+l"

(2.3) Solve 2 x 2 Reduced system:

A JR1lI.A2, A22 L J R2

(2.4) Update Displacements and Load Factor

6d = 6-d + 6Ai_'d- 6dlS"_

d(i+_) ,!(0n+l = "-,_+1 +6d

A,_(i+I) A,_(i)
•_,,+I = "-"_,,+I+ 6d

A(i+_) _(0

(2.4) Compute New Residual

('T'(i+I) R(Sd) T_)1)--n-t-1 m

r(i+l) _r.z(i+l) _(i+1),_ _(i+1)_ e't ¢i,_ttA(i+l)x
n+l : r_,Un+l ,'%+1 / = "'n+l " -- " I,un-t-I ]

(2.5) Check Convergence

,.(i+1) _,4 ,-.(i) e,.el,._toh num_divcall CHK_CONV ( A,,+_ ,_,_ ,

_i+1), <CONVERGED>, <DIVERGED> )

if ( <CONVERGED> ) then

num_iters_required = iter

3.10- 10 CSM Testbed Procedures Manual Revised 5/23/90



Solution Procedures NL_STATIC_2

^_ I num.]_ers_aeslreQ
Atn+2 = "_+I _num_iters_required)

n*--n+l

go to (1) STEP LOOP

elseif ( <DIVERGED> .or. (iter _ max_iters) ) then

if ( num_cuts < max_cuts ) then

Al_+l = Ale+l/2

num_cuts = num_cuts + 1

go to (1.3)

else

endif

else

endif

STOP

i_i+l

go to (2) ITER LOOP

Revised 5/23/90 CSM Testbed Procedures Manual 3.10- 11



NL_STATIC.2 Solution Procedures

Starting Procedure: Step 1 (n=0)

Replace Algorithm Steps (1.1)-(1.2) by:

d_ °) = 0

)_1) _ A.t_rt (user specified)

Ad_ ') = AA_ ')Sa

d_')= Ad_ ')

( Also, form K(d_ 1)) before next solve. )

Starting Procedure: Step 2 (n:l)

Replace Algorithm Steps (1.1)-(1.2) by:

d (°) = dl

,a: ÷

A_(2])

A_1)

Ad °)

d_ 1)

- Ae_/ll_all
= _1 + A,_ 1)

= _)_a
= dl + Ad_ 1) (T_') = R(AdO) T,)

( But don't reform K(d_ 1)) until step 3. )

3.10- 12 CSM Testbed Procedures Manual Revised 5/23/90



SolutionProcedures NL_STATIC_2

d

8d

Ad

8d

At

ezt

fint

7i

r

K

K

8d

Sd °

A_j

R_

num_cuts

num__v

Cn

E

E

ere f

etol

A

A_

K =e

8

d °

NOTATION

Displacement vector.

Iterative change in d.

Incremental (load-step) change in d.

Displacement vector at iteration i of step n.

Incremental (step) change in d. A'4(i+]) ,!(0 d,_"="_n+l =-" _n+l --

Tangential displacement = K-if e=t

Incremental arclength (step) parameter.

External force vector -- base load.

Internal force vector.

I'th column of K

Residual force vector.

Stiffness matrix.

Stiffness matrix with rth row and column deleted

Solution vector corresponding to _-l_J'

Basic (fixed-load) iterative change in d_

Linear combination of _d and _d.

Advanced-Riks reduced system coefficients

Advanced-Riks reduced residuals

Number of times load step has been cut in half at current step.

Number of consecutive iterations at which divergence occurs.

Extrapolation coefficient corresponding to step n.

Relative error in energy norm.

Absolute error in energy norm.

Reference value of e; initialized as zero.

Relative error tolerance (default: 10-4).

Load factor.

Incremental (load-step) change in A.

Stiffness submatrix coupling specified (s) displacement components with force

components corresponding to unknown (u) displacements.

Base value of specified displacement vector.

Current value of specified displacement vector, d ° - A _m.

Revised 5/23/90 CSM Testbed Procedures Manual 3.10- 13



NL'STATIC'2 Solution Procedures

3.10.11 PROCEDURE LISTING

*procedure ML_STATIC_2

bog_stop =I ; --

nax.steps=1 ; --

nax_iters=9 ; --

des_itorsffi4 ; --

fac_stops=l ; --

nax_cuts=3 ; --

tol.ez1.E-S ; --

beg_load ; --

max_load ; --

sin_load ; --

Starting step number (>0)

Narimun steps to compute

Naxlmun iterations per step
Number of iterations desired

Steps_per_refactoring

Naxinun number of step cuts

Energy error tolerance

Starting load factor (>0.)

Upper_bound on load factor

Lower_bound on load factor

path.scalezl.; -- Path_inc ecl_factor (reettrt)

oxtrapolato=<true> ; --

lino_search=l. ;-- . Initial line-search paruoter

dobugffi<FaLSE>; -- . Debug_prlnt search

NL_GEOM = 2 ; -- . Geom. Nonlin. Level (I[2)

COROTITION=I ; -- . Corotational Flag (leave on;:)

adv.riks = <false> ; -- . Advanced KIKS flag.

NoninaZ_DB = NOMINIL.GIL ; -- . Selected Output

Noainal_DS = KESPONSE.HISTOKY ; --

N_SELECT ; SEL_NODES; SEL_DOFS --

)
oKenark

eiLomark J I

eRomark N L _ S T I T I C _ 1

elf < [adv_rlke] > /then

*remark

*ondif

eKoaark

*Komark

*Konark

eKomark

*Konark

*louark

eKemark

eKomark

*ionark

eKonark J

eKoaark

ADVANCED KI KS

CSN Testbed Procedure for Nonlinear Statics:

o Corotational Neeton/Kaphson algorithm

o Linoartzod Crisfiold/Kiks arc-length control

o Applied forces and/or displacements

Authors: G.N. Stanley and C.C. Eankin

Vorsion: NAK-O3-1988

• INITIALIZITION

*def/i ns.overvrit@ == <true>

*dof/i debug

*def/i max.stop

*dof/i nun.itors

*dofld path_scale

*def/i extrapolate

*def/a NOH.DB

*def/a NOM.DS

ffi= [debug]

== <[bog_stop]+[nax_stops]-l>
== [des_iters]

ffi= [path_scale]

== [extrapolate]

_ffi [Nouinal_DB]

== [Noninal_DS]

3.10- 14 CSM Testbed Procedures Manual Revised 5/24/90



Solution Procedures NL'STATIC'2

*dei/i N_SELECT ,.• [M_SELECT]

*def/i SEL_NODES[I:<N_SELECT•] == [SEL_NODES]

*def/i SEL_DOFS[I:<N_SELECT•] == [SEL_DOFS]

*dof/i NL_GEON == [ML_GEOM]

_QOX/1%,U_UA£A£UM i• L_U_UAaL£UIj

*CALL DEFNS ( STEP • [BEG_STEP]; ITEIt = O )

*IF < [BEG.STEP] /EQ 1 • /THEN

*Remark INITIILIZITION:

*call INITIAL

eENDIF

. BEGIN STEP_LOOP

*DO :STEP_L00P tn • O, <[max_steps]-1•

*def/t step == < [beg_step]+<$n• •

*def/i pass == 1
*dof/i tot_Iters == I

elf < <<stop• /st 2• /and <<extrapolate> /eq <true•• • /then

*def/i oxtrap_thls_step == <true>
*else

*def/i extrap_thls_step == <false•

eendif

*Remark

eranark ...........................................................

*remark

*lanark BEGINNING STEP <STEP>

*remark ...........................................................

*renark

ecall DEFNS ( step • <step>; iter = 1 )

:NEE_PISS . Re-entry point for step-size reduction

[XqT VEC

*if < <<step• /at 1> /and <<pass• /eq 1> > /then

*dof/d path_Inc == < <path_scale>*<path_Inc_n• •

el,mark NeE PATH INCREMENT = <path_inc.

*endif

• . . Generate Displacement PKEDICTOR

<d_np1_i>

<d_np1_i>

<d_inc_i>

ROTATE

*else

elf <oxtrap_thls_step• /then

*Remark Prodlctin 8 dlsplacements/Ioad via EXTRAPOLATION

*call EXTRAP ( dx_npl = <path_inc> ; cx_n = cx_n ; --

dx_n • <path_Inc_n> ; cx_nal • cx_nal; --

dx_nal • <path_Inc_nnl>; cx_na2 • cx_nn2 )

*def/d lu_npl_i •= < (<cx_n>*<lam_n•) --

+ (<cx_nml>e<lu_nm1>) --

+ (<cx_ma2>*<lu_na2•) •

4- <cx_n• <d_n> + <cx_nml> <d_nml•

<- <d_npl_i> + <cx_nm2> <d_nm2•

<- <d_npl_i> - <d_n>

<T_n> • <d_inc_i> -) <T_npl_i•

*Remark Using Previous Step as Displacement Predictor
*remark

Revised 5/24/90 CSM Testbed Procedures Manual 3.10 15



NL'STATIC'2 Solution Procedures

ereaark Last displacenent dataset : <d_n>

*remark

*def laa_npi_i _= <lea_n>

<d_np1_i) 4- <d_n>

<T.npl_i) 4- <T_n>

<d_inc_i> 4- <d_n>

aendif

*if < <spec_dlsp_fla8> • /then

SPECIFY <Ima_npl_i> <d_ext> -> <d_npl_i>

*endif

• . . Form Stiffness based on Predictor

*If < < <pass• /eq I • /or <extrap_thls_step> • /then

*call FORN.STIFF (displaconent = <d_npl_i>; --

rotation ffi <T_npl_i•; --

stiffness = <E_asa• ) . output

• . . Find largest tangent component I ffi <ndef> <fd>

• . . Extract corresponding column of system matrix

• . . Specify freedom NDEF, FD as constrained to zero

*if <adv_riks> /then

*if <<stop> /Io I> /then

edof/i ndefffiffiO

Salsa

stall STIF_COLHN

*endif

*else

*def/i ndefs-O

*endif

• . . Factor stiffness with the added constraint

*call FACT_STIFF

• . . Solve for Tangential Displacement

*call TANDIS ( step ffi <step> ; iter = 1 ; --

displacement = <d_npl_i> ; --

rotation = <T.npl_i• ; --

load_factor = <lan_npl_i>; --

max_load ffi [max_load] ; --

external_force ffi <F_ext• ; --

internal_force ffi <F.int> ; --

specified_disp ffi <d_ext> ; --

tangent.force = <F_T> ; --

tangent_disp = <delta_T> )

• . . Solve for incremental displacement based on stiffness colunn I

*if <<ndef> /St 0• /then

3.10- 16 CSM Testbed Procedures Manual Revised 5/24/90



Solution Procedures NL'STATIC'2

*call SOLVE ( KIIS = <K_I>; SOLN ffi <delta_I> )

*endif

*endlf

• . . Compute Magnitude of Tangential Displacement

NORM <delta_T> -> nag_delta_T . magnitude of tang. displacement

• . Predict Load Factor and Path Increment for Current Step

elf < <stop> leq ! > /then

elf < 4pass> leq I > /then

*def/d lan_npl_i == [beg_load]

*dof/d Inn_lee == 41an_npl_i>

edef/d path_Inc == < <lan_Inc>e<nag.dolta_T> >

*def/i load_dir == <SIGN(1.;<lan_inc>)>

*else

edef/d lan_inc == < <path_inc>/<nag_dolta_T> >

edef/d lan_npl_i == <lan_inc>
oendif

*olsoif < <stop> /St 1 • /then

.... Path, lncreaent based on Itoratlvo Performance, Sot Direction

*IS 4 <sign_dot> /no <slgn_det_n> > /then

*dof/i load_dir == 4 -1.*<load_dir.n> >

*else

*def/i load_dir == <load_dir_n>

*endif

.... Compute Load_Increment

elf <oxtrap_thls.step> /then

*def/d lan_inc == < <lan_np1_i> - <l--_n> >

eolss

*KenLrk USING CONSTIlINT EqN TO PJ_DICT LOID IT STEP <stop>

odsf/d lan_inc =ffi 44 4path_inc>/<aag_delta_T> >*<load_dir>>

*def/d lam_npl_i == <<lan_n>+<ianin©>>

*ondif

*endi_

eKonark LAMBDA_<stop>" 1 = <lan_npl_i> , LIMBDI_INC = <lan_inc>

*if 4 <lan_npl_i> /St [max_load] > /then

*Kemark NAIINUM LOAD_LEVEL OBTIINED.

*Jump to :EIIT

oelsei_ < 41an_npl_i> /In [mln_1oad] > /then

eKenark NINIMUM LOID.LEVEL OBTIINED.

*Jump to :EXIT
eendif

elf <<oxtrap_this_step> /oq <false>> /then

eKemark MODIFYING PKEDICTOK VII PITH-CONSTRIINT

4d_inc_i> 4- <laa_inc> <delta_T>

<d_npl_i> 4- <d_n> + 4d.lnc_i>

KOTATE <T_n> • <d_inc_i> -> <T_npl.i>

Revised 5/24/90 CSM Testbed Procedures Manual 3.10- 17



NL'STATIC'2 Solution Procedures

*if < <epec_disp_flag> • /then

SPECIFY <lan_npl.i> <d_ext>

*endlf

*endif

-• <d_npl_i>

• . . Compute 2 x 2 system coefficients

*call TWO_BY.TWO (free =<ndef>)

• . . Fore (Stress and) Residual_Force Vector

*call aVSIDUAL ( step • <step> ; -- . input

iter • 1 ; --

displacement • <d_np1_i• ; --

rotation • <T.np1_i• ; --

load_factor = <lan_np1_i> ; --

external.force • <F_ext• ; --

internal_force ffi <F_int> ; --

residual_force • <K.npl_i> ) . output

• . . Initialize Convergence Criteria

*call CEKCONV ( STEP = 1 ; ITE& • 1

Eesidual_force • <K_npl_i>

diaplaceaent_inc • <d_inc_i>

load_ino • <laa_inc>

relaxation • s )

*if <CONVERGENCE> /then

*def/d laa_npl_ipl _ffi <laa_npl_i>

eJuap to :CONVERGED

*endif

-- BEGIN ITFAATION LOOP

*DO :ITEE_LOOP $I • I, [nax_Iters]

*def/i iter == (<$i>+I•

*def/i tot_iters _ffi <<tot_Iters>+1>

elf < <<step> /eq I> /and <<iter> /eq 2> > /then

*call FOLq_STIFF (displacement • <d_npl_i>; --

rotation • <T_npl_i>; --

stiffness = <K_asn) )

• . . Find l_rgest tangent component I •<ndef> <fd>

• . . Extract corresponding column of system matrix

• . . Specify freedom NDEF, FD as constrained to zero

*if <adv_rik8> /then

elf <<stop> /le I> /then

*defli ndef==O

*oleo

*call STIF_COLMN

*ondif

*else

• output

3.10- 18 CSM Testbed Procedures Manual Revised 5/24/90



Solution Procedures NL'STATIC'2

*de£/1 ndoXffiffio

eendtf

. Factor stiffness gith the added constraint

ecall FICT_STIFF

...... Update Tangential Displacement if Specified Displs., etc.

elf < <spec_disp_flas> /or <1lye.load_flag> > /then

eKenark o Keoonputin 8 Tangential Displacement

COLT1 TINDIS ( step = <step> ; iter = <it>; --

displacement : <d_npl_i> ; --

eendif

rotation = <T.npl_i> ; --

load_factor z <lu.npl_i>; --

lax_load = [max_load] ; --

external_force = <F_ext> ; --

internal_force = <F.int> ; --

specified_disp = <d_ext> ; --

tangent_force = <F_T> ; --

tansent_dls p = <delta_T> )

. . . Solve for incremental displacement based on stiffness colunn I

etf <<ndef> /gt O> /then

ecall SOLVE ( RHS = <K_I>; SOLN = <delta_l> )

eondif

• . . Compute 2 x 2 system coefficients

ecall TVO_BY_T_O (free • <ndef>)

eendif

..... Compute Basic Displacement Iteration (delta_B)

ecall SOLVE ( _HS = <K_npl_t>; SOLN = <DELT£_B> )

..... Compute Nee Load-Factor and Displacement Colponent I

..... Advanced Kiks (2 x 2) system.

DOT <delta_B> • <d_inc_i> -> db.DOT_Dd

DOT <d.inc_i> • <d_inc.i> -> Dd_DOT_Dd

edef/d K_2 :: < <path_inc>e<path_inc> >

edef/d 6_2 :: < <6_2> - <Dd_DOT_DdY - <2.0e<db_DOT_Dd>> >

ear <<ndef> /st O> /then

COMPONENT <ndef> <fd> <r.npl_i> -> r_I

DOT <dolts_B> • <K.I> -> db_DOT_K_I

edel/d K_i _= <<r_I> - <db.DOT_K_I>>

..... Solve 2 • 2 KIKS system

Revised 5/24/90 CSM Testbed Procedures Manual 3.10- 19



NL'STATIC'2 Solution Procedures

*def/d Itdet ffi <<<A_11> * <A_22>> - <<A_12> * <A_21>>>

*def/d dd_l = <<<K_l> * <1_22>> - <<K_2> * <A_I2>>>

.do:It/d dl-,, = <<<A.11> • <It_2>> - <<A_21> • <It_l>>>

*dof/d dd_I = <<dd_I> / <itdet>>

sdof/d dlma ffi <<dlmO / <itdet>>

eolso

..... Solve simple 1-D ItlKS system for load factor (Normal Kiks)

sdof/d dlan = <<K_2>/<A_22>>

eondif

..... Update Load Factor

*def/d laa_npl_ipl = < <laa_npl_i> + <dims> >

*renark

*ronark eKEMIKK KANKIN'S ItOOT SELECTION:

*reaark Dd . Dd = <Dd_dot_Dd>

*remark dlu ffi <Dlms>

erenark lmsbda = <Ima_npl_Ipl>

ereaark eranark

:LOAD_LEVEL

..... Update Increments

<delta> <- <delta_B> + <dims> <delta_T>

*if <<rider> /St O>/then

....... Add Solution Due to Perturbation in I'th Displacement Component

....... (Advanced Itiks Only)

<delta> <- <delta> - <dd_i> <delta_I>

....... Sot last component

COMPONENT <ndef> <fd> <delta> <- <dd_l>

eendif

..... Update Displacements, Itotatlons

<d_npl_Ipl> <- <d_npl_i> + <delta>

ItOTATE <T_npl_i> • <delta> ' -> <T_npl_Ipl>

<d_Inc_Ipl> <- <d_inc_i> + <delta>

• if < <spoc.disp_fla8> > /then

SPECIFY <laa_npl_Ipl> <d.ext> -> <d_npl_ipl>

eendif

• if < <DEBUG> > /then

• print I, <d_npl_Ipi>

• print I, <T_npl_Ipl>

*endlf

..... FO_ (STIESSES AND) ItESIDUAL_FOItCE

3.10- 20 CSM Testbed Procedures Manual Revised 5/24/90



Solution Procedures NL'STATIC'2

*call RESIDUIL ( step = <stop> ; -- . input

iter • <itor> ; --

displacement • <d_npl_ipl> ; --
rotation : _T _t 4_t,

load_factor • <laa_npl_ipl> ; --

external_force : <f_ext> ; --

internal.force : <F_int> ; --

residual_force = <R_npl_ipl> ) . output

..... CHECK CONVERGENCE

• call CHKCONV ( step • <step> ; -- . input

itor : Citer> ; --

Residual_force : <l_npl_Ipl> ; --

dlsplacouent_Inc : <delta> ; --

load.inc : 0.0 ; -- . for error nora

tol_o = [tel_e] ; --

max_it,re = [max.it.re] ; --

convergence : CONVERGENCE; -- . output

divergence : DIVERGENCE ; --

relaxation : s )

elf <<CONVERGERCE> /eq <TRUE>> /then

e Jump to :CONVERGED

eelseif <<DIVERGENCE> /eq <TRUE>> /then

elf < <pass> /lo [max_cuts] > /then

eJuap to :REPEIT
*else

eeeuark Maximum number of automatic step cuts exhausted.

eJuap to :DIVERGED

*endif

eandif

edof/d lan.npl_i =: <lan.npl_ipl>

: ITe-e_LOOP

:NEUTB£L

elf < <pass> /le [max_cuts] > /then

eJuap to :REPEIT
*else

eRenazk Maxlnua number of automatic step cuts exhausted.

*endif

*Henark NON-CONVERGENCE IT STEP <step>. REVISE STKITEGT.

eJunp to :EXIT
: REPEAT

edef/i pass == < <pass>+l >

edef path_inc == < <path_inc>/2. >

oRoaark

oeeuark CONVERGENCE DIFFICULTIES; REPEATING STEP <stop>

eHeuark glth reduced path_Increment : <path_inc>

eReaark Pass: <pass>

*Jump to :NEW_PISS
:DIVERGED

eReuark DIVERGENCE IT STEP <STEP>. REVISE STKITEGY.

eJunp to :EXIT

Revised 5/24/90 CSM Testbed Procedures Manual 3.10- 21



NL'STATIC'2 Solution Procedures

: CONVEKGED

*Kemark CONVERGENCE IT STEP •STEP>.

: NEXTSTEP

*dof/i nua.itorl == •it,r>

*def/d path_scale == <[dos_Itors]/•nun_iters>>

*def/d path_Inc_nnl == <path_inc_n>

edef/d path_Inc_n --ffi •path_Inc>

*def/d lax_mr2 _ffi <lma_nxl>

*def/d la.mal == •lax_n>

*def/d laa_n _ffi <ima_npl_ipl>

*dof/i #ign_dot_n ffi= •sign.dot>

*def/i load_dlr_n == •load_dir>

*call POSTSTEP ( step=<step>; Iter=<Itsr> )

:STEP_LOOP

:EXIT

*end

• =DECK CHKCONV

*procedure CHKCONV

[XQT VEC

( STEP ; -- . input

ITEK ; --

DISPLICEMENT_INC ; --

RESIDUAL_FORCE ; --

LOID_INC ; --

TOL_E ; --

MIZ_ITEKS ; --

CONVERGENCE=CONVERGENCE ; -- . output

DIVEKGENCE =DIVERGENCE ; --

relaxation 2 • )

• . Initialize

*della [CONVDLGY_CE] == •FALSE>

*dof/i [DIVEKGENCE] == •FALSE>

eif• [ITEK] /St 1 > /then

*dof/dl2.4 EEIt_E_I == <EKK_E_IPI>

eendif

• Compute Current Incremental Energy Nora

DOT [KESIDUIL_FOKCE] * [DISPLICEMENT_INC] -> INC_E_IP1

• if < [ITER] /lo 1 > /then

• if • <IBS(<INC_E_IPI>)> /gt •KEF_E> > /then

• def/dl2.4 _EF_E =ffi <IBS(<INC_E_IPI>)>

sendal

• dof/f7.2 [KELAIATION] _= 1.0

• def/i nua_dlverge• 2= 0
*endif

• . Conputo Error Nora•

*def/dl2.4 ERK_E_KIW 22

*dof/d12.4 ERK_E_IP1 ==

• <INC_E_IPI>/<KEF_E> >

• <ABS(<EEK_E_EIW>)>" .6 >

3.10- 22 CSM Testbed Procedures Manual Revised 5/24/90



Solution Procedures NL'STATIC'2

• . Check for displacenent converKence

elf < <EBI_E_IPI> /le [TOL_E] • /then

• . . Step Conversed

eDEF/I [CONVERGENCE] a= <TRUE•

sJump to :BOTTOM_LINE

*endif

elf ( [ITER] /le 1 > :BOTTOM_LINE

• . . Step Not ConverKed; Check for DiverKence

elF < <eee_E_IPI•/<ERR_E_I> /GT 1.0 • /THEN

edef nun.diverKes z= < <nun.diverges>+l •

elf <<num_diverses• /Kt I • /then

eDEF/X [DIVERGENCE] 88 <TRUE>

*ENDIF

*ENDIF

. Select Relaxation (i.e., line-search) Parameter: s

edef/f7.2 is = <[relaxation]•

elf < <<err_e_ipl•/<err_e_i>> /st .5 • /then

COMP <nax_nod• <nax_dof• [DISPLICEMENT_INC] -> nax_d_ipl

*if < <nax_d_Ipl>e<max_d_i• /It 0 > /then

*def Is = < <ls>-.3 •

edef ls • <MlX(<ls>|.4)>

eels,if < <lBS(<nax_d_ipl>)> /lt <lBS(<aax_d_i>)> • /then
edef le• < <ls>+.4 •

*def ls = <MlN(<ls>|2.)>
*else

*def ls = 1.0

eendif

eendtf

*def/f7.2 [relaxation] =8 <ls>

:BOTTOM_LINE

NORM/MAX [DISPLACF.NENT_INC] -• aax.d_i max_nod nax_dof

NORM/MIX [KESIDUIL_FORCE] -> nax_f_i aax_nod_f nax_dof_f

elf < [ITDL] /LE 1 > /then

*def/el2.4 load_factor = <laa_npl_i>
*else

edef/el2.4 load_factor = <laa_npl_ipl>
eendif

*renark

*remark ................................................................

erenark ITnz[ITER] LD:<load_factor• EB£:<err_e_ipl> _F:<ref_e>

*remark delta.d_nax:<nax_d_i> node:<nax_nod> dof=<nax_dof>

*remark resid_f_nax:<nax_f_i> node:<aax_nod_f> dof=<nax_dof_f>

*remark

*remark

*if < <DEBUG> • /then

*print I, [DISPLICEMENT_INC]

Revised 5/24/90 CSM Testbed Procedures Manual 3.10- 23



NL'STATIC'2 Solution Procedures

sprint 1, [RESIDUAL_FORCE]

*endif

*END

• =DECK DEFNS

*procedure DEFNS ( step; iter )

• Purpose: Define basic macro_symbols for NLSTATIC3 procedure

*def/i np1 = [step]

*flaf/i n = < <npl>-I >

*daf/i hal = < <n>-l >

*dof/i ma2 = < <n>-2 >

*if < [it*r/ /aq O > /then

*def/i NS_Idl == 1

*dof/i NOH_Idi == 3

*def/i isst == 1

*def/i icon == 1

*def/a f_spec

*def/a d_spac

• run initialization

== £PPL.FOKC.<iset>.<icon>

== £PPL.NOTI.<iset>.<icon>

Check for Prescribed Force/Displacement Loading

*find dataset <NS_Idi> <f_spec> /seq=ids

*if < <Ads> /gt O > /then

*Remark Note: Applied forces dataset <fspec>, will be used

*def/i spec_force_flag == <true>

*else

*dof/i spoc_forco_flag == <false>

*endif

*find dataset <NS_ldi> <d spec> /seq=ids

*if < <ids> /gt 0 > /then

*Remark Note: Specified displacement dataset <d_spec> will be used

*def/i spoc_dlsp_flag == <true>

*else

*def/i spec_disp_flag == <false>

*endif

elf < <<spec_forco_flag>/oq O> /and <<spec disp_flag>/eq 0>> /then

*remark ; *remark Procedure stopped: no loads defined

*endif

*def/i live_load_flag == <false>

*def/a d_ext == EIT.DISP

*dof/a f_ext == EIT.FORC

*dof/a f_int == INT.FOKC

*daf/a f_T == TAN.FORC

*def/a K_npl_i == RES.FOKC

*def/a K_npl_ipl == RES.FORC

*def/a d_inc_l == INC.DISP

*def/a d_inc_ipl == INC.DISP

*def/a delta T == HAT.DISI

*def/a delta_B == BAK.DISI

*def/a delta S == STR.DISI

*def/a delta == TOT.DISI

3.10- 24 CSM Tcstbed Procedures Manual Revised 5/24/90



Solution Procedures NL'STATIC'2

-u..li A_mls -+ ion.o|£r

*def/a K_fac == FIC.STIF

*def/a K.I _ffi COL.STIF.I.1

*def/a Delta_I == STF.DISI

*defli .A.. -- 0U_W6 --

*della d_active _ffi /CT.DISI

Ketrtevo Control Paras,tots from DITI_BISE

*if < [step] /eq I • /then

*def/i sisn_det == 1

*def/i load_dir == 1

*def/d lu_n == 0.0

*daf/d lan_nml =ffi 0.0

*dof/d lan_nn2 =ffi 0.0

*def/d path_inc_n _ffi 0.0

*def/d path_inc_nnl ffi= 0.0

*def/d ref_e == 0.0

*Konark STIKTING PIKIMETEKS INITIILIZED.
*else

*open <NOM_ldi• <NOM.DB•

*find datasot <nom_ldi> <non_ds> /seqffinom.ids

*g2n /nanoe=lan_n /type=d <non_ldi• <nos.ids• LOAD.<n•

*S2Jt /nanoznlan_nnl /type=d <non_ldi• <nom_ids> LOAD.<nnl•

*g2n /nanenzlan_na2 /typo=d <non_ldi> <nom_ids> LOAD.<na2•

*g2n /nano=fpath.inc_n /typeffid <non_ldi• <noa_ids> PiTH_INC.<n•

*g2Jt /nano==path_inc_nnl /typo=d <non_ldi) <nom_ids• PITH_INC.<nnl>

*g_t /nauo==sign_dot_n /typo=I <non.ldi> <non_ids> SIGN_DET.<n•

*g2n /nsneffifload_dir_n /typo=I <non_ldi> <non_ids> LOAD.DIR.<n•

*g2n /nano==ref_o /type=d <non_ldi• <non.ids• KEF_ne.<n•

*g2n /nanoffndof /typefi <non_ldi> <non.ids> NDEF

eg2n /nanefffifd /typefi <noa_ldi> <non_ids> FD

*close <NOM_ldi>

*Kenark

*rensurk

*ronark

*Kenark

*_@n&rk

*Lenark

eKemark

*Kenark

*renark

*renark

*endif

*endif

KE-STIKT PIKIMETERS:

LOID_FACTOKS (n,n-i,n-2) = <ian.n>, <ian_nnl>, <lan_nn2>

PITH_INCKEMS (n, hal) : <path_inc_n>, <path_inc_nnl)

SIGN_DET (n) : <sign_dot_n)

LOID_DIR (n) : <load_dlr_n)

. Define Global Datasets for Upconing Stop

*dof/a d_nn2 == TOT.DISP.<na2•

*def/a d_naÂ :: TOT.DISP.<nnl>

*dof/a d_n :: TOT.DISP.<n>

*dof/a d_npl_t == TOT.DISP.<npI>

*def/a d_npl_ipl :: TOT.DISP.<npI>

Revised 5/24/90 CSM Testbed Procedures Manual 3.10- 25



NL'STATIC'2 Solution Procedures

*della T_n == TOT.ROTN.<n•

*def/a T.npl.i •= TOT.ROTN.<npI•

*dof/a T_npl_ipl •= TOT.ROTN.<npI•

mend

• •DECK EXTRAP

*procedure EITRAP ( dx_npl; dx_n; dx_nml; cx_n| cx_nal; cx_ma2 )

*des dx_npl • [dx_npl]

*des dx_n • [dx_n]

dx_nzl ffi [dx_nnl]

x.nml = <dx_nml•

x_n • < <x_nal•+<dx_n• •

x_npl = < <x_n•+<dx_np1• •

s_rml • < <x_npl•-<x_nal> •

s_n • < <x_npl>-<x_n> •

[cx_n] == < <x_npl>*<s_nal>/<<x_n>*<dx_n>• •

[cx_nal] •• < -1.*<x_np1>*<s_n•/<<x_na1>*<dx-n>> >

[cx_na2] •• < <s_nal•*<s_n•/<<x_nal•*<x_n>• •

*dof

*def

*des

*def

*des

*des

*def

*des

*def

*end

• _DECK FACT.STIFF

*procedttre FACT_STIFF

[XqT INV

RESET CON • 1

RESET IRA • T168

RESET DZERO • 1.E-10

RESET SPDP • <can_preclslon>

*remark

• Factor stiffness

*Remark MATRIX BEING FACTORED (in Double Precision).

• Define factored-matrix paraRotors as global nacrosynbols

[IQT VEC
*remark Determinant = <cool_dot> * 10 " <expl0_det>

mronark NoN. roots • <num_neg>

*dsf/i ,lEa.dot == <SIGN(I. ;<cool_dot>)>

*remark Sign of dot • <sign_dot•

mronark

mEND

• •DECK FORX.STIFF

*procedure FORN_STIFF ( DISPLACEMENT ; --

ROTATION ; --

STIFFNESS ) . output

mRenark FOIL_ING NEW STIFFNESS MATRIX

[XqT K
mEND

• _DECK INITIAL

*call ES ( function • 'FORN STIFFNESS/TANG' ; --

os_nl_goom • <NL_GEOM> ; --

es_coro • <COROTATION> ; --

es_dis_ds • [DISPLACEMENT] ; --

es_rot_ds • [ROTATION] )

• Transform/assemble stiSfness

*procedure INITIAL

CLEAR INITIAL DISPLACEMENTS AND ROTATIONS ( n • 0 )

3.10- 26 CSM Testbed Procedures Manual Revised 5/24/90



Solution Procedures NL'STATIC'2

eS_t fnanozparanaters /typefi /naxnzlB <NS_LDI> JDF1.BTAB.1.8 DATA.1

*daf/i NNODES = <PAKINETEKS[1]>

edef/i NDOF • <PARAMETEKS[2]>

. .q J _ . --_enark rroo_em u_aennxoas'""--: N_nodes = _nnuo_o/, N dvf_ = _muur_

[XqT VEC
XNXT_DOF CON..<icon> -> DOF.TABL

*Kenewk DOF TABLE initialized.

INIT_VEC <d_inc.ipl> <NDOF> BY <NNODES> . Zeroize translations

INIT_VEC <K_I> <NDOF> BY <NNODES> . Zeroize translations

INIT_VEC <Delta_I> <NDOF> BY <NNODES> . Zeroize translations

INIT_VEC <d_active> <NDOF> BY <}[NODES> . Zeroize translations

INIT_VEC <d_n> <NDOF> BY <}[NODES> . Zeroize translations

INIT_VEC <T_n> $ BY <NNODES> . Zeroize rotation pseudovectors

eNamark Displacements initialized.

elf < <spec_dlsp_flag> > /then

<d_ext> 4- <d_spec> . for VEC

NOPJ( <d_ext> -> nora_d

*if < <nora.d> /eq O. > /then

*Esmark

*Esmark NOTE: Specified displacements are identically zero.

*lanark

*endif

*copy <NS_ldi> • <NS_ldi>, <d_spoc>

<d_spec> 4- O . for SSOL

elalark Specified displacements saved in <d_ext>.

*endif

eif <<spec_forco_flag>> /then

<F_ext> 4- <F_spoc> . for VEC

NO_]( <f_ext> -> nora_f

*if < <nora_f> /eq O. > /then

*Esmark

*lanark NOTE: External forces are identically zero.

*Esmark

eondif

eKenark External force vector saved in <F_ext>.

*copy <NS_ldi> z <NS_ldi>, <F_spoc> . for SSOL

*else

INIT_VEC <F_ext> <NDOF> BT <}[NODES>

INIT_VEC <F_spec> <NDOF> BY <NNODES> /single_precision . for SSOL

*ondif

*Konark Light-hand-side vector zoroizod (in <F.spec>).

INIT_VEC <F_int> <NDOF> BY <NNODES>

*Lanark Internal force vector zoroized (in <F_int>).

INITIALIZE ELEMENT CONFIGUgATION

[XqT Z
[IqT LSEq

reset mothod=O,maxcon=35

[XQT TOPO

reset mazsub • 40000,1ra_=8i96

*call gS ( function = 'INITIALIZE' )

Revised 5/24/90 CSM Testbed Procedures Manual 3.10- 27



NL'STATIC'2 Solution Procedures

*KsnLrk Elsnent configuration initialized.

*end

• •DECK POSTKES

*procedure POSTKES ( step )

[XqT VEC

*find dataset <NOM_LDI> <NOM_DS> /seq•post_ids

*if < <post_Ids> /is 0 > /then

*put dataset <NOM_LDI> <NOM_DS> /nrat•2000 /seqfpost_Ids

*endif

• Save selected dlsplaoenents on noalnal data-base

edef/a dof_nanes • U, V, W, KU, KV, KW

*do $1sel • 1, (N_SELECT>
*dof/i nods ffi <SEL_NODES[<$isoI>]>

*def/i dof • <SEL_DOFS[<$isel>]>

*dof/a dof_nans = <dof_nanes[<dof)])

COMPONENT <node) <dof> TOT.DISP.[step] -> DISP

*def/a rscd_nano = DISP_<dof_nane)_<node>.[step]

*Keaark <rscd_nana) ffi <DISP>

*n2g /naaeffidlsp /typefd <noa_ldi> <post_Ids> <rood_nasa>

Save Keaction Forces for Current Step

KEIC.F0_C.[step] <- INT.FOKC

elf < [step] /eq 0 > /then

KEIC.PORC.O <- 0.0

*endif

elf < <speo_dlsp_flag> > /then

COMPONENT <node> <dof> KEAC.FOKC.[step] -> FOKCE

edef/a rood_nasa = FOKCE_<dof_nane>_<node>.[step]

sKeaark <recd_nans> ffi <FOKCE>

en2g /naris=force /typeffid <non_idi> <post_Ida> <recd_nane>
esndif

eenddo

send

• _DECK POSTSTEP

*procedure POSTSTEP ( step; Itsr )

*lanark ...................

*Konm_ck STEP [step] SUMMIKY :

*KenLrk ..............................................................

*Kenark Load Factor ....................... <lan_npl_Ipl>

*Konark Load Dirsotlon .................... <load_dir>

*Eenark Stiffness dote_tlnant ............. <coal_deS> * I0 " <oxplO_det>

*Keaark Nunbsr of negative roots ......... <nun_nag>

*Ksnark Path.longth_Incrsnont ............ <path_inc>

*lanark Kelatlvo energy_error ............ <srr_e_ip1>

*Ksnark Nuaber of Iterations ............. <nun_leers>

*Kenark Nunber of Step Cuts .............. <<pass>-l>

*Kenark Total Nunber of Iterations ....... <tot_iters>

*Een_rk ..............................................................

3.10- 28 CSM Testbed Procedures Manual Revised 5/24/90



Solution Procedures NL'STATIC'2

*if < [stop] /oq I • /then

ecnll POSTIng ( step • 0 )

*dof/d load_O•O.

*m_g__/nom_o•!oad_0 --,.-/tvne•d- <NOM_LDI> <gflX____9S>........ LflAD-0_O

*ondi_

*call POSTKES ( stopz[stop] )

*find dataset <NOM_LDI> <NOM_DS> /seq•nea_Ids

*n2g /naao•lam_npl_ipl /type=d <non_idi> <non_ids> LOAD.[STEP]

*s2g /nano•path_Inc /typo•d <noa_Idi> <non_Ids> PiTH_INC.[STEP]

*n2g /nano=err_o_ipl /typo•d <non_ldi> <non_ids> EKKOK.[STEP]

*n2g /nano•ref_e /typo=d <nou.ldi> <non_ids> IEF_F_g.[STEP]

en2g /naao•load_dir /type•i <non_ldi> <nom_ids> LOID_DII.[STEP]

*n2g /nano=stgn_dot /typo=i <non_ldi> <nom_ids> SIGN_DET.[STEP]

en2g /nano•coof_dot /typo•d <non_ldi> <non_ids> COEF_DET.[STEP]

*n2g /nano=oxp10.dot /typo•i <non_Idi> <non_Ids> EIPIO_DET.[STEP]

*n2g /name•nun_hOg /typo•d <noa_idi> <non_ids> NEG_KOOTS.[STEP]

*n2g /namo•num_itors /type•i <non_Idi> <nom_ids> NUM.ITEKS.[STEP]

on2 8 /namo•tot_itors /typeffil <non_Idi> <non_Ids> TOT_ITEKS.[STEP]

*dof/i passnl = <<pass>-l>

*n2g /namo•passnl /typo=i <non_idi> <non.ids> NUM_CUTS.[STEP] . cgl, 7/26/88

on28 /nane•ndef /type•i <non_idi> <non_ids> NDEF

ei_ <<ndef> /eq 0> /then

*dof/i Id==O

eondlf

*a2g /nano=fd /typo=i <non.ldi> <non_Ids> FD

*close <NOM_ldi>

send

• •DECK KBIDU&L

*procedure DJ[SIDUIL ( STEP•I; ITF_•I ; -- . input

DISPLACEMENT ; --

KOTATION ; --

LOID_FICTOK ; --

SPECIFIED.DISP ; --

INTE_NIL_FOKCE ; --

EITE_NAL_FOKCE ; --

ltESIDUAL_FOKCE ) . output

[XqT VEC

[INTI_LNIL_F0_CE] <- O.

*call ES ( function : _FORX FO_CE/INT'; --

es_nl_goon • <NL_GEOM> ; --

es_coro • <COKOTITIOK> ; --

os.dis_ds • [DISPLACEMENT] ; --

on_rot_do • [ROTITION] ; --

os_frc.ds : [INTERNIL_FOKCE] )

[XqZ VEC

[KESIDUAL_FOKCE] <- [load_factor] [EXTERNAL_FORCE] - [I)rrFANAL_FOKCE]

oFJiD

• _DECK SOLVE

*procedure SOLVE ( KHS ; SOLN )

• Copy Light-Hand-Side Vector to Expected SPI_ (Single Precision) Dataset

Revised 5/24/90 CSM Testbed Procedures Manual 3.10- 29



NL'STATIC'2 Solution Procedures

[IQT VEC
lPPL.FOKC.<tset>.<icon> 4- [RHS] /single_precision

• Solve

[IQT SSOL
RESET CON • <icon>

RESET SET • <tsar>

RESET KEAC • 0

• Copy SPAR Solution Vector to Double Precision Dataset

[XQT VEC

[SOLN] 4- STATIC.DISP.<iset>.<tcon>

sand

• •DECK STIF_COLKN

*procedure STIF_COLNN

[XQT VEC

*if 44NDEF> /gt O> /then

FREE <NDEF> <FD>

sendal

elf <<spsc_disp_flag> > /then

<d.active> <- <d_inc_i>

SPECIFY O. <d_ext> -> 4d_active>

NORM/MAX <d_active> -> D_II NDEF FD

salsa

NORM/MAX <d_inc_i> -> D_II NDEF YD

*ondtf

[XQT AUS

SYSVEC : UNIT I 1 X

I•4FD> : J•4NDEF> : 1.O

SYSVEC : COL STF 1 1

DEFINE E • <NS_ldt> UNIT I 1 1

DEFINE K • <NS_ldi> K SPAR 36

COL STF I I • PRODUCT (KjE)

[XqT VEC

FIX <_DEF> <i'D>

<X_X> <- COL.STF.X.1

*END

• •DECK STIFFNESS

eprocodttre STIFFNESS ( DATA_BASE ; --

STEP ; --

ITFA ; --

LOAD_FACTOR ; --

DISPLACEMENT ; --

ROTATION ; --

STIFFNESS )

• input

• output

*Renazk FORMING NEW STIFFNESS MATRIX

*call ES ( function : 'FORJg STIFFNESS/TANG' ; --

ss_nl_geon : 4NL_GEOM> ; --

3.10- 30 CSM Testbed Procedures Manual Revised 5/24/90



Solution Procedures NL'STATIC'2

as_core

es_dis_ds

os_rot_ds

[XqT X
[ZQT v_-Gag

RESET C0N = 1

IESET L_ = 7168

- <CO&OTATION> ; --
= [DISPLACLqENT] ; --

= [iOTATION] )

• Transform/assemble stiffness

• Factor stiffness

meSET DZEKO = 1.g-lO

USET SPDP = <can.precision>
*remark

eKemark KITKIX BEING FACTOEED (in Double Precision)•

• Define factored-matrix parueters as global macrosymbols

[XQT VEC

ereaark Determinant = <coef_det> • I0 " <explO_det>

eremark Ns 8. roots = <nun_nag>

edef/i slp.det == <SIGN(1.;<coef_det>)>

eremark Sign of dot = <siEn_det>

*remark

*END

• =DECK TINDIS

eprocedure TINDIS ( step; iter; displacement ; rotation ; --

load_factor ; max_load ; external_force; --

specified.disp; internal.force; --

tangent_force ; tangent_disp )

elf < <spec_dlsp_flas> > /then . Load standard spec_disp dataset
[IQT VEC

SPECIFY 1.0 [specified_disp] -> <d.spec>

eendif

ecall SOLVE ( ]LHS = [external_force]; SOLN = [tangent_disp] )

sir < <spec_disp_flag> > /then . Clear standard spec_disp dataset

[IQT VKC

<d_spoc> 4- 0•0
sendal

send

• =DECK TWO_BY_TWO

eprocedure TWO_BY_TWO ( FREE )

• . . Compute 2 x 2 system coefficients

[XQT VEC

• . . A_22 is used for both ordinary and advanced KIKS

DOT <d_Inc_l> • <delta_T> -> A_22

edef/d A_22 == < 2.0 • <I_22>>

• . . The remainder of Procedure is invoked only for Advanced Kiks

elf <[FEEE] /gt 0> /then

CONPONENT <ndef> <fd> <K_I> -> K_II

COMPONENT <ndef> <fd> <f_ext> -> fe_I

C0KPONENT <ndef> <fd> <d_inc_i> -> D_II

DOT <K_I> , <delta_I> -> K_DOT_d_I

Revised 5/24/90 CSM Testbed Procedures Manual 3.10- 31



NL_STATIC_2 Solution Procedures

*ond

DOT <K_X> * <delta_T) -) K_DOT_T

DOT <d_inc_i) * <delta_I) -) dd_DOT_d_X

• def/d A_11 == <<K_XX> - <K_DOT_d_I))

• def/d A_12 =ffi <<K_DOT_T) - <le_X))

• if <<spec_disp_flag))/then

DOT <K_X) , <d_ext) -) K_DOT_d_ext

• del/d 1_12 == <<l_12) - <g_DOT_d_ext))

*endil

• def/d A_2L == < 2.0 *<<D_ZI> - <dd_DOT_d_Z)> )

*endi_

3.10- 32 CSM Testbed Procedures Manual Revised 5/24/90



Solution Procedures NL_DYNAMIC_I

9 1 1 _ .... A .... I_TT T_VI_T A "lk,t"T/'l 1

iJ_, JI. JL JL- ,IL-U L. _la. U.,IL _ J. _1 .ILJ_.JI.J JL .L _1 ._k. J.YJL J. _.,__ .IL

3.11.1 GENERAL DESCRIPTION

Procedure NL_DYNAMIC_I, written by C. C. Rankin and B. Nour-Omid of Lockheed

Palo Alto Research Laboratory, performs nonlinear transient analysis using a one-step,

self-starting, implicit integration algorithm containing adjustable parameters. The non-

linear system is solved using a modified Newton/Raphson incremental/iterative solution

sequence. Like NL_STATICA, procedure NL_DYNAMIC_I relies on the Generic Element

Processor (i.e., structural element processors, ESi) and hence has a corotational option for

geometric nonlinearity that enables arbitrarily large rotations.

Procedure NL_I)YNAMIC_I solves the transient system

Mii + fi"'(u) = f_'_ (3.11 - 1)

Here M is the mass matrix, u is the displacement, and dots over quantities refer to differen-

tiation with respect to time. These equations are discretized over time using the following

relations involving two parameters 0 and a:

Ma,_+o + (I + a)f/"'(d.+o) - af'"'(d,_)= q_.t 0 (3.11- 2)

where d,_+0 and a,_+0 are the approximations to the displacement and acceleration at time

(n + 0)At, and where Wilson's 0 interpolation parameter is used to obtain the desired

accderation according to

a,_+o= (1 - O)a,_4-Oa,_+, (3.11- 3)

Velocity v and acceleration a are related to the displacements at the point n + 0 by

v.+0 = v. + 0at[(1 - + :a=+0]
(3.11 4)

d,,+0 = d,, + OAtv. + (0At)'[( 2 - fl)a,, + fla,,+0]

I

where we have introduced the two standard Newmark parameters fl and 7 as the last two

parameters in our system. The resulting system to be solved is

Md,_+0 + (OAt)2fl(1 + a)fi_t(d,_+o) -L+0 = 0 (8)

where the quantity f,,+0 is known from the last converged time step (see Section 4.3.9.2.

for a complete derivation of equations and definition of symbols).

NL_DYNAMIC_I is designed to solve any well posed initial value transient analysis prob-

lem with non-negative mass. This includes problems with initial velocity and/or initial

displacement, as well as a generalized imposed external forcing with either built-in or

user-suppled time dependence. Currently, the procedure uses the same external loading

as NL_STATIC_I, with a multiplier defined by a force-time procedure. The built-in pro-
cedures are described in Sections 4.3.3.7 and 4.3.3.8.

5/24/90 CSM Testbed Procedures Manual 3.11- 1



NL_DYNAMIC_I Solution Procedures

Since (66) is a nonlinear system similar to (1), much of what is in NL_STATIC_I ap-

plies to NL_DYNAMIC_I. In particular, we mention the solution of a banded system
with similar structure to the stiffness matrix, identical handling of large rotations, similar

procedures for archiving results of solutions and retrieving restart information, and very

similar convergence and stepsize adjustment procedures. We shall henceforth concentrate
on the differences between the static and dynamic algorithms, with particular emphasis on

operations involving the mass, time step, and the four adjustable integration parameters.

In some respects, NL_DYNAMIC_I is simpler than its static analogues, since no arclength

constraint is needed for a positive-definite mass/stiffness system.

3.11.2 PROCEDURE USAGE

Procedure NL_DYNAMIC_I may be invoked by the *call directive:

.call NL_DYNAMIC_I ( argl =vall; arg2 = val2; )l
where argi are argument names and vali are the corresponding values you wish to give

them. The following are valid arguments for NL_DYNAMIC_I; note that those without

default values are mandatory, while the others are optional.

Argument

BEG.STEP

MAX_STEPS

BEG_TIME

MAX_TIME

DEL_TIME

Default Value

m

Meaning

Starting step number (>0)

Maximum steps to compute

Problem starting time

Upper_bound on problem time

Beginning time step

INT_PARS 1.,0.,.25,.5

LOAD_STIFF <false>

FT_PROC FT_ZERO

FT_ARGS 0.

COROTATION 1

DES.ITERS 4

EXTRAPOLATE <true>

FAC_STEPS 1

MAX.ITERS 9

MAX_CUTS 3

NL_GEOM 2

NOMINAL_DB NOMINAL.GAL

NOMINAL_DS RESPONSE.HISTORY

N_SELECT 0

SEL_NODES 0

SEL_DOFS 0

TOL.E 1.E-3

Time integration parameters
Include load stiffness

Forcing procedure

Parameter array for FT_PROC

Corotational Update Option

Number of iterations per step desired

Perform quadratic extrapolation of solution

Steps_per_re factoring

Maximum iterations per step

Maximum number of successive step cuts

Geometric Nonlinearity Level (1 or 2)

Results database file

Results dataset

Number of nodes for selected disp. output

List of nodes for selected output

Corresponding list of nodal freedoms (1-6)

Relative error tolerance in energy norm

3.11- 2 CSM Testbed Procedures Manual 5/24/90



Solution Procedures NL_DYNAMIC_I

In *I_ _ _ I- ..... f___me avove definitions, the t_l-L btep to a time step. "1-- "-'-' "rc,cr_ ±n_ _u_ response is au-

tomatically subdivided into time steps, with the starting time prescribed by the User --

using BEG_TIME. The initial time step is set by DEL_TIME, and held constant unless

trouble occurs. If convergence is difficult, the time step will be cut, and a new initial value

problem will be started at the last converged solution.

3.11.3 ARGUMENT GLOSSARY

3.11.3.1 BEG_STEP

This argument defines the number of the first step to be computed in a given nonlinear

analysis interval. It is important primarily for :analysis re-starts. Initially, BEG_STEP

should be set to 1. To continue an analysis in a subsequent run, after having computed

and saved "n" steps in the previous run, one would typically set BEG_STEP equal to

"n+l". For example, if the 10th step was successfully completed in the first run, then

it could be continued in a second run by setting BEG_STEP = 11. However, it is not

necessary for BEG.STEP to be larger than any previously computed step. That is, you

may re.compute a sequence of steps by setting BEG_STEP to the number of the first step to

be re-computed. The procedure will automatically use the step that immediately precedes

BEG_STEP (e.g., BEG_STEP-I) to obtain the necessary initial displacements, velocities,
and accelerations.

3.11.3.2 BEG_TIME

The starting problem time. For the initial run, the value of this parameter is usually set

to zero.

3.11.3.3 COROTATION (default = <true>)

Corotational update switch for large-rotation problems. This switch should be set to

<true> when the model involves finite elements that require corotation for geometric

nonlinearity. This is true of most beam and shell elements, and may be true for some solid

(3D) elements used to model she]] structures. Consult the appropriate element Processor

(ESi) section in the Testbed User's Manual for specific guidelines.

3.11.3.4 DEBUG (default = <false:>)

Procedure debug switch. This switch should only be turned on to obtain additional diag-

nostic printout for procedure debugging.

3.11.3.5 DEL_TIME

The initial time step. If all goes we]] with the integration, this will be the time increment

throughout the analysis. For restart, it is possible to use the time increment that was in

force for the previous run. For restart only, input zero to cause the procedure to read in

and use the previous DEL_TIME.

5/24/90 CSM Testbed Procedures Manual 3.11- 3



NL_DYNAMIC_I Solution Procedures

3.11.3.6 DES_ITERS (default = 4)

Desired number of iterations allowed for convergence at a given load step. This parameter

is used to adaptively adjust the arclength increment from one load step to the next, by

comparing DESITERS with the actual number of iterations required for convergence at

the last step.

3.11.3.7 FT__PROC (default = FT_ZERO)

FT_PROC is the name of a procedure that will obtain the load factor (_) for the time-

dependent forcing function. For applied force loading, this factor is multiplied by the

reference applied force vector to obtain the current load vector, i.e.,

where _ezt is the reference applied force vector stored in dataset APPL.FORC.1. For

applied displacement loading, the starting load factor is applied to the reference applied

displacement vector, which is then used to compute the initial internal force vector, i.e.,

f_,,t(') = fi,,t[A(t)_ effit]

where _effit is the reference applied displacement vector stored in dataset APPL.MOTI.1.

The user can supply any procedure he desires for FT__PROC. If this is the case, FT_PROC

is the name of that procedure. FT.PROC has three arguments of its own. T is the current

problem time, FT_ARGS is an array of up to six scalars, and F_MAC is the name of the

macrosymbol (set by NL_DYNAMIC_I) to contain _(t).

If the user wishes to use the FT procedures supplied here, he has four choices, as illustrated

in Fig. 4.3-1.

FT_ZERO

FT.LIN

FT_SIN

FT..EXP

This is the default option, which means that there will be no external forcing.

Piecewise linear forcing function.

Sinusoidal forcing function.

Exponential decay.

3.11.3.8 FT..ARGS

These are the arguments to either the user-supplied forcing function, or required for

FTLIN, FT_SIN, or FT_EXP. For these last three procedures (supplied here), we offer

the same options that are supplied with the code Structural Analysis of General SheUs

(STAGS). We have reproduced the forcing function diagram from the STAGS manual,

which here appears as Fig. 4.3-1. In this figure, PA is the function _(t), TIME is in units

of problem time, and CA1 through CA6 are FT_ARGS[I:6], respectively. A summary for
each each case follows:

For FT_LIN (piecewise linear time dependence), the array is as follows:

3.11- 4 CSM Testbed Procedures Manual 5/24/90



Solution Procedures NL_DYNAMIC_I

FT-_RGS[1]

FT_ARGS[2]

FT.ARGS[3]

FT.ARGS[4]

M_,_,,m 1,_,_ factor (CA1 m .gurej.

Delay time before applied load ramps up (CA2). Can be zero.

Time at which load reaches maximum (CA3). Can be equal to FT_ARGS[2].

T'ime at which load begins to drop (CA4). Can be equal to FT_ARGS[3] if

FT.ARGS[3] is not equal to FT_ARGS[2].

FT_ARGS[5] Time at which load drops (CA5).

FT.ARGS[3:5] can be safely set to larger than MAX_TIME if that is what the user wants.

For FT_SIN (sinusoidal time dependence), the array is as follows:

FT_ARGS[1]

FT_ARGS[2]

FT_ARGS[3]

FT_ARGS[4]

FT_ARGS[5]

FT_ARGS[6]

Peak height of sine wave (see Fig. 4.3-1, CA1)

Load offset for the sine wave function (CA2). If zero, the sine wave will

oscillate to plus/minus FT_ARGS[1].

Half wavelength (CA3).

Problem time to first maximum load (CA4).

Delay time to imposition of load (CA5).

Time at which all loading will terminate (can be a large number), or CA6 in
Fig. 4.3-1.

For FT_EXP

FT_ARGS[1]

FT_ARGS[2]

FT_ARGS[3]

FT..ARGS[4]

(Exponential decay), the array is as follows:

Peak height of exponential (see Fig. 4.3-1, CA1)

Delay time before any load is imposed (CA2). Can be zero.

Half life time of exponential decay.

This argument is not used. In the Fig. 4.3-1, CA4 must be half CA1. If this

is not the case, then FT.ARGS[3] should be recomputed.

5/24/90 CSM Testbed Procedures Manual 3.11- 5



NL_DYNAMIC_I Solution Procedures

Figure 4.3-1 Load Factor Histories

3.11- 6 CSM TestbedProceduresManual 5/24/90



Solution Procedures NL_DYNAMIC_I

3.11.3.9 INT.JVARS (default:1.,0.,.25,.5)

The values contained in this array set the characteristics of the time integrator.

INT_PARS[1] is Wilson's 0 interpolator (see Theory, Section 4.3.9), INT.PARS[2] is a,

and INT.PARS[3:4] are the Newmark _ arid _ parameters, respectively. A sophisticated

user can reset these parameters for special integrator performance characteristics. Unless

there is reason to tinker with their default values, it is better for the user to leave these

parameters alone.

3.11.3.10 LOAD_STIFF / (default--<:false:>)

If true, include load stiffness in the total stiffness matrix assembly.

3.11.3.11 MAX_CUTS (default=3)

Maximum number of step cuts permitted during the current nonlinear analysis interval. A

step cut refers to a halving of the arclength increment used to advance the solution from

one step to the next. Step cuts are performed only if the maximum number of iterations are

exceeded without converging at a given load step. Note that the relationship between the

increment in "arclength" and the increment in the load-factor, _, is computed internally

by the procedure.

3.11.3.12 MAX_TIME

Problem time for which the analysis is to be terminated.

3.11.3.13 MAX..ITERS

Maximum number of iterations allowed for convergence at a given load step. This

parameter is used to terminate the iteration process at a given load level. If convergence

hasn't been obtained after MAX_ITERS iterations, the load (i.e., arclength) increment

is cut in half and the step is repeated -- until either convergence has been obtained or
MAX_CUTS has been exceeded.

3.11.3.14 MAX_STEPS

Maximum number of load steps to compute in the current nonlinear analysis run. This

provides an implicit limit on analysis run-time. The transient analysis is thus terminated
whenever MAX_STEPS or MAX_TIME is exceeded m whichever comes first.

3.11.3.15 NL_GEOM (default -- 2)

Geometric nonlinearity level: 0, 1, or 2. 0 :_ the problem is geometrically linear; 1 =_

geometric nonlinearity will be handled globally, e.g., using corotational updates only; and

2 =_ nonlinear element strain-displacement relations should be used in addition to any

global treatment of geometric nonlinearity. If COROTATION -- <true>, options 1 and

2 refer to first-order and second-order corotation, respectively. The latter option can be

significantly more accurate than the former for a given finite element model -- depending

on which element types are involved.

5/24/90 CSM Testbed Procedures Manual 3.11- 7



NL_DYNAMIC_I Solution Procedures

3.11.3.16 NOMINAL_DB (default ---- NOMINAL.GAL !

Name of database (GAL file) where a step-wise history of important solution parameters

and selected response variables is to be stored.

3.11.3.17 NOMINAL_DS (default -- RESPONSE.HISTORY !

Name of dataset, within database defined by argument NOMINAL_DB, where a step-

wise history of important solution parameters and selected response variables is to be

stored. See the CSM Testbed Dataset Manual, under dataset RESPONSE.HISTORY, for

a description of the individual data records stored in this dataset.

3.11.3.18 N_SELECT (default = 0 !

Number of user-selected displacement components to be saved in the dataset specified by

argument NOMINAL_DS. Values for these displacement components, the locations and

directions of which are specified by arguments SEL_NODES and SEL..DOFS, respectively,

are stored at every time step.

3.11.3.19 SEL_DOFS (default : 0 I

List of nodal DOF's at which displacement histories are to be saved in dataset [NOM-

INAL_DS]. There should be [N_SELECT] numbers in the list, in correspondence with

the node numbers specified by argument SEL_NODES. Values of each number in the

list must range between 1 and 6, in correspondence to the nodal DOF sequence (e.g.,

u, v, w, 0_, 0r , Oz) specified by the START command of Processor TAB.

3.11.3.20 SEL_NODES (default -- 0 !

List of node numbers at which displacement histories are to be saved in dataset [NOM-

INAL_DS]. There should be [N_SELECT] numbers in the list, and node numbers can be

repeated if more than one nodal DOF is to be saved at a node. The corresponding nodal

DOF for each entry is specified by argument SEL_DOFS.

3.11.3.21 TOL_E (default = 1.e-3 !

Error tolerance used to establish convergence of the nonlinear equilibrium iteration pro-

cedure at each load step. The iteration loop at a given step is terminated whenever the

following condition is met:

e < [TO L_E]

where

Jr(i) • 5d (i)

e = Vr (1) $d(1 )

is the relative energy error norm, r is the residual force vector, Sd is the iterative displace-

ment change, and i is the iteration counter.

3.11- 8 CSM Testbed Procedures Manual 5/24/90



Solution Procedures NL_DYNAMIC_I

3.11.4 INPUT/OUTPUT DATASETS

Table 3.11-1 Datasets

Dataset

<ES_NAME>.EFIL.,

Input/Output by Procedure NL_DYNAMIC_I

Description

Element Computational Data

ES.SUMMARY ES Processor Status

DEF.<ES_NAME>., Element Defn. (Connectivity)

DIR.<ES..NAME>., Element EFIL Directory 1

Model Summaxy 1JDF1.BTAB.*

JLOC.BTAB.*

PROP.BTAB.*

QJJT.BTAB.*

TOT.DISP.step

TOT.ROTN.step

TOT.VEL.step

TOT.ACC.step

Nodal Coordinates 1

Material/Section Properties 1

Nodal Transformations 1

System Displacement Vector 1

Nodal Rotation Pseudovectors 1

System Velocity Vector 1

System Acceleration Vector 1

1System InternalForce Vector

Lib

1

1

REAC.FORC.atep

Input Output

J J

J

J

J

J

J J

J J

J

where step is the time step number, and ranges consecutively from 1 to the total number

of steps computed. We must emphasize here that if one wishes to solve an initial value

problem with either nonzero initial velocities or displacements (and not a restart), the user

must supply TOT.DISP.0 and/or TOT.VEL.0. If they are not supplied, the procedure will
initialize these to zero.

5/24/90 CSM Testbed Procedures Manual 3.11- 9



NL_DYNAMIC_I Solution Procedures

8.11.5 SUB-PROCEDURES AND PROCESSORS

Table 3.11-2

Procedure

NL_DYNAMIC_I

CHK_CONVD

CONSTRAIN

DEFND

ES

FACTOR

FORCE

FT_ZERO

FT..LIN

FT_SIN

FT_EXP

MASS

MASS_STIFF

NL_INITD

POSTRES

POSTSTPD

SOLVE

STIFFNESS

Sub-Procedures Invoked by Procedure NL_DYNAMIC_I

Type

Internal

Unction

Main Procedure

iInternal Check convergence

Internal Impose constraints on freedoms

Internal Defines recursive macrosymbols

External Element utility Procedure

Internal Factor stiffness matrix

Internal Forms INTERNAL/EXTERNAL force vector

Internal Zero force-time history

Internal Piecewise linear force-time history

Internal Sinusoidal force-time history

Internal Exponential decay force-time history

Internal Compute mass

Internal Combine mass and stiffness matrices

Internal

Internal

Internal

Initialize datasets and set restart

Save selected data, internal forces

Save data for restart

Internal Solves linear equation systems

Internal Forms and assembles stiffness matrix

3.11- 10 CSM Testbed Procedures Manual 5/24/90



Solution Procedures NL_DYNAMIC_I

Table 3.11-3

Procedure i

AUS

Type

Internal

Processors Invoked by Procedure NL_DYNAMIC_I
!

F unc_ion

Combines mass and stiffness matrices

E Internal Initializes EFIL datasets

ESi External Element Processors based on GEP

INV Internal Factors stiffness matrix

SSOL Internal Solves linear equation systems

VEC Internal Performs all vector/pseudo-vector algebra

5/24/90 CSM Testbed Procedures Manual 3.11- 11



NL_DYNAMIC_I Solution Procedures

3.11.6 LIMITATIONS

Limitations spelled out in Sections 4.1.6.1 through 4.1.6.8 apply also to NL_DYNAMIC_I.

In addition, the following limitations also exist:

3.11.6.1 No Damping Included

No damping is included in this first version of NL_DYNAMIC_I. Damping that preserves

the bandwidth of the problem will be included in a later version.

3.11.6.2 Initial Velocities and Displacements

These are currently the responsibility of the user. NL_DYNAMIC_I will expect to see data

sets TOT.DISP.0 and TOT.VEL.0 for these types of problems. Currently, there is no way

to initialize rotational triads. This is a topic for future development.

3.11.6.3 Diagonal Mass

Currently, only diagonal mass can be used. This limitation will soon be removed.

3.11.6.4 AUS Limitation

Due to hard wired data set naming conventions in processor AUS for system matrices (e.g.

K.SPAR.36), the number of DOF's per node specified on the START command of processor

TAB is presently restricted to be 6. AUS is currently essential to NL_DYNAMIC_I for

computing the sum of the mass and stiffness matrices to obtain the dynamic operator. This
restriction will be removed when we make the connection to the Generic Matrix Processor.

3.11.7 ERROR MESSAGES

3.11._'.1 "Non-Convergence at Step n. Revise Stratev.3"."

This message means that the maximum number of nonlinear iterations (MAX_ITERS)

has been exhausted, as well as the maximum number of step cuts (MAX_CUTS), and

convergence still hasn't been obtained at step n. A possible cure is to re-start the analysis

from several steps back, and decrease the arclength increment at that point (using the

PATH_SCALE argument). However, just increasing MAX_ITERS or MAX_CUTS, or even

TOL..E, may also solve the problem. In other words, re-think the definition of all solution

parameters based on the observed behavior of the solution algorithm just prior to the
break-down.

3.11.7.2 "Divergence at Step n. Revise Strateev."

This message has similar implications to the previous message, but it occurs when the

error grows instead of decreases during two successive nonlinear iterations. The difference

between divergence and non-convergence is that divergence cannot be cured by increasing

MAX_ITERS; and probably should not be "cured" by increasing TOL-E. It generally

3.11- 12 CSM Testbed Procedures Manual 5/24/90



SolutionProcedures NL_DYNAMIC_I

meansthat the step-size is too big -- or that the error tolerance (TOLA2,) has been too big

all along, so that chmages are occurring suddenly that should have been detected by the

solution algorithm at earlier load steps. Thus, you might try re-starting from an earlier

nA_u T_r_ and possibly ,',_,,,-;,_g TnL R as we!l,step, reducing L _ ..__,,_, ...........

3.11.7.3 "Specified Displacements are Identically Zero"

This is not necessarily an abortive error. As long as either nonzero specified displacements

or specified forces axe defined, the solution can proceed -- in which case the message should

be taken merely as a warning.

3.11.7.4 "Specified Forces are Identically Zero"

This is not necessarily an abortive error. As long as either nonzero specified displacements

or specified forces are defined, the solution can proceed -- in which case the message should

be taken merely as a warning.

3.11.8 USAGE GUIDELINES AND EXAMPLES

3.11.8.1 Starting an Analysis

To begin a nonlinear transient analysis with procedure NL_DYNAMIC_I, it is only nec-

essary that the finite element model be defined. This does not require pre-formation of

element stiffness matrices, node renumbering for optimal factorization time, or any form

of linear analysis (unless initial geometric imperfections are based on linear displacement

modes). Only nodal coordinates/transformations, material properties and element con-

nectivity are pre-requisite to nonlinear analysis. To invoke procedure NL_DYNAMIC_I,

only those arguments that don't have default values (see PROCEDURE USAGE section)

need be specified.

For example, if you wanted to start an analysis with an initial time of 0., maximum time

of .01, a time step of .005, and compute no more than 20 time steps with an initial velocity

profile defined in data set TOT.VEL.0, you could invoke the procedure as follows:

•callNL_DYNAMIC_I ( BEG-STEP = 1 ;MAX_STEPS = 20 ;-

BEG_TIME = .0 ;MAX_TIME : .1 ;-

DEL_TIME = 0.005 )

Keep in mind that the number of time-steps actually performed during the above run will

depend on whether convergence dii_culties were encountered. If that happened, the step

will be cut, and the number of steps to maximum time will be greater. Since it may be

dii_icult to estimate this in advance, you may want to start with only a few time steps

(e.g., set MAX_STEPS -- 3) to get some experience, and later re-start the analysis with

more steps allowed.

5/24/90 CSM Testbed Procedures Manual 3.11- 13



NL_DYNAMIC_I Solution Procedures

3.11.8.2 Re-Starting (or Continuing) an Analysis

To re-start an analysis from a previously computed, converged solution, you need only

specify the first step to compute, the maximum time, and any changes in the forcing

function. The only requirement is that a previous complete set of solution data for a

converged time step must be present on the database. If, for example, one wishes to

restart from step 10 (compute beginning step 11), then the call could be

• call NL..DYNAMIC_I ( BEG_STEP = 11; MAX_STEPS = 100 ; -

MAX_TIME= .1 ; DEL_TIME = 0. ; -

FT_PROC=FT_LIN ; FT_ARGS=100.,0.,0.,1. )

In this case, the user wants to restart the previous example at time .05 with the sudden

imposition of a step forcing function with scaled magnitude of 100. By examining Fig.

4.3-1, one can see that the step load is to be continued well beyond the termination time.

FT_LIN is one of the procedures supplied here.

It is also possible to modify integration parameters and the time step, as well as any of

the other applicable procedure arguments. Note that the parameter DEL_TIME is always

required. The value zero is used to tell the procedure to look into the database for the last

value. A nonzero value for this parameter overrides the time step saved in the data base.

3.11- 14 CSM Testbed Procedures Manual 5/24/90



Solution Procedures NL_DYNAMIC_I

_.l 1,_ "m'I"I_U.L'(.Y

3.11.9.1 Introduction

Procedure NL_DYNAMIC_I performs a nonlinear transient analysis of a system using

a time integration algorithm that has adjustable parameters which allow for the automatic

selection of a family of related transient analyzers. All of them are self starting, require no

"historical" vectors, and for a useful range of parameters, are unconditionally stable. All

are based on discrete matrix equations of motion that may or may not include damping.

The internal and external force vectors can be nonlinear functions of the displacements

(unknowns).

3.11.9.2 Development of the Algorithm

The discrete form of the equations of motion are

Mii + flnt(u) -- feet (3.11-5)

where for simplicity we have omitted damping, and where the dependence of the internal

forces on displacement and the external forces has been emphasized. Here M is the mass

matrix, u is the displacement, and dots over quantities refer to differentiation with respect

to time. Our goal is to find a discrete solution to (69) at time t + At (step n + 1), given

information at time t (step n). In order to do this, we need additional relations between

the displacements, velocities, and accelerations being solved for.

We begin with a two parameter family of the equations of motion (69) discretized in
time as follows:

Ma,_+s + (1 + c0f/"(&,+s) - afir"(d,_) = q_._ (3.11 - 6)

where d,,+s and a,,+s are the approximations to the displacement and acceleration at time

(n + 0)At, and where Wilson's 0 interpolation parameter is used to obtain the desired

acceleration according to

a,,+s =(1- 0)a., -k Oa,,+, (3.11- 7)

The parameter a is a measure of the "degree of implicitness" of the integrator. If a is 0,

the equations of motion are to be satisfied at some point 0 greater than unity. If c_ = -1,

we have an explicit system, with the acceleration extrapolated from values at the previous

step.

To relate the velocity and acceleration to the displacements at the point n -t- 0, we

introduce the two standard Newmark parameters/3 and 3':

v,_+o = v,_ + 0At[(1 - 7)a_ + 7a,_+o] (3.11-8)

d,_+0 = d,, + 0Atv,, + (0At)2[( 1 -//)an + fla,_+s] (3.11 - 9)

5/24/90 CSM Testbed Procedures Manual 3.11- 15



NL_DYNAMIC_I SolutionProcedures

Eq. (72) is required when damping is present. If we define the known quantity

1
_ln+o = d,_ -4-OAtv,_ + (0At)2(_ - fl)a,, (3.11-10)

then, using (73), we have

d,,+0 = d,_+0 + (OAt)2_a,_+o (3.11-11)

If we multiply Eq. (70) by (OAt)2 and eliminate a,_+0 using (74), we obtain

Md,,+o + (0At)2_(1 + et)f/'_t(d,,+o) -L+o = 0 (3.11-12)

where the quantity f,_+0 is known from the last converged time step:

n+8 = 2 ezt(OAt) /3[f,:+o + otfi'_t(d,_)] + Md,_+o (3.11- 13)

Eq. (77) is a nonlinear system of equations which must be solved for d,,+0; these dis-

placements will be solved for using an extrapolated starting solution followed by modified

Newton corrections. The solution of this system is very similar to what is in NL_STATIC_I,

with the exception of the ardength constraint and load factor equation. Thus, solution

of (77) proceeds like a fixed-step static algorithm with a modified "stiffness" matrix and

residual vector. In the algorithm description, these are labeled the dynamic operator and

dynamic residual, respectively.

3.11.9.3 Derivation of the Dynamic Operator and Residual

The derivation of the dynamic operator and residual follows directly from the lin-

earization of (77). Using a procedure similar to that for static analysis, we carry out a

Taylor expansion of (77) and drop all terms of order higher than first. The result is the

system

(o) (i) _/)+o (3.11 14)[M + (0At)2/3(1 + a)K(d,_+o)lgd,_+o =

where

_i) f,,+o l_ra(i-1) (OAt)_(l_ ,,.i,_t,.(i-1),= -- --A_n+ 0 -- t _)I (Qn+O) (3.11 - 15)

is the dynamic residual. Here

f,_+o = (OAt)2_[tc't(t,_+o) + afi'_t(d,_)] + Md,_+o (3.11-16)

which is computed from information known at the previous step or computed from the

known external forcing function, j;,l(0 is the vector of unknown displacement increments
"_'n+O

at iteration i, time point t + OAt. One can tell that this is a modified Newton sequence,

because of the argument of the stiffness matrix in (78). For true Newton, one would have

to reform and refactor the stiffness matrix using the latest displacement information.

3.11- 16 CSM Testbed Procedures Manual 5/24/90



Solution Procedures NL_DYNAMIC_I

3.ii.9.4 Recovery of Quantities at Step n t i

Once the displacements at point t+OAt are known, we need to update the accelerations

and compute the new velocities and displacements at the desired new step. Starting with

dn_l_8, we USe LII_ _iI_CUItU UI _. ! O) ".v _vxvc xvi an..}- 8. .I.XJ.m,.I.UUU_IJ.m_ _, "-x), _xle _.].u_t,i,,.su iv* I,u_

acceleration becomes

1 d,.,+o) (3.11 17)
a_+0- ..(0At)2_(d'_+°-

We now require the accelerations, velocities, and displacements at time step n + 1. Using

(72), we have for a,_+z
1 1

 )anan+, = _a,_+o-I-(I - (3.11 18)

Eqs. (72) and (73) can then be used with 0 = 1 to interpolate velocities and displacements

to step n -t- 1, given the new and old accelerations:

v,_+z = v,_ + At[(1 -- 7)a,, + 7a,_+]

(3.11-19)]
d,,+z = d_ + Atv_ + At2[(_ -/_)a,, + _a,,+z]

L

3,11.9.5 The Composition of New Displacements and Velocities

Whenever a new velocity vector is to be updated from a previous vector, the increment

is simply added to the vector. For displacements, however, only the translations are

handled this way. The rotational triad8 must be updated by the product rule, covered

in Section 4.1.9.10. NL_DYNAMIC_I is no different from NL_STATIC_I in this respect.

However, the reader will notice that the vector dn+0 is treated like a velocity, with no

accompanying rotational update. The reason is that d,_+0 eventually ends up as part of

an incremental quantity used to account for inertial effects in the dynamic residual. The

rotational freedoms in this vector are accumulated like their translational counterparts. To

avoid confusion in the algorithm description, compositions that require special rotational

treatment will be denoted by the symbol _. Again, this is similar to the static case.

3.11.9.6 The Integration Parameters

'vh,. ;,,*,._-*;o- parameters R11nw th_ ,,_ertn taylnr the integrator to the special needs

of his problem. The following table defines what we mean by each parameter. For detailed

information on the various integrator options, the reader should consult references at the

end of this section.

Parameter Name

OL

Newmark Parameters

Wilson's Collocation Parameter

Dissipation Parameter

5/24/90 CSM Testbed Procedures Manual 3.11- 17



NL_DYNAMIC_I Solution Procedures

Table 3.11-4 Parameter names used in the NL..DYNAMIC Procedure.

Special choices of these parameters select out well known integrators whose behavior has

been studied extensively. These integrators, the parameter choices, and their regions of

stability for stiff linear systems can be found in the following table.

3.11- 18 CSM Testbed Procedures Manual 5/24/90



Solution Procedures NL_DYNAMIC_I

I

:1 Algorithm
Newmark

Trapezoidal

Linear Acceleration

Fox-Goodwin

Central Difference

Wilson-0

Collocation

a-Method

0

0

0

0

0

0

I

!
6

1__
12

0

1
i

!

7

!
2

I

I°
!

1

1

Remarks

Tmnllcit _nd .n,'-_n,"l;÷;_.',,_11_ =÷o_

ble when 2fl _> "1,>__

Implicit and unconditionally sta-
ble

Implicit and conditionally stable

Implicit and conditionally stable

Explicit and conditionally stable

Implicit and unconditionally sta-

ble when 0 __ 1.366025

Implicit and unconditionally sta-

o >,_>blewhen0_>land__ _
202 -1

Implicit and unconditionally sta-

ble when-_ __ cl _ 0, 7 =

½(1- 2_) and _ = ¼(1- _)2

Table 3.11-5. Some properties of the algorithms that can be produced using

NL_DYNAMIC_I through the %/3, 7, and 0 parameters.

5/24/90 CSM Testbed Procedures Manual 3.11- 19



NL_DYNAMIC_I SolutionProcedures

3.11.10 ALGORITHM

General Algorithm

(1) INITIALIZATION

(1.1) Initialize a, fl, 7, 0.

(1.2) Initialize do, v.

(1.3) Compute time at 0

to = to + 0At

(1.4) Compute weighted out-of-balance force

1 1

_= fillet(to) + (_ -/3)f_ffit(to) + t_"(do)[_(1 + a) - _1

(1.5) Add inertial terms

To= MCd0+ 0atv0) + CAt0)2?

(1.6) Compute initial estimate of displacements

d (°) = do _ OAtvo

(1.7) Compute initial dynamic residual

_Agintt.l( i--l )_
_0 =-_,_+o_ Md___l_(oAt)2_(1 +aj. t",,+o I

(1.8) Set n - 0, t = to + At, nbeg = 1

(2) STEP LOOP: for n = rib, g, nbe9 + 1, ...

(2.1) Form and Assemble Stiffness Matrix based on predicted displacements

(2.2) Compute the Dynamic Operator

E = [M + (OAt)2/_(1 + a)K(d(,,°+)o)]

(3) ITERATION LOOP: i = 1, 2, ... (iter = i+1 = 2, 3, ... )

(3.1) Solve for incremental displacement change

E_.l(0 _:)v'n+O = +0

3.11- 20 CSM Testbed Procedures Manual 5/24/90



Solution Procedures NL_DYNAMIC_I

/t} .'_ TT_.,.I^_.^ .1"__1 ...... ,L_
_0. r.) V_u_ '...Lt_I_C_III_IJLL_

d(O ,a(i-_) x,a(1)
n+O -- "n+O _ "'n+O

(3.3) Set iteration counter

i_i+l

(3.4) Compute new Dynamic Residual

_i) = ?n-be -- I_I'A(i-1) --(#mt)2_(1 -4- _If irtt['4(i-')'.... n+O I _,un+e )

(3.5) Check Convergence

_(i+1) 5d,_i) ' erey, e%ol, num_divcall CHK_CONV ( r,,+] ,

_i+1), <CONVERGED>, <DIVERGED> )

if ( <CONVERGED> ) then

num_iters_required = iter

rt*-n+l

go to (2.3) STEP LOOP

elseif ( <DIVERGED> .or. (iter > max.iters) ) then

if ( num_cuts < max_cuts ) then

At,_+l = At,_+]/2

num_euts = num_cuts + 1

nbeg = n

GO TO (1.3)

else

endif

else

STOP

go to (3) ITER LOOP

endif '.

(2.3) Compute acceleration at n + 8

1 d.+o)
an+O- (OAt)2fl(dn+o-

(2.4) Compute acceleration at n + 1

1 1

an+l = _an+a -4-(1 - _)an

5/24/90 CSM Testbed Procedures Manual 3.11- 21



NL_DYNAMIC_I Solution Procedures

(2.5) Extract velocities

v_+l = v_ + At[(1- 7)a_ + 7a,_+1]

(2.6) If 0 ¢ 1, recompute displacements

d,_+, = d,_ _ {Agv,_ + At2[( 1 - 3)a. + fla,_+l]}

(2.7) Update counters, timestep

n _---n + 1; t_--t-F1

(2.8) Check to see if t > t,_,,_ or n > n_a_

(2.9) If either statement in 2.8 is true, STOP; else GO TO 2.10

(2.10) Compute dn+o

= d,_ + 0Atv,_ + (0At)2( 1 -/3)a,_a.+o

(2.11) Compute external loads f_t(t) at current time t

(2.12) Compute K+o

fn+o = (OAt)Zfl[f_'t(t,_+o) + af/"t(d,_)] + Md,+o

(2.13) Compute initial estimate of new solution

Ad,_+o = d,_+o + (0At)2f_an -dn

d(0) d,_ _ Ad,_+0n+O "_

(2.14) END STEP_LOOP

3.11- 22 CSM Testbed Procedures Manual 5/24/90



Solution Procedures NL_DYNAMIC_I

d

V

a

_d

d

ezt

fint

fezt

?
?
K

num_cuts

num_div

¢

eref

Ctol

d °

t

At

n+O

NOTATION

Displacement vector.

Velocity vector'

Acceleration vector.

Iterative change in d.

Extrapolated displacement from step n

External force vector w base load.

Internal force vector.

External force vector.

Extrapolated out-of-balance force.

The dynamic residual.

Stiffness matrix.

Humber of times load step has been cut in half at current step.

Humber of consecutive iterations at which divergence occurs.

Relative error in energy norm.

Absolute error in energy norm.

l_ference value of e; initialized as zero.

Relative error tolerance (default: 10-4).

Load factor.

Base value of specified displacement vector.

Current value of specified displacement vector, d" = A d*.

Problem time.

Time increment.

Time at step n + OAt

5/24/90 CSM Testbed Procedures Manual 3.11- 23



NL'DYNAMIC'I Solution Procedures

3.11.11 PROCEDURE LISTING

*procedure NL_DYNINIC.1 ( --

bog_stop =1

nax_steps=l

aax_itorsf9

dos_itorsffi4

eKoaark

eKonark

*leaark

*Koaark

*loaark

elonark

*Koaark

eKonark

*loaLrk

eKonLrk

*Konark

*Konark

*Konark

*Konark

fac_stops:!

aax_cuts=3

tol_e=1.E-S

beg_tlao

nax_tfao

dol_tino

i-

-e

Starting step nuabar (>0)

Naxinun stops to conputo

Naxinua iterations per step
Nuabor of iterations desired

Stops_por_rofactorlng

Naxiaua nuabor of stop cuts

Energy error tolerance

Starting ring

Upper_bound on tino

Tino increnent

int_pars • I. ,0. ,.25,.5 ; -- . ltogration paraaotors

load_stiffffi_falso) ; -- . Include load stiffness

FT_procffiFT_Ze-eO ; -- . Naae of force-tins procedure

Fr_args ; -- . Paraaotor array for above

dobugf<FiLSE>; -- . Debug_print switch

NL_GEOH • 2 ; -- . Goes. Nonlin. Level (lj2)

COKOTATION=I ; -- . Corotational Flag (leave on;:)

Noatnal_DB = NONINIL.GIL ; -- . Selected Output

Nominal_DS ffi KESPONSE.HISTOKY ; --

N_SELECT ; SEL_NODES; SEL_DOFS --

)

J J
NL_DYNIN ZC_ !

CSN Teethed Procedure for Nonlinear Statics:

o Corotational Negton/iephson algorithm

o Linearized Crisfield/liks arc-length control

o Ipplied forces and/or displacements

luthors: G.M. Stanley and C.C. Kgnkin
Version: NIK-O3-1988

J

• INITIILIZaTION

*dof/i

*dof/i

*dof/i

edof/i

edof/a

*dof/a

*dof/i

*dof/i

edof/i

*def/i

.def/i

ns_ovor_r_ito == _falso)

debug =ffi [debug]

max.stop =ffi <[bog_stop]+[nax_stops]-l>
ntm.iters _= [dos_iters]

NON.DB == [Noainal_DB]

NON.DS == [Noninal_DS]

N_SELECT == IN.SELECT]

SEL.NODES[I:(N_SELECT)] == [SEL_NODES]

SEL.DOFS[I:(N_SELECT>] == [SEL_DOFS]

NL.GEON == [NL_GEOM]

COKOTATION == [COKOTITION]

3.11- 24 CSM Testbed Procedures Manual 5/24/90



Solution Procedures NL'DYNAMIC'I

"UWJLfU. beg_tOm@ ii LU_g_l;]JSe4

*do_/d lax_tile --= [aax_tine]

*def/d int_pars[l:4] = [ant_pars]

Set ÷one .n.e-ra..on paranetors

*dof/d theft == <int_pars[l]>

*def/d alpha == <int_pLcs[2]>

*def/d neu_bet == <ant_pars[3]>

ede_/d neu_gma == <int_pars[4]>

..... Initialize dataset nanes, constants

eCALL DEFND ( STEP • [BEG_STEP]; ITEK • 0 )

elf [BEG_STEP] /EQ 1 /THEN

,t,Kenark INITIALIZATION:

ecall NL_INITD

*def/d t == [beg_ties]

*def/d dt _= Idol_tins]

*else

*if < [del_tino] /eq 0.0 > /then

*def/d dt == <dr_n>

*else

*dof/d dt == [del_tiae]

eendtf

edef/d •= <t_n>

*endtf

.... Set initial step, initial iteration parameters

*dof/t pass == 1

edef/i tot_ttors == 1

*dof/i tstop == [bog.stop]

.... Set initial tlno, basic tins integration scalars

*def/d one.p_alp == <1. ÷ <alpha>>

*dof/d b_op_a =: <<ne.-a_bot>*<ono_p_alp>>

edef/d h_n_bet == <.5 - <neu_bet>>

edef/d o_d_th =8 <1./<thorn>>

edef/d o_n_odth == <1. - <o_d_th>>

edef/d o_n_gan =: <1. - <neu_gaa>>

leintery for problen restart on failure of convergence

System is treated as a now initial value problen

:NEV_PASS • Ks-entry point for step-size reduction

.... Sot iteration and step-independent integration scalars

*def/d th_dt

edef/d t_wils

*def/d th_dt_sq

:: <<theta>t<dt>>

:ffi <<t> + <th_dt>>

=: <<th_dt>e<th_dt>>

5/24/90 CSM Testbed Procedures Manual 3.11- 25



NL'DYNAMIC'I Solution Procedures

*def/d

*def/d

*def/d

*def/d

*def/d

*def/d

*def/d

*def/d

*def/d

*def/d

*def/d

th.b == <<neun_bet>s_th_dt_sq>>

a_th_b == <<th_b> • <alpha>>

o.d.thb == <1./_th.b>)

fO.coef == <<b.op_a> - .5>

k_coeff == <<th_dt_sq>*<b_op_a>>

v_n.coeff == _<dt>*<o_m_gan>>

v_npl_coeff == <_dt>*<neea_gan>>

dtsq == <<dt>*<dt>>

h_ab == _dtsq>*<h_a_bet)>

dt_b == _<dtsq)*<neen_bet>)

h.ab.th == <<th_dt.sq)*<h_n_bet>)

.... Set initial displacement estimate, first step

.... Set initial estimate of weighted out-of-balance forces

.... Compute external force weightLng constant laabda_n(time)

*call [FT_proc] ( T = <t> ; --

Fr_ args = [ft_args] ; --

Y_nac • laabda_n ) .

*call FOKCE ( type = EITE]_NIL

nl.geon • [nl_geom]

nl_load • <true>

displacement = <d_n>

rotation = <T_n)

corotation • [corotation]

load_factor = _lanbda_n)

iuput_force • <F_ref)

output_force • _F_ext) )

.... Set internal force

• Problem time

• Force-time paten,term

External forcing scale factor

*call FOItCE ( type

• stop_l *stop

• IFrWIL ; --

=l_8oon = [nl_gooa] ; --

displacement = <d_n> ; --

rotation = <T_n> ; --

corotation = [corotation] ; --

output_force ffi <F_int> )

.... Weighted difference between internal and external force

[XQT VEC

<a_th> (- <f_extY - <f_intY

<f_bLr> 4- _h_n_bet> <F_ext> ÷ <fO_coef> <F_intY

.... External force at time ffiT ÷ <theta> * DT

*call [FT_proc] ( T = <t_wils> ; -- . Problem time

FT_ args = [ft_args] ; -- . Force-time pares,term

Y_mac = laabda_npl ) . External forcing scale factor

*call FOKCE ( type = EXTERNIL ; --

3.11- 26 CSM Testbed Procedures Manual 5/24/90



Solution Procedures NL'DYNAMIC'I

_i_geon = [nl_geon]
nl_load • <true>

displacement = <d_n>

rotation • <T_n>

corot&tlon z r ....... J__lL_U£ U kiL_OAJ

load_factor = <lmsbda_npl>

input_force • <F_ref>

output_force • <F_mxt> )

| ----

.... Add correction to external force

[IQT VEC

<f_bar> <- <f_bar> + <noms_bet> <Y_ext>

<f_bar> 4- <th_dt_sq> <f_bar>

.... Initial estimate of displacements

<delta> <- <th_dt> <v_n>

<d_npl_i> <- <d_n> + <delta>

ROTATE <T_n> * <delta> -> <T_npl_i>

<d_tilde> 4- <d_npJ_i>

.... Scaling displacement increment for convergence check

. stop_2 *stop

PKOD <inv_aass> <a_th> -> <d_Inc.i>

<d_inc_i> <- <h_nb_th> <d_inc_i> + <delta>

.... Mass • Displacements + scaled out-of-balance force

PlOD <mass> <d_npl_i> -> <f_tilde>

<f_tilde> <- <f_tilde> + <f_bar>

*DO :STEP_LOOP In = <istmp>, <[max.stops]-l>

*dof/i stop == <in>

*lanark

*remark ...........................................................

*remark

*Kemark BEGINNING STEP <STEP>

eranark ...........................................................

*remark

*call CONST_IIN ( load_factor = <laabda_npl > ; --

applied_notion = <d_spoc> ; --

displacement = <d_npl_i> )

• . . Form Stiffness based on Predictor

5/24/90 CSM Testbed Procedures Manual 3.11- 27



NL'DYNAMIC'I Solution Procedures

*call STIFFNESS ( type ffi TINGENT ; --

nl_geom ffi [hi_seen] ; --

hi_load ffi [load.stiff] ; --

load_factor ffi <laabda_npl> ; --

displacement = <d_npl_i> ; --

rotation ffi <T_npl_i> ; --

corotation = [corotation] ; --

stiffness ffi <g_asa> ) . output

• . . Combine MISS and STIFFNESS into one matrix <H_p_K>

*call HISS_STIFF ( nasa

stir

ault

N_p.K

= <mass> ; -- . Mass vector

ffi <K_asm> ; -- . Assembled Stiffness

= <k_coaff> ; -- . Stiffness Multiplier

• <N_p_K> ) . The dynamic operator

• . Factor DYNIMIC OPERATOR

*call FICTOR ( input_matrix • <N_p_K> ; --

output_matrixffi <N_p_K> )

• . Obtain HISS RESIDUIL

*call FORCE ( type = IrrEPJ;IL

nl_goon • [nl_geoa]

displacement • <d_npl_i>

rotation • <T_npl_i>

¢orotation = [corotation]

output_force = <F_int> )

• stop_S *stop

[XQT VZC

PROD <mass> <d_npl_i> -> <R_npl_i>

<R_npl_i> 4- <f_tilde> - <l_np1_i>

<l_npl_i> <- <l_npl_i> - <k_coeff> <F_int>

• . . Initialize Convergence Criteria

ecall CHKCNVD ( STEP : 1

ITP£ ffi 1

Residual_force • <B.npl_i>

displacenent_inc ffi <d_inc_i> )

-- BEGIN ITERATION LOOP ****** ******* ******* *********

stop_4 *stop

*echo,on,ma,ad

*DO :ITEB._LOOP 8i • 1, [nax_iters]

3.11- 28 CSM Testbed Procedures Manual 5/24/90



SolutionProcedures NL'DYNAMIC'I

*def/i itor == <<$i>÷I>

sdaf/i tot_itars == <<tot_itors>÷l)

..... Compute Basic Displacement Iteration (dslta_th)

*call SOLVE ( rhs = <Z_npl_i>| soln = <dolta_th>; matrix = <M_p_K> )

..... Update Displacements, Rotations, Increnants

[KQTVEC
<d_npl_ipl> 4- <d_npl_i> ÷ <delta.th>

ROTITE <T.npl_i> * <delta_th> -> <T.np1_Ipl>

• call CONSTKIIN ( load_factor = <lanbda_npl>; --

applied.notion = <d_spoc> ; --

displacement = <d_npl_ip1> )
oil < <DEBUG> > /then

oprint 1, <d.npl_ipl>

• print I, <T,npl_ipl>

*andif

..... Compute DYNIMIC RESIDUIL

*call FORCE ( type = INTEKNIL ; --

al.seon = [hi_teem] ; --

displacement = <d_npl_ipl> ; --

rotation = <T_npl.ipl> ; --

corotation = [corotation] ; --

output_force = <F_int> )

[KQTvEc

PROD <nan> <d_npl_Ipl> -> <1_npl_ipl>

<l_npl_ipl> 4- <f_tildo> - <l_npl_ipl>

<R_np1_Ip1> 4- <R_np1_ip1> - <k_cooff> <F_int>

..... CHECK CONVERGENCE

*call CHKCNVD ( stop = <stop> ; -- . input

Iter = <it,r) ; --

Residual_force = <l_npl_ip1> ; --

displacoaont_inc = <dolta.th> ; --

tol.e = [tol_a] ; --

max_liars = [max_tiers] ; --

convorsonco = CONVERGENCE ; -- . output

divorsonco = DIVY£GENCE )

sis <COJNEKGENCE> /oq <TRUE> /them

eJunp to :CONVERGED

eel,oil <DIVERGENCE> /aq <TRUE> /then

oil <pass> /lo [max_cuts] /than

*jump to :REPEIT
salsa

*Ronark Maximum number of automatic stop cute exhausted.

5/24/90 CSM Testbed Procedures Manual 3.11- 29



NL'DYNAMIC'I Solution Procedures

*Junp to :DIVERGED
*endif

esndi!

: ITEK_LOOP

: NEUTRAL

ei_ <pass> /lo [max_cuts] /then

eJuxp to :KEPEIT
eelse

*Remark Maximum number o_ automatic stop cuts exhausted.

eendit

SKenLrk NON-CONVERGENCE IT STEP <step>. REVISE STRATEGY.

eJump to :EXIT
:REPEAT

edof/i pass == < <pass>+l >

edef/d dt an <<dt>e.8>

eRona_k

eRsnark CONVERGENCE DIFFICULTIES; REPEATING STEP <stop>

ORoakrk vith hale original time stop
eReaLrk Nay TIME increment is <dr>

• Remark Pass: <pass>

eJuxp to :NEY_PISS

:DIVERGED

*Remark

ejump to :EXIT
:CONVERGEI)

*Remark

:NEXTSTEP

*do_/i nun_itsrs

sdef/d path_scale

edef/d lan_n

edef/i sisn_det_n

sdof/i load_dir_n

DIVERGENCE IT STEP <STEP>.

CONVERGENCE IT STEP <STEP>.

== Citer>

REVISE STRATEGY.

== <[dos_iters]/<num_Itors>>

== <lanbda_np1>

== <sign_dot>

== <load_dir>

.... Compute current acceleration

[XQTVZC
elf <<thste> /me 1.0> /then

<a_th> <- <o_d_th> <d_npl_Ipl> - <o_d_th> <d_tilde>

<a_npl> <- <o_d_th> <a_th> ÷ <o_odth> <a_n>
eelss

<a_npl> <- <o_d.th> <d_npl_ipl> - <o_d_th> <d_tilde>

*endif

.... Update velocity vector

<a_th> <- <v_n.coeff> Ca_n> + <v_npl_coeff> <a_npl>

<v_npl> 4- <v_n> ÷ <a_th>

.... For 8tranaa (non-unity) values of Wilson's parameter, update

.... displacements to step n÷l

*if <<there> /ns 1.0> /than

<a_th> 4- <h_mb> <a_n> + <dt_b> <a_npl>

3.11- 30 CSM Testbed Procedures Manual 5/24/90



Solution Procedures NL'DYNAMIC'I

<deZta> 4- <de> <v_n> + <a_th>

<d_npl_i> <- <d.n> + <delta>

ROTATE <T_n> * <delta> -> <T_npl_i>

*endif

.... Postprocess and save results of computations st <<STEP> + 1>

*call POSTSTPD ( stepf<step>; iterf<iter> )

.... Reset iteration counters

*dof/t pass == !

*dof/i tot_leers =8 !

.... Update CUzTont time

*def/d t_gils am <<t> ÷ <th_dt>>

*def/d t =: <<t> + <de>> . can be altered by path_scale

*stop

.... Check for max time and max steps

*if <<t> /gt <max_time> > /then

*remark *********************************************************************

*renerk * ,

*remark * gaxtnun problem time <max_time> reached or exceeded. *

*remark * Computation terminated ,
*remark * .

*remark *************.8.*****8.********.8.***************.0.*************.888

*Jump to :EZZT
*endif

*if <<step> /eq <<max_stops>- 1>>/then
*relark *********************************************************************

*remark * ,

*remark • Maximum steps <max_steps> exceeded. *
*remark • Problem time is <t> *

*remark * ,

*remark *********************************************************************

*jtmp to :EXIT
*endif

.... Reset step counter for datasets to step <<step> + 1>

*call DEFND ( STEP : <<STEP> ÷ 1>; ITER=I)

.... Compute nee "historical" displacement d_tilde

[XQT VEC

4a_th> 4- 4th_dt> <v_n> + 4h_mb_th> Ca_n>

<d_tilde> 4- <d.n> + <a_th>

.... Compute nee external force for step n+l

5/24/90 CSM Testbed Procedures Manual 3.11- 31



NL'DYNAMIC'I Solution Procedures

*call [FT_proc] ( T • <t_wils>

FT_ arms = [ft_args] ;

F_nac • lanbda_npl

*call FORCE ( type • EXTERNAL

el_soon : [el_goes]

el_load • <true>

displacement • <d.n>

rotation • <T_n>

corotation : [corotation]

load_factor • <lsabda_npl>

input_force • <F_ref>

output_force : <F.axt> )

; -- . Problem time

-- . Force-tins parameters

) . External forcing scala factor

| ----

.... Set internal force if Wilson's constant is not unity

eif<<theta> /me I.> /then

scall FORCE ( type

*ondtf

• INTERNAL ; --

el_gee: • [nl_geon] ; --

hi_load • <true> ; --

displacement • <d_n> ; --

rotation • <T_n> ; --

corotation • [corotation] ; --

load_factor • <laabda_npl> ; --

input_force • <F_ref> ; --

output_force • <F_int> )

.... Weighted stun of internal and external force

[lqT VEC

<f_bar> <- <th.b> <F_axt> + <a_th_b> <F_int>

PROD <mass> <d_n> -> <f_tilde>

<f.tilde> <- <f_tilde> + <f_bar>

.... Compute new initial estimate, displacements

[IqT VEC

<delta> <- <d_tilde> - <d_n>

<delta> <- <delta> + <th.b> <a_n>

<d_npl.i> <- <d_n> + <delta>

KOTITE <T_n> * <delta> -> <T_npl_i>

.... End Step LOOP

:STEP_L00P

:EXIT

*and

• •DECK CHXCNVD

*procedure CH_CNVD ( STEP ; --

ITEK ; --

DISPLICEMENT_INC ; --

RESIDUIL_FORCE ; --

TOL_E ; --

• input

3.11- 32 CSM Testbed Procedures Manual 5/24/90



Solution Procedures NL'DYNAMIC'I

[IQT VEC

NIZ_ITEKS ; --

CONVEKGENCEzCONVEKGENCE ; -- . output

DIVEKGENCE =DIVEIGENCE )

• . Initialize

*def/i [CONVEKGENCE] == _FILSE_

*def/i [DIVEKGENCE] == <FALSE>

elf [ITEK] /gt 1 /then

edef/d12.4 EILK_E_I == •eaaE_IPI>

eondif

• . Compute Current Incremental Energy Norm

DOT [ItESIDUIL_FORCE] * [DISPLICEMENT_INC] -> INC_E_IP1
• iS [ITEL] /lo 1 /then

air •IBS(•INC_E_IPI>)> /gt •REF_E) /then

odor/d12.4 KEF_E =8 •IBS(•INC_E.IPI>)>

*endif

• dof/i nun_diverges == 0
*ondif

. . Compute Error Norms

odor/d12.4 EKR_E_KIW ffi= • •INC_E_IPI>/•REF_E> >

edef/dl2.4 ERI_E_IP1 =ffi • •IBS(•FJLI_E_KIW>)>- .5 >

. . Check for displacement convergence

*if • •EKK_E_IPI> /le [TOL_E] > /then

• . . Stop Converged

*DEF/I [CONVERGENCE] == •TKUE>

eJump to :BOTTOM_LINE
ee_if

*if • [ITER] /le ! > :BOTTOM_LINE

• • . Step Not Converged; Check for Divergence

elF • •F.RI.E_IPI>/<ERI_E_I> /GT 1.0 > /THEN

*des nun_diverges == • •nun_diverges>+l >

elf •nun_dlvorges> /gt I /then

*DEF/I [DIVEKGENCE] == _TKUE>

*ENDIF

*ENDIF

:BOTTOM_LINE

odor/el2.4 load_factor = •loibda_np1)

*remark

*remark
_.----.----D. ..... m. ..................... .. ...... . ............. ._o__

*remark ITENffi[ITEK] T=<t> LDf_load.factor>

st,mark EKKffi•orr_o_ipl> KEF=•rof.e>

5/24/90 CSM Testbed Procedures Manual 3.11- 33



NL'DYNAMIC'I Solution Procedures

=remark

=remark

=END

• =DECK DEF_D

*procedure DEFND ( step; iter )

• Purpose: Define basic nacre_symbols for NL_DTNIMIC procedure

*def/i npl = [step]

*dof/i n = < _npl>-I •

*if [itor] /oq 0 /then

edof/i NS_ldi == 1

edof/i NOM_idi == 3

edef/i isot == 1

edef/i icon == 1

edof/a f.spoc

edef/m d.spoc

• run initialization

8= IPPL.FORC.(isot>.!

== lPPL.MOTI.(isot>.l

Check for Specified Displacement Loading

• find datssat <NS_ldi> (d_spoc> /soq=ids

elf _ <ids> /st 0 > /then

eKemark Note: Specified displacement dataset <d_spec> will be used

*dof/i spoc_disp_flag == <true>
eelso

edof/i spoc_disp_flag == <false>
eondif

edof/a F.rof == KEF.FOEC

*dof/a f.oxt == EXT.FOKC

ede_/a f.int == INT.FOKC

edef/a mass == N.DI/G

edof/a lay_mass == MINV.DIIG

*daf/a l_npl_i == KES.FOKC

*dof/a l.npl_Ipl == KES.FOKC

*def/a d.inc_i == INC.DISP

edef/a d.inc_ipi == INC.DISP

edef/a v.inc_i == INC.VEL

edef/a v.inc_ipl == INC.VEL

edef/a delta_TH == THET.DISI

edef/a a.TH == THET.ACC

edef/a delta == TOT.DISI

edef/a d.ttlde 1= TILD.DISP

edof/a f.tilde == TILD.FOKC

*dof/a f.bur =1 BLK.FOKC

sdef/a g.asa == K

edof/a g.fac 1= K

edef/a M_p_K == MpK

Kotriave Control Parameters from DATA_BASE

*if [step] /oq I /then

edof/d t_n == <beg_tlno>

3.11- 34 CSM Testbed Procedures Manual 5/24/90



Solution Procedures NL'DYNAMIC'I

ede_/i sIKn_det == I

edef/d ref_e == 0.0

edof/d lanbda_n == 0.0

$Romark STIKTING PIEAMETEKS INITIILIZED.

eelse

capon <NOM_ldi) <NOM_DB)

efind dttaset <nom_ldi> <non_de> /seq=nom_ids

eS2m /nanezat_n /typesD _nom_ldi> _noa_ids> TIME.<=>

$82m /nauo=msign_det_n /typo=I <non_ldi> <non_ids> SIGN_DET.<n>

$$2m /n-uom=lanbda_n /type=D _non_ldi> <non_ids> LOID.<n>

eK2s /nanen=ref_e /type=D <nom_ldi> <noa_ids> KEF_EKJL.<n>
$closo <NOX_Zdi>

$Komark

eromark

eroaark

*Kenark

*Keaark

*Kensrk

$Komark

$ronark

$ronark

$endlf

$endlf

KE-STIKT PIKIMETE&S:

TIME = <t_n)

SIGN_DET (n) = <sign_det_n>

LOID = <lubdm_n>

• DefOe Glob_ Datasots for Upcomin 8 Step

$dof/a d_n == TOT.DISP.<n>

$def/a d_npl_i == TOT.DISP.<npI>

$dof/a d_npl_ip! == TOT.DISP.<npI>
$def/a v_n == TOT.VEL._n)

edef/a v_npl == TOT.VEL.<np1)
$def/a a_n == TOT.ICC.<n>

$dof/a a_npl == TOT.ICC.<npI>

$dof/a T_n == TOT.&OTN.(n>

$def/a T_npl_i == TOT.LOTN.<npI>

$def/a T_npl_ipl == TOT.EOTN.<npI>
sand

=DECK FT_ZEItO

$procedura FT_ZERO ( t ; ft.args ; F_mac )

.... Provide for zero dependence of force on time (no external forces)

$defld IF.sac] == O.

send

=DECK FT.LIN

$procedure Fr_LIN ( t ; ft_args ; F_nac )

.... Provide piecegise linear forcin 8 function

$def/d ft.args[l:5] = [ft_args]

5/24/90 CSM Testbed Procedures Manual 3.11- 35



NL'DYNAMIC'I Solution Procedures

*if <[t] /le <ft.args[2]•• /than

sdaf/d [F_mac] == O.

*olsoi_ <[t] /lt <ft_args[3]•• /then

sdof/d c__act = <<ft_args [3]•-<_t_gurgs [2]>>

*if <<c_fact• /lo 0.• /then

*dof/d [F_aac] == <ft_args[1]>

salsa

*dof/d IF_sac] =ffi <<<[t]-<_t_Lrgs[2]•• * --

<ft_s_gs [1] ••/<c_fact••

aondif

*olsoif <It] /1o <ft_args[4]>• /then

*daf/d [F_mac] == <ft.args[1]•

*alsotf <[t] /lt <ft_trgs [6] >> /then

sdof/d ¢_fact = <<ft_s_gs [6] >-<ft_s_ga [4] >•

elf <<c_fact> /lo 0.> /then

*dof/d [F_mac] == O.

salsa

*do_/d [F_sac] == <<<<ft_args[6]> - [t]> * --

<ft_args [1] >>/<c_fact>>

*ondtf

*else

*daf/d [F_aac] == O.

*ondlf

send

• =DECK FT_SIN

*procedure FT_SIN ( t ; ft_args ; F_nac )

*dof/d ft_args[l:6] • [ft_args]

..... Piocomiso slnusoldal forcing function

sir <It] /go <ft_Lrgs[6]>> /than

*dof/d [F_mac] = 0.

*olsotf <It] /8o <ft__gs [S] >> /then

*if <<ft__gs[3]> /le 0.• /then

adof/d [F_aac] =80.

*else

*def/d tc = 444[t] - <ft__gs [4]>>*<pi>>/<ft_erg-[3]>>

*dof/d [F_nac] == <<ft_args[2]> + <cos(<tc>)> * <ft_args [1] >>

*ondlf

salsa

adof/d IF_sac] == O.

aondlf

*and

• =DECK FT.EIP

*procedure FT_EXP ( t ; ft_args ; F_nac )

.... Exponential decay

3.11- 36 CSM Testbed Procedures Manual 5/24/90



Solution Procedures NL'DYNAMIC'I

Sdefid 'et_args[l:3] = [:tt_args]

*if <[t] /lt <ft_ergs[2]>> /then

*defld [F_mac] •= O.

eQlse

*def/d apl • <. 6931471806/<ft__Ks [3] >>

*def/d szl • <<apl>e<[t] - <St.a:Ks [2] >>>

edsf/d IF_mac] == <<St_ames[I]>* <EXP(-<axl>)>>
sendlf

send

• •DECK NL_INITD

*procedure NL_INITD ( ldt=l )
..... .D..oo----. ......... .o ......

• PEKFOKN STINDIKD INITIILIZITION
.......... --.------._------.--. ........

scall INITIILIZE ( constraint_sot • (icon>)

CLEIK INITIIL DISPLICEKENTS IND KOTITIONS ( n = 0 )

*Kh /nauo=nun_nodes /typa=i [ldi] HODEL.SUMMIRT NUN_NODES

ash /naae•nun_dofs /type=t [ldt] NODEL.SUMNIRT Nmq_DOFS

*Keaark Problem Dimensions: H_nodes = <nua_nodes), N_dofn = <nun_dofs>

*find datasat <NS_ldt> <d_n> /seq=ids_disp

sis < <ids_dtsp> /st 0 > /then

*Kesark Note: Initial displacement dataset <d_n> gill be ussd
*else

INIT_VEC (d_n> (nun_dofs> BY <nun_nodes> . Zorotze translations

*Kesark Displacements (<d_s>) initialized.

*endtf

efind dataset <NS_ldi> <T_n> /seq=tds_rotn

elf < <tds_rotn> /st 0 > /then

*lanark Note: Inltlal rotation datasat <T_n> rill be used

*else

INZT_VEC <T_n> 3 BY <nun_nodes> . Zeroime rotation pseudovectors

*lanark lotatlons (<T_n>) initialized.

*endlS

efind dataset <NS_ldi> <v_n> /ssq=ids_vol

*if < <tds_vel> /st 0 > /then

*lanark Note: Initial velocity dataset <v_n> rill be used
*else

INIT_VEC <v_n> <nun_dofs> BY <nun_nodes> . Zeroize velocity
*Koasrk Yelocittes (<v_n>) initialized.

sondtf

sSind dataset <NS_Idi> <a_n> /seq=ids_acc

sIS < <Ids_acc> /St 0 > /then

*lena:k Note: Initial acceleration dataset <a.n> viii be used

*else

INIT_VEC <a_n> <nun_dofs> BY <nun_nodes> . Zerolze acceleration

slesark lccelerattons (<a_n>) initialized.

*endlS

5/24/90 CSM Testbed Procedures Manual 3.11- 37



NL'DYNAMIC'I Solution Procedures

FOB.M INITIAL (BASE-LOAD) EITEBNAL-FORCE VECTOK

• call FORCE ( type • EXTERNAL ; --

input_force • <f_spec> ; --

output_force = <Y_rof> )

Form nan and inverse nasa (diasonal fern)

.remark

• reek MiSS bypassed for testin S purposes defined in BASE.DBC

.remark

eCLT1 MISS ( type • DIAGONAL ; --
mass • <nasa> )

[IQT VEC

DIAG_INV <mass> -> <inv_nass>

* end

• =DECK MISS.STIFF

.procedure MISS_STIFF ( mass
stir

nult

M_p_K

; -- . diasonal mass vector
; -- . assembled stiffness

; -- . the dynamic weighting factor

) . the dynamic operator

[XqT Aus
DEFINE M z <NS_ldi> M DIAG

DEFINE K • <MS_ldt> [STIF] SPAR 36

[M_p_K] SPA1 S6 = SUM(N, [MULT] K)

.end

• =DECK POST1LES

• procedure POSTKES ( step )

[XqT VEC

efind data.st <NON_LDI> <NOM.DS> /ssqzpost_Ids

ell < <post_Ads> /Is 0 > /then

• put datasot <NON_LDI> <NOM_DS> /afar=2000 /seq=post_Ids

eendtf

• Save selected displacements on nominal data-base

edsf/a dof_nanss = U, V, W, KU, KV, KW

• do 8tsel • 1, <N_SELECT>

• def/i node = <SEL_NODES[<$tssl>]>

sdef/i dof • <SEL_DOFS[<$isoI>]>

odef/a dof_nane • <dof_nanes[<doI>]>

COMPONENT <node> <dot> TOT.DISP.[stop] -> DISP

• de_/a reed_name • DISP_<dof_name>_<node>.[step]

• Nenazk <recd.nane> • <DISP>

in2 8 /nane:dtsp /typezd <noa_ldi> <post_ida> <recd_nane>

Save Reaction Forces for Current Stop

3.11- 38 CSM Testbed Procedures Manual 5/24/90



Solution Procedures NL_DYNAMIC_I

KEIC.FOKC.[stop] <- IIT.YOIC

elf < [stop] /oq 0 > /then

KEIC.FOKC.O <- 0.0

*endif

-zz < <spoc_dlsp_flag> _ /then

COMPONENT <node> <dot> KEIC.FOKC.[step] -> FOKCE

*daf/a rood_nasa = FORCE_<dof_nuo>.<node>.[step]
oKonoxk <recd.namo> • <FOKCE>

en2g /nasa=force /typo=d <non_idi> <post_Ids> <recd_nuo>

*andlf

eonddo

*ond

• •DECK POSTSTPD

*procedure POSTSTEP ( step; iter )

*lanark ...................

eKemark STEP [step] SUMMI_Y :
*Kenark

*Lanark Load Factor ....................... <lanbda_npl>

*kenark Stlffnoss determinant ............. <coef_det> * I0 " <oxpl0_det>

eKonark Nunber of negative roots ......... <nun_nag>

*1oaark Kolatlve energy_error ............ <err_o_Ipl>

*lanark Number of Iterations ............. <nun_iters>

eKomark Nunbor of Stop Cuts .............. <<pass>-1>

*Komark Total Nunbor of Itoratlons ....... <tot_liars>

*KemLrk

*open <NOM_ldi) <NOM_DB>

*if < [stop] /eq 1 > /then

*call POSTKES ( stop • 0 )
*dof/d load_O•O.

*n2g /naneffiload_O /type=d <NOM_LDI> <NOM_DS> LOID.O:O
*endif

*call POSTItES ( stop=[stop] )

sflnd dataset <NON_LDI> <NOM_DS> /soq=nom_ids

*m2g /naae=lanbda_npl /typo=d <non_ldi> <non.ids> L01D.[STKP]

an2 8 /nane=Orroe_ipl /typo=d

an2 8 /nana=raf_o /typo=d

*n2g Inane=slgn_det Itype=i

*m2g /naris=cool=dot /typo=d

en2g /nane=expl0_det /type=i

*a28 /nane=nun_neg /type=d

*m2g /naneznun.lters /type=i

*n2g inane=tot.liars /typezi

en2g /nano=t /typo=i

*def/i passnl • <<pass>-1>

*n2g /nana=passnl /type=i <noa_ldi> <non_ida> NUN_CUTS.[STEP]
ecloso <NON.ldi>

send

<nom_ldi> <non.ida> ERAOK.[STEP]

<nom.ldt> <non.ida> KEF_EKK.[STKP]

<non_ldi) <non_ida> SIGN_DET.[STEP]

<nma_ldt) <non_ida> COEF_DET.[STEP]

<non_ldi> <non_ida> EIPIO_DET.[STEP]

<non.ldi> <non.ida) NKG.KOOTS.[STEP]

<non.ldi> <non.ida> NUM_ITEKS.[STEP]

<non_ldi> <non.ida> TOT_ITEKS.[STEP]

<non.ldi> <non.ida> TIKE.[STEP]

• cgl, 7126188

5/24/90 CSM Testbed Procedures Manual 3.11- 39



NL_DYNAMIC_I Solution Procedures

3.11.12 REFERENCES

3.11-1 Almroth, B.O., Brogan, F.A., and Stanley, G.M., "Structural Analysis of General

Shells, Volume II, User's Instructions for STAGSC-I," Lockheed Palo Alto Research

Laboratory, Palo Alto, CA, Rept. #LMSC-D633873, December 1982.

3.11-2 Hilber, H.M. and Hughes, T.:I.R, "Colocation, Dissipation and Overshoot for Time

Integration Schemes in Structural Dynamics," Earthquake Engineering and Struc-

tural Dynamics, Vol. 6, pp. 99-118, 1978.

3.11-3 Newmark, N.M., "A Method of Computation for Structural Dynamics," Journal

of the Engineering Mechanics Division, ASCE, pp. 67-94, 1959.

3.11-4 Hilber, H.M., Hughes, T.J.R., and Taylor, R.L., "Improved Numerical Dissipation

for Time Integration Algorithms in Structural Dynamics," Earthquake Engineering

and Structural Dynamics, Vol. 5, pp. 283-292, 1977.

3.11-5 Bathe, K.J., and Wilson, E.L., "Stability and Accuracy Analysis of Direct Inte-

gration Methods," Earthquake Engineering and Structural Dynamics, pp. 283-291,
1973.

3.11-6 Wilson, E.L., "A Computer Program for Dynamic Stress Analysis of Underground

Structures," SESM Report No. 68-1, Division of Structural Engineering and Struc-

tural Mechanics, University of California, Berkeley, 1968.

3.11- 40 CSM Testbed Procedures Manual 5/24/90



Application Procedures

•-J:,q.,IP J'LJ[JJ_./J..I.Iru.a.I,.ILq./,ILJL .L- J.-q.Jq..;.q_q.,I.U,IL-I_]_

The procedures documented in this chapter are representative of the types of procedures

that may be written to solve specific application (structural analysis) problems. Many of

these high-level procedures invoke other (lower-level) procedures to perform preprocessing,

solution, and postprocessing functions; which are described elsewhere in this manual. The

use of procedures to perform structural analysis applications can provide users flexibility

for parameterizing geometric data (e.g., stiffener spacing) as well as spatial discretization

parameters (e.g., number of elements). The problems represented here are also intended

to serve as part of a standard series of test problems to assess new structural elements
installed in the CSM Testbed.

A summary of the procedures found in this chapter is provided in Tables 4.0-1.

Revised 5/24/90 CSM Testbed Procedures Manual 4.0- 1



Application Procedures

Procedure Name

CLAHPED..BEAM

Table 4.0-1. Summary of Application Procedures

Problem Description

Transient response of a clamped beam modeled with 2-D

shell elements.

CONPRESSED_CYL Classical buckling and postbuckling analysis of an axially

compressed cylindrical shell; modeled with shell elements

and initial imperfections.

COOKS_MEN Linear in-plane bending response of a wing-like trape-

zoidal plate modeled with shell elements. (Referred to

as Cook's membrane problem in the literature.)

ELASTICA Classical large rotation analysis of a cantilevered beam

with an applied end moment. Final configuration is a
complete circle -- with 360 degrees rotation at the free

edge. Modeled with shell elements.

EULER_COLUMN Inplane buckling of a column modeled with 2-D shell ele-

ments. An overall Euler buckling modeshape is obtained.

FOCUS_PANEL Analysis of the composite blade-stiffened panel with a dis-

continuous center stiffener.

FItEE.Y.DGE Free-edge stress analysis of a 4-ply composite laminate.

GEJI_STF..PANEL Linear buckling analysis of stiffened panel configurations

subjected to combined in-plane compression and shear
loading. Configurations considered include fiat rectangu-
lar panels with hat-stiffeners, z-stiffeners and blade stiff-
eners, as well as a corrugated panel. Modeled with shell
dements.

HINGED_CYL Postbuckling (nonlinear) analysis of a hinged cylindrical

shell subjected to concentrated transverse load. Shell ex-
hibits snap-through buckling behavior and requires a so-
lution algorithm employing arc-length step control. Mod-
eled with shell dements.

4.0- 2 CSM Testbed Procedures Manual Revised 5/24/90



Application Procedures

Procedure Name

PEAR_CYL

_ble 4.0-1," concluded.

Problem Description

Buckling analysis of a pear-shaped cylindrical shell sub-

jected to axial compression. Modeled with shell elements.

PINCHED_CYL Lineax inextensional bending of a thin pinched cylindri-

cal shell. Modeled with shell elements; two opposing
radial forces applied at center; and both free and rigid-

diaphragm edges considered. (MacNeal-Harder case)

PW_HOLE Linear elastic stress analysis of a rectangular isotropic

plate with a central circular hole.

RECT_PLATE Eigenvalue (vibration and buckling) analyses of a rect-

angular plate subjected to various inplane loading condi-
tions.

RHOMBTC_PLtTE Linear bending of a simply supported rhombic plate under

constant pressure. (MacNeal-Harder case)

TRIDICtTED_CONE Linear transient dynamic analysis of impulsively loaded

truncated cone.

VIB_2D Vibration analysis of a bar, beam, or ring modded with

2-D shell elements.

Revised 5/24/90 CSM Testbed Procedures Manual 4.0- 3



Application Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

4.0- 4 CSM Testbed Procedures Manual Revised 5/24/90



Application Procedures CLAMPED_BEAM

4.1 P_-_.q.qnr CLAMPED__BEAM

THIS SECTION UNDER PREPARATION

5/24/90 CSM Testbed Procedures Manual 4.1- 1

PRECEDING PAGE BLANK NOT FILMED



CLAMPED_BEAM Application Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

4.1- 2 CSM Testbed Procedures Manual 5/24/90



Application Procedures Compressed Cylinder

A s_ 11_-- ..11 "t_tW't f'I"KP'T=.,, _ .oceuure COMPRESS..,___ x.,

4.2.1 GENERAL DESCRIPTION

4.2.1.1 Problem Description

This application problem involves the static buckling and postbuckling analysis of a thin

cylindrical shell (R/t ,_ 300) simply supported along its edges, and subjected to uniform

axial compression (see Figure 4.2-1). It is a particularly important classical problem for

testing linear and nonlinear performance of shell dements, as well as solution algorithms

capable of traversing non-monotonic load-displacement curves. A noteworthy feature of

the problem is that the buckling eigenvalues of the cylindrical shell are very dosdy spaced,

even though the mode shapes are radically different. This can pose a challenge for both

eigensolvers and nonlinear solution algorithms -- which are expected to find and maintain

the physically dominant (lowest-energy) mode. (It is interesting that the buckling char-

acteristics of this simple cylindrical shell problem have much in common with the more

practical problem of an optimally-stiffened cylinder, which also has many diverse mode

shapes occurring at the same critical load level.) Another noteworthy feature is that such

problems are notoriously imperfection sensitive. Thus, a small initial geometric imperfec-

tion can cause a substantial reduction in the peak axial load capacity, compared with the

classical critical buckling load corresponding to a perfect cylinder. This implies that the

model must be refined enough to represent the initially imperfect configuration, as well as

the finally deformed configuration.

= .125

36.

100.

7

30 x I0

Figure 4.2-1 Compressed Cylinder Problem.

Revised 5/22/90 CSM Testbed Procedures Manual 4.2- 1

PRECED_RG PAGE BLANK NOT FILMED



Compressed Cylinder Application Procedures

4.2.1.2 Model Description

Procedure CDMPRESSED_CYLemploys a partial (L/10 × 15 °) shell-element based model of the

cylindrical shell to capture both linear and nonlinear response. A typical model is shown

in Figure 4.2-2. The mesh is rectangular in topology, and restricted to quadrilateral shell

elements of either 4- or 9-node variety. Symmetry conditions on all but the one edge that

is simply supported enable the model to represent the lowest energy buckling mode with a

relatively small number of elements. This particular ("diamond") mode shape consists of

5 axial half-waves and 12 circumferential whole waves over the entire cylinder (in classical

terminology: m=5, n=12). Thus, the partial model will contain 1 axial quarter-wave and

1 axial half-wave, and less than 10 shell elements should be required in each direction to

obtain engineering accuracy. The axial force is distributed evenly and consistently on the

simply supported edge; and is scaled so that the magnitude corresponds to the classical

buckling load.

4.2.1.3 Analysis Description

The analysis is conducted in stages, some of which are optional. First, a linear buck-

ling (eigenvalue) analysis is performed (using procedure L_STtBIL_t). Due to the selected

magnitude of the applied load, the lowest eigenvalue should be close to 1 (for a sufficiently

refined mesh). Next, the buckling mode corresponding to the lowest (critical) eigenvalue

is scaled and used to perturb the geometry. This is achieved by adding the scaled radial

displacements to the initial finite element nodal coordinates. The scale factor is selected

so that the maximum radial perturbation is some percentage of the shell thickness (see

procedure IllPEEFECTION). This initial imperfection is necessary to trigger a realistic post-

buckling response in the nonlinear analysis. Due to the extreme imperfection sensitivity

of thin axially-compressed cylinders (e.g., see ref. 4.2-3) as little as a 1%-thickness im-

perfection is adequate to trigger such a response (although a 10%-thickness imperfection

is recommended). The nonlinear (postbuckling) analysis is then begun (using procedure

NL_STATIC_t). A reasonable description of the load-displacement history can usually be

obtained with about 20-30 load steps, from a starting load of about one-tenth of the

classical buckling load.

4.2.1.4 Available Solutions

Analytical solutions are available for the buckling (eigenvalue) analysis (e.g., see ref. 4.2-

1). Several of the buckling modes corresponding to the classical stability solution are

shown in Figure 4.2-2 (Figure 6.9 of ref. 4.2-2) using finite-element meshes. Note that the

critical loads (or eigenvalues) for these diverse mode shapes - smooth, axisymmetric, and

diamond-pattern - are within 5% of one another. While there are no closed-form solutions

for the nonlinear postbuckling response of the axially-compressed cylindrical she]], there

are approximate solutions for the "knock-down" factor corresponding to a given initial

imperfection, and various numerical solutions are given in the CSM Testbed Applications

Manual (see ref. 4.2-4). Figure 4.2-3 gives a sampling of these numerically obtained

response curves, for different magnitudes of initial imperfection (50%, 10% and 1% of

the shell thickness). Note that with only a 10%-thickness imperfection, the peak load is

"knocked-down" to approximately 70% of the value for a perfect (unattainable) shell.

4.2- 2 CSM Testbed Procedures Manual Revised 5/22/90



Application Procedures Compressed Cylinder

ae

CLASSICAL 0UCKLING PROBLEM

_i_ _¸. ___

( Samo Eil_,.luo: _. Port, )

Figure 4.2-2 Buckling of Axially-Compressed Cylinder:

Generic Problem Description

Figure 4.2-3 Postbuckling of Axially-Compressed Cylinder:

Revised 5/22/90 CSM Testbed Procedures Manual 4.2- 3



Compressed Cylinder Application Procedures

4.2.2 PROCEDURE USAGE

Procedure COMPRESSED_CYLmay be used by preceding the procedure name by the *call

directive, and following it by a list of arguments enclosed in parentheses. Procedure ar-

guments are order-independent, and most have default values thus making them optional.

The formal syntax is as follows:

*call CONPRESSED_CYL ( = vall= val2 )]
!

argl _LTg2 I • g

m

where argl and arg2 represent argument names_ and vall and val2 representtheircor-

responding values. Note that semi-colons are required between arguments, and a double

dash (--) may be used to continue the argument list on the next line.

The allowable arguments for procedure COMPRESS_CYL are summarized in the following

table, along with their default values (if they exist). Note that arguments without defaults

are generally mandatory, while those with defaults are generally optional. Exceptions to

this rule are noted in the following section under detailed argument descriptions.

Argument Default Value

ES_PROC ES1

ES_NAHE EX97

ES_PARS O.

NNODES_A 5

NNODES_C 5

SPEC_DIS <false>

PRE_STRESS <false>

AUTO_DOF_SUP <true>

DRILLING_DOF <false>

BC_PROCEDURE CC_BC

NSTEPS 30

BEG_STEP 1

MAX_CUTS 3

BEG_LOAD .I

MAX_LOAD I.0

DBC CC. DBC

DBR CC. DBR

PREP <true>

STABILITY <true>

IMPERFECTION <true>

NUN_IMP_MODES 1

IMP_MODES 1

IHP_AMPS .1

NONLINEAR <true>

POST <false>

Meaning

Element Processor

Element name

Element research parameters
Number of axial nodes

Number of circumferential nodes

Specified displacements

Constant pre-stress

Automatic d.o.f, suppression

Drilling (normal rotational) freedoms

Boundary condition procedure

Number of nonlinear load steps

Starting load step number

Maximum number of step cuts (halvings)

Starting load factor
Maximum load factor

Computational database name
Results database name

Perform pre-processing (model generation)

Perform linear stability (buckling) analysis

Superpose imperfections from (buckling) analysis

before performing nonlinear(postbuckling) analysis

Number of buckling modes used in creating

imperfection

Mode numbers used in creating imperfection

Mode amplitudes

Perform nonlinear (postbuckling) analysis

Perform post-processing (selected data archival)

4.2- 4 CSM Testbed Procedures Manual Revised 5/22/90



Application Procedures Compressed Cylinder

4.2.3 ARGUMENT DESCRIPTIONS

4.2.3.1 AUTO_DOF_SUP

Automatic degree of freedom suppression flag (default: <true>). This option provides a

convenient way of suppressing any freedoms that do not have any (or adequate) stiffness

associated with them -- for example, at nodes used to prescribe geometry only; or drilling

freedoms in fine meshes composed of dements without normal rotational stiffnesses (see

argument DRILLING_DOF).

4.2.3.2 BC_PROCEDURE

Boundary condition procedure name (default: CC_BC for specified forces; CCD..BC for spec-

ified displacements). The term "boundary conditions" refers both to displacement con-

straints and applied loading. Procedures CC_BC and CCD.3C both have the same zero

displacement constraints. The only difference is that the former procedure applies axial

forces to the simply supported edge, while the latter procedure prescribes non-zero axial

displacements on that edge. The argument BC_.PltOCEDI_E permits you to to supply your

own boundary condition procedure, but keep in mind that this may drastically change the

problem definition, and hence invalidate most of the discussion under Section 4.2.1.

4.2.3.3 BEG_LOAD

Starting load factor in nonlinear analysis (default=. 1). This factor is multiplied times the

reference load vector to obtain the starting load vector. For example, if specified forces are

applied (which is the default option), then BEG_LOrD = .1 means that the first load step to

be computed in the nonlinear analysis will be at one-tenth of the classical buckling load

level. Note that this argument is irrelevant for re-start runs. For more details, refer to the

same argument name under solution procedure NL_STATIC_I.

4.2.3.4 BEG_STEP

Number of starting load step in nonlinear analysis (default=l). This is the number of the

first step to be computed during an analysis interval. When starting a nonlinear analysis,

the first step is obviously 1. When re-starting (i.e., continuing in a subsequent run) a

nonlinear analysis, BEG_STEP should be set to the number of the next step to be computed

-- not to the number of the last step computed. The solution procedure (_L_STATIC_I)

will automatically use any previous step(s) required to continue the analysis -- providing

the necessary steps are available in the database. Currently, the number of consecutive

preceding steps required for a restart is three. For more details, refer to the same argument

name under solution procedure NL_STATIC_I.

4.2.3.5 DB___.CC

Name of computational database file (default=CC.DBC). This file will contain all model

definition data, element computational data, one copy of the assembled and factored stiff-

ness matrices, the buckling eigensolution, and displacement and internal force vectors for

every load step computed during the analysis.

Revised 5/22/90 CSM Testbed Procedures Manual 4.2- 5



Compressed Cylinder Application Procedures

4.2.3.6 DB__

Name of results database file (default=CO. DBI_). This file will contain one dataset called

RESPONSE. HISTOgY generated during nonlinear analysis. The dataset will contain record

groups -- indexed by load step number -- for a number of solution parameters, including

the load factor and maximum axial displacement components. This database is valuable

for obtaining load-displacement plots, and for evaluating the performance of the nonlinear

solution strategy employed.

4.2.3.7 DRILLING_DOF

Drilling degree of freedom flag (default: <false>). Drilling freedoms are defined as rota-

tions normal to the surface of the shell. Leaving this flag off forces all drilling freedoms

in the model to be suppressed. Turning it on forces all drilling freedoms to be active --

unless they are automatically suppressed using use of the AUT0_DOF_SUP argument. Note

that while many shell elements do not have any rotational stiffness associated with their

own surface-normal directions (at nodes), when shell elements are assembled as facets ap-

proximating an arbitrary shell surface, there is usually some misalignment between the

element normal and the actual shell normal. This is especially true of "flat" (e.9., 4-node)

elements. Hence, 8ome rotational stiffness about the 5hell normal is usually present in

the model. (A dear exception to this is a flat plate, where element and shell normals

are identical.) For a cylindrical shell, the misalignment diminishes only as the number of

elements is increased. Most shell elements in the Testbed have their own misalignment

tolerance parameter, which determines when the AUT0_DOF_SUP argument will automati-

cally suppress the drilling freedom. Note that for elements which hare driRing stiffness,

the DIIILLING_DOF argument should be set to <true> regardless of how AUT0_DOF_SOP is
set.

4.2.3.8 ES_NAME

Element name (default: EX97). This argument is the name of the specific shell-element type

you wish to select, within the element processor defined by argument ES_PROC. The default

shell-element type, EX97, is a 9-noded quadrilateral element implemented in Processor ES1,

and described in The Computational Structural Mechanics Testbed User's Manual (see ref.

4.2-1).

4.2.3.9 ES_PARS

Element research parameters (default: 0., ... ). This array is an optional list of element-

dependent parameters that some elements provide, primarily when the element is still

undergoing research and refinement.

4.2.3.10 ES_PROC

Element Processor (default: ES1) This is the name of the structural element (ES) processor

that contains the shell element type you wish to employ in the model. The default shell-

element, Processor v.Sl, is described in The Computational Structural Mechanics Testbed

User's Manual.

' "4.2- 6 CSM Testbed Procedures Manual Revised 5/22/90



Application Procedures Compressed Cylinder

4.2.3.11 I_ERFECTION

Imperfection superposition flag (default <true>). This flag should be turned on if you

want geometric imperfections, corresponding to buckling modes, to be superimposed on the

initial geometry. Pre-requisites for this option are pre-processing and stability analysis. If

you are just starting or re-starting a nonlinear analysis in the current run, and imperfections

have already been superposed in a previous run, then you should turn this flag off.

4.2.3.12 IMP_AMPS

List of buckling mode amplitudes to be used in generating the imperfection (default=. 1,

10% of shell thickness). This option is relevant only if IRPEP,FECTIONffi<true>. The ampli-

tudes in this list are interpreted as the maximum radial displacement to add to the initial

nodal coordinates for a given buckling mode. Thus, the maximum coordinate perturbation

due to a single buckling mode will occur wherever the mode shape has its maximum radial

component.

4.2.3.13 IMP_MODES

List of buckling mode numbers to be used in generating the imperfection (default=l).
This option is relevant only if IMPEIIFECTION=<true>. The numbers in this llst should be

separated by commas, and there should be a total of NUN_IMP_NODES numbers.

4.2.3.14 MAX_CUTS

Maximum number of load step cuts in nonlinear analysis (default:3). For more details,

refer to the same argument name under solution procedure NL_STATIC_I.

4.2.3.15 MAX_LOAD

Maximum load factor in nonlinear analysis (default=1.0). This sets an upper limit for the

load level, which can be a convenient way of terminating the arc-length controUed solution

algorithm employed within procedure NL_STATI¢_I. Since the load factor is actually an

unknown in this solution procedure, there is no way of knowing a-priori how many load

steps will be required to attain a particular load level. Thus, the analysis will be terminated
when either PAI_LOAD is exceeded or NSTEPS is exceeded -- whichever comes first. For more

details, refer to the same argument name under solution procedure NL_STATIC_I.

4.2.3.16 NNODES._A

Number of axial nodes (default: 7). This is the number of nodes you wish to have along

the axial direction of the cylindrical shell model, i.e., along one-tenth of the full cylinder's

length. Note that this number should be consistent with the number of nodes per element.

For example, NNODES_A can be any number greater than 1 for 4-node quadrilateral elements,

whereas it must be an odd number greater than 1 for 9-node quadrilateral elements.

Revised 5/22/90 CSM Testbed Procedures Manual 4.2- 7



Compressed Cylinder Application Procedures

4.2.3.17 NNODES_C

Number of circumferential nodes (default: 7). This argument is the number of nodes you

wish to have along the circumferential direction of the cylindricM shell model, i.e., along

15 degrees of circular arclength. Note that this number should be consistent with the

number of nodes per element. For example, NNODES_C can be any number greater than 1

for 4-node quadrilateral dements, whereas it must be an odd number greater than 1 for

9-node quadrilateral elements.

4.2.3.18 NONLINEAR

Nonlinear (postbuckling) analysis flag (default=<true>). This flag should be turned on

if you want to perform nonlinear analysis in the current run. The pre-requisites are pre-

processing, stability analysis and imperfection superposition, all of which may be performed

either in a previous run or in the current run -- by setting the appropriate arguments (i.e.,

PREP, STABILITY and IMPERFECTION).

4.2.3.19 NSTEPS

Maximum number of load steps to be computed in the current nonlinear analysis run

(default=30). For more details, refer to the same argument name under solution procedure
NL_STITIC_t.

4.2.3.20 NUM_IMP_MODES

Number of buckling modes used to represent geometric imperfections for nonlinear analysis

(default=t). This option is relevant only if IMPERFECTIONffi<truo>.

4.2.3.21 POST

Postprocessing flag (default=<false>). This flag should be turned on if you want selected

response-history parameters to be added to the CC.DBR database. Note that it is not

necessary to use this option in order to archive the basic load-displacement curve and

solution parameters. It is only needed if you wish to archive special displacement and/or

internal force component response histories post-facto.

4.2.3.22 PREP

Preprocessing flag (default=<true>). This flag must be turned on the first time procedure

C0MPRESSED_CYL is run, as it causes the model to be generated. If subsequent runs are

used to perform other stages of the analysis (e.g., nonlinear re-starts), then PREP must be

set to <false> for those subsequent runs.

4.2.3.23 PRE_STRESS

Constant pre-stress flag (default: <false>). By setting this flag to <true>, the procedure

bypasses computing the linear solution to obtain the prebuckling stresses, and instead

prescribes the prebuckling axial stress resultants to be uniform throughout the shell. This

4.2- 8 CSM Testbed Procedures Manual Revised 5/22/90



Application Procedures Compressed Cylinder

amounts to procedure _um'a_._z.v_CYL invoking solution procedure L__rat_J.h_i instead of

procedure L_STABIL_2 to perform the buckling eigenvalue analysis. While the prescribed

pre-stress used with this option is equal to the classical buckling value, the results can

be somewhat different than those obtained using L_STABIL_2. The reason for this is that

due to the simply supported boundary condition on the loaded edge, the prebuckling stress

distribution (i.e., both the exact one and that obtained using a linear prebuckling analysis)

is not really uniform. Note that even when the uniform PRE_STRESS option is selected, it

is used only to obtain the buckling eigenvalues and mode shapes -- which are in turn used

as initial imperfections for the nonlinear analysis. The uniform pre-stress values are then

ignored during the nonlinear analysis, which applies either forces or displacements to the

simply-supported edge (depending on argument SPEC_DIS).

4.2.3.24 SPEC_DIS

Specified displacement flag (default: <false>). By setting this flag to <true>, uniform

axial end-shortening is imposed instead of the uniform axial loading. This can make a

significant difference in both the buckling and postbuckling response, and is not recom-

mended for novice users of this procedure. This is because thin axially-compressed shells

are not only imperfection sensitive, but also boundary condition sensitive, and uniform ax-

ial loading does not correspond (exactly) to uniform axial edge displacements. Note that

the reference specified displacement (i.e., end-shortening) magnitude equals .01 inches,

and corresponds to an axial load of about .467 times the classical buckling load.

4.2.3.25 STABILITY

Stability (buckling) analysis flag (default: <true>). This flag should be turned on if you

want the buckling eigenvalue analysis to be performed in the current run. Preprocessing

is a pre-requisite for this option. If you are just performing a nonlinear analysis re-start

run, then you should turn this flag off.

4.2.4 USAGE GUIDELINES AND EXAMPLES

Procedure COHPILESS_CYLmay be used by preceding the procedure name by the *call

directive. Procedure arguments may be changed from their default values by including

any or all of the arguments and their new values when the procedure is called. A space or

blank is required between the end of the procedure name and the left parenthesis.

*call COMPRESS_CYL ( ELT_PROC ffiESI
NNODES_A = 7

SPEC_DIS ffi <false> ;
DRILLING_DOF = <false> ;

AUTO_DOF_SUP = <true> ;

PREP = <true> ;
STABILITY = <true> ;

IMPERFECTION ffi<true> ;
NONLINEAR = <true> ;
POST = <true> ;

ELT_NAHE = EX97 ;
NNODES_C = 7 ;

Revised 5/22/90 CSM Testbed Procedures Manual 4.2- 9



Compressed Cylinder Application Procedures

BEG_STEP = 1 ; --
NSTEPS = I0 ; --

BEG_LOAD = .1 ; --

MAX_LOAD = 3.0 ; --

DBc = CC.DBc ; DBr = CC.DBr )

(El) Not suppressing the drilling rotational freedoms can cause strange behavior for some

elements during nonlinear analysis. On the other hand, suppressing these free-

doms explicitly using the DRILLING_DOF argument may cause some over-stiffening

for coarse meshes with some elements. It is probably best to suppress the drilling

freedoms explicitly unless the element actually has intrinsic drilling stiffness.

Table 4.2-1 Typical CPU Times for Various Computer Systems

Computer System

VAX 11/785
VMS 4.7

MicroVAX

ULTRIX 2.2

SUN

SUNVIEW 4.O

CONVEX C220

VERSION 7.0

CRAY-2

UNICOS 4.0

Total

CPUTime,
seconds.

(E2) To perform an entire analysis using the default options, simply invoke the procedure

without any arguments, i.e.,

*call COMPRESSED_CYL

This will perform linear buckling eigenvalue analysis and 30 steps of nonlinear anal-

ysis with a 7x7 grid of ES1/EX97 shell elements. The time required for this analysis

is machine-dependent. Using the default values for the procedure arguments, the

amount of CPU time required for this analysis on various computer systems is shown
in Table 4.2-1.

4.2.5 LIMITATIONS

(L1) 0nly 4-node and 9-node shell elements can be employed in the model. (Note: This

can be easily modified.)

4.2- 10 CSM Testbed Procedures Manual Revised 5/22/90



Application Procedures Compressed Cylinder

(L2) Not all of the solution parameters provided by procedure NL_STATIC_I are acces-

sible using this procedure. The main reason for this is the CLIP limitation of 25

arguments per procedure. Procedure CONPlLESSED_CYLis exactly at this limit now.

4.2.6 ERROR MESSAGES AND WARNINGS

If you have to repeat the preprocessing phase, you need to either delete the computational

(. DBC) database, or delete the gS. SOl_tg¥ dataset. Otherwise, the element processors will

be run more than once for each element function (e.g., FORK STIFFNESS), and the effect

will be cumulative. This is due to a lack of explicit initialization in the registration of

element processors using procedure ES.

4.2.7 PROCEDURE FLOWCHART

CONPItESSED_CYL

GEN_SHELL

CC_BC

L_STABTL_2

TNPEKFECTION

NL_STATIC_I

HISTORY

(main procedure)

(generate shell model)

(generate boundary conditions/loads)

(perform stability analysis)

(superpose buckling modes as imperfections)

(perform nonlinear static analysis)

(archive selected displacement/force histories)

4.2.8 PROCEDURE LISTING

4.2.9

4.2-1

4.2-2

4.2-3

4.2-4

REFERENCES

Timoshenko, S. P.; and Gere, J. M.: Theory of Elastic Stability, McGraw-Hill, New

York, 1961.

Stanley, G. M.: "Continuum-Based Shell Elements," PhD Dissertation, Stanford

University, 1985.

Donnel, L. H.: Beams, Plate_, and Shelb, McGraw-Hill, New York, 1976.

CSM Testbed Applications Manual.

Revised 5/22/90 CSM Testbed Procedures Manual 4.2- 11



Compressed Cylinder Application Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

4.2- 12 CSM Testbed Procedures Manual Revised 5/22/90



Application Procedures Trapezoidal Membrane

4.3 Procedure t;uu__.MEM

4.3.1 GENERAL DESCRIPTION

This section describes a procedure that solves for the deflection of a trapezoidal panel

subject to inplane shear and bending, also known as Cook's membrane (see ref. 4.3-

1). The geometry of the membrane resembles a wing plan form (see figure 4.3-1) with

an applied end shear load. The membrane has constant thickness, and the material is

isotropic.

' - 48 _lI ' r]

i44

L_ _"_I_i E--I.O
"_t_" u = .33

Zl..--

z, = h = 1.0

Figure 4.3-1 Cook's Membrane

Revised 5/22/90 CSM Testbed Procedures Manual 4.3- 1

PRECEDING PAGE 13LA;_K NOT FILMED



Trapezoidal Membrane Application Procedures

4.3.1.1

4.8.1.2

4.3.1.3

Model Description

Analysis Description

Available Solutions

4.3.2 PROCEDURE USAGE

Procedure C00K_REH may be used by preceding the procedure name by the *call directive,

and following it by a list of arguments enclosed in parentheses. Procedure arguments are

order-independent, and all have default values thus making them optional. The formal

syntax is as follows:

*call COOK_MEN ( argl = vall ; arg2 = val2 ; ...)

where argl and arg2 represent argument names, and vall and val2 represent their cor-

responding values. Note that semi-colons are required between arguments, and a double

dash (--) may be used to continue the argument list on the next line.

The allowable arguments for procedure C00K_HEM are summarized in the following table,

along with their default values (if they exist). Note that arguments without defaults are

generally mandatory, while those with defaults are generally optional. Exceptions to this

rule are noted in the following section under detailed argument descriptions.

Argument Default Value

ES_PROC ESI

ES__AME EX97

ES_PARS O.

NDATA 4

NNODES 3,5,7,9

AUT0-DOF_SUP <true>

DRILLING_DOF <false>

CM_DB CM. DB

Meaning

Element Processor

Element name

Element research parameters

Number of grids to analyze

Number of nodes on each edge

Automatic d.o.f, suppression

Drilling (normal rotational) freedoms
Cook membrane database name

4.3.3 ARGUMENT DESCRIPTIONS

4.3.3.1 A_rO_DOF_SUP

Automatic degree of freedom suppression flag (default: <true>). This option provides a

convenient way of suppressing any freedoms that do not have any (or adequate) stiffness

associated with them -- for example, at nodes used to prescribe geometry only; or drilling

freedoms in fine meshes composed of elements without normal rotational stiffnesses (see

argument DRILLING_DOF).

4.3- 2 CSM Testbed Procedures Manual Revised 5/22/90



Application Procedures Trapezoidal Membrane

4.3.3.2 CH_DB

Name of Cook membrane database file (default=CM. DB). This file will contain all model

data and analysis results.

4.3.3.3 DRILLING_DOF

Drilling degree of freedom flag (default: <false>). Drilling freedoms are defined as rota-

tions normal to the surface of the shall. Leaving this flag off forces all drilling freedoms

in the model to be suppressed. Turning it on forces all drilling freedoms to be active --

unless they are automatically suppressed using use of the AIrrO_0F_SUP argument. Note

that while many shell dements do not have any rotational stiffness associated with their

own surface-normal directions (at nodes), when shell elements are assembled as facets ap-

proximating an arbitrary shell surface, there is usually some misalignment between the

dement normal and the actual shall normal. This is especially true of "flat" (e.g., 4-node)

dements. Hence, 8ome rotational stiffness about the shell normal is usually present in

the modd. (A dear exception to this is a flat plate, where dement and shdl normals

are identical.) For a cyUndrical shdl, the misalignment diminishes only as the number of

dements is increased. Most shdl dements in the Testbed have their own misalignment

tolerance parameter, which determines when the AIrr0..DOF_SUP argument will automati-

cally suppress the drilling freedom. Note that for elements which have drilling stiffness,

the DRILLING-DOF argument should be set to <true> regardless of how AI_r0_DOF_SUP is
set.

4.3.3.4 ES_NAME

Element name (default: EX97). This is the name of the specific shell-dement type you

wish to select, within the element processor defined by argument ES_PROC. The default

shall-dement type, EX97, is a 9-node quadrilateral element implemented in Processor ES1,

and described in The Computational Structural Mechanics Testbed User's Manual (see

ref. 4.3-2).

4.3.3.5 ES_PARS

Element research parameters (default: 0., ... ). This is an optional list of element-

dependent parameters that some elements provide, primarily when the dement is still

undergoing research and refinement.

4.3.3.6 ES_PROC

Element processor (default: ES1) This is the name of the structural dement (ES) Processor

that contains the shell element type you wish to employ in the model. The default shell-

dement, Processor gSl, is described in The Computational Structural Mechanics Testbed
User's Manual.

4.3.3.7 HDATA

Specifies the number of model/mesh refinements to analyze (default: 4). The degree of

mesh refinement for each analysis is defined by the IOIODES parameter.

Revised 5/22/90 CSM Testbed Procedures Manual 4.3- 3



Trapezoidal Membrane Application Procedures

4.3.3.8 NNODES

A list of integers which represent the number of nodes on each edge of the surface for each

analysis to be performed (default: 3,5,9,17). The length of the list is defined by the NDATA

parameter. The numbers in the list must be consistent with the dement type sdected.

For example, lfli0DES can be any list of numbers greater than 1 for 4-node quadrilateral

dements, whereas it must be a list of odd numbers greater than 1 for 9-node quadrilateral
dements.

4.3.4 USAGE GUIDELINES AND EXAMPLES

Procedure Procedure COOK_MEM may be used by preceding the procedure name by the ,call

directive. Procedure arguments may be changed from their default values by including

any or all of the arguments and their new values when the procedure is called. A space or

blank is required between the end of the procedure name and the left parenthesis. If the

default values of the procedure arguments are to be used, then only the procedure name

is required.

*call COOK_NEM ( ES_PROC = ES1 ; --

ES_NAME = EX97 ; --
ES_PARS = O. ; --

NDATA = 4 ; --
NNODES = 3,5,9,17 ; --
AUTO_DOF_SUP = <true) ; --
DRILLING_DOF = <false) ; --
CM_DB = CN.DB --

(El) To perform an entire analysis using the default options, simply invoke the procedure

without any arguments, i.e.,

*call COOK_MEM

This call will perform a linear static analysis for each of the dement configurations

specified by the default NNODES parameter. Also, afine grid analysis is performed

with approximately four times the nodes of the last analysis specified by parameter

NNODES. The results of the fine grid analysis are used to normalize the results of

each requested analysis. AU analysis results are presented in table format by the

procedure:

Cook's Membrane Analysis Data
Element Name = EX97

NODES DISPLACEMENT NORMALIZED

3 0.22677967E+02 0.9440006730146
5 0.23594924E+02 0.982170233148691
9 0.23889961E+02 0.994451542428496

17 0.23989798E+02 0.998607390930779

4.3- 4 CSM Testbed Procedures Manual Revised 5/22/90



Application Procedures Trapezoidal Membrane

A plot showing the deformed shape of the membrane is provided in figure 4.3-2.

The analysis model used 9-node quadrilateral elements with 17 nodes per edge.

f":I

i

../ '_ .-" .f

f

- 7_ f J

"f ./f i f/

# I _

L. z

_" tJ i

.r

jr" _

, f

,I

f

/'J # '

,S
j.

Figure 4.3-2 Cooks Membrane Deflection Plot

Revised 5/22/90 CSM Testbed Procedures Manual 4.3- 5



Trapezoidal Membrane Application Procedures

The time required for this analysis is machine-dependent. Using the default values for

the procedure arguments, the amount of CPU time required for this analysis on various

computer systems is shown in Table 4.3-1.

Table 4.3-1 CPU TIMES Table

Computer System

VAX 11/785
VMS 4.7

MicroVAX

ULTRIX 2.2

SUN

SUNVIEW 4.0

CONVEX C220

VERSION 7.0

CRAY-2

UNICOS 4.0

Total

CPU Time,
seconds.

4.3.5

None.

4.3.6

None.

4.3.7

LIMITATIONS

ERROR MESSAGES AND WARNINGS

PROCEDURE FLOWCHART

COOK.HEH

GEN_PLATE

CH_BC

L_STATIC

(main procedure)

(generate model)

(generate boundary conditions/loads)

(perform linear static analysis)

4.3- 6 CSM Testbed Procedures Manual Revised 5/22/90



Application Procedures Trapezoidal Membrane

4.3.8 PROCEDURE LISTING

4.3.8.1 UNIX Script

cook_mem.com

cd $SCi/$USEa

cp $CSg_PKC/proclib.gal proclib.gal

clmod u+m proclib.gal
rm CMEX97.s

time tastbad <<\endtnput

eset ache,off

*sat plib=28

capon 28 proclib.gal /old

*add 'SCSM_iPP/cook_aem/cook_aem.clp'

ecall COOK_MF_ ( ES_PKOC = ES1 ; -- . Element Processor

ES_NIME : EI97 ; -- . Element name

ES_PIKS : O. ; -- . El.sent parameters

}[DaTa : 4 ; -- . Nmnber of grids to analyze

NNODES = 3,5,9,17 ; -- . Number of nodes per side
AUTO_DOF_SUP:<trus> ; --

D_ILLING_DOF:<false> ; --

CM_DB : CMEI97.L01 -- . Database

)

*stop
*close 28 /delete

[xqt exit

\endinput

4.3.8.2 CLAMP Procedure

cook_mere,clp

*procedure COOK_MEg ( as_proc : esl ; -- . element processor

as_name : ex97 ; -- . element nan.

as_pars : O. ; -- . element parameters

ndata = 4 ; -- . Number of grids to analyze

nnodes : 3,5,9,17 ; -- . Number of nodes per side

auto_dof_sup=<true> ; --

drilling_dof:<false> ; --

cn_db = ca.db -- . database

)

• procedure for analysis of in-plans bending of trapezoidal membrane

*dof/i ndata = [ndata]

*def/i nnodes[l:<ndata>] = [nnodas]

edof/i nnodas[(<ndata>+l>] : < ((nnodes[<ndata>]>*2) + 1>

*def/i lib = I

*do $J:l,<<ndata>+l>

*iS < <$J> /It <<ndata>+l> > /then

*open <lib>, [cn_db] /nee

Revised 5/25/90 CSM Testbed Procedures Manual 4.3- 7



Trapezoidal Membrane Application Procedures

*also

*open <lib), zzzscr.lib /nov

*ondif

*dol/i nnt • < <nnodos[<*j>])*<nnodes[<*j)]> )

*dof/o • = 1.0

*def/a nu • .33

*dof/o h = 1.0

*call GEN_PLITE C os_proc = [es_proc] ; --
as_name = [es_nue] ; --

u_pars = [es_pars] ; --
nodos_l = <nnodos[<$j>]> ; --

nodes_2 = <nnodos[<$j)]) ; --

xyzl = 48.,44., O. ; --

xyz2 = 48.,60., O. ; --

xyzS = 0.,44., O. ; --

xyz4 • O., 0., O. ; --

s = <s) ; nu = <nu) ; thickness = <h) ;

auto_dof_sup = [auto_dof_sup]; --

drilling_dof = [drilling_dof]; --

bc_procedure • TP_BC )

porfora static analysis

*def/a solver.hue == BIND

*call L.STITIC

store the results for thl8 run

[xqt IUS

MICKO <lib> STiT DISP 1 1 seailocal 2 <e*<nnodes[<$j>]>> 6 'disps

STOP

• dells avgdls p = O.

ado *JJ=!,<nnodes [<*j)]>

edof/o avsdls P = <<avgdisp> + <dLsps[<$Jj>]> >
eonddo

edof/e avgd[<$J>] • < <avsdls P> / <nnodes[<Sj>]> •
elbOW macros

eonddo

dolors tha normalizing analysis

ecloso <lib> /delete

done

*remark

*remark

*remark

*romexk

*remark l•zzIz _z_SZBIS_Zz_zzzz_z Z _Z_Z_Z==_

*remark Cook's Nombrane Inalysls Data
*remark El•mona Name • [es_nano]

4.3- 8 CSM Testbed Procedures Manual Revised 5/25/90



Application Procedures Trapezoidal Membrane

er emo.r k mSaESmllalsBSlls_Z _- 8:_ ----.Z 8SSlWIZS=BII= I .,_ _ZS---- Z8

*remark NODES DISPLICEMENT NOKMILIZED

*remark

ode SJnl ,<ndeta>

*remark <nnodo8 [lej >] • <avgd [<$j )] • <<avgd [(Sj )] I/<avsd [<<ndata>+l>] >>

eenddo

*remark == === ===--======= ===_-.-_-==18mi88NZmS31SZZ = Z =Z

erozark

eremark

eremark

eronark

[xqt EXIT

send

*procedure TP_BC ( nodes_l ; nodes_2 ; es_nodss ; drilling_dof=<false> )

==== Z = = Z = _===_===_===== = == =• ==SI===8SIIJ|=||====|| =3 = = = = = = = =

• boundary condition procedure for trapezoidal plato analysis

*def/i nnl • [nodes.l]

*dof/i nn2 = [nodes_2]

*def/i non • [u_nodes]

*def/2 node_A z 1

edsf/i node_B = <nnl>

edof/i node_D = < <nn1>e<nni> •

edef/i nodo_C • < <node_D> - <nnl> + ! >

• boundary conditions

edge c-d sots cluped

constraint = 1

zero 1 2 3 4 5 6

<node_C) <node_D>

clamp edge c-d
of constant theta

elf < [drilling_dof] /eq <false> > /then

zero 4 . remove drillin K dof

<node_A> <node.D> everywhere

eendif

• loading conditions

edge z-b receives uniform shear in positive global y direction

[xqt aus

alpha

case title

1 'in-plane shear (i.e., bending) of trapezoidal zembrane'

sysvec : app1 forc 1 1

edof/o p • 1.0 . total axial force on model boundary

*if < <non> /eq 4 > /then

*dof/i melts z < <nnl> - I >

odor/eli.4 Pelt = < <p> / <nelts> >

Revised 5/25/90 CSM Testbed Procedures Manual 4.3- 9



Trapezoidal Membrane Application Procedures

*def/e12.4 Pond • < <Pelt>/2. •

*do SJn • (node_l), <node_B•

*it < <<$Jn• /eq <node_l•• /or <<$Jn• /oq <node_B•• > /then

is2 : J=<$Jn> : <Pend>

*else

I•2 : J•<$Jn> : <Pelt•

*endtf

*enddo

*elsoif < <hen• /eq 9 > /then

*def/i nolts • < (<nnl> - 1)/2 >

*def/e12.4 Pelt = < <p> / <nelts> •

edef/o12.4 Pelt_l • < 1.*<Polt>/6. >

*dof/o12.5 Pelt_2 = < 2.*<Pelt>/6. •

*def/o12.4 Pelt_4 • < 4.*<Pelt>/6. •

ntdstde nodes

ode IS4 ffi <<node_l• + 1>, <<node_B>-1>, 2

i82 : J- <$J4> : <Pelt_4>

*enddo

shLrod nodes

etf < <nelts> /St 1 > /then

*do $j2 • <<node_l•+2•, <<node_B>-2>, 2

i=2 : j= <$J2• : <Pelt_2>
*enddo

*endtf

corner nodes

i=2 : J= <node_l> : <Pelt_l>

iffi2 : J• <node_B> : <Pelt_l>
*endif

send

4.3.9 REFERENCES

4.3-1 Stanley, G. M.: Continuum-Based Shell Elements. PhD Dissertation, Stanford

University, Stanford, CA, 1985.

4.3-2 Stewart, Caroline B.: The Computational Structural Mechanica Testbed User'J

Manual. NASA TM-100644, October 1989.

4.3- 10 CSM Testbed Procedures Manual Revised 5/25/90



Application Procedures Elastica

4.4 Procedure ELASTICA

4.4.1 GENERAL DESCRIPTION

4.4.1.1 Problem Description

This section describes a procedure that solves the classical large deflection, large rotation

problem of a cantilevered beam with an applied end moment as shown in Figure 4.4-1. The

nonlinear response of the cantilevered beam bent into a circle by an applied end moment
is determined.

M // 10 ;,.

Q

Thickness = 1. ,n,

M = 27C ",^.lk/;,,.

Figure 4.4-1 Elastica Problem.

Revised 5/24/90 CSM Testbed Procedures Manual 4.4- 1



Elastica Application Procedures

4.4.1.2 Model Description

Procedure ELASTICA models the entire strip using 2-D quadrilateral elements. The mesh

is generated using procedure GEt/_PLATE. Two sets of boundary conditions are available.

The set in procedure ELtSTICt_BC imposes a clamped condition at one end of the strip

and a moment at the other end. Procedure EL_ECC_BC also imposes a clamped condition

at one end and an eccentric axial load at the other.

4.4.1.3 Analysis Description

Procedure ELASTICA performs either a linear static analysis using procedure L_STATIC or

a nonlinear static analysis using procedure _/L_STATIC_I.

4.4.1.4 Available Solutions

4.4- 2 CSM Testbed Procedures Manual Revised 5/24/90



Application Procedures Elastica

LC

I.g

"_3 LO'
v

C

E
@

_ 0.8'

D
°-

0.6

<(

N

0

0.4

0
Z

0.2

0.0

(g-LAG Shell-Element)

/
/

e#
J

,e"

/
.O

0.0 0.2

/

/ UL: Updated Lagrange

HC: High-order Corotation

LC: Low-order Corotation

Normalized Moment (M/Mmox)

1.0

Figure 4.4-2 Nonlinear Response of Elastica Problems.

Figure 4.4-3 Sequence of Deformed Shapes.

Revised 5/24/90 CSM Testbed Procedures Manual 4.4- 3



Elastica Application Procedures

4.4.2 PROCEDURE USAGE

Procedure ELASTICA may be used by preceding the procedure name by the *call directive,

and following it by a list of arguments enclosed in parentheses. Procedure arguments are

order-independent, and most have default values thus making them optional. The formal

syntax is as follows:

,call ELASTICA ( argl = vall; arg2 = val2 ; ...)l

where argl and axg2 represent argument names, and valt and val2 represent their cor-

responding values. Note that semi-colons are required between arguments, and a double

dash (--) may be used to continue the argument list on the next line.

The allowable arguments for procedure ELASTICA are summarized in the following table,

along with their default values (if they exist). Note that arguments without defaults are

generally mandatory, while those with defaults are generally optional. Exceptions to this

rule are noted in the following section under detailed argument descriptions.

For the procedure ELASTICA, the following table lists each argument, its default value and

meaning.

Argument Default Value

ES_PROC ESI

ES_NJD[E EX97

ES..PARS O.

NNODES_X 11

NNODES_Y 3

PREP <true>

POST <true>

LINEAR <true>

NONLINEAR <true>

AUTO_DOF_SUP <false>

DRILLING_DOF <true>

BEG_STEP 1

BEG_LOAD .01

NSTEPS 10

DBC ELASTICA. DBC

DBR ELASTICA. DBR

Meaning

Select element processor
Select element within ES_PROC

Set element-research parameters
Number of nodes in x-direction

Number of nodes in y-direction

Preprocessing flag

Postprocessing flag

Perform Linear Analysis

Perform Nonlinear Analysis

Automatic degree of freedom suppression

Beginning Load Step Number

Beginning Load Factor

Number of Load Steps

Computational Database
Results Database

4.4.3 ARGUMENT DESCRIPTIONS

4.4.3.1 AUTO_DOF_SUP

Automatic degree of freedom suppression flag (default: <true>). This option provides a

convenient way of suppressing any freedoms that do not have any (or adequate) stiffness

4.4- 4 CSM Testbed Procedures Manual Revised 5/24/90



Application Procedures Elastica

associated with them -- for example, at nodes used to prescribe geometry only; or drilling

freedoms in fine meshes composed of elements without normal rotational stiffnesses (see

argument DRILLING_DOF).

4.4.3.2 BC_PROCEDURE

Boundary condition procedure name (default: ELASTICLBC). Two sets of boundary con-

ditions are available. The set in procedure ELASTICLBC imposes a damped condition at

one end of the strip and a moment at the other end. Procedure EL_ECC_BC also imposes a

clamped condition at one end and an eccentric axial load at the other.

4.4.3.3 BEG_LOAD

Starting load factor in nonlinear analysis (default=. 1). This factor is multiplied times the

reference load vector to obtain the starting load vector. For example, if specified forces are

applied (which is the default option), then BEG_LOAD = .1 means that the first load step to

be computed in the nonlinear analysis will be at one-tenth of the classical buckling load

level. Note that this argument is irrelevant for re-start runs. For more details, refer to the

same argument name under solution procedure NL_STATIC_I.

4.4.3.4 BEG_STEP

Number of starting load step in nonlinear analysis (default:l). This argument is the

number of the first step to be computed during an analysis interval. When starting a

nonlinear analysis, the first step is obviously 1. When re-starting (i.e., continuing in a

subsequent run) a nonlinear analysis, BEG_STEP should be set to the number of the next

step to be computed -- not to the number of the last step computed. The solution

procedure (IIL_STATIC_I)will automatically use any previous step(s) required to continue

the analysis -- providing the necessary steps are available in the database. Currently, the

number of consecutive preceding steps required for a restart is three. For more details,

refer to the same argument name under solution procedure NL_STATIC_I.

4.4.3.5 DBC

Name of computational database file (default=ELASTICA.DBC). This file will contain all

model definition data, element computational data, one copy of the assembled and factored

stiffness matrices, the buckling eigensolution, and displacement and internal force vectors

for every load step computed during the analysis.

4.4.3.6 DB_..___R

Name of results database file (default=ELASTICA. DBR). This file will contain one dataset

called RESPONSE . HISTORY generated during nonlinear analysis. The dataset will contain

record groups -- indexed by load step number -- for a number of solution parameters,

including the load factor and maximum axial displacement components. This database is

valuable for obtaining load-displacement plots, and for evaluating the performance of the

nonlinear solution strategy employed.

Revised 5/24/90 CSM Testbed Procedures Manual 4.4- 5



Elastica Application Procedures

4.4.3.7 DRILLING_DOF

Drilling degree of freedom flag (default: <false>). Drilling freedoms are defined as rota-

tions normal to the surface of the shell. Leaving this flag off forces all drilling freedoms

in the model to be suppressed. Turning it on forces all drilling freedoms to be active --

unless they are automatically suppressed using use of the 11rr0..DOF_SUP argument. Note

that while many shell dements do not have any rotational stiffness associated with their

own surface-normal directions (at nodes), when shell elements are assembled as facets ap-

proximating an arbitrary shell surface, there is usually some misalignment between the

dement normal and the actual shell normal. This is especially true of "fiat" (e.g., 4-node)

dements. Hence, some rotational stiffness about the shell normal is usually present in

the model. (A dear exception to this is a fiat plate, where dement and shell normals

are identical.) For a cylindrical shell, the misalignment diminishes only as the number of

dements is increased. Most shell dements in the Testbed have their own misalignment

tolerance parameter, which determines when the AUT0_DOF_SUP argument wiU automati-

cally suppress the drilling freedom. Note that for elements which have drilling stiffness,

the DRILLING_DOF argument should be set to <true> regardless of how AOT0_DOF_SUP is
set.

4.4.3.8 ES_NAHE

Element name (default: EX97). This argument specifies the name of the specific shell-

element type you wish to sdect, within the element processor defined by argument ES_PROC.

The default shell-dement type, EX97, is a 9-noded quadrilateral dement implemented in

processor v $1, and described in The Computational Structural Mechanics Testbed User's

Manual (see ref. 4.4-1).

4.4.3.9 ES_PARS

Element research parameters (default: 0., ... ). This array allows an optional list of

dement-dependent parameters that some elements provide, primarily when the element is

still undergoing research and refinement.

4.4.3.10 ES_PROC

Element processor (default: ES1) This argument specifies the name of the structural de-

ment (ES) processor that contains the shdl element type you wish to employ in the model.

The default shell-element, processor ESl, is described in The Computational Structural

Mechanics Testbed User's Manual (see ref. 4.4-1).

4.4.3.11 NNODES_X

Number of nodes along beam length (default: 11). This argument is the number of nodes

along the x-direction of the beam shell model. Note that this number should be consistent

with the number of nodes per dement. For example, HODES.I can be any number greater

_than 1 for 4-node quadrilateral elements, whereas it must be an odd number greater than

1 for 9-node quadrilateral elements.

4.4- 6 CSM Testbed Procedures Manual Revised 5/24/90



Application Procedures Elastica

4.4.3.12 NNODES_Y

Number of nodes along beam depth (default: 3). This argument is the number of nodes

along the y-direction of the beam shell model. Note that this number should be consistent

with the number of nodes per element. For example, NNODES_Y can be any number greater

than 1 for 4-node quadrilateral elements, whereas it must be an odd number greater than

1 for 9-node quadrilateral elements.

4.4.3.13 NONLINEAR

Nonlinear (postbuckling) analysis flag (default=<true>). This flag should be turned on to

perform nonlinear analysis in the current run.

4.4.3.14 NSTEPS

Maximum number of load steps to be computed in the current nonlinear analysis run

(default=30). For more details, refer to the same argument name under solution procedure
NL_STATIC_I.

4.4.3.15 POST

Postprocessing flag (default=<false>). This flag should be turned on if you want selected

response-history parameters to be added to the ELASTICt.DBR database. Note that it is

not necessary to use this option in order to archive the basic load-displacement curve and

solution parameters. It is only needed to archive special displacement and/or internal force

component response histories post-facto.

4.4.3.16 PREP

Preprocessing flag (default:<true>). This flag must be turned on the first time procedure

ELtSTICt is run, as it causes the model to be generated. If subsequent runs are used to

perform other stages of the analysis (e.g., nonlinear restarts), then PREP must be set to

<false> for those subsequent runs.

4.4.4 USAGE GUIDELINES AND EXAMPLES

Procedure ELASTICA may be used by preceding the procedure name by the *call directive.

Procedure arguments may be changed from their default values by including any or all of

the arguments and their new values when the procedure is called. A space or blank

is required between the end of the procedure name and the left parenthesis.

*call ELISTICA ( ES_PROC = ES1 ; --
ES_NIME = EX97 ; --
ES_PiRS = 0.0 ; --
NNODES_X = 11 ; --
NNODES_Y = 3 ; --
PREP =<true>; --
LINEAR =<true>; --

Revised 5/24/90 CSM Testbed Procedures Manual 4.4- 7



Elastica Application Procedures

POST -<false>; --
NONLINEAR -<false>; --
NSTEPS = 10 ; --

DBc = ELASTICA.DBc ; --
DBr ffiELASTICA.DBr --

• Computational database
. Results database)

(El) To perform an entire analysis using the default options, simply invoke the procedure

without any arguments, i.e.,

*call ELASTICA

This call will perform linear buckling eigenvalue analysis and 10 steps of nonlin-

ear analysis with a 11×3 grid of ES1/EX97 shell elements. The time required for

this analysis is machine-dependent. Using the default values for the procedure ar-

guments, the amount of CPU time required for this analysis on various computer

systems is shown in Table 4.4-1.

Table 4.4-1 CPU TIMES Table

Computer System

VAX 11/785
VMS 4.7

MicroVAX

ULTRIX 2.2

SUN

SUNVIEW 4.0

CONVEX C220

VERSION 7.0

CRAY-2

UNICOS 4.0

Total

CPU Time,
seconds.

(E2) Not suppressing the drilling rotational freedoms can cause strange behavior for some

elements during nonlinear analysis. On the other hand, suppressing these free-

doms explicitly using the DRILLING_DOF argument may cause some over-stiffeuing

for coarse meshes with some elements. It is probably best to suppress the drilling

freedoms explicitly unless the element actually has intrinsic drilling stiffness.

4.4.5 LIMITATIONS

(L1) Only 4-node and 9-node shell elements can be employed in the model. (Note: This

can be easily modified.)

4.4- 8 CSM Testbed Procedures Manual Revised 5/24/90



Application Procedures Elastica

4.4.6 ERROR MESSAGES AND %_ARNINGS

If you have to repeat the preprocessing phase, you need to either delete the computational

(. DBC) database, or delete the ES. SUltRY dataset. Otherwise, the element processors will

be run more than once for each element function (e.9., FORM STIFFtIESS), and the effect

will be cumulative. This is due to a lack of explicit initialization in the registration of

element processors using procedure gS.

4.4.7

ELASTICt

GEN..PLATE

ELASTICA_BC

EL_ECC_BC

L_STATIC

IMPERFECTION

NL_STATIC_I

HISTORY

PROCEDURE FLOWCHART

(main procedure)

(generate model)

(generate boundary conditions and end moment)

(generate boundary conditions and eccentric axial load)

(perform linear static analysis)

(superpose buckling modes as imperfections)

(perform nonlinear static analysis)

(archive selected displacement/force histories)

4.4.8 PROCEDURE LISTING

4.4.8.1 UNIX Script

elastica.com

cd tsct/tesn

cp $CSN_PKC/proclib.gal proclib.gal

timed u+w proclib.gal
rn ELISTICA.*

tiae tostbed << \endinput

*set e©ho,o_

*sot plibn28

*open/old 28 proolib.gal

*add '$CSN_lPP/olastioa/olastica.clp'

*def/a solver_nmao == INT

*call ELISTICt ( ES_PIOC = Eel ; --

ES_NIHE = E197 ; --

ES_PtKS • 0.0 ; --

NNODES_I = 11 ; --

NNODES,Y z 3 ; --

LINEIKn<_aIs,>; NONLINEIK

NSTEPS

*stop

\endtnput

DBc z ELASTICI.DBc

DBr = ELASTICt.DBr

=<true>; --

: 36;drillins.dof•<fals.> ; --

; -- . Coaputattonal database
-- . gesults database

Revised 5/25/90 CSM Testbed Procedures Manual 4.4- 9



Elastica Application Procedures

4.4.8.2 CLAMP Procedure

elastica.clp

*procedure ELASTICA ( ES_PHOC = ES1 ; --

ES_NAHE = EX97 ; --

ES_PARS = O. ; --

NNODES_I = 11 ; --

NNODES_Y = 3 ; --

PREP =<true>; --

POST =<true>; --

LINEAR =<true>; --

NONLINEAR =<true>; --

AUTO_DOF_SUP =<false•; --

DRILLING_DOF =<true•; --

BEG_STEP = 1 ; --

BEG_LOAD = .01; --

NSTEPS = 10 ; --

DBc = ELASTICA.DBc ; --

DBr = ELASTICA.DBr --

Number of load steps

Computational database
Results database

• ------Q---------- .............................................

• CSN Testbsd Procedure for Analysis of ELISTICI Problem

*open 1, [DBc]

• Generate Plate Model of Cantilever Beau

*If < [PREP] • /then

*call GEN_PLITE ( ES_PKOC=[ES_PHOC]

*toc

*endtf

NODES_I

E = 120. ; NU = O. ; THICKNESS

xyzlffiO.,O.,O.; xyz2=lO.,O.,O.; --

xyz3=lO.,l.,O.; xyz4=O.,1.,O.; --

AUTO_DOF_SUP =[auto.dof_sup] ; --

DRILLING_DOF =[drilling_dof] ; --
BC_PROCEDURE = ELASTICA_BC )

; ES_NANE=[ES_NAME] "--I

=[NNODES_I] ; NODES_2 =[NNODES_T] ;--

= 1.

• Perforu Solution

*if < [LINEAR] > /then

*call L.STATIC

*if < [POST] • /then

*open 2, [DBr]

*def/a ds_r = [ES_PROC].[ES_NIME].[NNODES_I].[NNODES_Y]

*call HISTORY ( input_ida =1 ; input_de =STAT.DISP.I.1; --

output_Idi=2 ; output_dsffi<ds_r> ; --

output_rn =LATEKAL_DISP; nodes=l; component=3 )

*call HISTORY ( Input_ldi =I ; Input_de =STAT.DISP.I.I; --

output_ldi=2 ; output_dsf<ds_r> ; --

4.4- 10 CSM Testbed Procedures Manual Revised 5/25/90



Application Procedures Elastica

output_rn =END_KOTATION; nod.on1; conponsntz5 )

*call HISTOKY ( input_ldi --1 ; input_de =STIT.DISP.I.1; --

output.ldi=2 ; output.ds--<ds_r• ; --

output.rn =IIIAL_DISP; nodes=l; ceaponont=l )
ereaark

erenark

*roaark .........................................................

*ronark

*remark ELASTIC1 Linear Results

*renark

*ronark Exact :

*reaark LiTEKIL_DISP (con•are gith W at node 1) = 31.41

*roaark END_ROTATION (con•are gith RV at node 1) = 6.28

erenark iXlAL,DISP (can•are gith U at ned. 1) = 0.0
eronark

*renark Conputed:

*print rec 2. <de.r• LiTERiL.DISP /lffidrx

*print rec 2, <de_r• END_ROTATION /l=drx

sprint rec 2, <ds.r• IIIIL_DISP ll=drx

*remark

*remark

*rellark

**ndlf

**ndlf

*if < [NONLINEAR] • /then

edef ns_overvrite = <true•

ecall NL_STITIC_I ( beg_stop = [BEG_STEP] ; --

nax_stops = INSTEPS] ; --

bes_load = [BEG_LOaD] ; --

max.load =1.00 ; --

NL_GEON = 2 ; --

COROTITION = 1 ; --

Neninal_DB = [DBr] ; --

Noninal_DS = [ES_PROC]. [ES_NANE].[NNODES_I]. [NNODES_Y] ;--

N_SELECT = 2 ; --

SEL_NODES = 1, 1 ; SEL_DOFS = 1, S )

*to¢ [DBR]

*endig

[xqt exit

send

*procedure EL_ECC_BC ( ned**_l; nodes_2; as_nodes; drilling_dof=<false> )

• Define Loads and Boundary Conditions for ELISTICI Model

edefli nn_tot = < [nodos_l]*[nodes_2] •

• 8SZIB_Zm_SZIZ Z 8_ _ _ 8

• DEFINE BOUNDARY CONDITIONS

• IISSZ_Z_I_SZ_Z_ZS_SSI

[xqt TIB
CON !

*i_ < [drilling_doll /eq <false• • /then

Revised 5/25/90 CSM Testbed Procedures Manual 4.4- 11



Elastica Application Procedures

ggK0 6

*do Snzl,<xm_tot>

<*n>
eonddo

*ondlf

ZEKO 2

ode Sn=l,(nn.tot•

<$n•
*_tddo

ZEKO 4

*do SnzlD<nn_tot>

*enddo

• Suppress NOR_qAL KOTATIONS Everywhere

• Suppress LATEKAL NOTION Everywhere

• Suppress TOKSIONAL KOTATION Everywhere

ZF_t0 1,2,3,4,S,6 . cIrrILEVElt Ktght End of Bes_

*do Sn = [jaodes_l], <an_tot>, [nodes_l]

<$n>

*enddo

_zss_Izms_

• Define Loads

S• ISS88_ mZ_S

[xqt IUS

• Apply Uniform Eccentric Load Consistently (over unit width)

Px results in Moment about Y of 2*PI since Eccentricity = .5

*def/el2.4 Px = < -4.e<PI> •

edef/o12.4 Px_l = < <Px>/2. >

SYSVEC : IPPL FOKC 1

*il < [ES_NODES] /eq 4 > /then

I=1 : J=l : <Px_I>

i=1 : jf<[nodes_l]+l> : <Px_l>

*olsotf < [ES_NODES] /oq 9 • /then

edof/ol2.4 Px_l ffi _ <Px•/6. •

edef/ol2.4 Px_4 = • 4e_Px•/6. •

iffil : J=! : <Px_l•

i=1 : Jf<[nodes_l]÷l• : <Px_4•

t=1 : Jf<(2e[nodos_l])+l> : <Px_l>

sendal

*end

*procedure ELASTICA_BC ( nodes_l; nodes_2; es_nodes; drilling_dofz<false> )

• Define Loads and Boundary Conditions for ELASTICA Model

*def/i an_tot = < [nodos_l]*[nodes_2] >

sm881mzsll_msg_s_mz_zz_ Z

• DEFINE BOUNDARY CONDITIONS

[xqt TAB
CON 1

4.4- 12 CSM Testbed Procedures Manual Revised 5/25/90



Application Procedures Elastica

*11 < [dzilling_dof] /eq <false> ) /then

ZEKO 6 . Suppress NOLqIL KOTATIONS Everyghere

ode Snzl,<nn_tot>

<$n>
*enddo

*endif

ZEK0 2 . Suppress LITEKAL XOTION Everywhere

*do Snal,(nn_tot>

<$n>

*onddo

ZERO 4

*do Sn=l,<nu_tot>

<$n>

*enddo

ZEKO 1,2,314,5,6 . CAMTILEVEK light End of Bean

*do $n • [nodes_l], <nn_tot>, [nodes_l]

<in>

*enddo

• Suppress TOISIONAL ROTATION Everyuhare

• ••S•••m•••l•

• Dof4no Loads

[xqt AUS

• Apply Uniforn M.y Consistently (over unit width)

odor/el2.4 My • < 2.*<PI> •

odor/el2.4 My_l • < <My•/2. •

STSVEC : APPL FOIC 1

eif< [ES_MODES] /oq 4 • /then

I=5 : J=i : <My_l•

I=6 : J=<[nodes_l]+l> : <My_l>

*alself < [L%NODES] /eq 9 • /then

odor/el2.4 My_l • < (Ny>/S. >

odor/s12.4 My_4 ffi < 4*<Ny>/S. •

i=S : J=l : <My_i>

i=5 : J=<[nodes_i]+1> : <My_4>

i=5 : J=<(2s[nodos_i])÷l> : <My.l>

sendal

send

4.4.9

4.4-1

4.4-2

4.4-3

REFERENCES

Timoshenko, S. P.; and Gere, J. M.: Theory of Elastic Stability, McGraw-Hill, New

York, 1961.

Stanley, G. M.: "Continuum-Based Shell Elements," PhD Dissertation, Stanford

University, 1985.

Donnel, L. H.: Beams, Plates, and Shells, McGraw-Hill, New York, 1976.

Revised 5/25/90 CSM Testbed Procedures Manual 4.4- 13



Elastica Application Procedures

4.4-4 Stewart, Caroline B.: The Computational Structural Mechanic_ Testbed U_er'8

Manual. NASA TM-100644, October 1989.

4.4- 14 CSM Testbed Procedures Manual Revised 5/25/90



Application Procedures Elder Column Buckling Problem

4.5 Procedure lh'_TTT I_D /'_/NT TT'_'I_T

4.5.1 GENERAL DESCRIPTION

4.5.1.1 Problem Description

This application problem involves a linear bifurcation buckling analysis of a thin isotropic

strip subjected to uniform compression (see Figure 4.5-1). This problem is important in

that plate and shell elements are frequently used to model stiffeners of stiffened panels.

When these panels buckle in an "overall" Elder modeshape the stiffeners must also buckle

in their plane (see Figure 4.5-2).

m

m

J

i

i

Figure 4.5-1 Euler Column Problem

Revised 5/24/90 CSM Testbed Procedures Manual 4.5- 1



Euler Column Buckling Problem Application Procedures

Figure 4.5-2 Euler Buckling IV[odeshape

4.5- 2 CSM Testbed Procedures Manual Revised 5/24/90



Application Procedures Euler Column Buckling Problem

4.5.1.2 Model Description

Procedure EULER_COLU}9I models the entire strip using 2-D quadrilateral elements. The

mesh is generated using procedure (]EILPLATE and the boundary conditions are specified

in procedure COLU-titi_BC.

4.5.1.3 Analysis Description

Procedure EULER_COLU]OIperforms a single linear buckling analysis with a specified pre-

stress. The solution procedure L_STtBIL_I is used to perform the buckling analysis.

4.5.1.4 Available Solutions

Analytical solution for the Euler buckling load is readily obtained from reference 4.5-1,

page 22-28. The Euler buckling load is given by

where

_r2E I
PEULER = -- S

L2

E = Young's Modulus

1 s
I = Moment of Inertia = _-_th

L - Column Length

t -- Column Thickness

h -- Column Width

For a specified uniform membrane stress resultant Nz° of -1000 lb/in., the corresponding

buckling load factor is

(Nz)EULER :PEULER/h : _EULERN:

For the geometry and material properties used as default values of the procedure argu-

ments, the exact solution for simple-support boundary conditions corresponds to a value

of 0.456926 for _EULER (i.e., the smallest eigenvalue).

4.5.2 PROCEDURE USAGE

Procedure EULER_COLU_ may be used by preceding the procedure name by the *call

directive, and following it by a list of arguments enclosed in parentheses. Procedure ar-

guments are order-independent, and most have default values thus making them optional.

The formal syntax is as follows:

*call EULEIt_COLUMI_ ( argl = vall ; arg2 = val2 ; ...)J

where argl and arg2 represent argument names, and vall and va12 represent their cor-

responding values. Note that semi-colons are required between arguments, and a double

dash (--) may be used to continue the argument list on the next llne.

Revised 5/24/90 CSM Testbed Procedures Manual 4.5- 3



Euler Column Buckling Problem Application Procedures

The allowable arguments for procedure EOI.ER_COLUNN are summarized in the following

table, along with their default values (if they exist). Note that arguments without defaults

are generally mandatory, while those with defaults are generally optional. Exceptions to

this rule are noted in the following section under detailed argument descriptions.

Argument Default Value

E 10. E6

ES_PROC ES1

ES_NAME EX47

LX 30.0

LY I.0

NODES_I 31

NODES_2 3
NU 0.0

PRINT <false>

PS_I -1000.0

THICKNESS 0.05

Meaning

Young's Modulus
Element Processor

Element name

Length in x-direction

Length in y-direction

Number of nodes along x

Number of nodes along y
Poisson's ratio

Print flag

Uniform axial compression prestress
Thickness

4.5.3 ARGUMENT DESCRIPTIONS

4.5.8.1 E_

Young's elastic modulus (default: 10.0 × 10 6 psi).

4.5.3.2 ESJAME

Element name (default: EX47). This is the name of the specific shell-element type you

wish to sdect, within the element processor defined by argument ES_PR0C. The default

shell-element type, EX47, is a 4-noded quadrilateral element implemented in processor

ES1, and described in the Computational Structural Mechanics Testbed User's Manual

(see ref. 4.5-2).

4.5.3.3 ES_PROC

Element Processor (default: ES1) This is the name of the structural dement (ES) processor

that contains the shell dement type you wish to employ in the model. The default shell-

element, processor ES1, is described in the Computational Structural Mechanics Testbed

User's Manual (see refs. 4.5-2).

4.5.3.4 L__I

Length of the plate model in the z-direction (default: 31.0 inches).

4.5.3.5 L._YY

Length of the plate model in the y-direction (default: 1.0 inches).

4.5- 4 CSM Testbed Procedures Manual Revised 5/24/90



Application Procedures Euler Column Buckling Problem

4.5.3.6 NODES_I

Number of nodes along x-direction (default: 31).

Number of nodes along y-direction (default: 3).

4.5.3.8

Poisson's ratio (default: 0.0).

4.5.3.9 PRINT

Print flag (default: <false>). If the argument PRINT is defined to be <true>, then all

computed results (displacements, modeshapes, stresses) will be printed.

4.5.3.10 PS_I

Uniform axial compression prestress (default: -i000 lb/in.).

4.5.3.11 THICKNESS

Thickness of the plate (default: 0.05 inches).

4.5.3.12 WTDE_....._NN

Weight density (default: 0.1 lb/in.S). Processor LAU converts the weight density to mass

density.

4.5.4 USAGE GUIDELINES AND EXAMPLES

Procedure EULER_COLUNN may be used by preceding the procedure name by the *call

directive. Procedure arguments may be changed from their default values by including

any or all of the arguments and their new values when the procedure is called. A space or

blank is required between the end of the procedure name and the left parenthesis.

*call EULER_COLU_ ( ES_PROC - ESI

LX - 7.5 ; --

LY ffi10.0 ; --

E = 30.E6 ; --
NUffi 0.3 ; --
PRINT ffi<false> ;

THICKNESS ffi 0.1 ;
WTDEN = 0.1 )

; ES_NAHE ffi EX47 ; --

(El) To perform an entire analysis using the default options, simply invoke the procedure

without any arguments, that is,

*call EULER_COLUNN

Using the default values for the procedure arguments, the amount of CPU time

required for this analysis on various computer systems is shown in Table 4.5-1.

Revised 5/24/90 CSM Testbed Procedures Manual 4.5- 5



Euler Column Buckling Problem Application Procedures

Table 4.5-1 CPU TIMES Table

Computer System

VAX 11/785
VMS 4.7

MicroVAX

ULTRIX 2.2

SUN

SUNVIEW 4.0

CONVEX C220

VERSION 7.0

CRAY-2

UNICOS 4.0

Total

CPU Time,

seconds.

4.5.5 LIMITATIONS

None

4.5.6 ERROR MESSAGES AND WARNINGS

None.

4.5.7

EULER_C0LUNN

GEN_PLATE

COLUNN_BC

PROCEDURE FLOWCHART

(main procedure)

(define model)

(define simple-support boundary conditions)

4.5.8 PROCEDURE LISTING

4.5.8.1 UNIX Script

euler_column, com

cd SSCR/$USgl
ra euler_coluan.101

cp $CSM_P_C/proclib.gal proclib;sal

clmod u+w proclib.Bal

time testbed << \endinput

4.5- 6 CSM Testbed Procedures Manual Revised 5/25/90



Application Procedures Euler Column Buckling Problem

capon 1 ouler.colunn.lOl
*set echo off

*def/a eigensolvor_nane ffi EIG2
edaf/a molver.nuo ffi INV

*sot plthz2B

*open 28 proclib.gal /old

eadd 'SCSN_lPP/euler_colmnn/euler_colunn.clp,

Inplano Buckltn K of a Thln Strip

*call RULER_COLUMN ( os_nanef'ex97'; es_procffi'os7')

[XQT EXIT

\andtnput

4.5.8.2 CLAMP Procedure

euler_column, clp

*procedure EULEL_COLUMM ( es.name = 'EX47' ; --

os_proc = _ES1 _ ; --

• = 10.0o+6; --

nu = .3 ; --

thickness= 0.05 ; --

ps.1 ffi -1000.0; --

Ix =30.0 ; --

ly =l.O ; --

nodos_l = 31 ; --

nodes_2 = 3 )

*call GEN_PLITE ( es_procf[es_proc] ;es_nuo= [es_naao] ; --

xyzl=O.O,O.O,O.O ;--

xyz2f[lX],O.O,O.O ; --

xyz3--Elx],Ely],O.O ; --

xyz4ffiO_O,[ly],O.O ; --

nodoe_lffi[nodes_l] ; nodos_2ffi[nodes_2] ; --

nsoct=l ; effi [o] ;nuffi [nu] ;thicknoss= [thicknon] ;

bc_proceduroz 'COLUMN_BC' )

*toc 1

[XQT TAB

TITLE'EULF2L COLUMN BUCKLING PROBLEM

*cell L_STIBIL_I ( ps_lffi[ps_l]; prtntffi<true> )

*to© 1

*end

*procedure COLUMN_BC (nodee_lffi$1; nodes_2=3; --

os_nodesffi<es_nen>; drtlling_dof=<truo>)
*def/t nl = 1

*def/t n2 • [nodes.I]

edef/i n3 • _ [nodes_l]*[nodos.2] •

*def/i n4 • < Enodes_l]*(Cnodos_2]-l) + 1 >

CON CISE 1

Revised 5/25/90 CSM Testbed Procedures Manual 4.5- 7



Euler Column Buckling Problem Application Procedures

ZLlO 3 4 5 : <nl),<n3)

ZEKO 2 : <nl>,<n4),[nodos_l]

ZEKO 2 : <n2),<n3>t[nodos_l]

*if < [drillinK_do_] /eq 0 > /then

ZEKO 6: (nl>,(n3>

*ondif

*end

4.5.9 REFERENCES

4.5-1 Brush, Don O. and Almroth, Bo O.: Buckling o/Bars, Plates, and Shells, McGraw-

Hill Book Company, New York, 1975.

4.5-2 Stewart, Caroline B.: The Computational Structural Mechanics Testbed User's

Manual. NASA TM-100644, October 1989.

4.5- 8 CSM Testbed Procedures Manual Revised 5/25/90



Application Procedures FOCUS.PANEL

4.6 Processor FOCUS_PANEL

THIS SECTION UNDER PREPARATION

5/24/90 CSM Testbed Procedures Manual 4.6- 1



FOCUS_PANEL Application Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

4.6- 2 CSM Testbed Procedures Manual 5/24/90



Application Procedures FREE_EDGE

4.7 Processor _w_._. _.N_.

THIS SECTION UNDER PREPARATION

5/24/90 CSM Testbed Procedures Manual 4.7- 1

PRECED_f_IG PAGe. BLA[_( NOT FILMED



FREE..EDGE Application Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

4.7- 2 CSM Testbed Procedures Manual 5124190



Application Procedures GEN_STF_PANEL

4.8 prnroaanr C'._.N .qq_p PANEL

THIS SECTION UNDER PREPARATION

5/24/90 CSM Testbed Procedures Manual 4.8- 1

PRECEDING PAGE BLANK NOT FILMED



GEN_STF_PANEL Application Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

4.8- 2 CSM Testbed Procedures Manual 5/24/90



Application Procedures Hinged Cylinder

4.9 Procedure HINGED_CYL

4.9.1 GENERAL DESCRIPTION

To verify the nonlinear aspects of the shell-element formulation, implementation, and adap-

tive (Crisfield/Riks) quasi-static solution algorithm, the snap-through of a hinged cylinder

under a point force is considered. This problem, which involves only moderate geometric
nonlinearities, is nevertheless interesting due to the limit-point characteristics of the load-

displacements curve. Furthermore, due to the popularity of the problem, an abundance of

numerical results are available for comparison.

This section describes a prcedure that solves the hinged cylinder problem (see figure 4.9-1)
which exhibits snap-through behavior.

sym

hinge

R = 2540 mm

L = 254 mm

h = 12.7 mm

0 = .1 tad

E = 3102.75

V = .3

2
N/ram

Figure 4.9-1 Hinged Cylinder Problem.

Revised 5/23/90 CSM Testbed Procedures Manual 4.9- 1

PRECED|NG PAGE 6LAr,_K NOT FILMED



Hinged Cylinder Application Procedures

4.9.1.1 Model Description

4.9.1.2 Analysis Description

4.9.1.3 Available Solutions

4.9.2 PROCEDURE USAGE

Procedure HINGED_CYL may be used by preceding the procedure name by the *call direc-

tive, and following it by a list of arguments enclosed in parentheses. Procedure arguments

are order-independent, and most have default values thus making them optional. The

formal syntax is as follows:

*call HINGED_CYL ( argl = vall arg2 = val2 )Ji 0 0

where argl and arg2 represent argument names, and vall and val2 represent their cor-

responding values. Note that semi-colons are required between arguments, and a double

dash (--) may be used to continue the argument list on the next line.

The allowable arguments for procedure HINGED_CYL are summarized in the following table,

along with their default values (if they exist). Note that arguments without defaults are

generally mandatory, while those with defaults are generally optional. Exceptions to this

rule are noted in the following section under detailed argument descriptions.

Argument Default Value

ES_PROC ES1

ES_NAHE EX97

ES-PARS O.

_ODES_A 5

NNODES_C 5

SPEC_DIS <false>

IUT0_DOF_SUP <true>

DkILLING_DOF <false>

NSTEPS 10

BEG_STEP 1

PAX_CUTS 3

BEG_LOAD .1

PAX-LOAD 1.0

DBC CC.DBC

DBR CC. DBR

PREP <true>

LINEAR <false>

TH_SCALE I.0

TOL . O01

Meaning

Element Processor

Element name

Element research parameters
Number of axial nodes

Number of circumferential nodes

Specified displacements

Automatic d.o.f, suppression

Drilling (normal rotational) freedoms

Number of nonlinear load steps

Starting load step number

Maximum number of step cuts (halvings)

Starting load factor
Maximum load factor

Computational database name
Results database name

Perform pre-processing (model generation)

Perform nonlinear (post-buckling) analysis

4.9- 2 CSM Testbed Procedures Manual Revised 5/23/90



Application Procedures Hinged Cylinder

4.9.3 ARGUMENT DESCRIPTIONS

4.9.3.1 AUT0_DOF_SUP

Automatic degree of freedom suppression flag (default: <g:rue>). This option provides a

convenient way of suppressing any freedoms that do not have any (or adequate) stiffness

associated with them -- for example, at nodes used to prescribe geometry only; or drilling

freedoms in fine meshes composed of elements without normal rotational stiffnesses (see

argument DRILLING_DOF).

4.9.3.2 BEG_LOAD

Starting load factor in nonlinear analysis (default=. l). This factor is multiplied times the

reference load vector to obtain the starting load vector. For example, if specified forces are

applied (which is the default option), then BEa_LOAD = .1 means that the first load step to

be computed in the nonlinear analysis will be at one-tenth of the classical buckling load

level. Note that this argument is irrelevant for re-start runs. For more details, refer to the

same argument name under solution procedure NL_STATIC_I.

4.9.3.3 BEG_STEP

Number of starting load step in nonlinear analysis (default=l). This is the number of the

first step to be computed during an analysis interval. When starting a nonlinear analysis,

the first step is obviously 1. When re-starting (i.e., continuing in a subsequent run) a

nonlinear analysis, BEG_STEP should be set to the number of the next step to be computed

-- not to the number of the last step computed. Tile solution procedure (NL_STATIC_I)

will automatically use any previous step(s) required to continue the analysis -- providing

the necessary steps are available in the database. Currently, the number of consecutive

preceding steps required for a restart is three. For more details, refer to the same argument

name under solution procedure HL_STATIC_t.

4.9.3.4 DBC

Name of computational database file (default=ttC.DBC). This file will contain all model

definition data, element computational data, one copy of the assembled and factored stiff-

ness matrices, the buckling eigensolution, and displacement and internal force vectors for

every load step computed during the analysis.

4.9.3.5 DBR

Name of results database file (default=HC.DBR). This file will contain one dataset called

RESPONSE . HISTORY generated during nonlinear analysis. The dataset will contain record

groups indexed by load step number -- for a number of solution parameters, including

the load factor and maximum axial displacement components. This database is valuable

for obtaining load-displacement plots, and for evaluating the performance of the nonlinear

solution strategy employed.

Revised 5/23/90 CSM Testbed Procedures Manual 4.9- 3



Hinged Cylinder Application Procedures

4.9.3.6 DRILLING_DOF

Drilli,g degree of freedom flag (default: <false>). Drilling freedoms are defined as rota-

tions normal to the surface of tile shell. Leaving this flag off forces all drilling freedoms

in the model to be suppressed. Turning it on forces all drilling freedoms to be active --

unless they are automatically suppressed u_ing use of the AOT0_DOF_SUP argument. Note

that while many shell elements do not have any rotational stiffness associated with their

own surface-normal directions (at nodes), when shell elements are assembled as facets ap-

proximating an arbitrary shell surface, there is usually some misaiignment between the

element normal and the actual shell normal. This is especially true of "flat" (e.g., 4-node)

elements. Hence, some rotational stiffness about tile shell normM is usually present in

the model. (A clear exception to this is a flat plate, where element and shell normals

are identical.) For a cylindricai shdl, the misalignment diminishes only as the number of

dements is increased. Most shell dements in the Testbed have their own misalignment

tolerance parameter, which determines when the Awr0..DOF_SUP argument will automati-

cally suppress the drilling freedom. Note that for dements which have driUing stiffness,

the DRILLING_DOF argument should be set to <true> regardless of how AOTO_DOF_SOP is
set.

4.9.3.7 ES_NAME

Element name (default: EX97). This is the name of the specific shall-element type you wish

to select, within the element processor defined by argument ES_PIt0C. The default shell-

element type, F_97, is a 9-noded quadrilateral element implemented in processor gS1, and

described in The Computational Structural Mechanics Testbed User's Manual (see ref.

4.9-1).

4.9.3.8 ES_PAIIS

Element research parameters (default: 0., ... ). This is an optional list of dement-

dependent parameters that some dements provide, primarily when the dement is stiU

undergoing research and refinement.

4.9.3.9 ES_PROC

Element processor (default: gS1) This is the name of the structural element (ES) Processor

that contains the shell element type you wish to employ in the model. The default shdl-

element, processor E51, is described in The Computational Structural Mechanics Testbed

User's Manual.

4.9.3.10 MAX_CUTS

Maximum number of load step cuts in nonlinear analysis (default--3). For more details,

refer to the same argument name under solution procedure NL_STATIC_I.

4.9.3.11 MAX_LOAD

Maximum load factor in nonlinear analysis (default=l. 0). This sets an upper limit for the

load level, which can be a convenient way of terminating the arc-length controlled solution

4.9- 4 CSM Testbed Procedures Manual Revised 5/23/90



Application Procedures Hinged Cylinder

algorithm employed within procedure NL_STATIC_i. Since the load factor is actually an

unknown in this solution procedure, there is no way of knowing a-priori how many load

steps will be required to attain a particular load level. Thus, the analysis will be terminated
when either KtI..LOAD is exceeded or NSTEPS is exceeded -- whichever comes first. For more

details, refer to the same argument name under solution procedure NL_STATIC_I.

4.9.3.12 NNODES_A

Number of axial nodes (default: 7). This is the number of nodes you wish to have along

the axial direction of the cylindrical shell model, i.e., along one-tenth of the full cylinder's

length. Note that this number should be consistent with the number of nodes per element.

For example, NNODES_JLcan be any number greater than 1 for 4-node quadrilateral elements,

whereas it must be an odd number greater than 1 for 9-node quadrilateral elements.

4.9.3.13 NNODES_C

Number of circumferential nodes (default: 7). This is the number of nodes you wish

to have along the circumferential direction of the cylindrical shell model, i.e., along 15

degrees of circular arclength. Note that this number should be consistent with the number

of nodes per element. For example, NNODES_C can be any number greater than 1 for 4-

node quadrilateral elements, whereas it must be an odd number greater than 1 for 9-node

quadrilateral elements.

4.9.3.14 NONLINEAR

Nonlinear (post-buckling) analysis flag (default=<true>). This flag should be turned on

if you want to perform nonlinear analysis in the current run. The pre-requlsites are pre-

processing, stability analysis and imperfection superposition, all of which may be performed

either in a previous run or in the current run- by setting the appropriate arguments (i.e.,

PREP, STABILITY and IMPERFECTION).

4.9.3.15 NSTEPS

Maximum number of load steps to be computed in the current nonlinear analysis run

(default=30). For more details, refer to the same argument name under solution procedure
NL_STATIC_I.

4.9.3.16 POST

Postprocessing flag (default=<false>). This flag should be turned on if you want selected

response-history parameters to be added to the HC.DBIt database. Note that it is not

necessary to use this option in order to archive the basic load-displacement curve and

solution parameters. It is only needed if you wish to archive special displacement and/or

internal force component response histories post-facto.

Revised 5/23/90 CSM Testbed Procedures Manual 4.9- 5



Hinged Cylinder Application Procedures

4.9.3.17 PREP

Preprocessing flag (default=<true>). This flag must be turned on the first time procedure

COMPRESSED_CYLis run, as it causes the model to be generated. If subsequent runs are

used to perform other stages of the analysis (e.g., nonlinear re-starts), then PREP must be
set to <false> for those subsequent runs.

4.9.3.18 SPEC_DIS

Specified displacement flag (default: <false>). By setting this flag to <true>, uniform

axial end-shortening is imposed instead of the uniform axial loading. This can make a

significant difference in both the buckling and post-buckling response, and is not recom-

mended for novice users of this procedure. This is because thin axially-compressed shells

are not only imperfection sensitive, but also boundary condition sensitive, and uniform ax-

ial loading does not correspond (exactly) to uniform axial edge displacements. Note that

the reference specified displacement (i.e., end-shortening) magnitude equals .01 inches,

and corresponds to an axial load of about .467 times the classical buckling load.

4.9.4 USAGE GUIDELINES AND EXAMPLES

Procedure HINGED_CYL may be used by preceding the procedure name by the *call direc-

tive. Procedure arguments may be changed from their default values by including any or

all of the arguments and their new values when the procedure is called. A space or blank

is required between the end of the procedure name and the left parenthesis.

*call HINGED_CYL ( ES_PROC = ES1 ; ES_NAME = EX97 ; --

NNODES_A = 5 ; NNODES_C = 5 ;
SPEC_DIS = <false> ; --

DRILLING_DOF = <false> ; --
AUTO_DOF_SUP = <true> ; --

PREP = <true> ; --

NONLINEAR = <true> ; --
POST = <true> ; --

BEG_STEP = i ; --

NSTEPS = I0 ; --
BEG_LOAD = .1 ; --

MAX_LOAD = 3.0 ; --
DBc = HC.DBc ; DBr = HC.DBr )

(El) To perform an entire analysis using the default options, simply invoke the procedure

without any arguments, i.e.,

*call HINGED_CYL

This will perform linear buckling eigenvalue analysis and 30 steps of nonlinear anal-

ysis with a 5×5 grid of ES1/EI97 shell elements. The time required for this analysis

is machine-dependent. Using the default values for the procedure arguments, the

amount of systems is shown in Table 4.9-1.

4.9- 6 CSM Testbed Procedures Manual Revised 5/23/90



Application Procedures Hinged Cylinder

Table 4.9-1

Computer System

VAX 11/785
VMS 4.7

MicroVAX

ULTRIX 2.2

SUN

SUNVIEW 4.0

CONVEX C220

VERSION 7.0

CRAY-2

UNICOS 4.0

CPU TIMES Table

Total

CPU Time,

seconds.

(E2) Not suppressing the drilling rotational freedoms can cause strange behavior for some

elements during nonlinear analysis. On the other hand, suppressing these free-

doms explicitly using the DItILLING_DOF argument may cause some over-stiffening

for coarse meshes with some elements. It is probably best to suppress the drilling

freedoms explicitly unless the element actually has intrinsic drilling stiffness.

4.9.5 LIMITATIONS

4.9.6 ERROR MESSAGES AND WARNINGS

None.

4.9.7 PROCEDURE FLOWCHART

HINGED_CYL

GEN..SHELL

HC..BC

HCD_BC

L_STITIC_I

NL_STATIC_I

HISTORY

(main procedure)

(generate model)

(generate boundary conditions and applied loads)

(generate boundary conditions and specified displacements)

(perform linear static analysis)

(perform nonlinear static analysis)

(archive selected displacement/force histories)

Revised 5/23/90 CSM Testbed Procedures Manual 4.9- 7



Hinged Cylinder Application Procedures

4.9.8 PROCEDURE LISTING

4.9.9

4.9-1

REFERENCES

Stewart, Caroline B.: The Computational Structural Mechanics Testbed UJer'_

Manual. NASA TM-100644, October 1989.

4.9- 8 CSM Testbed Procedures Manual Revised 5/23/90



Application Procedures Pear-Shaped Cylinder

4.10 Procedure _='_._,_.__x.,"_"

4.10.1 GENERAL DESCRIPTION

The nonlinear shell response of cylindrical shells with a noncircular cross-section became

the subject of intense research in the early 1970's. Early Space Shuttle fuselage configura-

tions were noncircular, and the "pear-shaped" cross-section was a leading candidate. The

pear-shaped cylinder shown in Figure 4.10-1 has been adopted by many researchers and

the behavior of this shell subject to a uniform end-shortening investigated (e.9., refs. 4.10-

1 and 4.10-2). The results in this section are compared with results reported by Hartung

and Ball (ref. 4.10-1) and by Almroth and Brogan (ref. 4.10-2). In all cases, only one

fourth of the cylinder is modeled. The shell is isotropic with a uniform thickness of 0.01

inches. The boundaries are simply supported.

Material Properties:

E - 107psi
v -0.3

Geometric Parameters:

R. 1.0 inch
L ,,0.8 inches
t ,. 0.01 inches

e_

i-i-L, I/!
I

1

Figure 4.10-1 Pear-shaped cylinder - geometry, properties, and loading.

Revised 5/23/90 CSM Testbed Procedures Manual 4.10- 1



Pear-Shaped Cylinder Application Procedures

4.10.1.1 Model Description

The finite element model of the pear-shaped cylinder is generated in segments as shown

in figure 4.10-2. Joint locations and element connectivity are defined using the mesh

generating capabilities of Testbed processors TAB and ELD. The user must specify only

the number of elements along the 45 ° arc of segment 1 (NEL_AR¢), the number of elements

along the flat edge of segment 2 (NEL_FLAT), and the number of elements and through the

depth of the cylinder in the z-direction (NEL_DEPTH). The finite element mesh, loading,

and constraints are then automatically generated. In order to facilitate both the model

generation and the results interpretation, several alternate reference frames have been
defined.

Reference frames 1, 2, and 3 are defined automatically in processor TAB as global reference

frames, rotated -90 ° about z axis, and rotated 90 ° about y axis, respectively. Reference

frames 4, 5, and 6 are translations of the origin to points A, B, and C, respectively (see

figure 4.10-2). Frames 7 and 8 involve rotations about the global z-axis and include no
translations.

The results of interest in this analysis are the normal and tangential stresses and displace-

ments. Each joint is therefore assigned a joint reference frame to which displacements,

constraints, and loads are referred. The stress component directions are defined by the

order of the element connectivity using the element network generators of processor ELD.

Segment 1 of the finite element model is generated using reference frame 4. The

FORMAT=2 statement of the TAB/JLOC subprocessor allows for the generation of a

regular mesh of nodes on the cylindrical surface of segment 1. The TAB/JLOC input is in

cylindrical coordinates with point A as the origin of the cylindrical frame. The joints in

this segment are each assigned joint reference frame -4 indicating a cylindrical frame with

the joint 1-axis concident with the outward normal at each joint, the joint 3-axis coincident

with the global z-axis, and the joint 2-axis coincident with the tangent to each joint.

Segment 2 is also generated using frame 4 although in this case, frame 4 is employed as

a rectangular frame. The TAB/JLOC subprocessor generates a regular mesh of nodes

connecting the four corners of the rectangular surface of the segment. The TAB/JLOC

input is in cartesian coordinates with point A at the origin of the rectangular frame. Each

joint in this segment is assigned joint reference frame 7 indicating that the 1- and 2-axes of

each joint are coincident with z and y axes rotated 135 ° about global z. The joint 3-axis

and global z-axis are coincident.

Segment 3, a 135 ° section of arc, is generated using reference frame 5, centered at point B.

As with segment 1, the FORMAT=2 statement of the TAB/JLOC subprocessor is used

to generate a regular mesh of nodes on the cylindrical segment. The number of elements

around the circumference of this segment is assumed to be three times the number of ele-

ments around the circumference of Segment 1. The joints in this segment are each assigned

joint reference frame -5 indicating a cylindrical frame with the joint 1-axis coincident with

the outward normal at each joint, the joint 3-axis coincident with the global z-axis, and

the joint 2-aods coincident with the tangent to each joint.

4.10- 2 CSM Testbed Procedures Manual Revised 5/23/90



Application Procedures Pear-Shaped Cylinder

Segment _.._;_g,'nera_,_Av ._- using reference ¢_,.,_.... 6, _,,,_Leu-^-'^-J_,-"point C. Frame 6 is used as a

rectangular frame to generate a regular mesh of nodes connecting the four corners of the

rectangular surface of the segment. The number of elements along this segment is half that

used in segment 2. Each joint in this segment is assigned joint reference frame 8 indicating

that the 1- and 2-axes of each joint are coincident with z- and y- axes rotated 270* about

global z-axis. The joint 3-axis and global z-axis are coincident.

Three finite element models were considered in this study as shown in Figure 4.10-3. Mesh 1

(3 x 2fi) has three nodes through the cylinder depth and 2fi nodes around the half-cylinder

circumference (see Figure 4.10-3a). The mesh is composed of 50 g-node quadrilateral shell

elements (ES1/EX4? or ES5/E410) and a total of 78 nodes. Mesh 2 (5 x 37) has five nodes

through the cylinder depth and 37 nodes around the half-cylinder circumference (see Figure

4.10-3b). This mesh accommodates both 4- and 9-node elements and will contain either

144 4-node (ES1/EX47 or ES5/E410) or 36 0-node (ES1/ES97) quadrilateral shell elements

and 185 nodes. Mesh 3 (7 x 51) has seven nodes through the cylinder depth and 51 nodes

around the half-cylinder circumference (see Figure 4.10-3c). Mesh 3 accommodates both

4- and 9-node elements and will contain either 300 4-node (ES1/EX47 or ESS/E410) or

75 9-node (ES1/EX97) quadrilateral shell elements and 357 nodes.

Revised 5/23/90 CSM Testbed Procedures Manual 4.10- 3



Pear-Shaped Cylinder Application Procedures

Figure 4.10-2 Model Generation Strategy and Reference Frames

4.10- 4 CSM Testbed Procedures Manual Revised 5/23/90



Application Procedures Pear-Shaped Cylinder

•_.. "_.

•h_'"

4-node elements

4-node elements

Figure 4.10-3

• i_i_ -_

;..%.

_.. _.

( a) Mesh 1.

(b) Mesh 2.

/ :>-._ '
/L....._, ,,'

,I ( /

'.,. f,

9-node elements

.2 "_if

k_

9-node elements

(c) Mesh 3.

Finite element models of pear-shaped cylinder.

Revised 5/23/90 CSM Testbed Procedures Manual 4.10- 5



Pear-Shaped Cylinder Application Procedures

4.10.1.2 Analysis Description

4.10.1.3 Available Solutions

The pear-shaped cylinder is representative of a shell-type structure with a complex nonlin-

ear collapse behavior. The shell response becomes nonlinear at a very low value of applied

end-shortening, and the normal deflections of the flat portions of the shall increase rapidly.

The nonlinear analysis of the cylinder is performed using the procedure _/L_STATIC_i. The

distribution of the normal displacement (normal to the shdl surface) is shown in Figure

4.10-4 as a function of the applied load for the point of maximum normal displacement (at
z =0, 0 =180 °) and for all meshes and element types considered. These results indicate

that a converged solution is provided by the ES1/EX97 elements as the curves for Mesh

2 and Mesh 3 in Figure 4.10-4c are nearly identical. These three solutions correspond to

a discretization with 185 nodes with either 144 4-node flat classical (ES5/E410) dements,
144 4-node flat shear-flexible (ES1/EX47) elements, or 36 9-node curved shear-flexible

(ES1/EX97) dements.

A comparison of the three solutions obtained using Mesh 2 is provided in Figure 4.10-5. The

effects of transverse shear flexibility, present in the ES1/EX97 and ES1/EX47 elements but

not present in ESS/E410 elements, are apparent near collapse. The response curves begin
to separate slightly at approximately half the elastic collapse load with the shear flexible

dements exhibiting a consistent, yet slightly lower, stiffness than the response obtained

using the ES5/E410 element. The elastic collapse loads obtained using the 4-node flat

elements is nearly the same. However, results obtained using higher-order curved elements

to model the shell and its response are approximately 10% lower than the collapse loads
obtained using the flat elements.

4.10- 6 CSM Testbed Procedures Manual Revised 5/23/90



Application Procedures Pear-Shaped Cylinder

I

3000 I

Total axial 2000

load, lb

1000

Mesh 1_. /

FMMeSh 2

esh 3

55/E410 elements

I I I I
0 .01 .02 .03 .04

Normal deflection w at 0 ,, 180 degrees, in.

Models using 4-node flat classical (ES5/E410) elements.

4000 Mesh I

3000 ,_/-- Mesh 2

sh3

1000

ESl/EX47 elements

I I I I
0 .01 .02 .03 .o4

Normal deflection w at e = 180 degrees, in.

Models using 4-node fiat shear-flexible (ES1/EX47) elements.

Total axial 2000

load, Ib

(b)

3OOO

Total axial 2000
load, Ib

1000

Mesh 2-_._

ES1/EX97 elements

I 1 I I
.01 .02 .03 .04

Normal deflection w at 0 = 180 degrees, in.

(c) Models using 9-node curved shear-flexible (ES1/EX97) elements.

Figure 4.10-4 Nonlinear response of pear-shaped cylinder.

Revised 5/23/90 CSM Testbed Procedures Manual 4.10- 7



Pear-Shaped Cylinder AppUcation Procedures

3000

Total axial 2000
load, Ib

1000

0

Figure 4.10-5

ES5/E410___ ES1/EX47

_ S1/EX97

Mesh 2 results
t I I I

.01 .02 .03 .04

Normal deflection w at e = 180 degrees, in.

Nonlinear response of pear-shaped cylinder - Mesh 2.

Hartung and Ball (ref. 4.10-1) reported an elastic collapse load of 2372 pounds using a

finite difference version of STAGS. Several years later, Almroth and Brogan (ref. 4.10-2)

performed a convergence study using the finite element version of STAGS and estimated

that the elastic collapse load was between 2300 and 2400 pounds. These results, along

with the Testbed results, and results from independent elastic collapse analyses using the

STAGSC-1 computer code, are summarized in Table 4.10-1.

In Figure 4.10-6, the normal deflection at z =0 is plotted as a function of the circumferential

coordinate 0 for four different levels of applied load: 154, 300, 1689, and 2464 pounds

(load steps 10, 20, 30 and 40 respectively). The final load step (step 40 at 2464 pounds)

occurs just after collapse. The flat portions of the shell, from 45 ° < 0 < 90 ° and 157.5 ° <

0 _< 180 °, show a rapid growth in normal deflections. Associated with this growth is a

redistribution of the longitudinal stress indicating that the curved portions begin to take

up a larger percentage of the total axial load. This type of behavior can be seen in Figure

4.10-7 which plots the longitudinal stress resultant as a function of the circumferential

coordinate for load steps 10, 20, 30 and 40.

4.10- 8 CSM Testbed Procedures Manual Revised 5/24/90



Application Procedures Pear-Shaped Cylinder

Table 4.10-1 Elastic collapse ldads for pear2shaped cylinder.

Element

Name Mesh(1)Source

Hartung and Ball (2) 4 × 40 2372

Almroth and Brogan 411

44O

3x27

5x37

7x47

5x37

7x47

Elastic Collapse Load,

pounds

3586

2731

2586

2657

2530

STAGSC-1 410 3 x 26 3570

5 x 37 2734

CSM Testbed ES5/E410

ES1/EX97

ES1/EX47

3x26

5x37

7x51

5x37

7x51

3x26

5x37

7x51

3343

2753

2577

2475

2466

3945

2696

2568

(1) Mesh description is n x m meaning n rows by m columns of nodes.

(2) Finite difference version of STAGS.

ReUsed 5/23/90 CSM Testbed Procedures Manual 4.10- 9



Pear-Shaped Cylinder Application Procedures

Normal
deflection
w,ill.

.030 -

.025

.020

.015

.010

.005

0

-.005

-.010

-.015
0

m

Load step 4

' ' '30 60 90
Circumferentialcoordinatee, degrees

Figure 4.10-6 Normal deflection distribution at

500 cylinder midlength for various load steps.

450 step 40
400

350

Longitudinal
inplane stress

resultant, Ib/in.

3O0

25O

200

150
Load step 30

100

5O Load step 20

0

-50 0

Figure 4.10-7

Load step 10
I I I

30 60 90 120 150

Circumferential coordinate e, degrees

Longitudinal inplane stress resultant N= distribution

at cylinder midlength for various load steps.

180

4.10- 10 CSM Testbed Procedures Manual Revised 5/24/90



Application Procedures Pear-Shaped Cylinder

4.10.2 PROCEDURE USAGE

Procedure PEAR_CYL may be used by preceding the procedure name by the *ca21 directive,

and following it by a list of arguments enclosed in parentheses. Procedure arguments are

order-independent, and most have default values thus making them optional. The formal

syntax is as follows:

l,call PEAR_CYL ( argl = vall arg2 = val2 )1• D Q

where argl and turg2 represent argument names, and vall and va12 represent their cor-

responding values. Note that semi-colons are required between arguments, and a double

dash (--) may be used to continue the argument list on the next line.

Tile allowable arguments for procedure PEAR_CYL are summarized in the following table,

along with their default values (if they exist). Note that arguments without defaults are

generally mandatorg, while those with defaults are generally optional. Exceptions to this

rule are noted in tile following section under detailed argument descriptions.

Argument l)efault Value

ES..PROC ES1

ES..NAME EX97

ES_PARS O.

NEL_ARC

NEL_DEPTH

NEL_FLAT

LD_DIR

LINEAR

NSTEPS 30

BEG_STEP 1

MAX_CUTS 3

BEG_LOAD .1

MAX_LOAD 1.0

DBC PEAR. DBC

DBR PEAR. DBR

STABILITY <true>

NONLINEAR <true>

POST <false>

Meaning

Element Processor

Element name

Element research parameters

Number of elements along 45 ° arc segment

Number of elements along depth of shell

Number of elements along largest fiat segment
Direction to total load

Perform linear analysis

Number of nonlinear load steps

Starting load step number

Maximum number of step cuts (halvings)

Starting load factor
Maximum load factor

Computational database name
Results database name

Perform linear stability (buckling) analysis

Perform nonlinear analysis

Perform postprocessing (selected data archival)

4.10.3 ARGUMENT DESCRIPTIONS

4.10.3.1 BEG_LOAD

Starting load factor in nonlinear analysis (default=. 1).This factor is multiplied times the

reference load vector to obtain the starting load vector. For example, if specified forces are

applied (which is the default option), then BEG_LOAD = .1 means that the first load step to

Revised 5/23/90 CSM Testbed Procedures Manual 4.10- 11



Pear-Shaped Cylinder Application Procedures

be computed in the nonlinear analysis will be at one-tenth of the classical buckling load

level. Note that this argument is irrelevant for re-start runs. For more details, refer to the

same argument name under solution procedure NL_STATIC_I.

4.10.3.2 BEG_STEP

Number of starting load step in nonlinear analysis (default=l). This is the number of the

first step to be computed during an analysis interval. When starting a nonlinear analysis,

the first step is obviously 1. When re-starting (i.e., continuing in a subsequent run) a

nonlinear analysis, BEG_STEP should be set to the number of the next step to be computed

-- not to the number of the last step computed. The solution procedure (NL_STATIC_I)

will automatically use any previous step(s) required to continue the analysis -- providing

the necessary steps are available in the database. Currently, the number of consecutive

preceding steps required for a restart is three. For more details, refer to the same argument

name under solution procedure NL_STATIC_t.

4.10.3.3 DB___CC

Name of computational database file (default=PgM_. DBC). This file will contain all model

definition data, element computational data, one copy of the assembled and factored stiff-

ness matrices, the buckling eigensolution, and displacement and internal force vectors for

every load step computed during the analysis.

4.10.3.4 DBR

Name of results database file (default=PEM_. DBR). This file will contain one dataset called

ILESPONSE.HIST01_Y generated during nonlinear analysis. The dataset will contain record

groups -- indexed by load step number -- for a number of solution parameters, including

the load factor and maximum axial displacement components. This database is valuable

for obtaining load-displacement plots, and for evaluating the performance of the nonlinear

solution strategy employed.

4.10.3.5 ESJAME

Element name (default: EX97). This is the name of the specific shell-dement type you

wish to select, within the element processor defined by argument ES_Plt0C. The default

sheU-element type, gX97, is a 9-node quadrilateral element implemented in processor ESt,

and described in The Computational Structural Mechanics Testbed User's Manual (see

ref. 4.10-3).

4.10.3.6 ES_PARS

Element research parameters (default: 0., ... ). This is an optional list of element-

dependent parameters that some elements provide, primarily when the element is still

undergoing research and refinement.

4.10- 12 CSM Testbed Procedures Manual Revised 5/23/90



Application Procedures Pear-Shaped Cylinder

4.10.3.7 ES_PROC

Element processor (default: ES1) This is the name of the structural element (ES) processor

that contains the shell element type you wish to employ in the model. The default shell-

User's Manual (see ref. 4.10-3).

4.10.3.8 LD_DIR

Direction in which to total the load (default: 3). This argument specifies the direction in

which the reaction forces will be summed in order to determine the total load applied.

4.10.3.9 LINEAR

Linear analysis flag (default:

linear static analysis.

<false>). This flag should be turned on to perform only a

4.10.3.10 MAX_CUTS

Maximum number of load step cuts in nonlinear analysis (default=3). For more details,

refer to the same argument name under solution procedure NL_STATIC_I.

4.10.3.11 MAX_LOAD

Maximum load factor in nonlinear analysis (default=1.0). This sets an upper limit for the

load level, which can be a convenient way of terminating the arc-length controlled solution

algorithm employed within procedure NL_STATIC_I. Since the load factor is actually an

unknown in this solution procedure, there is no way of knowing a-priori how many load

steps will be required to attain a particular load level. Thus, the analysis will be terminated
when either R/IX_LOADis exceeded or NSTEPS is exceeded -- whichever comes first. For more

details, refer to the same argument name under solution procedure NL_STATIC_I.

4.10.3.12 NEL_ARC

Number of elements along arc segment (default: 4). This argument specifies the number

of elements along a 45 ° arc segment of the shell.

4.10.3.13 NEL_DEPTH

Number of elements along depth of shell (default: 1). This argument specifies the number

of elements along the length (or depth) of the shell.

4.10.3.14 NEL_FLAT

Number of elements along flat segments (default: 4). This argument specifies the number

of elements along the fiat segments of the shell.

4.10.3.15 NONLINEAR

Nonlinear analysis flag (defanlt:<true>).

linear analysis in the current run.

This flag should be turned on to perform non-

Revised 5/23/90 CSM Testbed Procedures Manual 4.10- 13



Pear-Shaped Cylinder Application Procedures

4.10.3.16 NSTEPS

Maximum number of load steps to be computed in the current nonlinear analysis run

(default=30). For more details, refer to the same argument name under solution procedure
NL_STATIC_I.

4.10.3.17 POST

Postprocessing flag (default=<false>). This flag should be turned on if you want selected

response-history parameters to be added to the PEAR.DBR database. Note that it is not

necessary to use this option in order to archive the basic load-displacement curve and

solution parameters. It is only needed if you wish to archive special displacement and/or

internal force component response histories post-facto.

4.10.3.18 STABILITY

Stability (buckling) analysis flag (default <true>). This flag should be turned on if you

want the buckling eigenvalue analysis to be performed in the current run. Preprocessing

is a pre-requisite for this option• If you are just performing a nonlinear analysis re-start

run, then you should turn this flag off.

4.10.4 USAGE GUIDELINES AND EXAMPLES

Procedure PEAR_CYLmay be used by preceding the procedure name by the *call directive.

Procedure arguments may be changed from their default values by including any or all of

the arguments and their new values when the procedure is called. A space or blank

is required between the end of the procedure name and the left parenthesis. If the default

values of the procedure arguments are to be used, then only the procedure name is required.

*call PEAR_CYL ( ES_PROO ffiESl ; --

ES_NAME = EX97 ; --

NEL_ARC = 4 ; --

NEL_FLAT = 4 ; --
NEL_DEPTH= 2 ; --

LINEAR = <true> ;

PREP ffi<true> ;
STABILITY = <false> ;

NONLINEAR = <false> ;
POST = <false> ;

DBC = PEAR.DBC ; -- .
DBR = PEAR.DBR ; --

NSTEPS = 30 ; --
BEG_STEP ffiI ; --

MAX_CUTS ffi 3 ; --
BEG_LOAD ffi .1 ; --
MAX_LOAD = I ; --
LD_dir = 3 --

)

• Element Processor
• Element name

• Elements along 45 deg. arc
• Elements along flat segment
• Elements through depth (z)

• Direction of total load calculation

4.10- 14 CSM Testbed Procedures Manual Revised 5/23/90



Application Procedures Pear-Shaped Cylinder

_Elj To perform an entire analysis using the default options, simply invoke the procedure

without any arguments, i.e.,

*call PEAR_CYL

This will perform linear buckling eigenvalue analysis and 30 steps of nonlinear anal-

ysis with a 7x 7 grid of ESl/EX97 shell elements. The time required for this analysis

is machine-dependent. Using the default values for the procedure arguments, the

amount of CPU times required for a stability analysis and a nonlinear analysis on

various computer systems are shown in Table 4.10-2.

Table 4.10-2 CPU TIMES Table

Total CPU Time, sec.

Computer System Stability Nonlinear

VAX 11/785
VMS 4.7

MicroVAX

ULTRIX 2.2

SUN

SUNVIEW 4.0

CONVEX C220

VERSION 7.0

CRAY-2

UNICOS 4.0

(E2) Not suppressing the drilling rotational freedoms can cause strange behavior for some

elements during nonlinear analysis. On the other hand, suppressing these free-

doms explicitly using the DRILLING_DOF argument may cause some over-stiffening

for coarse meshes with some elements. It is probably best to suppress the drilling

freedoms explicitly unless the element actually has intrinsic drilling stiffness.

4.10.5 LIMITATIONS

None.

4.10.6 ERROR MESSAGES AND WARNINGS

None.

Revised 5/23/90 CSM Testbed Procedures Manual 4.10- 15



Pear-Shaped Cylinder Application Procedures

4.10.7 PROCEDURE FLOWCHART

PEAR_CYL

PEAR_MODEL

ES

PEAR_CON

NATDAT

DEF_ELTS4

DEF_ELTS9

PEAR_AD

L_STATIC

TOTAL_LOAD

L_STABIL_2

TOTAL_LOAD

NL_STATIC_I

HISTORY

TOTAL_LOAD

(main procedure)

(define model)

(define elements)

(define boundary conditions)

(define material properties)

(define 4-node models)

(define 9-node models)

(define applied displacements)

(linear static analysis procedure)

(sum reaction forces to get total load)

(linear stability analysis procedure)

(sum reaction forces to get total load)

(nonlinear static analysis procedure)

(archive historical data)

(sum reaction forces to get total load)

4.10.8 PROCEDURE LISTING

4.10.8.1 UNIX Script

pear_cyl, corn

cd SSCK/$USU

cp $csg_PKC/proclib.gal proclib.gal

chaod u÷e proclib.Kal

rn PEAL*

tino tostbed <<\endinput

*set echo off

*set plib 28

*open 28 procltb.gal /old

*add '$CSM_APP/pear_cyl/pear_cyl.clp'

edof/i os_proJ B 1

*dof/i es_coro = 1

odof/i nl_geon : 2

*dof/a solvor_nmne =BIND

*dof/a nl_solver =BAND

*call PEAK_CTL ( ES_PBOC = ES1 ; -- . El,sent Processor

ES_NAME = El97 ; -- . Elenent nane

4.10- 16 CSM Testbed Procedures Manual Revised 5/25/90



Application Procedures Pear-Shaped Cylinder

[xqt EXIT

\endinput

4.10.8.2

NEL_ar¢ •

NEL_flat •

NEL_depth•

NSTEPS •

UD_

DBK •

PREP

LINEAR •

STABILITY•

NONLINEAR•

NEWTON •

POST •

BEG_LOAD •

HAl_LOAD •

4 ; -- . Elements alert S 45 deg. arc

4 ; -- . Elements along flat segment

3 ; -- . Elements through depth (z)
60 ; -- .

PEAK.DBC ; --

PEAR.DBR ; --

<true> ; --

<false> ; --

<false> ; --

<true> ; --

<false> ; --

<true> ; --

.2 ; --

12o.o )

CLAMP Procedure

pesr_cyl, clp

*procedure PEAK_CYL ( ES_PROC : ES1 ; --

NEL.arc : 4

NEL_flat : 4

NEL_depth= 1

LD_dir • 3

NSTEPS : 30

BEG.STEP : 1

BEG_LOAD : .01

• Element Processor

ES_MAHE : E197 ; -- . Element nasa

; -- . Elements in 45 deg. arc

; -- . Elements along flat segment

; -- . Elements through depth

; -- . Direction of total load

MAX_LOAD : 1.0 ; --

MAX_CUTS = 3 ; --

DBC = PEIR.DBC; DBR : PEAK.DBA; --

PREP : <true>; --

LINEAL : <true>; --

STABILITY • <false>; --

NONLINEAR : <false>; --

NEWTON = <false>; --

POST • <false> --

CSM Testbed Procedure for Analysis of Pear-Shaped Cylinder

eritten by S. McCleury (PKC Kentron) -- 2/88

edef/i IOM_ldi : 3

eopen/new 1 [DBc]

eif [PREP] /then

ecall PEAK_MODEL ( ES_proc • [ES_PROC];

ES_nane • [ES_NAHE];

Revised 5/25/90 CSM Testbed Procedures Manual 4.10- 17



Pear-Shaped Cylinder Application Procedures

eendif

nel_a

nel_f

nel.z

• [EEL_arc] ; --

• [EEL_flat]; --

• [EEL_depth] )

eif• [LINEIk] >/then

ecall L_STATIC

*call TOTAL_LOAD ( EqUIL_CKz 0 ; --

NSTEPS • O ; --

LOAD_SET • 1 ; --

CONS_SET • I ; --

NAME1 • _STIT _ ; --

NANE2 • 'KEIC _ ; --

FAC • 1.0 ; --

LD.DIK z [Ld_dir] --

eelseif < [STABILITY] > /then

ecall L_STIBIL_2 (function•JallJ;n_nodes•2;print=<true>;stress=•true> ; --

cons_set:l; bcon_sot=l )

*call TOTAL_LOAD ( EqUIL_CK• 0 ; --

NSTEPS • 0 ; --

LOAD_SET • I ; --

CONS_SET • 1 ; --

NAME1 = 'STAT' ; --

NAME2 = 'KEAC' ; --

FIC • 1.0 ; --

LD_DIK : [Ld_dir] --

eendif

cop,n/nee 3, [DBr]

elf • [NONLINEAK] > /then

edef/i nm_overurite •• •true>

ecall EL.STITIC_I ( NL_GEON = <hi_seen> ; --

COKOTATION•<es_coro> ; --

NEWTON • [NEWTON] ; --

BEG_STEP • [BEG_STEP] ; --

MAX_STEPS • [NSTEPS] ; --

BEG_LOAD • [BEG.LOAD] ; --

NAI_LOAD • [NAI_LOAD] ; --

MAX_CUTS ffi [MAI_CUTS] ; --

NOMINAL_DB • [DBr] ; --

NOMINAL_DS : [ES.PKOC].[ES_MANE].I.1 ; --

N_SELECT • 2 ; --

4.10- 18 CSM Testbed Procedures Manual Revised 5/25/90



Application Procedures Pear-Shaped Cylinder

*toc 1
. o..

senalz

SEL_NODES z l,<<nntotal>-<nnod_z>+l>

SEL_DOFS = 1,1 --

*if < [POST] /gt 0 > /then

*open 1, [DBc]

*open S, [DBr]

*if < [POST] /eq 1 > /then

*call HISTORY ( input_ds = TOT.DISP; output_ldi = 1 ; --

output_ds= [ES_PKOC].[ES_NAKE].I.1 ; --

output_mr KADIIL_DISP ; LOCATION = NODES ; --

nun_steps = [NSTEPS] ; --

steps = [BEG_STEP]:<[BEG_STEP]+[NSTEPS]-I>; --

nun_nodes= I ; --

nodes = <<nntotal>-<nnod_z>+l> ; --

component = 1 --

)
ecall TOTAL_LOID ( EqUIL_CKz 0 ; --

NSTEPS = INSTEPS] ; --

LOAD_SET = 0 ; --

CONS_SET s 0 ; --

NAME1 = DKEAC' ; --

NJME2 = 'FONC' ; --

FAC : 1.0 ; --

LD_DIK = [Ld_dtr] --

)

eprint 3 I TOTALs /out:9

el_int S 1DISP_U_<<nntotal>-(nnod.z>vl>e /out:9

send

*procoduze PEIR_NODEL ( ES_proc : ES1 ; --

ES_namo : EI97 ; --

nel_a = 4 ; --

nel_f : 4 ; --

nel_z = 2 )

--o. ......................

Initialize element macros

scall ES ( function = 'DEFINE ELEMENTS' ; es_proc : [ES_PKOC]; --

es_naae = [ES_NIME] )

Set dimensions and number-of-nodes macros:

Revised 5/25/90 CSM Testbed Procedures Manual 4.10- 19



Pear-Shaped Cylinder Application Procedures

*dof/g dz == 0.40

*deflg r == 1.0

*def/g sq2 a (2.0"0.5)

*def/g re2 = < <r> * <sq2> >

*def/g rd2 = < <r>/<sq2> >

*def/g rr2 = < <r> + <rd2> >

*def/g ra = < -<r> >

*def/g rr2m = < -<rr2> >

*def/g rd2n = < -<rd2> •

*def/g rm2a = < -<r82> >

• Depth (in z direction) o£ cylinder

• Radius of curved portions o£ cylinder

*def/i nel_b • <[nel_f]eif < <as_non> /eq 4 • /then

edef/i nnod_z == < [nel_z] + 1 >

edef/t nnod_a =8 < [nel_a] + 1 >

edef/t nnod_f 8= < [nol_f] + 1 >

*def/i nnod_b == < <hal_b> ÷ 1 >

*def/t nnod_c == <4*[nel_a]+[nel_f]÷<nel_b> + 1 >

*olsetf < <os_non> /aq 9 • /then

edof/i nnod_z == < 2*[nel_z] + 1 >

edefli nnod_a == < 2*[nel_a] ÷ 1 •

*def/i nnod_f == < 2*[nel_f] + 1 >

edef/i "nod_b == < 2*<nel_b> + 1 >

• Through z

. along arc

• Along flat aegnent

. Along beaten segment

• CXrcunferentially

• Through z

• Along arc

• along flat se_Qnt

• along beaten segment

nnod_c == < 2*<4*[nel_a]+[nel_f]+<nel_b>> + I • . Clrcumferentially*def/l

*endif

< 3*< <nnod_a> - 1 > + 1 •

1

< <bsegl> + <<nnod_a> -l>*<nnod_z> >

< <bseg2> + <<nnod_f> -l>*<nnod_z> •

< <bseg3> ÷ <<nnod_3a>-l>e<nnod_z> >

*def/i nntotal == < <nnod_c>*<nnod_z> >

*dof/i nnod.Sa =

*def/i bsegl =

*def/i bsog2 :

*dof/i bsog3 :

edef/t bseg4 =

around 136 deg. arc

Start segaent 1

Start seKaent 2

Start sepent 3

Start segnent 4

Total nuaber of nodes

[xqt TAB

START <nntotal>

• Define alternate reference fraRes to be used in setting up joint locations:

00.. ..... ----.----.u ....... . .......... .0----. ........... _ ....... . ...... u--o--. .....

ALTERNATE REFERENCE FRAMES

4 1,0. 2,0. 3,0.

6 1,0• 2,0. 3,0.

6 1,0• 2,0• 3,0•

7 1,0. 2,0. 3,135.

8 1,0. 2,0. 3,270.

0.0 <rm> 0.0

<rd2n> <rr2a> 0.0

0.0 <rr2n> 0.0

m--u.. ..... .---u .......

Define Joint locations:

JOINT LOCATIONS

NKEF = 4

FORMAT = 2

<bsegl> <r> 90.0

I <r> 00.0

90 to 135 degree arc

0.0 <r> 135.0 0.0

0.4 <r> 135.0 0.4

<nnod_a> <nnod_z> <nnod_z>

4.10- 20 CSM Testbed Procedures Manual Revised 5/25/90



AppUcation Procedures Pear-Shaped Cylinder

FOK141T z i Flat se_tsnt

<bseg2> <rd2n> <rd2> 0.0 <rs2n> 0.0

I <rd2m> <rd2> 0.4 <rs2a> 0.0

N]U_F = 6 135 degree arc

FORHAT ;; 2

<bseg3> <r> 135.0 0.0 <r> 270.0

1 <r> 135.0 0.4 <r> 270.0

N]U_F • 6 Bottom flat sapent

FORMAT = 1

<bseg4> <rd2n> <rm> 0.0 O. 0 <rm>

1 <rd2n> <rm> 0.4 0.0 <rn>

0.0 <nnod_f> <nnod_z> <nnod_z>

0.4

0.0 <nnod_3a> <nnod_z> <nnod_z>

0.4

0.0 <nnod_b> <nnod_z> <nnod_z>

0.4

lssiKn Joint Reference Frames:

JOINT REFERENCE FRAME ASSIGNMENTS

NKEF • -4: <bsegl>, <<bseg2> - 1>

10.EF • 7: <bsog2>, <<bse83> - 1>

NREF : -5: <bse83>, <<bse84> - 1>

NREF : 8: <bess4>, <nntotal>

Constraint Definitions :

*call PEAK_CON ( nnod_z : <nnod_z> ; nntotal = <nntotal> )

Material Properties:

*call MATDAT

Element Definitions:

*if < <as_nan> /eq 4 > /then

*call DEF_ELTS4 ( ES_nane : lEa_nan,] ; --

nel_a : [nsl_a] ; --

nel_f • [nal_f] ; --

nsl_z • [nel_z] ; --

nsl_b = <nsl_b> )

*else

*call DEF_ELTS9 ( ES_nsno • [ES_name] ; --

nel_a : [nel_a] ; --

nel_f : [nel_f] ; --

nel_z : [nel_z] ; --

nal_b = <nel_b> )

*endif

Revised 5/25/90 CSM Testbed Procedures Manual 4.10- 21



Peaz-Shaped Cylinder Application Procedures

Applied Loading:

• call PEIK.ID ( nnod_z • <nnod_z> ; nntotal = <nntotal> )

send

eprocedure PEAK_CON ( nnod_z ; nntotal )

CONSTBAINT DEFINITION 1 . Buckling; sinply supported

synnplano=l . Plane 2,3 plane of synetry

synnplane:3 . Plane 1,2 plane ot synnotry

nonzero 3 : [nnod_z],[nntotal],[nnod_z] . Apply displacenent at z:dz

zero 1,2,6: [nnod_z],[nntotal],[nnod_z] . Edge z:dz siaply supported

oi_ <tfeqs(<es_nane>;E410)> /then

elonark E410 drtllin E freedoms ON
eolso

zero 4 : 1, [nntotal], 1 . Constrain in-plane rotations

eondif

send

eproceduro DEF_ELTS4 ( ES_nane ; --

nol_a ; --

nel_f ; --

nel_z ; --

nel_b )

edef/i nol.circun • <4e[nsl_a] + [nel__] + [nel_b]>

edef/i Jtnc : <[nel_z]+l>

edof/t Jl = I

*dof/i j2 = 2

edef/i J3 : <<J2> + <Jinc>>

*def/i J4 = <<jl> + <Jtnc>>

[xqt EI.D

<os_expo_cnd>

<jl> <j2> <j3> <j4> 1 [nel_z] <nel_circun>

stop

*end

eprocedure DEF_ELTS9 ( ES_nane ; --

nel_a ; --

nel__ ; --

nol_z ; --

nel_b )

*def/i nel_circua = <4*[nel_a] + [nel_f] + [nel_b]>

*def/l Jinc = <2*[nel_z]+1>

*def/i jl : 1

*def/i J2 = <<j1>+2>

4.10- 22 CSM Testbed Procedures Manual Revised 5/25/90



Application Procedures Pear-Shaped Cylinder

*dsf/i J3 = <<J2> + 2*<jine>>

*def/i J4 = <<Jl> ÷ 2*<jln¢>>

*def/i j5 = <<Jl> * I>

*dof/i j6 • <<J2> + <Jlnc>>

*de_/i J7 • <<iS> + 2s<Jinc>>

*del/i j8 = <<Jl> + <jln¢>>

*def/i j9 = <<JS> + <jlnc>>

[xqt ELI)

<os.oxpe_cnd>

<Jl> <J2> <J3> <J4> <jS> <j6> <j?> <j8> <j9> I

stop

send

*procedure MITDIT

[xqt IUS

sde_ g = 3.846150+6

sdof/g t == 0.01

[nel_z] <nol_circua>

. Ell NU12 E22 G12 G13 G23 ILPHI11LPHI2 _I"DEN

TIBLE(NI=16,NJ=1): OMB DATI 1 1

I=1,2,3,4,8,6,7,8,0

J=l: IO.OE÷O .30 10.0E+0 <g> <g> <g> 0.0 0.0 .1

TIBLE (NI=3,NJ=l,itype=O): LAM OMB 1 1
J=l : 1 <t> 0.00

[xqt lau

send

*v .... d-',--e PEII_ID ( nnod_z ; nntotal )

[xqt IUS

sysvec : appl noti

i=3 : J=[nnod_z],[nntotal],[nnod_z] : -2.E-5

*end

4.10.9 REFERENCES

4.10-1 Hartung, R. F.; and Ball, R. E.: A Comparison of Several Computer Solutions to

Three Structural Shell Analysis Problems. AFFDL TR-73-15, April 1973.

4.10-2 Almroth, B. O. and Brogan, F. A. (1981). "Computational Efficiency of Shell

Elements," Nonlinear Finite Element Analysis of Plates and Shells, Hughes, T. J.

R., Pilko, A., and Jay, A. (Editors), AMD Vol. 48, ASME, pp. 147-165.

Revised 5/25/90 CSM Testbed Procedures Manual 4.10- 23



Pear-Shaped Cylinder Application Procedures

4.10-3 Stewart, Caroline B.: The Computational Structural MechanicJ Testbed User'_

Manual. NASA TM-100644, October 1989.

4.10- 24 CSM Testbed Procedures Manual Revised 5/25/90



Application Procedures Pinched Cylinder

4.11 Procedure rll_"="_"=_'_x-x_u__'_'Lx

4.11.1 GENERAL DESCRIPTION

The pinched cylinder - a circular cylindrical shell subjected to two equal and opposite radial

forces at 0 and 180 degrees along its mid-span circumference - is a classical problem that

has been used extensively to check the ability of shell elements to represent inextensional

bending deformation. Two versions of the problem are considered here: (i) with open

ends, and (ii) with a rigid membrane diaphragm on each end to prevent cross-sectional

distortion. The open-ended version leads to pure inextensional deformation (i.e., zero

membrane strains) in the limit as the shell thickness to shell radius ratio h/R approaches

zero. An exact solution for this limiting case may be found in reference 4.11-1. The pinched

cylinder with closed ends does not exhibit pure inextensional deformation, but rather a

complex combination of bending and membrane effects with a bending boundary layer in

the immediate vicinity of the concentrated loads. A series solution for this latter case may
be found in reference 4.11-2.

This section describes a procedure that solves another classical problem which is one of

the MacNeal-Harder test cases. Two versions of this circular cylindrical shell subjected to

equal and opposite radial forces at its mid-span circumference are provided: (i) with open

ends and (ii) with a rigid membrane diaphragm on each end. The L/2 by 90-degree model

used in each case is shown in figure 4.11-1.

P

L = 10.35
6

E = 10.5 x 10

V = .3125

I'

\

L =20.
7

E = 1.OxtO

V = .23

Figure 4.11-1 Pinched Cylinder Problem.

Revised 5/23/90 CSM Testbed Procedures Manual 4.11- 1



Pinched Cylinder Application Procedures

4.11.1.1 Model Description

4.11.1.2 Analysis Description

4.11.1.3 Available Solutions

4.11.2 PROCEDURE USAGE

Procedure PINCHED_CYL may be used by preceding the procedure name by the *call direc-

tive, and following it by a list of arguments enclosed in parentheses. Procedure arguments

are order-independent, and most have default values thus making them optional. The
formal syntax is as follows:

ecall PINCHED_CYL ( argl = vall; arg2 = val2 ; ...)[

where argl and eurg2 represent argument names, and vall and va12 represent their cor-

responding values. Note that semi-colons are required between arguments, and a double

dash (--) may be used to continue the argument list on the next line.

The allowable arguments for procedure PINCHED_CYL are summarized in the following table,

along with their default values (if they exist). Note that arguments without defaults are

generally mandatory, while those with defaults are generally optional. Exceptions to this

rule are noted in the following section under detailed argument descriptions.

Argument Default Value

ES_P_0C ES1

ES_NAME EX97

ES_PARS O.

N//0DES_A 5

NNODES_C 5

AUTO_DOF_SUP <true>

DRILLING_DOF <false>

DBC PC. DBC

DBR PC. DBR

PREP <true>

LINEAR <true>

REACTION <false>

POST <true>

Meaning

Element processor
Element name

Element research parameters
Number of axial nodes

Number of circumferential nodes

Automatic degrees of freedom suppression

Drilling (normal rotational) freedoms

Computational database name
Results database name

Perform preprocessing (model generation)

Perform linear static analysis

Calculate internal forces or reactions

Perform postprocessing (selected data archival)

4.11- 2 CSM Testbed Procedures Manual Revised 5/23/90



Application Procedures Pinched Cylinder

4.11.3 ARGUMENT DESCRIPTIONS

4.11.3.1 IUTO_DOF_SUP

Automatic degree of freedom suppression flag (default: <true>). This option provides a

convenient way of suppressing any freedoms that do not have any (or adequate) stiffness

associated with them -- for example, at nodes used to prescribe geometry only; or drilling

freedoms in fine meshes composed of elements without normal rotational stiffnesses (see

argument DRILLING.DOF).

4.11.3.2 DBC

Name of computational database file (default=PC.DBC). This file will contain all model

definition data, element computational data, one copy of the assembled and factored stiff-

ness matrices, the buckling eigensolution, and displacement and internal force vectors for

every load step computed during the analysis.

4.11.3.3 DBE

Name of results database file (default=PC.DBl_). This file will contain one dataset called

RESPONSE. HISTORY generated during nonlinear analysis. The dataset will contain record

groups m indexed by load step number -- for a number of solution parameters, including

the load factor and maximum axial displacement components. This database is valuable

for obtaining load-displacement plots, and for evaluating the performance of the nonlinear

solution strategy employed.

4.11.3.4 DRILLING_DOF

Drilling degree of freedom flag (default: <false>). Drilling freedoms are defined as rota-

tions normal to the surface of the shell. Leaving this flag off forces all drilling freedoms

in the model to be suppressed. "lXarning it on forces _ drilling freedoms to be active

unless they are automatically suppressed using use of the AUT0_DOF_SUP argument. Note

that while many shell elements do not have any rotational stiffness associated with their

own surface-normal directions (at nodes), when shell elements are assembled as facets ap-

proximating an arbitrary shell surface, there is usually some misalignment between the

element normal and the actual shell normal. This is especially true of "fiat" (e.g., 4-node)

elements. Hence, 8ome rotational stiffness about the _hell normal is usually present in

the model. (A clear exception to this is a fiat plate, where element and shell normals

are identical.) For a cylindrical shell, the misalignment diminishes only as the number of

elements is increased. Most shell elements in the Testbed have their own misalignment

tolerance parameter, which determines when the IUTO_DOF_SUP argument will automati-

cally suppress the drilling freedom. Note that for elements which have drilling stiffness,

the DI_ILLING_DOF argument should be set to <tru,> regardless of how A_r0_DOF_SUP is

set.

Revised 5/23/90 CSM Testbed Procedures Manual 4.11- 3



PinchedCylinder Application Procedures

4.11.3.5 ES_NAME

Element name (default: gX97). This argument is the name of the specific shell-elemen_ type

you wish to select, within the element processor defined by argument ES_PROC. The default

shell-element type, EX97, is a 9-noded quadrilateral element implemented in processor E51,

and described in The Computational Structural Mechanics Testbed User's Manual (see ref.

2.1-1).

4.11.3.6 ES_ARS

Element research parameters (default: 0., ... ). This argument allows is an optional list

of element-dependent parameters that some elements provide, primarily when the element

_s still undergoing research and refinement.

4.11.3.T ES_PROC

Element processor (default: ES1) This argument is the name of the structural element

(ES) processor that contains the shell element type you wish to employ in the model.

The default shell-element, Processor ES1, is described in The Computational Structural
Mechanics Testbed User's Manual.

4.11.3.8 LINEAR

Linear stress analysis flag (default: <true>).

4.11.3.9 NNODES_A

Number of axial nodes (default: 7). This argument is the number of nodes you wish

to have along the axial direction of the cylindrical shell model, i.e., along one-tenth of

the full cylinder's length. Note that this number should be consistent with the number

of nodes per element. For example, NNODES.A can be any number greater than 1 for 4-

node quadrilateral elements, whereas it must be an odd number greater than 1 for 9-node

quadrilateral elements.

4.11.3.10 NNODES_C

Number of circumferential nodes (default: 7). This argument is the number of nodes you

wish to have along the circumferential direction of the cylindrical shell model, i.e., along

15 degrees of circular arclength. Note that this number should be consistent with the

number of nodes per element. For example, NNODES_C can be any number greater than 1

for 4-node quadrilateral elements, whereas it must be an odd number greater than 1 for

9-node quadrilateral elements.

4.11.3.11 POST

Postprocessing flag (defanlt=<falso>). This flag should be turned on if you want selected

response-history parameters to be added to the CC.DBR database. Note that it is not

necessary to use this option in order to archive the basic load-displacement curve and

solution parameters. It is only needed if you wish to archive special displacement and/or

internal force component response histories post-facto.

4.11- 4 CSM Testbed Procedures Manual Revised 5/23/90



Application Procedures Pinched Cylinder

4.11.3.12 PREP

Pre-processing flag (default=<true>). This flag must be turned on the first time procedure

VlRL;M__UIL is run, as it causes Lne moue_ to be runs aregenera_ea. 1i SUDsequen_ usect

to perform other stages of the analysis (e.g., nonlinear restarts), then PREP must be set to

<false> for those subsequent runs.

4.11.4 USAGE GUIDELINES AND EXAMPLES

Procedure PINCHED_CYL may be used by preceding the procedure name by the *call

directive. Procedure arguments may be changed from their default values by including

any or all of the arguments and their new values when the procedure is called. A space or

blank is required between the end of the procedure name and the left parenthesis.

*call PINCHED_CYL ( ES_PROC = ESI

NNODES_A = 7 ; NNODES_C ffi

SPEC_DIS = <false> ; --

DRILLING_DOF = <false> ; --

AUTO_DOF_SUP = <true> ; --

PREP = <true> ; --

STABILITY = <true> ; --

IMPERFECTION = <true> ; --

LINEAR ffi <true> ; --

POST ffi <true> ; --

BEG_STEP ffi 1 ; --

NSTEPS = i0 ; --

BEG_LOAD = .I ; --

MAX_LOAD = 3.0 ; --

DBc = PC.DBc ; DBr

; ES_NANE = EX97 ; --

7 ;

= PC.DBr )

(El) To perform an entire analysis using the default options, simply invoke the procedure

without any arguments, i.e.,

*call PINCHED_CYL

This will perform linear buckling eigenvalue analysis and 10 steps of nonlinear anal-

ysis with a 7x 7 grid of ES1/EX97 shell dements. The time required for this analysis

is machine-dependent. Using the default values for the procedure arguments, the

amount of CPU time required for this analysis on various computer systems is shown

in Table 4.11-1.

Table 4.11-1 CPU TIMES Table

Revised 5/23/90 CSM Testbed Procedures Manual 4.11- 5



Pinched Cylinder Application Procedures

Total

Computer System CPU Time,
seconds.

VAX 11/785
VMS 4.7

MicroVAX

ULTRIX 2.2

SUN

SUNVIEW 4.0

CONVEX C220

VERSION 7.0

CRAY-2

UNICOS 4.0

(E2) Not suppressing the drilling rotational freedoms can cause strange behavior for some

elements during nonlinear analysis. On the other hand, suppressing these free-

doms explicitly using the DRILLING_DOF argument may cause some over-stiffening

for coarse meshes with some elements. It is probably best to suppress the drilling

freedoms explicitly unless the element actually has intrinsic drilling stiffness.

4.11.5 LIMITATIONS

4.11.6

None.

ERROR MESSAGES AND WARNINGS

4.11.7 PROCEDURE FLOWCHART

PINCHED_CYL

GEN_SHELL

PC_BC

PDC_BC

L_STATIC_I

POST

(main procedure)

(generate model)

(generate boundary conditions/loads)

(perform linear static analysis)

4.11- 6 CSM Testbed Procedures Manual Revised 5/23/90



Application Procedures Pinched Cylinder

4.11.8 PROCEDURE LISTING

4.11.9

4.11-1

4.11-2

4.11-3

4.11-4

4.11-5

REFERENCES

Timoshenko, S. and Woinowsky-Krieger, S., Theory of Plates and Shells, McGraw-

Hill. New York, 1969.

Lindberg, G.M., Olson, M.D. and Cowper, G.R. "New Developments in the Finite

Element Analysis of Shells", Q. Bull. Div. Mech. Eng. and the National Aero-

nautical Establishment, National Research Council of Canada, voL _, I969, pp.

XXX.

Ashwell, D.G.: "Strain Elements, with Applications to Arches, Rings, and Cylin-

drical Shells," Finite Elements for Thin Shells and Curved Members, D.G. AshweU

and R.H. Gallagher (editors), John Wiley and Sons, New York, 1974, pp. 91-111.

Forsberg, Kevin: "An Evaluation of Finite Difference and Finite Element Tech-

niques for Analysis of General Shells," In Proceedings of the Symposium on High

Speed Computing of Elastic Structures, B. Fraeijs de Veubeke (editor), I.U.T.A.M.,

Liege, 1970, pp. 837-859.

Stewart, Caroline B.: The Computational Structural Mechanics Testbed User's

Manual NASA TM-100644, October 1989.

Revised 5/23/90 CSM Testbed Procedures Manual 4.11- 7



Pinched Cylinder Application Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

4.11- 8 CSM Testbed Procedures Manual Revised 5/23/90



Application Procedures Plate With Circular Hole

4.12 Procedure PW-HOLE

4.12.1 GENERAL DESCRIPTION

4.12.1.1 Problem Description

This application problem involves a linear static stress analysis of a thin isotropic mem-

brane with a central circular hole subjected to uniform compression (see Figure 4.12-1).

This problem is important in that plate and shell elements are frequently used to model

regions with a severe stress gradient.

Y

Length = 20. inches
Width = 10. inches

Diameter of hole = 2. inches

Plate thickness = .1 inches

E = lO.x 106psi

v = .3

Uniform end-shortening,Uo=.l inches

Figure 4.12-1 Plate with Circular Hole

Revised 5/23/90 CSM Testbed Procedures Manual 4.12- 1

PRECEDING PAGE E;LA_'qK I'_OT FILMED



Plate With Circular Hole Application Procedures

4.12.1.2 Model Description

Procedure PWHOLEmodels an entire rectangular membrane using 2-D quadrilateral de-

ments. The mesh is generated using processor CSM1. This processor generates a file named

PANEL. PRC which is added to the procedure library. This file contains various procedures

associated with modd generation (PANEL_BC), and applied displacements (PANEL_AD).

4.12.1.3 Analysis Description

Procedure PWHOLEperforms a single linear static stress anaiysis. The solution procedure

L_STATIC described in Chapter 3 is used to perform the static stress.

4.12.1.4 Available Solutions

4.12.2 PROCEDURE USAGE

Procedure PWHOLE may be used by preceding the procedure name by the *call directive,

and following it by a list of arguments enclosed in parentheses. Procedure arguments are

order-independent, and most have default values thus making them optional. The formal

syntax is as follows:

PWHOLE ( argl = vall; arg2 = val2 ; ...)!

where argl and arg2 represent argument names, and vall and val2 represent their cor-

responding values. Note that semi-colons are required between arguments, and a double

dash (--) may be used to continue the argument list on the next line.

The allowable arguments for procedure PI/HOLE are summarized in the foUowing table,

along with their default values (if they exist). Note that arguments without defaults are

generally mandatory, while those with defaults are generally optional. Exceptions to this

rule are noted in the following section under detailed argument descriptions.

Argument Default Value Meaning

ES_PROC ES1 Element processor
ES_NANE EX47 Element name

ES_PAR O. 0 Element research parameters

NRINGS 4 Number of rings of elements

NSPOKES 16 Number of radial spokes of nodes

NELX 6 Number of elements along z-direction

NELE 2 Number of dements across edge

NELBS 2 Number of elements between interior stiffeners

PRINT <false> Print flag
DIRECTION 1 Direction of stress reference frame

LOCATION 'NODES' Location for stress recovery

4.12- 2 CSM Testbed Procedures Manual Revised 5/23/90



Application Procedures Plate With Circular Hole

4.12.3 ARGUMENT DESCRIPTIONS

4.12.3.1 DIRECTION

Direction for the dement.stress (stress resultant) output (default: 1). The element stress

coordinate system will be used if DII_ECTIONffi0. The material axes (z,,_, y,n, z_) will be

used if DIRECTION=I; the material axes (y,,,, z,,_, z,_,) will be used for DIRECTION=2; and

the material axes (z_,, z_,, _,,_) will be used for DIILECTION=3. For isotropic materials, the

first material axis is replaced by the corresponding global axis (see Section 4.3.3.9 of the

CSM Testbed User's Manual, ref. 4.12-3).

4.12.3.2 ES_NAME

Element name (default: EX47). This argument specifies the name of the specific shell-

dement type to select within the element processor defined by argument ES_.PROC. The

default shdl-element type, gg47, is a 4-node quadrilateral element implemented in proces-

sor ES1, and described in the Computational Structural Mechanics Testbed User's Manual

(see ref. 4.12-2).

4.12.3.3 ES_PARS

Element research parameters (default: 0.0, ... ). This array allows an optional list of

dement-dependent parameters that some elements provide, primarily when the dement is

still undergoing research and refinement.

4.12.3.4 ES_PROC

Element processor (default: ES1) This is the name of the structural dement (ES) processor

that contains the shell-dement type you wish to employ in the model. The default shell-

dement, processor ES1, is described in the Computational Structural Mechanics Testbed

User's Manual (see refs. 4.12-2).

4.12.3.5 LOCATION

Location of the evaluation points for the element stresses or stress resultants (default:

NODES). The element stresses or stress resultants are optionally computed by calling proce-

dure STRESS (see Section 6.4). This argument may have four values. For

LOCATION=Irr_-G_PTS, the dement stresses are computed at the dement integration points.

For LOCATIONfCENTROIDS, the dement stresses are computed at the dement centroid. For

LOCATION=NODES, the element stresses are extrapolated from the integration points to be

dement nodes. These dement nodal stresses wiU be discontinuous across interelement

boundaries.

4.12.3.6 NELBS

Number of elements between interior stiffness (default: 2). Refer to processor CSM1 in

reference 4.12-3 for a discussion of this argument.

Revised 5/23/90 CSM Testbed Procedures Manual 4.12- 3



Plate With Circular Hole Application Procedures

4.12.0.T NELE

Number of elements across edge (default: 2). Refer to processor CSM1 in reference 4.12-3

for a discussion of this argument.

4.12.3.8 NELX

Number of elements along z-direction (default: 6). Refer to processor CSM1 in reference

4.12-3 for a discussion of this argument.

4.12.3.9 NRINGS

Number of rings of elements (default: 4). This argument specifies the number of rings of

elements, either 4-node or 9-node quadrilateral elements, around the hole.

4.12.3.10 NSPOKES

Number of radial spokes of nodes (default: 16). This argument specifies the number of

radial spokes of nodes which must be a multiple of 8.

4.12.3.11 PRINT

Print flag (default: <false>). If the argument PRINT is defined to be <true>, then all

computed results (displacements, stresses) will be printed.

4.12.4 USAGE GUIDELINES AND EXAMPLES

Procedure PWHOLEmay be used by preceding the procedure name by the *call directive.

Procedure arguments may be changed from their default values by including any or all

of the arguments and their new values when the procedure is called. A space or blank

is required between the end of the procedure name and the left parenthesis.

*call PWHOLE

ES_PAR
NRINGS ffi4 ;

NSPOKES = 16 ;

NELX ffi6 ;
NELE = 2 ;

NELBS = 2 ;
DIRECTION = i ;
LOCATION

( ES_PROC = ES1 ; -- • ES_NIME = EX47 ; --
= 0.0 ; -- Element research parameters

-- Number of rings of elements
-- Number of radial spokes of nodes

-- Number of elements along z-direction
-- Number of elements across edge
-- Number of elements between interior stiffeners
-- Direction of stress reference frame

ffi'NODES' -- Location for stress recovery
)

(El) To perform an entire analysis using the default options, simply invoke the procedure

without any arguments, that is,

*call PWHOLE

Using the default values for the procedure arguments, the amount of CPU time

required for this analysis on various computer systems is shown in Table 4.12-1.

4.12- 4 CSM Testbed Procedures Manual Revised 5/23/90



Application Procedures Plate With Circular Hole

Table 4.12-1 CPU TIMES Table

Computer System

VAX 11/785
VMS 4.7

MicroVAX

ULTRIX 2.2

SUN

SUNVIEW 4.0

CONVEX C220

VERSION 7.0

CRAY-2

UNICOS 4.O

Total

CPU Time.

seconds.

4.12.6

None.

4.12.7

LIMITATIONS

ERROR MESSAGES AND WARNINGS

PROCEDURE FLOWCHART

•PMHOLE

ES

PANEL_START

PANEL_JLOC

PANEL_BC

IqATDAT

PANEL_CONN

ES

PANEL_AD

L_STATIC

(main procedure)

(define elements)

(define start card)

(define joint locations)

(define boundary conditions)

(define material properties)

(define element connectivity)

(define freedoms)

(define applied displacements)

(linear static solution procedure)

Revised 5/23/90 CSM Testbed Procedures Manual 4.12- 5



Plate With Circular Hole Application Procedures

4.12.8 PROCEDURE LISTING

4.12.9 REFERENCES

4.12-1 Timoshenko, S. P. and Goodier, J. N.: Theory of Elasticity (Third Edition).

McGraw-Hill Book Company. New York, 1970, pp. 90-97.

4.12-2 Peterson, R. E.: Stress Concentration Design Factors. John Wiley and Sons-

International, New York, 1953, pp. 77-88.

4.12-3 Stewart, Caxoline B.: The Computational Structural Mechanics Testbed User's

Manual. NASA TM-100644, October 1989.

4.12- 6 CSM Testbed Procedures Manual Revised 5/23/90



Applio_tion Procedures RECT.PLATE

4.13 Procedure RECT_PLATE

4.13.1 GENERAL DESC_TION

This application problem involves linear static stress analysis, linear buckling analysis and

linear vibration analysis of three thin isotropic rectangular plates simply supported along

their edges (see Figure 4.13-I). Various loading cases are considered including uniaxia]

and biaxial compression, uniform inplane shear, and inplsne bending (see Figure 4.13-2).

q #q

J
X.

X

(a) Quarter Model of Plate I.
/

(b) Half Model of Plate 2.

X

0,. 7, 5

a

Full Model of Plate 3.

Rectangular Plate Problems.

Revised 5/23/90 CSM Testbed Procedures Manual 4.13- I



RECT_PLATE Application Procedures

-i

='-'-t

(a) Uniaxial Compression

Quarter Model of Plate 1)

(c) Inphme Bending (d)

(Half Model of Plate 2)

0

(b) Biaxial Compression

(Quarter Model of Plate 1)

Inplane Shear

(Full Model of Plate 3)

Figure 4.13-2 Loading Conditions.

4.13.1.1 Model Description

Procedure LECT..PLATE uses a quarter model, a half model, and a full model of a plate

depending on the loading case. The mesh topology is rectangular and restricted to quadri-

lateral shell elements with 4-nodes. For the quarter model shown in Figure 4.13-1a, two

edges are simply supported and two edges have symmetry conditions imposed. For the half

model shown in Figure 4.13-1b, three edges are simply supported and symmetry conditions

are imposed on the remaining edge. For the full model shown in Figure 4.13-1c, all four

edges are simply supported.

4.13.1.2 Analysis Description

Procedure RECT_PLATE performs six different analyses through successive procedure calls

using the various solution procedures described in Chapter 3. The analyses performed are:

• Linear free vibration analysis about an unstressed state;

• Linear buckling analysis using a linearly-computed prestress state for uniform uniaxial

compression;

4.13- 2 CSM Testbed Procedures Manual Revised 5/23/90



Application Procedures RECT_PLATE

• Linear buckling analysis using a prescribed prestress state for uniform biaxial com-

pression;

• Linear free vibration analysis about a prescribed prestressed state for uniform biaxial

tension;

• Linear buckling analysis using a linearly-computed prestress state for uniform inplane

bending;

• Linear buckling analysis using a linearly-computed prestress state for uniform inplane

shear.

4.13.1.3 Available Solution

Analytical solutions for the vibration analyses are available in reference 4.13-1 and for the

buckling analyses in reference 4.13-2.

Case 1: Free vibration

For this analysis, the quarter model of plate 1 is used. From pages 492-494 of reference

4.13-1, the frequencies for vibration are given as

-')/-D[ 2 n2 (4.13- 1)

where

and

w,,_, = circular frequency (radians/second)

p = mass density

Eh s
D-

12(1 _,/2)

h = plate thickness

E = Young's modulus

v = Poisson's ratio

m, n - number of half-waves in the z-, y- directions, respectively

finn _ _mn (hertz)

Using this formula, frequencies for this problem may be computed as follows:

m

1

1

3

n
2

_Trtn

4.9867 x lOs

75.0712 x lOs

186.7724 x lOs

_WLn

112.4

436.1

687.8

Revised 5/23/90 CSM Testbed Procedures Manual 4.13- 3



RECT_.PLATE Application Procedures

Case 2: Uniform Uniaxial Compression

For this analysis, the quarter model of plate 1 is used and the loading corresponds to

Nv = -1.0 Ib/in. From pages 351-356 of reference 4.13-2, the buckling load is given as

_rSD( lbS) 2(g,)c, - _ - + - (4.13-2)

This expression implies that a plate buckles in such a way that there are n halfwaves in

the direction of compression and only one halfwave in the perpendicular direction. The

first term in equation (4.13-2) represents the Euler load for a strip of unit width and of

length b. The second term represents the change in buckling load for a continuous plate

from an isolated strip. For this plate,

n (Nu)c,, lb/in.

1 523.04

3 874.89

5 1944.23

Case 3: Uniform Biaxial Compression

For this analysis, the quarter model of plate 1 is used and the loading corresponds to

uniform biaxial compression

g ° = N_ = - 1.0 lb/in.

From pages 356-360 of reference 4.13-2, the buckling load may be derived from

rnSlr s nS_ -s /'rnSlr s nSlrS'_ s

If Nz and N_ are proportional, then

N_ = RN_

where R is constant.

critical values of N_ gives

(4.13 - 3)

Substituting this relation into equation (4.13-3) and solving for

_2 a 2 _2

_rSD (rn s +,, gr] (4.13-4)
(N,)_,- ,,s (ms+ R,_sF_)

The value of R is 1 for the loading case being considered. Thus

(4.13-5)( °2)_r2 D nS
(N_)_- _ ms+

4.13- 4 CSM Testbed Procedures Manual Revised 5/23/90



Application Procedures RECT_PLATE

The critical values are therefore

m n (N=)o., Ib/in.

1

1

3

1

5

1

3

1

5

1

188.29

730.58

1152.36

1815.15

3080.48

Case 4: Vibration with Prestress State

For this analysis, the quarter model of plate 1 is used and the prestress state corresponds

to uniform biaxial tension.

o
Nffi° = Ny = S = 1000 lb/in.

From pages 481-483 and 492-494 of reference 4.13-1, the vibration frequencies for a pre-

stressed rectangular plate may be derived as

2 _'4D( a2) 2 a'2S( a2)- + V + + (4.13 -6)

The first term of equation 4.13-6 represents the free vibration frequency. The second term

represents the effect of uniform prestress on the vibration frequencies. Tensile prestress

forces increases the vibration frequencies while compressive prestress forces decrease the

vibration frequencies. For the plate considered herein, the vibration frequencies for a

tensile prestress force S of 1000 lb/in, are as follows:

m n

I 1

1 3

3 1

2
_w_Tt

3.1470x I0s

17.7827x I0e

34.8851 x 10e

_rtn

292.34

671.15

940.03

Case 5: Inplane Bending

For this analysis, the half model of plate 2 is used and the loading across the edge AB

varies linearly from N ° = 1.0 lb/in, at point A to Nffi° = -1.0 lb/in, at point B. From pages

373-379 of reference 4.13-2, the buckling load is given as

(N_)c, --k _r2D (4.13 - 7)
b2

where the value of k depends on the ratio _ and on the linear distribution of the loading.

Specific values of k are given in Table 9-6 on page 337 of reference 4.13-2. For the plate

considered herein, the value of k is 24.1 which then gives a critical load of 6534.54 1b/in.

Revised 5/23/90 CSM Testbed Procedures Manual 4.13- 5



RECT_PLATE Application Procedures

Uniform Inplane Shear

For this analysis, the full model of plate 3 is used and the loading corresponds to

N°v = 1.0 lb/in.

From pages 379-385 of reference 4.13-2, the buckling load is given as

= k (4.13-8)
a 2

where the value of k depends on the ratio of _b and is given in Table 9-10 on page 382 of

reference 4.13-2. For the plate considered herein, the value of k is 7.53 which then gives a

critical load of 3629.69 lb/in.

4.13.2 PROCEDURE USAGE

Procedure RECT_PLATE may be used by preceding the procedure name by the *call direc-

tive, and following it by a list of arguments enclosed in parentheses. Procedure arguments

are order-independent, and most have default values thus making them optional. The

formal syntax is as follows:

,call RECT_PLATE ( argl = vall ; arg2 = va12 ; ...)]

where argl and arg2 represent argument names, and vall and val2 represent their cor-

responding values. Note that semi-colons are required between arguments, and a double

dash (--) may be used to continue the argument list on the next line.

The allowable arguments for procedure RECT_PLATE are summarized in the following table,

along with their default values (if they exist). Note that arguments without defaults are

generally mandatory, while those with defaults are generally optional. Exceptions to this
rule are noted in the following section under detailed argument descriptions.

Argument Default Value Meaning

CASE 0 Select analysis case

E 30. E6 Young's Modulus

ES_PROC ES1 Element Processor

ES_NAME EX47 Element name

LX 7.5 Length in x-direction

L¥ 10.0 Length in y-direction

O. 3 Poisson's ratio

PRINT <false> Print flag

THICKNESS 0.1 Thickness

WTDEN 0.1 Weight density

4.13- 6 CSM Testbed Procedures Manual Revised 5/23/90



Application Procedures RECT_PLATE

4.13.3 ARGUMENT DESCRIPTIONS

4.13.3.1 CAS._._.EE

Select analysis case (default: 0). This argument is used to select a specified analysis case

number from one to six. The procedure will then perform only that specfic analysis. If all

six analysis cases are desired, then the argument CASE should be set to zero.

4.13.3.2 g

Young's elastic modulus (default: 30.0 x 106 psi).

4.13.3.3 ES..N._tME

Element name (default: EX47). This is the name of the specific shell-element type you

wish to select, within the element processor defined by argument ES_.PROC. The default

shell-element type, EX47, is a 4-noded quadrilateral element implemented in Processor

ES1, and described in The Computational Structural Mechanics Testbed User's Manual

(see ref. 4.13-3).

4.13.3.4 ES_PROC

Element Processor (default: ZSl) This is the name of the structural element (ES) Processor

that contains the shell element type you wish to employ in the model. The default shell-

element, Processor gSl, is described in The Computational Structural Mechanics Testbed
User's Manual.

4.13.3.5 L._X.X

Length of the plate model in the z-direction (default: 7.5 inches).

4.13.3.6 L_!

Length of the plate model in the y-direction (default: 10.0 inches).

4.13.3.7 __

Poisson's ratio (default: O. 3).

4.13.3.8 PRINT

Print flag (default: (false>). If the argument PRINT is defined to be (true>, then all

computed results (displacements, modeshapes, stresses) will be printed.

4.13.3.9 THICKNESS

Thickness of the plate (default: 0.1 inches).

4.13.3.10 V12)F_J/

Weight density (default: 0.1 ]b/in.a). Processor LAU converts the weight density to mass

density.

Revised 5/23/90 CSM Testbed Procedures Manual 4.13- 7



RECT_PLATE Application Procedures

4.13.4 USAGE GUIDELINES AND EXAMPLES

Procedure RECT..FLATE may be used by preceding the procedure name by the *call direc-

tive. Procedure arguments may be changed from their default values by including any or

all of the arguments and their new values when the procedure is called. A space or blank

is required between the end of the procedure name and the left parenthesis.

*call RECT_PLATE ( ES_PROC = ESI

CASE ffi0 ; --

LX ffi7.5 ; --

LY ffiI0.0 ; --

E = 30.E6 ; --

NU ffi 0.3 ; --
PRINT = <false>

THICKNESS = 0.1

WTDEN = 0.I )

; ES_NAME = EX47 ;

(El) To perform an entire analysis using the default options, simply invoke the procedure

without any arguments, that is,

*call RECT_PLATE

Using the default values for the procedure arguments, the amount of CPU time

required for this analysis on various computer systems is shown in Table 4.13-1.

"fable 4.13-1 Typical CPU Times for Various Computer Systems

Computer System

Total

CPU Time,

seconds.

VAX 11/785
VMS 4.7

MicroVAX

ULTRIX 2.2

..... SUN

SUNVIEW 4.0

" CONVEX C220

VERSION 7.0

CRAY-2

UNICOS 4.0
,,=

4.13- 8 CSM Testbed Procedures Manual Revised 5/23/90



Application Procedures RECT'PLATE

4.13.5 LIMITATIONS

The finite element model is restricted to models using 4-node quadrilateral elements. The
J x_! -_model has a _o_a_ of 54 nodes _ld 40 _1.... ,_/_ :_ ,1._ _ _:__.,: .... .t o 1.... ,__,_,-¢-. _ _o elements ,- ,,,_ _,-,,,,_,.,,,,,, ,_,,_, u c,,.,,,,.,,_o

in the y-direction).

4.13.6 ERROR MESSAGES AND WARNINGS

None.

4.13.7 PROCEDURE FLOWCHART

ItECT..PLATE

ES

L_VIBRAT_O

L_STtBIL_2

L_STABIL_I

L_VIBKAT_I

L_STJkBIL_2

L_STABIL_I

(main procedure)

(define elements)

(free vibration analysis; CtSE=l)

(buckling analysis with unia.xial compression; CASE=2)

(buckling analysis with bia.xial compression; CASE=3)

(vibration with prestress; CASE=4)

(buckling with inplane bending; CASE=5)

(buckling with inplane shear; CASE=6)

4.13.8 PROCEDURE LISTING

4.13.8.1 UNIX Script

rect_plat e. corn

¢d /icr/$USKl

cp $CSM_PKC/proclib.gal proclib.gal

clmod u+w proclib.gal

re ract_plate.lO1

tine $estbed _< \endinput

eset echo off

*set plib:28

*open 28 proclib.sal /old

eadd ,$CSM_lPP/rect_plate/rect_plate.clp'

*open 1 rect_plate.lO1 /new

edef/a solver_nano = BaND

*dof/a eisonsolvor_noae : L/NZ

Eigenvaluo Problens (Buckling and Vibration)

for an Isotropic Kectangul&r Plate

Revised 5/25/90 CSM Testbed Procedures Manual 4.13- 9



RECT'PLATE Application Procedures

*call RECT_PLITE ( case=2; es_nameffiex47;es_procffiesT;print=<true>)

*stop
*close 28 /doleto

\endinput

4.13.8.2 CLAMP Procedure

reef_plat e.tip

*PROCEDURE RECT_PLATE ( case=O; es_naae='ex47';os_procffi'ul'; --

ixffiT.5;ly=lO.O;effi30.Oe÷6;nu=O.3; --

thtcknessfO.1;wtdonfO.1;printf<false> )

Rectangulsz plate

*dof/e g = < [,] / <2. * <l.+[nu]> > >

*dof/* alpha = .1-4

[XqT TAB

START 54,6
TITLE'RECTANGULAR PLATE PROBLEM

TEXT

'THE FOLLOVING PLATE PROBLEMS ARE SOLVED IN THIS RUN:

' 1 FREE VIBRATION OF A RECTANGULAR PLATE.

' 2 BUCKLING OF A RECTANGULAR PLATE, COMPRESSED IN ONE DIRECTION.

' 3 BUCKLING OF A RECTANGULAR PLATE, UNIFORM COMPRESSION.
' 4 FREE VIBRATION OF A PRE-STB_SSED RECTANGULAR PLATE.

' 5 BUCKLING OF A RECTANGULAR PLATE, BENDING LOAD.

J 6 BUCKLING OF A RECTANGULAR PLATE, SHEAR LOAD.

JOINT LOCATIONS

1 o o o [ix] o o s 1 9
e 0 [ly] O [lz] [ly] 0

CONSTRAINT CASE 1:

CON CASE 1

SYMMETRY PLANE=I

SYMMETRY PLANE:2

ZERO 3 4: 6,48,6

ZERO 3 5:49,53

ZERO 3:54

CONSTRAINT CASE 2:

CON CASE 2

SYMMETRY PLINE=I

ZERO 2:25

ERO 3: 1,0: 12,54,6:49,53
FRO 4: 12,48,6

ZERO 6: 1,6:49,63

CONSTRAINT CASE 3:

4.13- 10 CSM Testbed Procedures Manual Revised 5/25/90



Application Procedures RECT'PLATE

CONSTRAINT CASE 3

ZgltO 1: 1,6:54

ZYJLO 2: 1,49=6

ZF_O 3: 1,6: 12,54,6: 7,49,6:50,53

ZF_O 4: 12,48,6:Tp43,6

ZY_O 5: 2,5:50 S3

[IQT IUS

TIBLE(NI=16,NJ=I): ONE DATA 1 1

1-1,2,3,4,5,6,7,8,9

J=l: [a] [nu] [el <g> <g> <g> <alpha> <alpha> [gtden]

TABLE (NIzS,NJ=I,ITYPE=O): LAM OMB I 1

J=l : 1 [thickness] O.

[IQT LAU

stop

*call ES ( function z 'DEFINE ELEMENTS' ; es_proc = [es_proc] ; --

es_n_e : [es_ne_o] ; as_pars : 0.0 )
[XQT ELD

<ES_EIPE_CMD>

NSECT = 1

1 2 8 7 1 8 8

LOAD CASE 1:

[IQT AUS

ALPHA: CASE TITLE 1

l'coxpressive _orces in y-direction applied at y=lO.
SYSVEC: APPLIED FORCES 1

I=2

JOINTS=49: 54:-.75

JOINTS=50,83: -1.5

LOAD CASE 2:

ALPHA: CASE TITLE 2

ltcoapressive forces in x- and y-directions applied at y=lO., x=7.5
STSVEC: APPLIED FOgCES 2

Is2

JOINTS=49: 54: -.TS

JOINTS=50,53: -1.50
I=1

JOINTS=6:54:-.625

JOINTS=;2,4$,6: -1.25

LOAD CASE 3:

ALPHA: CASE TITLE 3

l'bendin 8 forces applied at x=7.5

SYSVEC: APPLIED FORCES 3

I=l

JOINTS=6: .67292

Revised 5/25/90 CSM Testbed Procedures Manual 4.13- 11



RECT'PLATE Application Procedures

JOINTS=12,24,6: .9375 .6250 .3126

JOINTS=36,48,6: -.3125 -.6250 -.9375

JOINTS=54:-.57292

LOID CASE 4:

ALPHA: CASE TITLE 4

1,shear forces applied at x=7.5 and y=lO.

STSVEC: APPLIED FORCES 4

1=2

JOINTS=6: 54:.625

JOINTS=12,48,6: 1.280

Z=I

JOINTS=49: 84: .750

JOINTS=50,53: 1.500

LOID CASE 5:

ALPHA: CASE TITLE 5

l_tensile forces in x-direction applied at x=7.5

STSVEC: APPLIED FORCES 8

1=1

JOINTS=6: 54: 1280.

JOINTS=12,48,6: 2500.

stop

P_OCESS

*if < [case] /eq 0 >/then

*call L_VIB_T_O ( function='all';N_aodes=6;print=[print];vcon_set=l ; --

aass_type='conslstent _ )

*call L_STABIL_2 ( function='fact_solv';N.aodes=2; --

cons_set=l; bcon_set=l; --

shift=O.O; stress=<true>; --

reaction=<true>;print=[print] )

*call L_STABIL_I ( function='EIGEN'; bcon_set=l; --

H_aodes=2; ps_l=-l.0;ps_2=-l.0;print=[print] )

*call L_VIB_AT_I ( function=,all,;vcon_set=l; --

pa.l=lOOO.O;ps_2=lOOO.O;N_modes=6;print=[print] ; --

aass_tyl)e='consistent' )

*call L_STABIL_2 ( function:'fact_solv';N.aodes=2; --

cons_set:2;bcon_set:2;load_set:3; --

shift=O.O; stress=<true>; --

reaction:<true>;print:[print] )

*call L_ST/BIL_I ( fmtction:'all';N_modes=2;

ps_3=l.O;bcon_set=3; --

shlft=O.O; --

4.13- 12 CSM Testbed Procedures Manual Revised 5/25/90



Application Procedures RECT_PLATE

prtnt=[print] )

*olme

*if < [case] /oq ! >/then

*call L_VIBKIT_O ( functton=,all,;N_aodesf6;prtnt=[print];vcon_set=l ; --

lass_type=3consistent ' )

*el,elf { [case] /eq 2 >/then

*call L_STABIL_2 ( functton='all';N_lodes=a; --

locatton='all';directton=l; --

cons_set=l; bcon_set=l; --

mhift=O.O; etrems=<true>; --

reaction=<true>|print=[print] )

*el,oil < [case] /eq 3 >/then

*call L_STIBIL_I ( function='all'; bcon_set=l; --

N_nodes=2; ps_l=-l.O;ps_2=-l.O;print=[prtnt] )

*el,oil < [case] /eq 4 >/then

*call L_VIBRAT.1 ( function='all';vcon_set=l; --

ps_l=lOOO.O;ps.2=lOOO.O;N_lodes=6;print=[print] ; --

nass_type='conslstont' )

*el,elf < [case] /eq 5 >/then

*call L_STIBIL_2 ( lunction='all';N_aodes=2; --

cons_set=2;bcon_set=a;load_set=3; --

shlft=0.0; stress=<true>; --

reactton=<true>;print=[print] )

*elsetf < [case] /eq 6 >/then

*call L.STaBIL_I ( function='all';N_nodes=2; --

ps_3=l.0;bcon_set=3;

shift=O.O; --

print= [print/ )

[xqt dcu

toc 1

*end

Revised 5/25/90 CSM Testbed Procedures Manual 4.13- 13



RECT_PLATE Application Procedures

4.13.9 REFERENCES

4.13-1 Timoshenko, S., Young, D. H. and Weaver, W., Jr.: Vibration Problems in Engi-

neering, Fourth Edition, John Wiley and Sons, Inc., New York, 1974.

4.13-2 Timoshenko, S. P.; and Gere, J. M.: Theory o/Elastic Stability, Second Edition,

McGraw-Hill, New York, 1961.

4.13-3 Stewart, Caroline B.: The Computational Structural Mechanics Testbed User's

Manual. NASA TM-100644, October 1989.

4.13- 14 CSM Testbed Procedures Manual Revised 5/25/90



Application Procedures RHOMBIC_PLATE

4.14 Processor RHOMBIC_PL_TE

THIS SECTION UNDER PREPARATION

5/24/90 CSM Testbed Procedures Manual 4.14- 1



RHOMBIC_PLATE Application Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

4.14- 2 CSM Testbed Procedures Manual 5/24/90



Application Procedures TRUNCATED_CONE

TT • I_li_ "lr?t A_1 A_lh .

4.15 Processor TR_NC_r_D__uNE

THIS SECTION UNDER PREPARATION

5/24/90 CSM Testbed Procedures Manual 4.15- 1

PRECEDING PAGE BLAf'JK f_OT FILMED



TRUNCATED_CONE Application Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

4.15- 2 CSM Testbed Procedures Manual 5/24/90



Application Procedures VIB_2D

4.16 Procedure VIB_2D

4.16.1 GENERAL DESCRIPTION

This application procedure involves linear free vibration analyses of a beam and a cir-

cular ring (see Figure 4.16-1). These one-dimensional structures are modeled using two-

dimensional shell elements. Various boundary conditions are imposed to obtain vibration
modes about different coordinate axes.

%

%

%

%

%
I I I I
E = 10. x 106psi
v=O.

Length = 10. inches
width --=1.0inches
thickness = .1 inches

(a) Cantilevered Beam

E = 10. x 106psi
v=O.

inner radius= 6.366 inches
outer radius - 7.366 inches
thickness = .1 inches

1/4

(b) Circular Ring

Figure 4.16-1 Free Vibration Problems

Revised 5/23/90 CSM Testbed Procedures Manual 4.16- 1

PRECEDING PAGE BL_i'_V[ NOT FILMED



VIB_2D Application Procedures

4.16.1.1 Model Description

Procedure VIB_2D uses a full model of the cantilevered beam and a quarter model of

the circular ring. The mesh topology is rectangular and restricted to quadrilateral shell

elements with 4- or 9-nodes. The mesh generation capability of processor ELD is used

to generate the various meshes used in this application problem. The cantilevered beam

shown in figure 4.16-1a is fixed at one end and free at the other. Only a quarter of the

circular ring shown in figure 4.16-1b is modeled with symmetry conditions imposed at both
ends.

4.16.1.2 Analysis Description

Procedure VIB_2D performs three different linear free vibration analyses through successive

procedure calls using the solution procedure L_VlBRAT_0 described in Chapter 3.

4.16.1.3 Available Solution

Analytical solutions for the vibration analyses are available in reference 4.16-1.

Case 1: Free Inplane Vibration

For this analysis, all degrees of freedom in the z-direction have been constrained to zero so

that only inplane vibration will occur. From page 369 of reference 4.16-1, the frequencies

for longitudinal (axial) vibration are given as

m_r _pE (4.16-1)

and the frequencies for inplane flexural vibrations are given on page 426 of references 4.16-1

as

w,,_=k2_. E_ _ (4.16-2)

V pA

where

and

1,4)_ ---

p=

L=

E=

/zz --

//=

circular frequency (radians/second)

mass density

beam length

Young's modulus

Moment of Inertia about z-axis, lJ-_b3h

Poisson's ratio

number of half-waves in the z-directions, respectively

wm (hertz)f"= 2--_-

4.16- 2 CSM Testbed Procedures Manual Revised 5/23/90



Application Procedures VIB_2D

The constant k,,_ is obtained from the roots of the equation

cos k,,,L cosh k,,,L = -1

The consecutive roots of this equation are

1

2

3

4

k,,,L

1.875

4.694

7.855

10.996

(4.16-3)

Using these formula, frequencies for this problem may be computed as follows:

2 f,,, Type7r_ o_ m

1

2

1

3

2

4

3

4.776 x 10s

187.590 x 10s

1144.085 x 10s

1471.031 x 10s

4576.338 x I0s

5649.057 x I0s

10296.761 x 105

109.990

689.326

1702.351

1930.328

3404.702

3782.754

5107.054

Flexural

Flexural

Axial

Flexural

AxiM

Flexural

Axial

Case 2: Free Lateral Vibration

For this analysis, only the degrees of freedom in the z-direction are unconstrained and

hence lateral vibration mode shapes and frequencies will be obtained. From page 426 of

reference 4.16-1, the frequencies are given as

where

km= roots of equation 4.16-3

(4.16-4)

1

Iyy = moment of inertia about y-axis, _-_bh 3

Using this formula, the vibration frequencies for this problem may be computed as follows:

2¢gmm

1 4.776 x 10s

2 187.590 x 103

3 1471.031 x 103

4 5649.057 x 103

10.999

68.933

193.033

378.275

Revised 5/23/90 CSM Testbed Procedures Manual 4.16- 3



VIB_2D Application Procedures

Case 3: Free Vibration of Ring

For this analysis, a quarter model of the circular ring is used. The extensional vibration

modes resemble the longitudinal vibration modes of prismatic beams. The simplest ex-

tensional mode of vibration corresponds to uniform radial motion of the ring (drdes of

periodically varying radius). From pages 476-477 of reference 4.16-1, the frequencies for

the extensional vibration modes are given as

/E(1 + m2)

w,,_ = V PR2 (4.16 - 5)

where R is the radius of centerline of ring.

Pure radial vibrations are obtained for the case of m = 0. Using this formula, the frequen-

cies for extensional vibration may be computed as follows:

2
1.1441 x lO s

2.2882 x 10 s

5.7204 x 10 s

11.4408 x 108

1702.351

2407.488

3806.573

5383.308

The inplane flexural vibration of a circular ring corresponds to vibration modes in the

plane of the ring. From pages 479-481 of reference 4.16-1, these frequencies are given as:

/EIzzrn2(1 - m_)2 (4.16 - 6)

w,,', = v "_'-_ R--'_(1 + m 2)

For m = 1, the frequency is zero which implies that the ring moves as a rigid body. Using

this formula, the frequencies for the inplane vibration modes may be computed as follows:

2m 03n_

1

2

3

4

6

8

10

0.0

169.3749

1354.9994

4981.6155

28038.4171

91931.4991

228278.8317

0.0

2.071

5.858

11.233

26.650

48.256

76.042

4.16- 4 CSM Testbed Procedures Manual Revised 5/23/90



Application Procedures VIB_2D

4.16.2 PROCEDURE USAGE

Procedure VIB_2D may be used by preceding the procedure name by the *call directive,

and following it by a list of arguments enclosed in "'- -parentheses. Procedure arguments are

order-independent, and most have default values thus making them optional. The formal

syntax is as follows:

*¢all VIB_2D ( argl = vall ; arg2 = va12 )]

where argl and arg2 represent argument names, and vall and va12 represent their cor-

responding values. Note that semi-colons are required between arguments, and a double

dash (--) may be used to continue the argument list on the next line.

The allowable arguments for procedure VIB_2D are summarized in the following table,

along with their default values (if they exist). Note that arguments without defaults are

generally mandatory, while those with defaults are generally optional. Exceptions to this

rule are noted in the following section under detailed argument descriptions.

Argument Default Value

CASE BAR

E 10.E6

ES..PROC ES1

ES_NI/iE EX97

GRIDS 1

NGRIDS 1

NNX 3

L I0.0

PRINT <false>

THICKNESS O. I

WTDEN 5/6
B 1.0

DBC VIB_2D. DBC

DBR VIB_2D.DBR

SHIFT O.0

MASS_TYPE CONSISTENT

N.MODES 5

Meaning

Select vibration case

Young's Modulus
Element Processor

Element name

Grid identification numbers

Number of grids

Number of nodes for each grid

Length in x-direction

Print flag
Thickness

Weight density

Beam or ring depth

Computational database name

Results database name

Eigenvalue shift

Type of mass matrix

Number of eigenvalues desired

4.16.3 ARGUMENT DESCRIPTIONS

4.16.3.1 .CASE

Select vibration case (default: BAR). This argument selects the vibration analysis to per-

form. The options include BAR, BEAN, and RING. The CASE=BAR, the analysis corresponds

to the axial vibration of a rod. For CASE=BEJLti, the analysis corresponds to the lateral

vibration of a beam. For CASE=RING, the analysis corresponds to extensional and flexural

vibration of a circular ring.

Revised 5/23/90 CSM Testbed Procedures Manual 4.16- 5



VIB_2D Application Procedures

4.16.3.2 DB__._C

Name of computational database file (default=VlB_2D. DBC). This file will contain all model

definition data, element computational data, one copy of the assembled and factored stiff-

ness matrices, the buckling eigensolution, and displacement and internal force vectors for

every load step computed during the analysis.

4.16.3.3 DBR

Name of results database file (default=VIB_2D.DBg). This file will contain one dataset

called RESP0_ISE.HISTORY generated during nonlinear analysis. The dataset will contain

record groups -- indexed by load step number -- for a number of solution parameters,

including the load factor and maximum axial displacement components. This database is

valuable for obtaining load-displacement plots, and for evaluating the performance of the

nonlinear solution strategy employed.

4.16.3.4 E
m

Young's elastic modulus (default: 10.0 x 100 psi).

4.16.3.5 ES.NAHE

Element name (default: EX97). This argument gives the name of the specific shell-dement

type to select, within the dement processor defined by argument ES..Pg0C. The default

shell-dement type, E197, is a 9-node quadrilateral dement implemented in processor ES1,

and described in The Computational Structural Mechanics Testbed User's Manual (see

ref. 4.16-2).

4.16.3.6 ES_PROC

Element processor (default: ES1) This argument gives the name of the structural dement

(ES) processor that contains the shell element type to employ in the model. The default

shell-dement, processor gSl, is described in The Computational Structural Mechanics
Testbed User's Manual.

4.16.3.7 GRIDS

Grid identification numbers (default: 1). This array specifies the identification number for
each discretization.

4.16.3.8 L

Length of the beam model in the z-direction (default: 10.0 inches). For the case of the

circular ring, the radius is calculated as 2L/lr.

4.16.3.9 MASS_TYPE

Type of mass matrix (default: CONSISTENT). If MASS_TYPE = CONSISTENT, the dement

processor will generate consistent dement mass matrices that will be assembled by proces-

sor K to form the system mass matrix. If I_SS_TYPE = DIAGONAL, the element processor

will generate a diagonal or lumped mass matrix.

4.16- 6 CSM Testbed Procedures Manual Revised 5/23/90



Application Procedures VIB'2D

4.16.3.10 NGRIDS

Number of grids (default: 1). This argument provides a mechanism to perform automati-

cally a limited convergence study using several different discretizations.

4.16.3.11 N.MODES

Number of converged eigenvalues desired (default: 5). This argument specifies the number

of eigenvalues to calculate to a convergence criterion of .0001.

4.16.3.12 NN_.._X

Array of number of nodes for NGRIDS models (default: 3). This array is of length NGRIDS

and represents the number of nodes along the length of the beam or along the circumference

of the ring.

4.16.3.13 PRINT

Print flag (default: <false>). If the argument PRINT is defined to be <true>, then all

computed results (displacements, modeshapes, stresses) will be printed.

4.16.3.14 SHIFT

Eigenvalue shift (default: 0.0). Converged eigenvalues will only be obtained for eigenvalues

greater than SHIFT. The shift parameter refers to the frequency squared (w 2) for vibration

problems.

4.16.3.15 THICKNESS

Thickness of the beam (default: 0.1 inches). The ring thickness has a default value of
one-tenth the beam thickness.

4.16.3.16 MTDEN

Weight density (default: 5/6 lb/in.S). Processor LAU converts the weight density to mass

density.

4.16.4 USAGE GUIDELINES AND EXAMPLES

Procedure VIB_2D may be used by preceding the procedure name by the *call directive.

Procedure arguments may be changed from their default values by including any or all

of the arguments and their new values when the procedure is called. A space or blank

is required between the end of the procedure name and the left parenthesis.

*call VIB_2D ( ES_PROC = ESI ; ES_NAME = EX47 ; --
L ffiI0.0 ; --

E = I0.E6 ; --

B=I.0 ; --
DBC = VIB_2D.DBC ; --

Revised 5/23/90 CSM Testbed Procedures Manual 4.16- 7



VIB_2D Application Procedures

DBR = VIB_2D.DBR ; --
MASS_TYPE = CONSISTENT

GRIDS = 1,2,3 ; --

NGRIDS = 3 ; --
NNX = 5,9,17 ; --

SHIFT = 0.0 ; --
N_MODES = 5 ; --
PRINT = <false> ; --
THICKNESS = 0.1 ; --
WTDEN = 0.1 )

(El) To perform an entire analysis using the default options, simply invoke the procedure

without any arguments, that is,

*call VIB_2D

Using the default values for the procedure arguments, the amount of CPU time required

for this analysis on various computer systems is shown in Table 4.16-1.

4.16- 8 CSM Testbed Procedures Manual Revised 5/23/90



Application Procedures VIB_2D

Table 4.16-1 Typical CPU Times for Various Computer Systems

Computer System

VAX11/785
VMS 4.7

MicroVAX

ULTRIX 2.2

SUN

SUNVIEW 4.0

CONVEX C220

VERSION 7.0

CRAY-2

UNICOS 4.0

Total

t3VU Time,
seconds.

4.16.5 LIMITATIONS

None.

4.16.0 ERROR MESSAGES AND WARNINGS

None.

4.16.7 PROCEDURE FLOWCHART

VIB_2D

VIB_2D_CTL

VIB_2D..MOD

ES

VIB_2D_CON

VIB_2D..BC$

ES

L_VIBRAT_O

(main procedure)

(control procedure)

(define 2-D models of beam/ring)

(define elements)

(define connectivities)

(define boundary conditions)

(define freedoms)

(linear free vibration solution procedure)

Revised 5/25/90 CSM Testbed Procedures Manual 4.16- 9



VIB_2D Application Procedures

4.16.8 PROCEDURE LISTING

4.16.8.1 UNIX Script

vib_2d.com

cd /scr/$USEk

cp _CSN.PKC/proclib.Kal proclib.gal

chsod u+w proclib.gal

rn VIB*.*

tile testbed 44 \ondlnput

*sot echo off

*sot plib=28

*open 28 procllb.gal /old

*add '$csg_IPP/vlb_2d/vib_2d.clp'

*dof/a solver_naB. = INV

*dof/a eigonsolvor_nu, = EIG2

£xial Vibration of a Bcr

*call VIB_2D ( case = BIK; lass_type = CONSISTENT; --

ES_PROC=ES7 ; ES_NINE=EI97; --

L = 10.0 ; thickness = .1 ; b = 1.0 ; --

E = 1.o7 ; gtden = 45./6.> ; ---

N_lodel = 5 ; print= <false> ; --

shtft=O.O ; nnx=7,9,11; grids=l,2,3; ngrtds=3; --

DBC=VIB_2D.DBC; DBK=VIB_2D.DBK )

Lateral ¥tbration of a Bems

*call VIB_2D ( case = BEAN ; lass_type = CONSISTENT; --

B_PKOC=ES7 ; ES_N&ME=EX97; --

L = 10.0 ; thickness = .1 ; b = 1.0 ; --

E = l.eT ; gtden = <5./6.> ; ---

N_modes = 6 ; print= <false> ; --

shift=O.O ; nnx=5,9,17; grids=l,2_3; nsrids=3; --

DBC=VIB_2D.DBC; DBK=VIB_2D.DBK )

Extensional and Flexural Vibrations of a Circular Ring

*call VlB.2D ( case

*stop

*close 28 /delete

\endinput

= KING ; lass_type = CONSISTENT; --

ES_PKOC=ES7 ; ES_NANE=EI97; --

L = 10.0 ; thickness = .1 ; b = 1.0 ; --

E = 1.e7 ; wtdon = 45./6.> ; ---

N_nodes = 5 ; print= 4false> ; --

shift=O.O ; nnx=5,9,17; grids=l,2,3; nsrids=3; --

DBC=VIB_2D.DBC; DBK=VIB_2D.DBK )

4.16- 10 CSM Testbed Procedures Manual Revised 5/25/90



Application Procedures VIB'2D

4.16.8.2 CLAMP Procedure

vib_2d, tip

*procedure VIB_2D_CTL ( case = BAIL ; -- BAIL J BEAN J KING

mass_type ffi CONSISTENT ; -- CONSISTENT J DIAGONAL

ES_PKOCfESI ; ES_NAMEffiEI97; --

L : 10.0 ; thickness : .1 ; b : t.0 ; --

E : 1.07 ; wtden : 45./6.> ; ---

N_nodes ffi 5 ; printffi <false> ; --

shift=O.O ; nnx=5; grid=l; --

DBCffiVIB_2D.DBC; DBILffiVIB_RD.DBIL )

*open/noN 1, [DBc]

*call VIB_2D_NOD ( os_proo ffi [eSoprOc] ; as_nan, ffi [es_nue]; --

nnx ffi [nnx] ; L ffi ILl; h=[thtokness] ; --

Effi[E] ; bf[b] ; rhoffi[wtden] ; case=[case] )

• ashen nacros

• *Jot echo,on

*call L_VIBILAT_O ( N_nodes=[N_nodas]; print = [print]; --

shift=[shift] ; --

nass_type= [nass_type] )

*end

*procedure VIB_2D_MOD ( es_proc=ES1; os_naae=EI97; as_pars=0. ; --

nnx = 11 ; --

L ffi 10.0 ; h ffi .1 ; --

E = 1.e7 ; b ffi 1.0; --

the = <5./6.> ; case ffi BAIL )

Vibrations of a Cantilevered Bean via Plate Elenonts

Define Nodal

*call ES ( function = _DEFINE ELEMENTS'

es_nano = [u_name]

*def/i nny = < <ES_NEN>'.5 >

[XqT TAB

*def/i nnt ffi < [nnx]*<nny> >

STAILT <nnt>

JLOC

; es_proo ffi [,s_proo]; --

; as_pars ffi [as_pars] )

. DEFINE NODAL C00ILDINATES

*if < <IFELSE([case];KING;1;O)> > /then

. Define First quadrant of a Cylinder of Unit lxial Length

........ w------. ........ -- ................................. "

*def/e thorn ffi 90.

*def/e radius ffi ([L]*2/<pt>)

FORMAT ffi 2

I, <radius>, 0., 0., <radius>, <thorn>, 0.,

[nnx], <radius>, 0., I., <radius>, <theta>, 1.

[nnx], 1, <nny>

Revised 5/25/90 CSM Testbed Procedures Manual 4.16' 11



VIB'2D Application Procedures

JKEF

k_EF = -1

1, <nnt>

*else

1, 0., 0., 0.,

[nnx], 0., [b3, 0.,

*endif

[L], 0., 0.,

[L], [b], 0.

[nnx], 1, <nny>

• DEFINE MITEltlIL/SECTION PKOPEKTIBS

[lqT IUS

• Build Table of Naterial Data

TABLE(NIt16,NJzl): ONB DATa 1 1

edef/a12.4 NU = 0.0

*def/g12.4 G = < [E] / (2.*(1.+<NU>)) >

1=1,2,3,4,5,6,7,8,9

J=l: [B] <NU> [E] <G> <G> <G> O. O. [rho]

• Build Laminate Data Tables

TABLE(NI=3,NJ-I,ITYPEn0): LAN OMB 1 1

I=1,2,3 . (material_type, layer_thickness, angle(deg.)

J=l: 1 [h] 0.0

[XqT LAU

ONLINE=2

• GENEKATE ELEMENTS

[xqt ELD

<ES_EIPE_CND>

NSECT = 1

Define element nodal connectivity

*call VIB_2D_CONN ( nnx=[nnx] ; nny=<nny>; nen=<es_nen> )

. DEFINE BOUNDAKT CONDITIONS

*call VIB_2D.BCS ( nnx = [nnx] ; nny = <nny> ; --

nan = <as_nan> ; case = [case] )

*call ES ( function = 'DEFINE I_EEDOHS' )

*end

*procedure VlB_2D_CONN ( nnx; nny; nan )

===========================

• Define Element Connectivity Kecord for ELD Processor

*if < [nan] /sq 4 > /then

*do tiy = 1, <[nny]-l>
*do ltx = 1, <[nnx]-l>

4.16- 12 CSM Testbed Procedures Manual Revised 5/25/90



Application Procedures VIB'2D

*def/i nl = < (<$1y>-l)*[nnx] ÷ <Six> >

*def/i n2 = < <nl> ÷ 1 >

*def/i n3 = < <n2> + [nnx] >

*def/i n4 = < <n3> - 1 >

<nl> <n2> <n3> <n4>

SZZS_ZI_ZZ_Z_Z==ZI8

*enddo

*enddo

*olseif < [non]

*do $iy= 1,

*do Six =

*dof/i nl

*dof/i n2

*dof/i n3

*def/i n4

*dofll n5

*def/in6
*def/i n7

*def/i n8

*dof/i n9

/eq 9 > /then

<[nny]-2>, 2

1, <[nnx]-2>, 2

= < (<$iy>-l)*[nnx] + <Six> >

= < <nl> + 2 >

= < <n2> + (2*[nnx]) >

= < <n3> - 2 >

= < <nl> + I >

= < <n2> + [nnx] >

= < <n4> + I >

= < <n6> - 2 >

= < <n8> + 1 >

*anddo

*enddo

*endif

*and

*procoduro VIB_2D.BCS ( nnx=3; nny=3; non=9; case = BIK )

• Define Boundary Conditions for Boal/Plate Vibrations

*def/i nat = < [nax]* [nny] >

[xqt TAB

CON 1

*if < <IFELSE([case];BAR;1;O)> > /then

• DEFINE CLAMPED BOUNDAKY CONDITIONS for LONGITUDINAL VIBRATIONS

ZERO 3, 4, 5 : 1, <nnt> . Suppress Out-of-Plane DOFS gveryghere

ZERO 1,2,3,4,5,6 . Clamp left boundary

*do ln=lp<<nnt>-[nnx]+l>, [nnx]

(in>

*onddo

*elseif < <IFELSE([caso];BEIM;1;O)> > /then

• DEFINE CLAEPED BOUNDAKT CONDITIONS for INPLANE VIBKATIONS

Revised 5/25/90 CSM Testbed Procedures Manual 4.16- 13



VIB_2D Application Procedures

ZERO 1, 2, 6: 1, <nnt> . Suppress In-Plane DOFS Everyehero

ZF_O 1,2,3,4,8,6 . Clasp left boundary

*do Sn•l,<<unt>-[nnz]+l>, [nnx]
<in>

*enddo

*elseif < <IFELSE([caee];KING;1;O)> > /then

• DEFINE BOUNDARY CONDITIONS for EXTENSIONIL and FLEIU_IL VlBRITIONS

ZF_O 3, 4, 5: 1, <nnt> . Suppress Out-of-Plane DOFS Everywhere

SYMMETRY PLINE • 1 . Sylmetry at theta = 90; 1/4 Model

SYMMETRY PLINE • 2 . Syuetry at theta = 0

*endif

*end

*procedure VlB_2D ( case=BIL; mass_type•CONSISTZNT;ngrids•l; 8rids=l; --

L • 10.0 ; thickness • .1 ; b • 1.0 ; --

E = 1.e7 ; gtden • <5./6.> ; ---

N_nodes = 5 ; print= <false> ; nnx=3 ; --

shift=O.O ; ss_proc•ES1; es_name=EIg7; --

DBCsVIB_2D.DBC; DBR=VIB_2D.DBR )

*if < <IFELSE([CaSE];BaK;1;O)> > /then

edef/d thickness = [thickness]

*elseif < <IFELSE([CISE];BEIN;1;O)> > /then

*dof/d thickness = [thickness]

*elseif < <IFELSE([CISE];RING;1;O)> > /then

*def/d thickness • < [thickness] / 10.0 >

*endif

edef/i 8rids[l:[nsrtds]] = [grids]

edef/i nnx[l: [ngrids]] • [nnx]

edo $8 = 1,[nsride ]

edef/i grid • <srids[<$g>]>

*det/i nnxs = <nnx[<$8>]>
*call VIB_2D_CTL ( case = [case]; mass_type = [mass_type] ; --

es_proc • [es_proc]; es_nane • [ms_name] ; --

nnx = <nnxs> ; thickness : <thickness> ; --

L = [L] ; b= [b] ; --

E = [El ; wtden = [.tden] ; ---

N_nodes = IN_modes]; print• [print] ; --

shift=[shift] ; --

DBC= [DBC] ; DBB= [DBR] ; --

Fld:<grld> )

*onddo

*end

4.16.0 REFERENCES

4.16-1 Timoshenko, S., Young, D. H. and Weaver, W., Jr.: Vibration Problems in Engi-

neering, Fourth Edition, John Wiley and Sons, Inc., New York, 1974.

4.16-2 Stewart, Caroline B.: The Computational Structural MechanicJ TeJtbed U_erb

Manual. NASA TM-I00644, October 1989.

4.16- 14 CSM Testbed Procedures Manual Revised 5/25/90



Element AssessmentProcedures

5.0 Element Assessment Procedures

The procedures documented in this chapter are representative of the types of procedures

that may be written to solve specific application (structural analysis) problems. Many of

these high-level procedures invoke other (lower-level) procedures to perform preprocessing,

solution, and postprocessing functions; which are described elsewhere in this manual. The

use of procedures to perform structural analysis applications can provide users flexibility

for parameterizing geometric data (e.9. , stiffener spacing) as well as spatial discretization

parameters (e.g., number of elements). The problems represented here are also intended

to serve as part of a standard series of test problems to assess new structural elements

installed in the CSM Testbed.

A summary of the procedures found in this chapter is provided by Table 5.0-1.

Revised 5/24/90 CSM Testbed Procedures Manual 5.0- I



ElementAssessmentProcedures

Procedure Name

DISTORTED_PC

Table 5.0-1. Summary of Application Procedures

Problem Description

Distorted-mesh version of the pinched_cyl problem; used

to study mesh distortion sensitivity of shell elements.

NH_BEAH MacNeal-Harder Beam problems.

NH_CYL MacNeal-Harder Thick-Walled Cylinder Problem.

NH_PLATE MacNeal-Harder Plate Problems.

NH_SPHERE Linear inextensional bending of a hemispherical shell

loaded by point forces. Model features "warped" quadri-

lateral shell-element (facet) discretization.

PATCH_TEST Patch Test Problems.

SKEWED_GRID Plate Buckling Problem with Skewed Grid.

5.0- 2 CSM Testbed Procedures Manual Revised 5/24/90



ElementAssessmentProcedures DISTORTED.PC

5.1 Processor _,T_,_m_, _,_

THIS SECTION UNDER PREPARATION

5/24/90 CSM Testbed Procedures Manual 5.1- 1



DISTORTED_PC Element Assessment Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

5.1- 2 CSM Testbed Procedures Manual 5/24/90



Element Assessment Procedures DISTORTED_PC_3D

5.2 Processor DISTOP_ED_PC_3D

THIS SECTION UNDER PREPARATION

5/24/90 CSM Testbed Procedures Manual 5.2- I

PRECEDING FAGE BLANK t_O"fFILMED



DISTORTED_PC_3D Element Assessment Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

5.2- 2 CSM Testbed Procedures Manual 5/24/90



Element Assessment Procedures MH_BEAMS

5.3 Procedure MH_BEAMS

5.3.1 GENERAL DESCRIPTION

5.3.1.1 Problem Description

This application problem solves the three MacNeal/Harder cantilever beam problems -

the twisted beam, the straight beam, and the curved beam. All three beams are solved

with 4- and 9-node 2-D elements and 8-, 20-, and 32-node 3-D elements.

5.3.1.2 Model Description

The straight cantilever beam problem is solved using three dement shapes - rectangular,

trapezoidal, and parallelogram. This problem tests an element's ability to handle distorted

meshes under various types of loading. It is clamped on one end and free at the other end

where unit loads are applied in four directions - extension, torque, in-plane, and out-of-

plane. The dimensions, mesh, and material properties of the beam are given in Figure
5.3-1.

.

1 t t l I L

E = 1.0x107 psi

1 45o_,, /_45 o v = 0.30N. ,/ x,x r/ x,_ ! length =
h =
thickness =
mesh ffi

6.0 inches
0.2 inches
0,1 inches
6Xl

Figure 5.3-1 MacNeal/Harder Straight Cantilever Beam

The twisted cantilever beam is modeled with 24 dements. The beam is damped on one

end and free at the other. It is twisted through 90 ° root to tip. This problem tests an

element's ability to handle warped dements (the four corners of the dement do not lie in

the same plane). Two different loading conditions are applied at the free end - in-plane

unit load, and out-of-plane unit load. The dimensions, mesh, and material properties are

shown in Figure 5.3-2.

Revised 5/23/90 CSM Testbed Procedures Manual 5.3- 1

PRECEDING PAGE BLAf_iK i'_OT FILMED



MH_BEAMS Element Assessment Procedures

= 29.0 x 106psiE
v = 0.22

length = 12.0 inches
width = 1.1 inches
depth = 0.32 inches
twist = 90' (root to tip)
mesh = 12 X 2

Figure 5.3-2 MacNeal/Harder Twisted Cantilever Beam

The curved cantilever beam is modeled with six elements. It is damped on one end and

free at the other end, where unit loads are applied. The beam is curved, forming a 90 °

arc. Two loading conditions are used - in-plane (vertical) and out-of-plane. This problem

tests an element's ability to model in-plane curvature. The dimensions, mesh, and material

properties are shown in Figure 5.3-3.

E = 1.0x107 psi
v = 0.25

inner radius = 4.12 inches
outer radius = 4.32 inches
arc = 90°
thickness = 0.1 inches
mesh = 6 X 1

90 °

Figure 5.3-3 MacNeal/Harder Curved Cantilever Beam

5.3- 2 CSM Testbed Procedures Manual Revised 5/23/90

•



Element Assessment Procedures MH_BEAMS

5.3.1.3 Analysis Descrivtion

A static, linear elastic analysis is performed, for any or all of the three problems. If the

user chooses, displacements at the point of, and in the direction of the load are calculated

and normalized with the theoretical results, for each loading condition.

5.3.1.4 Available Solutions

Prom reference 5.3-1, the theoretical solutions for the tip displacements for each problem

and each loading condition are shown in Table 5.3-1.

Load Condition

Extension

In-plane

Out-of-plane

Twist

Tip displacement in direction of load (inches)

Straight

3.0 x 10-s

.1081

.4321

.03208

Curved

.08734

.5022

Twisted

.005424

.001754

Table 5.3-1 Theoretical tip displacements for each beam.

5.3.2 PROCEDURE USAGE

Procedure MH_BFAHS may be used by preceding the procedure name by the *call directive,

and following it by a list of arguments enclosed in parentheses. Procedure arguments are

order-independent, and most have default values thus making them optional. The formal

syntax is as follows:

,call HII_BEAHS ( argl = vall ; ar82 ffival2 ; ...)]

where az81 and axg2 represent argument names, and vall and va12 represent their cor-

responding values. Note that semi-colons are required between arguments, and a double

dash (--) may be used to continue the argument list on the next line.

The allowable arguments for procedure HH_BEM4S are summarized in the following table,

along with their default values (if they exist). Note that arguments without defaults are

generally mandatory, while those with defaults are generally optional. Exceptions to this

rule are noted in the following section under detailed argument descriptions.

Revised 5/23/90 CSM Testbed Procedures Manual 5.3- 3



MH_BEAMS Element Assessment Procedures

Argument Default Value

ES_PtRS 0.

ES_PROC ES1

ESJtHE EX47

SPAR_DIN none

DELLIB <false>

REPORT <true>

STRAIGHT <true>

TWISTED <true>

CURVED <true>

Meaning

Element research parameters

Element Processor

Element name

2-D or 3-D SPAR element

Delete libraries

Generate "report card" file

Solve straight beam
Solve twisted beam

Solve curved beam

5.3.3 ARGUMENT DESCRIPTIONS

5.3.3.1 ES_PARS

Element research parameters (default: 0., ... ). This is an optional list of element-

dependent parameters that some elements provide, primarily when the element is still

undergoing research and refinement.

5.3.3.2 ES_PROC

Element processor (default: ES1). This is the name of the element processor that contains

the element you wish to evaluate in this procedure. If a SPAR element is used, ES_PR0C
should be set to SPAR. The element processors are described in The Computational Struc-

tural Mechanics Testbed User's Manual.

5.3.3.3 ES_NAME

Element name (default: EX47). This is the name of the element type you wish to select,

within the element processor defined by argument ES_.PROC. SPAR or ES elements may be

used. The elements are described in the appropriate section in the The Computational

Structural Mechanics Testbed User's Manual (reference 5.3-2).

5.3.3.4 SPAR_DIM

If a SPAR element is used, this parameter must be set to the number of dimensions of that

element. If ES elements are used, this parameter need not be set at all.

5.3.3.5 DEL_LIB

Libraries are created for each model-stbm.101 for the straight beam, cvbm.101 for the

curved beam, and twbm.101 for the twisted beam. As the analysis proceeds, these libraries

will automatically be deleted if DEL_LIB is <true>. This allows disk space to be conserved

if the analyst does not need the libraries.

5.3- 4 CSM Testbed Procedures Manual Revised 5/23/90



Element Assessment Procedures MH_BEAMS

5.3.3.6 REPORT

Print report file (default=<true>). If REPORT is <true> an external file named

BEAM_<es_name>. <$s_proc> will be generated. This file contains the normalized radial

displacements of the nodes at the inner radius of the cylinder.

5.3.3.7 STRAIGHT

Solve straight beam problem (default: <true>. This parameter simply indicates whether

the straight cantilever beam problem is to be solved or not.

5.3.3.8 TWISTED

Solve twisted beam problem (default: <true>. This parameter simply indicates whether

the twisted cantilever beam problem is to be solved or not.

5.3.3.9 CURVED

Solve curved beam problem (default: <true>. This parameter simply indicates whether

the curved cantilever beam problem is to be solved or not.

5.3.4 USAGE GUIDELINES AND EXAMPLES

Procedure MH_BEtl4S may be used by preceding the procedure name by the .call directive.

Procedure arguments may be changed from their default values by including any or all

of the arguments and their new values when the procedure is called. A space or blank

is required between the end of the procedure name and the left parenthesis.

*procedure NH_BEAMS ( ES_NANE = EX47 ; --
ES_PROC = ESI ; --
ES_PARS = 0 ; --

SPAR_DIM ; --
DEL_LIB = <false> ; --

STRAIGHT ffi<true> ; --
TWISTED ffi<true> ; --

CURVED = <true> ; --
REPORT - <true> )

(El) To perform an analysis using the default options, simply invoke the procedure with-

out any arguments, i.e.,

*call MH_BEAMS

This will perform & static, linear elastic analysis of the MH_BEtM problems. Since

STIttIGHT, CURVED, and TWISTED are <true> and all three will be solved. Since

REPORT is <true> and report card file named BEAM_EX47.ES1 will be generated

containing the normalized displacements of the corner nodes at the free end of the

beams, Figure 5.3-4.

Revised 5/23/90 CSM Testbed Procedures Manual 5.3- 5



MH_BEAMS Element Assessment Procedures

########################################################################
NACNEAL-HARDER 2-D CANTILEVER BEAM PROBLEMS

ELEMENT NAME ffi EX47

ELEMENT PROCESSOR = ES1

NORMALIZED RESULTS

* 1 * 2 * 3 * 4

**************************************************************************

* extension in-plane out-of-plane torsion

STRAIGHT *

rect •
rect •

trap *
trap *

par1 *
par1 •

TWISTED *

CURVED *

0.9955 0.9036 0.9801 0.9096

0.9955 0.9036 0.9801 0.9096

0.7605 0.4693 0.7644 2.2199
0.7610 0.4693 0.7624 -0.4299

0.9660 0.3306 0.9379 -0.1234
0.9656 0.3306 0.9393 1.8199

0.9849 0.9941
0.9850 0.9941

0.9849 0.9941

0.9446 0.9221
0.9446 0.9484

########################################################################

Figure 5.3-3 Report file generated using default arguments.

(E2) The foHowing call statement wiH solve only the twisted beam problemfor the ele-

ment EX08 in processor ES3.

*call MH_BFANS ( ES_NAME = EX08 ; --

ES_PROC = ES3 ; --

DEL_LIB = <true> ; --

STRAIGHT = <false> ; --

CURVED = <false> ; --

REPORT = <true> )

The library twbm.101 will automatically be deleted. The report file BEAM_EX08.ES3 is

generated, Figure 5.3-5.

5.3- 6 CSM Testbed Procedures Manual Revised 5/23/90



Element Assessment Procedures MH_BEAMS

###########################################################################
NACNEAL-HARDER 3-D CANTILEVER BEAM PROBLEMS

ELEMENT NAME = EX08

ELEMENT PROCESSOR = ES3

ELEMENT PARAMETERS = O.
NORMALIZED RESULTS

* 1 * 2 • 3 * 4

**************************************************************************

* extension in-plane out-of-plane torsion

**************************************************************************

, 0.9907 0.9880
, 0.9907 0.9880
, 0.9907 0.9881
, 0.9907 0.9881
, 0.9907 0.9880
, 0.9907 0.9880

TWISTED

###########################################################################

Figure 5.3-5 BEAM_EX08.ES3 resulting from the calling statement (E2).

(E3) The foHowing call statement will solve the strmghtand twisted cantilever beam

problems forthe SPARE43 element and generatethe report file BEAM_E43.SPAR.

*call MH_BEAMS ( ES_NAME = E43 ; --
ES_PROC = SPAR ; --

SPAR_DIM = 2 ; --
CURVED = <false> ; --

REPORT = <true> )

5.3.5 LIMITATIONS

(L]) This procedure can only evaluate 4- and 9-node 2-D elements, and 8- and 20-node

solid elements.

5.3.6 ERROR MESSAGES AND WARNINGS

If a SPAR element is used, and the argument SPAR_DIN is not set, the following error

message wiH be printed and execution terminated.

The argument SPAR_DIM must be defined as 2 or 3 when
using SPAR elements.

Please set this argument and rerun.

Revised 5/23/90 CSM Testbed Procedures Manual 5.3- 7



MH_BEAMS Element Assessment Procedures

5.3.7 PROCEDURE FLOWCHART

5.3.8 PROCEDURE LISTING

5.3.9 REFERENCES

5.3-1 MaeNeal, R. H.; and Harder, R. L.: "A Proposed Set of Problems to Test Finite

Element Accuracy," Finite Element8 in Anall/_iJ and Design, Vol. 1, 1985, pp. 3-20.

5.3-2 Stewart, Caroline B.: The Computational Structural Mechanie_ Teethed U_er'8

Manual. NASA TM-100644, October 1989.

5.3- 8 CSM Testbed Procedures Manual Revised 5/23/90



Element Assessment Procedures MH_CYL

5.4 Procedure MH_CYL

5.4.1 GENERAL DESCRIPTION

5.4.1.1 Problem Description

This application problem is another of the MacNeal/Harder Standard Test Problems. The

thick-walled cylinder problem is used to test an element's ability to handle a nearly in-

compressible material. As Poisson's ratio approaches 0.5, singularities may arise in the

stiffness matrix as a result of dividing by (1-2v). Rubber, perhaps the most common

nearly incompressible material, is sometimes used in structural components.

5.4.1.2 Model Description

A 10 ° of the thick-walled cylinder, inner radius -- 6 inches, outer radius -- 9 inches,

is modeled with only five elements as is shown in Figure 5.4-1. The thickness of this

cross section is unity. Constraints are applied to all nodes so as to allow only radial

displacements.

Either plate elements (2-D) or solid elements (3-D) may be used in this procedure. The

2-D elements may be either the 4- or 9-node variety and the 3-D elements may be either

8- or 20-node elements.

The cylinder is loaded with a unit pressure at the inner radius. This pressure is applied

as a total force of .5236 lbs. distributed consistently on the nodes at the inner radius of

the model, as is shown in Figure 5.4-2. Three sets of material properties are used in the

analysis. Young's Modulus for all three is 1000.0 lb/in 2, but Poisson's ratio is allowed to

approach 0.5 by assuming the three values .49, .499, and .4999.

a) 2-D b) 3-D

Figure 5.4-1 MacNeal/Harder Thick-Walled Cylinder

Revised 5/23/90 CSM Testbed Procedures Manual 5.4- 1



MH_THCYL Element Assessment Procedures

L

a) 4-node 2-D element

c) 8-node 3-D element

b) 9-node 2-D element

_- _F
IT.

L=4F
17.

d) 20-node 3-D element

L # .

o_1 I_IDEbb-E hJC>DEf, -_ _F/_l_°

,.) 32-node 3-D element

Figure 5.4-2 Consistent loading, 1.0 psi pressure at inner radius. F -- .5236 lb.

5.4- 2 CSM Testbed Procedures Manual Revised 5/9/89



Element Assessment Procedures MH_CYL

5.4.1.3 Analysis Description

A static, linear elastic analysis is performed. The radial displacements of the nodes at the

]IlI}._r fi:kULlU_ are CO_Lt]._CI.£CU 1,0 t, At_v,t_,xt..cza. U.I_.,P,tC_L_:tLtC.tI._, C_tU JUt_LA_Ua,_._U _,ouA_o o,L_, l.,oJ.x.u.I,;...._t.

5.4.1.4 Available Solutions

From reference 5.4-I, the exact solution for the radial displacement is:

"(') = E(RI- + (1 - 2 ,I,
where R1 is the inner radius, R2 is the outer radius, P is the applied pressure, and r is the

variable radial position, Evaluating this expression at the inner radius (r = 3.0) for each

value of v yields the theoretical results in Table 5.4-1.

Table 4.5-1

Poisson's Ratio Radial displacement at inner radius (inches)

0.49 5.0399 × 10 -s

0.499 5.0602 × 10 -s

0.4999 5.0623 × 10 -s

5.4.2 PROCEDURE USAGE

Procedure _OI_CYL may be used by preceding the procedure name by the *call directive,

and following it by a list of arguments enclosed in parentheses. Procedure arguments are

order-independent, and most have default values thus making them optional. The formal

syntax is as follows:

.call I_I_CYL ( arK1 = vall ; azg2 = va12 ; ...)]

where argl and arg2 represent argument names, and vall and val2 represent their cor-

responding values. Note that semi-colons are required between arguments, and a double

dash (--) may be used to continue the argument list on the next line.

The allowable arguments for procedure HIt_CYL are summarized in the following table,

along with their default values (if they exist). Note that arguments without defaults are

generally mandatory, while those with defaults are generally optional. Exceptions to this

rule are noted in the following section under detailed argument descriptions.

Argument Default Value

ES..PRO0 ES1

ES_NAME EX47

ES_PARS O.

SPAR_DIN none

REPORT <true>

Meaning

Element Processor

Element name

Element research parameters

2-D or 3-D SPAR element

Generate "report card" file

Revised 5/23/90 CSM Testbed Procedures Manual 5.4- 3



MH_CYL Element Assessment Procedures

5.4.3 ARGUMENT DESCRIPTIONS

5.4.3.1 ES_NAHE

Element name (default: E]r47). This is the name of the element type you wish to select,

within the element processor defined by argument ES..PR0C. SPAR or ES elements may be

used. The elements are described in the appropriate section in the The Computational

Str,ctural Mechanics Testbed User's Manual (refcrc, ce 5.4-2).

5.4.3.2 ES_PROC

Element processor (default: ESI). This is the name of the element processor that contains

the element you wish to evaluate in this procedure. If a SPAR element is used, ES_PIt0C

should be set to SPAR. The element processors are described in The Computational Struc-

tural Mechanics Testbed User's Manual.

5.4.3.3 ES_PARS

Element research parameters (default: 0., ... ). This is an optional list of element-

dependent parameters that some elements provide, primarily when the element is still

undergoing research and refinement.

5.4.3.4 SPAR_DIM

If a SPAR dement is used, this parameter must be set to the number of dimensions of that

dement. If ES dements are used, this parameter need not be set at all.

5.4.3.5 REPORT

Print report file (default=<true>). If REPORT is <true> an external file named

CYL_<es_aame>.<es_proc> will be generated. This file contains the normalized radial

displacements of the nodes at the inner radius of the cylinder.

5.4- 4 CSM Testbed Procedures Manual Revised 5/23/90



ElementAssessmentProcedures MH'CYL

5.4.4 USAGE GUIDELINES AND EXAMPLES

Procedure.mi__CYLmay be used by preceding the procedure name by the ,call directive.

Procedure arguments may be changed from their default values by including any or all

of the arguments and their new values when the procedure is called. A space or blank

is required between the end of the procedure name and the left parenthesis.

*procedure HH_CYL ( ES_NAI_ ffi EX47 ; --
ES_PROC = ES1 ; --
ES_PARS = 0 ; --

SPAR_DIM ; --
REPORT = <true> )

(El) To perform an entire analysis using the default options, simply invoke the procedure

without any arguments, i.e.,

*call __CYL

This will perform a static, linear elastic analysis of the MacNeal/Harder thick-

walled cylinder problem using the EX47 dement in processor ES1. Results will be

given for all three values of Poisson's Ratio. The data.sets will be written into a

library called RILCYL.L01, and the "report card" file named CYL..EX47.ES1 will be

generated, Figure 5.4-3.

############################################################
############################################################

Iq£CNE£L-RARDF._ 2-D THICK-WALLF._ CYLINDF_
ZT..,ZHZ_" N.E_ - EX47

ELEMENT PROCESSOR ffi ES1

Poisson'e * Noramlized displacements
ratio * at inner radius

************************************************************

.49 * 1.0054
• 1.0054

.499 * 1.0063
• 1.0063

.4999 * 1.0063
• 1.0063

############################################################

############################################################

Figure 5.4-3 "Report Card" using default arguments.

Revised 5/23/90 CSM Testbed Procedures Manual 5.4- 5



MH_CYL Element Assessment Procedures

(E2) To perform an entire analysis using an ES dement, invoke the procedure with the

appropriate arguments, i.e.

*call MH CYL ( ES_NAME = BR20 ; --

ES_PROC = ESIO ; --
ES_PAES = 3, 3 ; --
P_PORT = <true> )

This will perform a static linear elastic analysis using the BR20 element, a 20-node

brick element located in processor ES10. A report file will be generated named
CYL_BIt20. ES 10.

(E3) To perform the analysis using a SPAR dement, invoke the procedure using the

appropriate arguments as follows:

*call MH_CYL ( ES_NJLqE = E43 ; --

ES_PROC = SPAR ; --
SPAR._DIM ffi 2 ; --
I_PORT ffi <true> )

This will perform the analysis using the SPAR E43 element and generate the "report

card" file named CYL_E43. SPAR. Note that the argument SPAR_DIM must be defined

when using a SPAR dement.

5.4.5 LIMITATIONS

(L1) This procedure can only evaluate 4- and 9-node 2-D elements, and 8-, 20-, and
32-node solid elements.

5.4.6 ERROR MESSAGES AND WARNINGS

If a SPAR dement is used, and the argument SPAP,_DIN is not set, the following error

message will be printed and execution terminated.

The argument SPAK_DIM must be defined as 2 or 3 when

using SPAK elements.
Please set this argument and rerun.

5.4.7 PROCEDURE FLOWCHART

5.4.8 PROCEDURE LISTING

5.4- 6 CSM Testbed Procedures Manual Revised 5/23/90



ElementAssessment Procedures MH_CYL

5.4.9 REFERENCES

5.4-1 MacNeal, R. H.; and Harder, R. L.: "A Proposed Set of Problems to Test Finite

Element _,.,_o,_,,_s,A......... , Finite wro_._ :- _....t...;. and Design, V,,l 1,1GRK nr_ 3_9.13JLJlblllblO_S 110 A_tloqt_o_olo • _1. _ _v_v ,_,_ ....

5.4-2 Stewart, Caroline B.: The Computational Structural Mechanics Testbed User's

Manual. NASA TM-100644, October 1989.

Revised 5/23/90 CSM Testbed Procedures Manual 5.4- 7



MH_CYL Element Assessment Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

5.4- 8 CSM Testbed Procedures Manual Revised 5/23/90



Element Assessment Procedures MH_PATCH

5.5 Procedure MH_PATCH

5.5.1 GENERAL DESCRIPTION

5.5.1.1 Problem Description

This application problem is another of the MacNeal/Harder Standard Test Problems. The

patch test is used to test an element's ability to handle a state of constant strain with a

distorted grid. This is a necessary condition to guarantee convergence of the solution.

5.5.1.2 Model Description

The patch test is modeled for both 2-D and 3-D elements. The 2-D model consists of 5

distorted quadrilateral elements forming a .24 by .12 inch rectangular plate of thickness one

inch, Figure 5.5-1. The 3-D model consists of seven distorted hexagonal elements forming a

one inch cube, Figure 5.5-2. Element corner node locations for both the 2-D and 3-D model

are shown in Table 5.5-1. For all higher order dements (2-D - 9-node and 3-D 20- and 32-

node) the midedge nodes are placed equidistant from the corner nodes. However, for the

2-D 9-node model, a parameter called TWEEK has been added to allow the elements to

have curved sides. See section 5.5.3 for details. The 2-D patch test is actually two separate

tests, the membrane patch test, and the bending patch test. However, the bending patch

test is not currently implemented.

In the membrane patch test, displacements are applied according to the following formulas:

u = lO-S(z + y/2) in.

v = 10-S(y + z/2) in.

yielding a state of constant strain.

For the bending patch test:

w = lO-a(z 2 + zy + y2)/2 in.

0= = Ow =_ 10_3(y + z/2)
oy

Ow = 10_s(_z _ y/2)o, = - a--;

yielding a state of constant curvature.

A state of constant strain is applied to the 3-D model according to the formulas:

u = lO-S(2z + y + z)/2 in.

v = lO-a(z + 2y + z)/2 in.

w = lO-S(z + y + 2z)/2 in.

Revised 5/23/90 CSM Testbed Procedures Manual 5.5- 1

PRECEDii'qG PAGE BLANK NGT FILMED



MH_PATCH Element Assessment Procedures

7_

.--

.f' "\

_--__._________-------

S

IS
1

IG

!

Z 4

a) 2-D model b) 3-D model

Figure 5.5-1 MacNeal/Harder Patch Test

3-D Model 2-D Model

NODE X Y Z X Y

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

0.000 0.000 0.000

1.000 0.000 0.000

0.000 1.000 0.000

1.000 1.000 0.000

0.249 0.342 0.192

0.826 0.288 0.288

0.273 0.750 0.230

0.850 0.649 0.263

0.320 0.186 0.643

0.677 0.305 0.683

0.165 0.745 0.702

0.788 0.693 0.644

0.000 0,000 1.000

0.000 0.000 1.000

0.000 1.000 1.000

1.000 1.000 1.000

Table 5.5-1

0.00 0.00

0.24 0.00

0.04 0.02

0.18 0.03

0.24 0.12

0.16 0.08

0.00 0.12

0.O8 0.O8

Element Corner Node Locations

5.5.1.3 Analysis Description

A static, linear elastic analysis is performed. Stresses are calculated and printed, as is

specified by the user, at the integration points, centroids, and/or nodes. See section 5.5.2
for details.

5.5- 2 CSM Testbed Procedures Manual Revised 5/23/90



Element Assessment Procedures MH_PATCH

5.5.1.4 Available Solutions

From reference 5.5-1, the exact solutions are as follows:

2-D Membrane Patch Test

e=:ey =%_:10 -3

tr,, = try = 1333 psi

"r,_y = 400 psi

2-D Bending Patch Test

M,, = My = 1.111 x 10 -7 in.lb.

M,, U = 10-' in.lb.

tr= = tr_ = --I-.667 psi

T=y : +.200 psi

3-D Solid Patch Test

e==ey=ez=%.y=%z=%,==lO -s

o-= = try = tr,: = 2000 psi

"r_y = ryz = "r== = 400 psi

5.5.2 PROCEDURE USAGE

Procedure MH_PATCHmay be used by preceding the procedure name by the *call directive,

and following it by a list of arguments enclosed in parentheses. Procedure arguments are

order-independent, and most have default values thus making them optional. The formal

syntax is as follows:

*call MH_PATCH ( argl ffi vall ; arg2 ffi val2 ; ...)]

where axgl and axg2 represent argument names, and vall and va12 represent their cor-

responding values. Note that seml-colons are required between arguments, and a double

dash (--) may be used to continue the argument list on the next line.

The allowable arguments for procedure MH..PATCH are summarized in the following table,

along with their default values (if they exist). Note that arguments without defaults are

generally mandatory, while those with defaults are generally optional. Exceptions to this

rule are noted in the following section under detailed argument descriptions.

Revised 5/23/90 CSM Testbed Procedures Manual 5.5- 3



MH_PATCH Element Assessment Procedures

Argument Default Value

ES_PROC ESt

ESJKKE F.3147

ES_PARS O.

SPAR_DIM none

REPORT <true>

STR_ALL <true>

STR_NODES <false>

STR_INTPTS <false>

STR_CENTS <false>

TWEEK OpO,O,O

DISPLAY 1

NODES I

CROSS I

Meaning

Element Processor

Element name

Element research parameters
2-D or 3-D SPAR element

Generate "report card" file

Compute stresses at nodes, integration points, and centroids

Compute stress at nodes

Compute stress at integration points

Compute stress at centroids

Move midside nodes print stresses

Print stresses

Stresses at nodes and centroids

Stresses at top, mid, and bottom surfaces

5.5.3 ARGUMENT DESCRIPTIONS

5.5.3.1 ES_NAME

Element name (default=EX47). This is the name of the element type you wish to select,

within the element processor defined by argument ES_2ROC. SPAR or ES elements may be

used. The dements are described in the appropriate section in the The Computational

Structural Mechanics Testbed User's Manual (reference 5.5-2).

5.5.3.2 ES_PROC

Element processor (default=ESl). This is the name of the element processor that contains

the element you wish to evaluate in this procedure. If a SPAR element is used, ES__R0C

should be set to SPAR. The element processors are described in The Computational Struc-
tural Mechanics Testbed User's Manual.

5.5.3.3 ES.PARS

Element research parameters (default=0., ... ). This is an optional list of element-

dependent parameters that some elements provide, primarily when the element is still

undergoing research and refinement.

5.5.3.4 SPAR_DIM

Number of dimensions of SPAR element (default=none). If a SPAR element is used, this

parameter must be set to the number of dimensions of that element. If ES elements are

used, this parameter need not be set at all.

5.5.3.5 REPORT

Print report file (default=<true>). If REPORT is <true> an external file named

CYL_<es_name>.<es_proc> will be generated. This file contains the normalized radial

displacements of the nodes at the inner radius of the cylinder.

5.5- 4 CSM Testbed Procedures Manual Revised 5/23/90



Element Assessment Procedures MH_PATCH

5.5.3.6 STR_ALL

(default=<true>). If <true> stresses will be eslculated at the element nodes, centroids,

and integration points. If REPORT is <true>, stress values at all three locations will be

printed in the report file.

5.5.3.T STR_NODES

(default=<false>). By setting this argument to <true>, STR_ALL will be automatically

reset to <false>, and stresses will be calculated only at the nodes. If REPORT is <true>,

stress values at the nodes will be printed in the report file.

5.5.3.8 STR_INTPTS

(default=<false>). By setting this argument to <true>, STR.ALL will be automatically
reset to <false>, and stresses will be calculated only at the integration points. If REPORT

is <true>, stress values at the integration points will be printed in the report file.

5.5.3.9 STR_CENTS

(default=<_alse>). By setting this argument to <true>, STR.ALL will be automatically

reset to <false>, and stresses will be calculated only at the centroids. If REPORT is

<true>, stress values at the centroids will be printed in the report file.

5.5.3.10 TWEEK

(default=0., 0., 0., 0. ). The TWEEK parameters are used to offset the midside nodes
on 9-node 2-D elements. This allows the user to test an element's sensitivity to curved

edges. There are four TWEEK parameters that one separated by commas, with the

location and positive direction shown in Figure 5.5-3. =

5.5.3.11 DISPLAY

(default=l). For SPAR elements only. For the various values of DISPLAY, the following

will be printed in the report file:

If DISPLAY

For two-dimensional elements,

= 1, stresses

= 2, membrane stress resultants

= 3, bending stress resultants

For three-dimensional solids ($41, $61, $81),

= 1, x, y, z stress components
relative to the element reference frame

= 2, principal stresses

= 3, octahedral normal stress (ONS),

octahedral shear stress (OSS),

stress intensity (SI),

and yield stress ratio (YSR)

= 4, display of S.z/Yff,S,./Yyy,Szz/Yzz

Revised 5/23/90 CSM Testbed Procedures Manual 5.5- 5



MH_PATCH Element Assessment Procedures

5.5.3.12 HODES

(default=l). For SPAR elements only. This parameter controls whether results will be

printed for the element centroids or the nodes as follows:

If NODES = 0, restrict printout to element center

= 1, printout for each node and element center

5.5.3.13 CROSS

(default:l). For SPAR elements only. This parameter controls whether results are printed

for the element mid-surface of top, mid and bottom surfaces as follows:

IfCROSS = O, restrict printout to mid-surface stresses

= 1, printout for top, mid, and bottom surface stresses

Note: The parameters DISPLAY, NODES and CROSS are actually resets to processor
PSF. See section 12.2 in reference 5.5-2 for details.

Figure 5.5-2 Location and positive direction of TWEEK parameters

5.5- 6 CSM Testbed Procedures Manual Revised 5/23/90



ElementAssessmentProcedures MH_PATCH

5.5.4 USAGE GUIDELINES AND EXAMPLES

ProcedureNIt_PATCHmay be used by preceding the procedure name by the *call directive.

Procedure arguments may be changed from their default values by including any or all of

the arguments and their new values when the procedure is called. A space or blank

is required between the end of the procedure name and the left parenthesis.

*procedure MH_PATCH ( ES_NAME = El47 ; --
ES_PROC ffi ESI ; --
ES_PARS ffi 0 ; --
SPAR_DIM ; --
STR_ALL = <true> ; --
STR_NODES = <false> ; --

STR_INTPTS = <false> ; --
STR_CENTS ffi<false> ; --

DISPLAY = 1 ; --
NODES = I ; --
CROSS = 1 ; --
TWEEK = 0., 0., 0., O. ; --
REPORT = <true> )

(El) To perform an entire analysis using the default options, simply invoke the procedure

without any arguments, i.e.,

*call MH_PATCH

This will perform a static, linear elastic analysis of the MacNeal/Harder patch test

using the El47 element in processor ES1. Stresses will be calculated at nodes,

centroids, and integration points and the results will be printed to a file named

PATCH_EX47.ES1. The datasets will be written to a library named patch.101.

(E2) To perform an analysis using the BRO8 dement in processor ES10 and generating

stresses only at theintegration pdnts:

*call MH_PATCH ( ES_NAME = EX43 ; --

ES_PROC = ES4 ; --
STR_NODES = <true> ; --
REPORT = <true> )

The report file named PATCH_BR08.ES10 will be generated containing the stresses

at the element integration points only, Figure 5.5-3.

(E3) To perform an analysis using a SPAR dement, invoke the procedure using the

appropriate argumentsasfoHows:

*call MH_PATCH ( ES_NAME = E43 ; --

ES_PROC = SPAR ; --

SPAR_DIM = 2 ; --
DISPLAY = 1 ; --

NODES = 0 ; --

CROSS ffi 0 ; --
REPORT = <true> )

Revised 5/23/90 CSM Testbed Procedures Manual 5.5- 7



MH_PATCH Element Assessment Procedures

The report file PATCH_E43.SPAR will be generated containing stresses (display:l)

at the element centroid midsurface (nodes:0, cross:0). See reference 5.5-2, section

12.2 for further information about the parameters display, nodes, and cross (they

are actually resets to processor PSF). Note that SPAR_DIM must be defined when

using a SPAR element.

############################################################
############################################################

FACNEAL-HAKDER 2-D PATCH TEST
ELENEBT BANE = EX43

ELEMENT PROCESSOR ffi ES4

ELENEBT PAR_TERSffi 0
$,$_$$$$$$,,$$,$,$$$,$$$$,$$**,***$,****$*$*****$****$******

** BEGIB PESR ** DATA SPACE-- 2000000 WORDS

1
ELEMENT EX43/ LOAD CASE
GROUP ELEM LOCATION BX

1/ GLOBAL REFERENCE FRAME

BY BXY

0 1 1 1N 1.333333E+00 1.333333E+00 4.000000E-01

2B 1.333333E+00 1.333333E+00 4.000000E-01

4B 1.333333E+00 1.333333E+00 4.000000E-01

3B 1.333333E+00 1.333333E+00 4.000000E-Of

0 I 2 2N 1.333333E+00 1.333333E+00 4.000000E-01
5B 1.333333E+00 1.333333E+00 4.000000E-01

6B 1.333333E+00 1.333333E+00 4.000000E-01

4_ 1.333333E+00 1.333333E+00 4.000000E-01

0 1 3 5B 1.333333E+00 1.333333E+00 4.000000E-01
7B 1.333333E+00 1.333333E+00 4.000000E-01

8N 1.333333E÷00 1.333333E÷00 4.000000E-01

6B 1.333333E+00 1.333333E+00 4.000000E-01

0 I 4 7B 1.333333E÷00 1.333333E÷00 4.000000E-01
IN 1.333333E+00 1.333333E+00 4.000000E-01

3B 1.333333E÷00 1.333333E÷00 4.000000E-01

8_ 1.333333E÷00 1.333333E÷00 4.000000E-01

0 1 5 3N 1.333333E+00 1.333333E+00 4.000000E-01

4B 1.333333E÷00 1.333333E+00 4.000000E-01

6N 1.333333E+00 1.333333E+00 4.000000E-OI

8B 1.333333E÷00 1.333333E÷00 4.000000E-01

EXIT PESR cP_rINE= 0.6 I/O(DIR,BUF)= 0 0

############################################################

############################################################

Figure 5.5-3 "Report Card" using EX43 in ES4.

5.5.5 LIMITATIONS

(L1) This procedure can only evaluate 4- and 9-node 2-D elements, and 8-, 20-, and

32-node solid elements.

(L2) Currently only the 2-D membrane patch test and the 3-D test are operational.

5.5- 8 CSM Testbed Procedures Manual Revised 5/23/90



Element Assessment Procedures MH_PATCH

5.5.0 ERROR MESSAGES AND WARNINGS

H a SPAR element is used, and the argument SPAR_DIM is not set, the _llowing error

message wiU be p_nted and execution termAnated.

The argument SPAR_DIM must be defined as 2 or 3 when
using SP£R elements.

Please set this arsument and rerun.

5.5.7 PROCEDURE FLOWCHART

5.5.8 PROCEDURE LISTING

5.5.9 REFERENCES

5.5-1 MacNeal, R. H.; and Harder, R. L.: "A Proposed Set of Problems to Test Finite

Element Accuracy," Finite Elements in Analysis and Design, Vol. 1, 1985, pp. 3-20.

5.5-2 Stewart, Caroline B.: The Computational Structural Mechanics Testbed U_er's

Manual. NASA TM-100644, October 1989.

Revised 5/23/90 CSM Testbed Procedures Manual 5.5- 9



MH_PATCH Element Assessment Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

5.5- 10 CSM Testbed Procedures Manual Revised 5/23/90



Element Assessment Procedures MH_PLATE

5.6 Procedure MH_PLATE

5.6.1 GENERAL DESCRIPTION

5.6.1.1 Problem Description

This application problem is another of the MacNeal/Harder Standard Test Problems. The

plate problem tests an element's ability to handle aspect ratio, thinness, and various types

of loading and boundary conditions. The problem can be solved with 4- or 9-node 2-D

elements or 8-node 3-D elements.

5.6.1.2 Model Description

Due to the symmetry of the physical problem a quarter model is used. Symmetry boundary

conditions are applied at x=0 and y=0. At x=a and y=b two different boundary conditions

are used - simply supported and clamped. Two different types of loading are applied - a

central point load of P = 4.0 × 10 -4 lbs. and a uniform pressure of q = 10 -4 psi. The

value of a is 1.0 in., but, in order to test an element's sensitivity to aspect ratio, b has two

values, 1.0 in. and 5.0 in. The quarter plate is modeled with N × N elements. A mesh

convergence study is done, with N taking the value in Table 5.6-1. The two values of b

gives element aspect ratios of 1 and 5. A typical model with N = 4, material properties,

and dimensions are shown in Figure 5.6-1.

I
a

I

E = 1.7472 x 107psi
v = 0.30

a = 1.0 Inches
b = 1.0 or 5.0 Inches
thickness = 0.0001 Inches ( 2-D elements)

= 0.01 Inches ( 3-D elements)
mesh = N X N (onP4of plele )

Figure 5.6-1 Typical plate model, N -- 4

Revised 5/23/90 CSM Testbed Procedures Manual 5.6- 1

PRECEDING PAGE BLA,_I_ _,=vT F;Lr,_ED



MH_PLATE Element Assessment Procedures

2-D Model 3-D Model

4-node 9-node 8-node 20-node

N = 2

4

6

2

4

6

8

2

4

6

Table 5.6-1 Values of N for different element types

5.6.1.3 Analysis Description

A static, linear elastic analysis is performed for each of the eight possible combinations of

aspect ratio, loading, and boundary condition. Libraries named pl<aspect>_<grid>.101 are

created, where <aspect> is aspect ratio and <grid> is N, the mesh size. As the analysis

proceeds, these libraries may be deleted by setting the argument DEL.LIB is <true>. If

the argument I_P0RT is <true>, the normalized midplate displacements will be printed

in an external "report file" named PLATE_<es_name>.<es_proc>, where <es_name> is the

element name and <es_proc> is the element processor.

5.6.1.4 Available Solutions

From reference 5.6-1, the exact solutions for the mid-plate displacement in the direction

of the load for each boundary condition, load type, and aspect ratio are shown in Table

5.6-2.

Boundary

Condition

Simple

Clamped

Aspect

Ratio b/a

Mid-plate displacement (inches)

Uniform Pressure Point Load

1.0 4.062 11.60

5.0 12.97 16.96

1.0 1.26 5.60

5.0 2.56 7.23

Table 5.6-2 Theoretical tip displacements for each beam.

5.6.2 PROCEDURE USAGE

Procedure MR-PLATE may be used by preceding the procedure name by the *call directive,

and following it by a list of arguments enclosed in parentheses. Procedure arguments are

order-independent, and most have default values thus making them optional. The formal

syntax is as follows:

*call HH_PLATE ( argl = vall; arg2 = va12 ; ...)]

5.6- 2 CSM Testbed Procedures Manual Revised 5/23/90



Element Assessment Procedures MH_PLATE

where turgl and azg2 represent argument names, and vall and va12 represent their cor-

responding values. Note that semi-colons are required between arguments, e_d _ double

dash (--) may be used to continue the argument list on the next line.

The allowable arguments for procedure HI'I_PLATEare summarized in the following table,

along with their default values (if they exist). Note that arguments without defaults are

generally mandatory, while those with defaults are generally optional. Exceptions to this

rule are noted in the following section under detailed argument descriptions.

Argument Default Value

ES_PARS O.

ES_PROC ES1

ESJANE EX47

SPAR_DIM none

DEL_LIB <false>

REPORT <true>

Meaning

Element research parameters
Element Processor

Element name

2-D or 3-D SPAR dement

Delete libraries

Generate "report card" file

5.6.3 ARGUMENT DESCRIPTIONS

5.6.3.1 ES_PARS

Element research parameters (default: 0., ... ). This is an optional list of element-

dependent parameters that some elements provide, primarily when the element is still

undergoing research and refinement.

5.6.3.2 ES_PROC

Element processor (default: ES1). This is the name of the element processor that contains

the dement you wish to evaluate in this procedure. If a SPAR dement is used, ES-PROC

should be set to SPAR. The element processors are described in The Computational Struc-

tural Mechanics Testbed User's Manual.

5.6.3.3 ESJAME

Element name (default: EX47). This is the name of the dement type you wish to select,

within the dement processor defined by argument ES_PR0¢. SPAR or ES dements may be

used. The elements are described in the appropriate section in the The Computational

Structural Mechanics Testbed User's Manual (reference 5.6-2).

5.6.3.4 SPAR_DIM

If a SPAR element is used, this parameter must be set to the number of dimensions of that

element. If ES elements are used, this parameter need not be set at all.

5.6.3.5 DEL_LIB

As the mesh convergence study proceeds, DEL_.LIB determines whether or not the individual

libraries for each N will be deleted. This allows disk space to be conserved if the analyst

does not need the libraries.

Revised 5/23/90 CSM Testbed Procedures Manual 5.6- 3



MH'PLATE Element Assessment Procedures

5.6.3.6 REPORT

Print report fiJe (default:<true>). If REPORT is <true> an external file named

PLATE_<es_name>. <es_proc> will be generated. This file contains the normalized radial

displacements of the nodes at the inner radius of the cylinder.

5.6.4 USAGE GUIDELINES AND EXAMPLES

Procedure MH_PLATE may be used by preceding the procedure name by the .call directive.

Procedure arguments may be changed from their default values by including any or all

of the arguments and their new values when the procedure is called. A space or blank

is required between the end of the procedure name and the left parenthesis.

*procedure MH_PLATE ( ES_NAME = EX47 ; --
ES_PROC = ES1 ; --

ES_PARS = 0 ; --

SPAR_DIM ; --
DEL_LIB = <false> ; --
REPORT = <true> )

(El) To perform an analysis using the default options, simply invoke the procedure with-

out any arguments, i.e.,

*call HH_PLATE

This will perform a static, linear elastic, analysis of the MII_PLATE problem. The

normalized raid-plate displacements for all combinations of loading, boundary

conditions, and aspect ratio will be calculated and printed in the report file

named PLATE_EX47.ES1, Figure 5.6-2. Eight libraries named pll_2.101, p11_4.101,

p11_6.101, pll.8.101, p15_2.101, p15_4.101, p15_6.101, and p15_8.101 will be generated.

In a library named plA_N.101, A is the aspect ratio and N is the mesh. These eight

libraries will not be deleted as the analysis proceeds, because the default value of

DEL_LIB is <false>.

########################################################################

NACNEAL-HARDER 2-D RECTANGULAR PLATE PROBLEH
ELF,KENT NAME = EX47

ELEMENT PROCESSOR = ESI

ELEMENT PARAMATERS = 0
NORMALIZED RESULTS

• ASPECT RATIO ffi 1

• CENTRAL POINT LOAD * DISTRIBUTED LOAD
**************************************************************************

• clamped * simply • clamped * simply

5.6- 4 CSM Testbed Procedures Manual Revised 5/23/90



Element Assessment Procedures MH_PLATE

, * supported * * supported *
**************************************************************************

MESHffi2 * 0.8811 1.0042 0.9790 0.9866 *

NESH=4 * 0.9706 0.9979 0.9969 0.9972 *

MESH=6 * 0.9876 0.9986 1.0009 0.9988 *

NESH=8 * 0.9936 0.9991 1.0024 0.9994 *

. ASPECT RATIO = 5

• CENTRAL POINT LOAD * DISTRIBUTED LOAD
**************************************************************************

• * * * *

• clamped * simply • clamped * simply *
• • supported * • supported *

**************************************************************************

MESH=2 * 0.3189 0.8904 1.1257 0.9543 *

MESHffi4 * 0.8414 0.9417 0.9777 0.9779 *

MESH=6 * 0.9222 0.9701 0.9890 0.9903 *

MESHffi8 * 0.9537 0.9817 1.0012 0.9946 *

########################################################################

Figure 5.6-2 Report file generated using default arguments.

(E2) Tos_ve the MacNeal/Haxder Plate problem with _ementE410 in processor ES5,

d_etlng thelibra_esastheanalysis proceeds, use the following callstatement.

*call MH_PLATE ( ES_NAME = E410 ; --
ES_PROC = ES5 ; --
DEL_LIB = <true> ; --
REPORT = <true> )

(E3) To perform the analysis using a SPAR dement, invoke the procedure with the

appropriate dement name and SPAR _r the processor. The argument SPAR_DIM

must be defined when using a SPAR dement. The Hhraries will be d_eted as the

analysis proceeds.

*call MH_PLATE ( ES_NANE = E43 ; --
ES_PROC = SPAR ; --

SPAR_DIN = 2 ; --

DEL_LIB = <true> ; --

Revised 5/23/90 CSM Testbed Procedures Manual 5.6- 5



MH_PLATE Element Assessment Procedures

REPORT ffi <true> )

5.6.5 LIMITATIONS

(L1) This procedure can only evaluate 4- and 9-node 2-D elements, and 8-node solid
elements.

5.6.6 ERROR MESSAGES AND WARNINGS

If a SPAR element is used, and the argument SPAR_DIM is not set, the following error

message will be printed and execution terminated.

The argument SPAR_DIM must be defined as 2 or 3 when
using SPAR elements.

Please set this argument and rerun.

5.6.7 PROCEDURE FLOWCHART

5.6.8 PROCEDURE LISTING

5.6.9 REFERENCES

5.6-1 MacNeal, R. H.; and Harder, R. L.: "A Proposed Set of Problems to Test Finite

Element Accuracy," Finite Element8 in Analy_i_ and Design, Vol. 1, 1985, pp. 3-20.

5.6-2 Stewart, Caroline B.: The Computational Structural Mechanics Teethed User'8

Ma,ual. NASA TM-100644, October 1989.

5.6- 6 CSM Testbed Procedures Manual Revised 5/23/90



Element Assessment Procedures MH.SPHERE

5.7 Procedure MH_SPHER.E

5.7.1 GENERAL DESCRIPTION

5.7.1.1 Problem Description

This application problem is another of the MacNeal/Harder Standard Test Problems. The

spherical shell problem tests an element's ability to handle double curvature.

5.7.1.2 Model Description

The spherical shell is modeled for both 2-D and 3-D elements. As is shown in figure

5.7-1, it is a one-eighth model of a spherical shell with a 12 ° hole in the top. The

hole in the top of the sphere allows triangular (2-D) and wedge-shaped (3-D) elements

to be avoided. The sphere is loaded by two point loads (1 lb. each) applied at cen-

tric points as is shown in figure 5.7-1. The sphere is modeled with 27 x 27 ele-

ments. A mesh convergence study is done with 27 taking the values in table 5.7-1.

._7/.0__ Fi-'gureS.7-1 l typical spherical shell model, 27 = 4.

An example of a 2-D and a 3-D model are shown in figure 5.7-2.

5._'.1.3 Analysis Description

A static, linear elastic analysis is performed. Displacements at the point of, and in the

direction of the loads are calculated, normalized with theoretical results, and printed for

each value of 27 (table 5.7-1).

5.7.1.4 Available Solutions

From reference 5.7-1, the exact theoretical solution for the displacement at the point of,

and in the direction of the load is .0940 inches.

Revised 5/24/90 CSM Testbed Procedures Manual 5.7- 1



MIt_SPHERE Element Assessment Procedures

5.7.2 PROCEDURE USAGE

Procedure I_I_SPHERE may be used by preceding the procedure name by the *call directive,

and following it by a list of arguments enclosed in parentheses. Procedure arguments are

order-independent, and most have default values thus making them optional. The formal

syntax is as follows:

,call HH_SPHERE ( argl ffi vall ; axg2 = val2 ; ...)[

where turgl and axg2 represent argument names, and vall and val2 represent their cor-

responding values. Note that semi-colons are required between arguments, and a double

dash (--) may be used to continue the argument list on the next line.

The allowable arguments for procedure HI'I_SPHEREare summarized in the following table,

along with their default values (if they exist). Note that arguments without defaults are

generally mandatory, while those with defaults are generally optional. Exceptions to this

rule are noted in the following section under detailed argument descriptions.

Argument Default Value

ES_PROC ES1

ES_NAME EX47

ES_PARS 0.

SPIR..DIN none

REPORT <true>

DEL_LIB <false>

Meaning

Element Processor

Element name

Element research parameters
2-D or 3-D SPAR element

Generate "report card" file
Delete libraries

5.7.3 ARGUMENT DESCRIPTIONS

5.7.3.1 ES_AME

Element name (default: EX47). This is the name of the element type you wish to select,

within the element processor defined by argument ES..PROC. SPAR or ES elements may

be used. The elements are described in the appropriate section in The Computational

Structural Mechanics Testbed User's Manual (reference 5.7-2).

5.7.3.2 ES_PR0C

Element processor (default: ES1). This is the name of the element processor that contains

the element you wish to evaluate in this procedure. If a SPAR element is used, ES..PII0C

should be set to SPAR. The element processors are described in The Computational Struc-

tural Mechanics Testbed User's Manual.

5.7.3.3 ES_PARS

Element research parameters (default: 0., ... ). This is an optional list of element-

dependent parameters that some elements provide, primarily when the element is still

undergoing research and refinement.

5.7- 2 CSM Testbed Procedures Manual Revised 5/24/90



Element Assessment Procedures MH_SPHERE

5.7.3.4 SPAR_DIM

If a SPAR element is used, this parameter must be set to the number of dimensions of that

element. If ES elements are used, this parameter need not be set at all.

5.7.3.5 RE__PORT

Print report file (default=<true>). If REPORT is <true> an external file named

CYL_<es..uame>.<es_proc> will be generated. This file contains the normalized radial

displacements of the nodes at the inner radius of the cylinder.

5.7.3.6 DEL_LIB

Delete libraries (default=<false>). As the mesh convergence study progresses, libraries

named SPLN.L01 are generated, where N is the number of elements along each edge of

model. If DEL_LIB is set to <true>, these libraries will be deleted during the analysis.

This allows disk space to be conserved if the analyst does not need the libraries.

2-D Model 3-D Model

4-node 9-node 8-node 20-node

N= 2

4

6

8

10

12

1

2

3

4

5

6

4

8

12

2

4

6

Table 5.7-1 N = number of elements for convergence study.

Model is N × N.

5.7.4 USAGE GUIDELINES AND EXAMPLES

Procedure MH_SPHERE may be used by preceding the procedure name by the ,call directive.

Procedure arguments may be changed from their default values by including any or all

of the arguments and their new values when the procedure is called. A space or blank

is required between the end of the procedure name and the left parenthesis.

*procedure NIt_SPHERE ( ES_NJD_E = EX47 ; --
ES_PROC = ESI ; --

ES_PARS = 0 ; --

SPAR_DIM ; --
DEL_LIB = <false> ; --
REPORT = <true> )

(El) To perform an entire analysis using the default options, simply invoke the procedure

without any arguments, i.e.,

Revised 5/24/90 CSM Testbed Procedures Manual 5.7- 3



MH_SPHERE ElementAssessmentProcedures

*call MH_SPHERE

This will perform a static, linear elastic analysis of the MacNeal/Harder spherical

shell using the EX47 element in processor ES1. The one-eighth sphere, modeled by

N × N elements, will be analyzed with N = 2, 4, 6, 8, 10, and 12. Six libraries

will be created, SPHN.L01, one for each value of N. If the argument DEL_LIB is

<true>, these libraries will be automatically deleted as the analysis proceeds. If the

argument REPORT is <true>, the normalized displacements at the point of, and in

the direction of, the load will be printed in a report file named CYL_EX47.ES1 for

each value of N, figure 5.7-3.

#############################################################

#############################################################

MACHEAL-HARDER 2-D SPHERICAL SHELL PROBLEM

ELEMENT HAME ffi EX47

ELEMEHT PROCESSOR ffi ES1

ELEMEHT PARAMATERS = 0

NORMALIZED RESULTS

#############################################################

GRID = 2 0.9676

0.9676

GRID ffi4 1.0176

1.0176

GRID = 6 1.0012

1.0012

GRID = 8 0.9950

0.9950

GRID = 10 0.9923

0.9923

GRID ffi 12 0.9919

0.9919

#############################################################

Figure 5.7-3 Report file generated using default arguments.

5.7- 4 CSM Testbed Procedures Manual Revised 5/24/90



Element Assessment Procedures MH_SPHERE

(E2) The following call statement will solve the spherical shell problem for the solid
element EX20 in processor ES3. The libraries for each value of N will be ,_.eleted.

*call HH_SPHERE ( ES_NAME - EX20 ; --

ES_PROC = ES3 ; --

DEL_LIB = <true> ; --
REPORT ffi<true> )

(E3) To perform the analysis using a SPAI% element, invoke the procedure using the

appropriate 4-node 2-D element or 8-node 3-D element and SPAR for ES_PROC.

Note that the argument SPAR_DIM must be defined when using a SPAR element.

*call NH_SPHEEE ( ES_NAHE - $81 ; --

ES_PROC = SPAR ; --
SPAR_DIM = 3 ; --
REPORT - <true> )

S.7.5 LIMITATIONS

(L1) This procedure can only evaluate 4- and 9-node 2-D elements, and 8- and 20-node
solid elements.

5.7.6 ERROR MESSAGES AND WARNINGS

If a SPAR element is used, and the argument SPAR_DIM is not set, the following error

message will be printed and execution terminated.

The argument SPAR_DIM must be defined as 2 or 3 when

using SPAR elements.
Please set this argument and rerun.

5.7.T PROCEDURE FLOWCHART

5.7.8 PROCEDURE LISTING

5.7.9 REFERENCES

5.%1 MacNeal, R. H.; and Harder, R. L.: "A Proposed Set of Problems to Test Finite

Element Accuracy," Finite Element_ in AnalyJi8 and Design, Vol. 1, 1985, pp. 3-20.

5.7-2 Stewart, Caroline B.: The Computational Structural MechanicJ Teatbed UJer'J

Manual. NASA TM-100644, October 1989.

Revised 5/24/90 CSM Westbed Procedures Manual 5.7- 5



MtI_SPHERE ElementAssessment Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

5.7- 6 CSM Testbed Procedures Manual Revised 5/24/90



Element Assessment Procedures MH_ROOF

5.8 Procedure MH_ROOF

._.g.1 GENERAL DESCRIPTION

5.8.1.1 Problem Description

This application problem is another of the MacNeal/Harder Standard Test Problems. The

Scordelis-Lo Roof problem tests an element's ability to handle single curvature and dis-

tributed gravity loading.

5.8.1.2 Model Description

The Scordelis-Lo Roof is modeled for both 2-D and 3-D elements. Due to symmetry,

only one-fourth of the roof is modeled. Loading is applied to the roof in the form of a

distributed gravity load equal to 90.0 pounds per square foot of surface area. For higher-

order elements the load is applied using consistent loading concepts. The roof is modeled

with N x N elements on the quarter model. A mesh convergence study is done with N

taking the values in Table 5.8-1. An example of a 2-D model, N=4, is shown in Figure 5.8-1.

Material properties, boundary conditions, and dimensions are also shown in Figure 5.8-1.

X

E = 4-,3"2. x Io s ,/

_ ---- 0.0

Figure 5.8-1 Example Scordelis-Lo Roof Model, N -- 4.

Revised 5/23/90 CSM Testbed Procedures Manual 5.8- 1

PRECEDING PAGE BLANK NOT FILMED
?



MI|_ROOF Element Assessment Procedures

5.8.1.3 Analysis Description

A static, linear elastic analysis is performed. The x-direction displacement at the mldside

of free edge, point A in Figure 5.8-1, is calculated, normalized with the theoretical result,

and printed for each value of N (Table 5.8-1).

5.8.1.4 Available Solutions

From reference 5.8-1, the theoretical solution for the displacement in the direction of the

load at the midside of the free edge is .3024 inches.

5.8.2 PROCEDURE USAGE

Procedure RH_R00F may be used by preceding the procedure name by the *call directive,

and following it by a list of arguments enclosed in parentheses. Procedure arguments are

order-independent, and most have default values thus making them optional. The formal

syntax is as follows:

*call I_I_.R00F ( eurgl ffi vall ffi val2 )]_Lrg2 • • I

where argl and axg2 represent argument names, and vall and val2 represent their cor-

responding values. Note that semi-colons are required between arguments, and a double

dash (--) may be used to continue the argument list on the next line.

The allowable arguments for procedure MH_g00F are summarized in the following table,

along with their default values (if they exist). Note that arguments without defaults are

generally mandatory, while those with defaults are generally optional. Exceptions to this

rule are noted in the following section under detailed argument descriptions.

Argument Default Value

ES_PROC ES1

ESJAME EX47

ES_PIRS O.

SPAR_DIM none

REPORT <true>

DEL_LIB <false>

Meaning

Element Processor

Element name

Element research parameters

2-D or 3-D SPAR dement

Generate "report card" file
Delete libraries

5.8.3 ARGUMENT DESCRIPTIONS

5.8.3.1 ES_NAME

Element name (default: EX47). This is the name of the element type you wish to select,

within the element processor defined by argument ES_.PROC. SPAR or ES elements may

be used. The elements are described in the appropriate section in The Computational

Structural Mechanics Testbed User's Manual (reference 5.8-2).

5.8- 2 CSM Testbed Procedures Manual Revised 5/23/90



Element Assessment Procedures MH_ROOF

5.8.3.2 ES_PROC

Element processor (default: ES1). This is the name of the element processor that contains

the element you wish t,_ ,_v_],,,ate ;n thi_ procedure. 1¢ _ _VAR e 1.... _ i..... _ t-e _.t,

should be set to SPAR. The element processors are described in The Computation_ Struc-
tural Mechanics Testbed User's Manual.

5.8.3.3 ES_PARS

Element research parameters (default: 0., ... ). This is an optional list of element-

dependent parameters that some elements provide, primarily when the element is still

undergoing research and refinement.

5.8.3.4 SPAR_DIN

If a SPAR element is used, this parameter must be set to the number of dimensions of that

element. If ES elements are used, this parameter need not be set at all.

5.8.3.5 REPORT

Print report file (default=<true>). If REPORT is <true> an external file named

R00F_<es__xame>. <es_proc> will be generated. This file contains the normalized vertical

displacement of the node at the midside of the free edge, point A in Figure 5.8-1.

5.8.3.6 DEL_LIB

Delete libraries (default=<false>). As the mesh convergence study progresses, libraries

named ROOFN.L01 are generated, where N is the number of elements along each edge

of model. If DEL_LIB is set to <true>, these libraries will be deleted during the analysis.

This allows disk space to be conserved if the analyst does not need the libraries.

I

2-D Model 3-D Model

4-node 9-node 8-node 20-node

N= 2

4

6

8

10

12

4

8

12

2

4

6

Table 5.8-1 N -- number of elements for convergence study.

Model is N x N.

Revised 5/23/90 CSM Testbed Procedures Manual 5.8- 3



MH_ROOF Element Assessment Procedures

5.8.4 USAGE GUIDELINES AND EXAMPLES

Procedure HH_ROOFmay be used by preceding the procedure name by the *call directive.

Procedure arguments may be changed from their default values by including any or all

of the arguments and their new values when the procedure is called. A space or blank

is required between the end of the procedure name and the left parenthesis.

*procedure MH_ROOF ( ES_NAME = E147 ; --
ES_PROC ffi ES1 ; --
ES_PARS = 0 ; --
SPAR_DIN ; --
DEL_LIB = <false> ; --
REPORT ffi <true> )

(El) To perform an entire analysis using the default options, simply invoke the procedure

without any arguments, i.e.,

*call MH_ROOF

This will perform a static, linear elastic analysis of the MacNeal/Harder ScordeUs-

Lo roof using the EX47 element in processor ES1. The one-fourth roof, modded by

N x N elements, will be analyzed with N = 2, 4, 6, 8, 10, and 12. Six libraries

win be created, ROOFN.L01, one for each value of N. If the argument DEL_LIB

is <true>, these _braries will be automatically deleted as the analysis proceeds. If

the argument REPORT is <truo>, the normalized displacements at the print of, and

in the direction o_ the load will be printed in a report file named ROOF_EX47.ES1

for each value of N, Figure 5.8-3.

##########################################################
##########################################################

NACNEAL-HARDER 2-V SCORDELIS-LO ROOF PROBLEM

ELEMENT NL_E = EX47
ELEMENT PROCESSOR = ES1
ELEMENT PAPANATERS ffi O.

NORMALIZED RESULTS
##########################################################

GRID = 2 1.1225

GRID = 4 0.9703
GRID ffi6 0.9884

GRID ffi8 0.9941

GRID = 10 0.9971
GRID = 12 1.0000

##########################################################

Figure 5.8-3 Report file generated using default arguments.

(E2) The foHowing call statement will solve the Scordelis-Lo roof problem for the solid

element EX08in processor ES3. Thelibrariesfor each value of Nwill be deleted.

*call HH_ROOF ( ES_NAME = EX08 ; --
ES_PROC = ES3 ; --
DEL_LIB = <true> ; --

5.8- 4 CSM Testbed Procedures Manual Revised 5/23/90



Element Assessment Procedures MH_ROOF

REPORT ; <true> )

(E3) To perform the analysis using a SPAR element, invoke the procedure using the

appropriate 4-node 2-D element or 8-node 3-D element and SPAR for ES_PROC.

Note that the argument SPAR_DIM must be defined when using a SPAR dement.

*call HH_ROOF ( ES_NM_E = S81 ; --
ES_PROC = SPAR ; --
SPAR_DIM = 3 ; --
REPORT = <true> )

5.8.5 LIMITATIONS

(L1) This procedure can only evaluate 4- and 9-node 2-D elements, and 8- and 20-node
solid elements.

5.8.6 ERROR MESSAGES AND WARNINGS

If a SPAR dement is used, and the argument SPAR_DIM is not set, the following error

message will be printed and execution terminated.

The argument SPAR_DIM must be defined as 2 or 3 when
using SPAR elements.

Please set this argument and rerun.

5.8.7 PROCEDURE FLOWCHART

5.8.8 PROCEDURE LISTING

5.8.9 REFERENCES

5.8-1 MacNeal, R. H.; and Harder, R. L.: "A Proposed Set of Problems to Test Finite

Element Accuracy," Finite ElementJ in Analysis and Design, Vol. 1, 1985, pp. 3-20.

5.8-2 Stewart, Caroline B.: The Computational Structural Mechanics Testbed User's

Manual. NASA TM-100644, October 1989.

Revised 5/23/90 CSM Testbed Procedures Manual 5.8- 5



MH_ROOF Element Assessment Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

5.8- 6 CSM Testbed Procedures Manual Revised 5/23/90



Element Assessment Procedures SKEWED_GRID

5.9 Processor SKEWED_GRID

THIS SECTION UNDER PREPARATION

5/24/90 CSM Testbed Procedures Manual 5.9- 1

PRECEDING_ PAGE i_t._NK riO( FILMED



SKEWED_GRID Element Assessment Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

5.9- 2 CSM Testbed Procedures Manual 5/24/90



Postprocessing Procedures

6.0 Postprocessing Procedures

The procedures documented in this chapter are for postprocessing the results of a given

computation. These procedures provide examples of stress recovery and internal force cal-

culations as well as examples for extracting selected data from the computational database.

A summary of the procedures found in this chapter is provided in Table 6.0-1.

Procedure Name

HISTORY

Table 6.0-1 Solution Procedures

Description

Tabulate Response History in Database

POST Tabulate Selected Results in Database

STRESS Compute Stresses and/or Strains from Displacements

TOTtL..LOtD Compute Total Load for Applied Displacement Prob-

lems

Revised 5/24/90 CSM Testbed Procedures Manual 6.0- 1

PRECEDING PAGE BL/_N_ NOT F|LMED



Postprocessing Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

6.0- 2 CSM Testbed Procedures Manual Revised 5/24/90



Post-Processing Procedures HISTORY

6.1 Procedure HISTORY

6.1.1 GENERAL DESCRIPTION

Procedure HISTORY is typically used to consolidate the response history of one or more

nodes or elements into a database other than the database used for the analysis. The

procedure allows for the extraction of a single nodal degree of freedom from one or more

nodes. It also provides the means for extracting a single stress component from one or
more elements.

6.1.2 PROCEDURE USAGE

Procedure HISTORY may be used by preceding the procedure name by the *call directive,

and following it by a list of arguments enclosed in parentheses. Procedure arguments are

order-independent, and most have default values thus making them optional. The formal

syntax is as follows:

[*call HZSTORY(argl--vall;. g2:van;...)]

where a.x'gl and arg2 represent argument names, and vall and val2 represent their cor-

responding values. Note that semi-colons are required between arguments, and a double

dash (--) may be used to continue the argument list on the next line.

The allowable arguments for procedure HISTORY are summarized in the following table,

along with their default values (if they exist). Note that arguments without defaults are

generally mandatory, while those with defaults are generally optional. Exceptions to this

rule are noted in the following section under detailed argument descriptions.

For procedure HISTORY, the following table lists each argument, its default value and

meaning.

Revised 5/11/90 CSM Testbed Procedures Manual 6.1- 1

PRECEDING PAGE _LA_ P_OT [_Lr_ED



IIISTORY Post-Processing Procedures

Argument

COMPONENT

ELENENT_DS

ELEMENT_RN

ELEMENTS

INPUT_DS

0UTPUT_DS

0UTPUT_RN

NODE_DS

NODE_RN

NODES

NUM_ELEMENTS

Default Value Meaning

nodal dof or element stress component
name of element-list dataset

name of element-list record

element numbers

root name of input dataset

full name of output dataset

root name of output record

name of node-list dataset

name of node-list record

node numbers

number of elements to process
AVERAGE <false>

INPUT_LDI 1

LOCATION NODES

NUM_NODES 1

NUM_STEPS 1

OUTPUT_LDI 2

STEPS 0:0

SUM <false>

average flag

logical device index of input database

post nodal quantities

number of nodes to process

number of steps

logical device index of output database

step numbers

summation flag (over nodes)

6.1.3 ARGUMENT DESCRIPTIONS

6.1.3.1 AVERAGE

Average flag (default: <false>). If <true>, an average value for specified nodes or elements

will be computed and saved in the database; otherwise individual nodal or elemental values

are computed and saved.

6.1.3.2 INPUT_LDI

Logical device index of input database (default: 1).

6.1.3.3 LOCATION

hlentifies location of data to be processed; either NODES or ELFAtlENTS (default: NODES).

6.1.3.4 NUM_NODES

Number of nodes to process (default: 1). This argument is a required argument only if
LOCATION=NODES.

6.1.3.5 NUM_STEPS

Number of steps for historic_d data recow_'ry (default: 1).

6.1- 2 CSM Testbed Procedures Manual Revised 5/11/90



Post-Processing Procedures HISTORY

6.1.3.60UTPUT_LDI

Logical device index of output database (default: 2).

6.1.3.7 STEPS

Step numbers for historical data recovery (default: 0). This argument is an array of length

NUM_STEPS. If the argument STEPS=O, the linear solution is used.

6.1.3.8 S_

Flag to perform summation (default: <_alse>). If <true> the quantity of interest wil be

summed over either the elements or nodes as specified by LOCATIONS. It is the summed

(resultant) value is then saved in the database.

6.1.3.9 COMPONENT

Column of data to be extracted. When LOCATION=NODES (e.g., COMPONENT=I corresponds

to u-direction displacement). When LOCATION=ELEMENT, COMPONENTis typically a stress

resultant (e.g., COMPONENT=I corresponds to N_). This argument is always required.

6.1.3.10 ELEMENT_DS

Name of dataset containing list of elements to be processed. This argument is an active

argument only if LOCATIONfELEMENTS.

6.1.3.11 ELEMENT_RN

Name of element-list record. This argument is an active argument only if
LOCATIONfELENENTS.

6.1.3.12 ELEMENTS

Element numbers to extract historical data. The argument ELEMENTS is an array of length
NI_I_£LDIENTS that lists the element numbers for which historical data are extracted. This

is an active argument only if L0CATIONffiELF21ENTS.Element numbers may be input either

through the ELF._ENTS argument or through a data.set containing the list (i.e., using the

ELDIErrS_.VS and ELEME_IT_RNarguments.

6.1.3.13 INPUT..DS

Root name (i.e., first two words) of source data.set. This argument is always required.

6.1.3.14 OUTPUT_DS

Root name (i.e., first two words) of destination data.set. This argument is always required.

The data.set is written one record per step per element for L0CATIONfELEMENTS or one

record per step per node for L0CATIONfNODES.

Revised 5/11/90 CSM Testbed Procedures Manual 6.1- 3



HISTORY Post-Processing Procedures

6.1.3.15 OUTPUT_RN

Root name (i.e., first word) of destination record. This argument is always required.

6.1.3.16 NODE_DS

Name of dataset containing list of nodes to be processed.

argument only if LOCATIONfNODES.

This argument is an active

6.1.3.17 HODE_RN

Name of node-llst record. This argument is an active argument only if LOCATION=NODES.

6.1.3.18 NODES

Node numbers to extract historical data. The argument NODES is an array of length

N__NODES that lists the node numbers for which historical data are extracted. This is

an active argument only if LOCATIONfNODES. Node numbers may be input either through

the NODES argument or through a dataset containing the list (i.e., using the NODE_DS and

NODE_RN arguments).

6.1.3.19 NUN_ELEMENTS

Number of elements to extract historical data. The argument NUH_ELEMENTS specifies the

number of elements from which historical data are extracted. This is a required argument

only if LOCATIONfELEMENTS.

6.1.4 USAGE GUIDELINES AND EXAMPLES

Procedure HISTORY may be used by preceding the procedure name by the *call directive.

Procedure arguments may be changed from their default values by including any or all

of the arguments and their new values when the procedure is called. A space or blank

is required between the end of the procedure name and the left parenthesis. If the default

values of the procedure arguments are to be used, then only the procedure name is required.

*procedure HISTORY ( input_idi ffi 1 ; -- .
input_ds ; -- .
output_idi = 2 ; -- .
output_ds ; -- .
output_rn ; -- .
location = NODES ; --
num_steps = 1 ; -- .
steps = 0:0; --
num_nodes = I ; -- .
nodes ; -- .
component ; -- .
sum = <false> ; --

average = <false> ;
node_ds ; --

ldi of input database
root name of input dataset
ldi of output database
full name of output dataset
root name of output record
• post nodal quantities
number of steps
step numbers
number of nodes to process
node numbers

nodal dof or element stress

summation flag (over nodes)

-- . average flag
name of node-llst dataset

6.1- 4 CSM Testbed Procedures Manual

, Y:

q.

Revised 5/11/90



Post-Processing Procedures HISTORY

node_rn ; --
element_ds ; --
element_rn ; --
nllm_element s ; --

elements --

• name of node-list record

• name of element-list dataset

• name of element-list record

number of elements to process

• element numbers)

6.1.5 LIMITATIONS

Due to a restriction on the number of active macrosymbols, no more than 700 nodes or

elements may be processed using NODE_DS or ELDiENT_DS.

Procedure HISTORY should be used only to process limited amounts of data due to the

procedure's inherent inefficiency. Except for small problems, the SUM argument should

not be used to perform summation over the nodes for multiple load steps• In most cases

this operation should be performed using the TOTAL_LOADprocedure (see Section 6.5).

6.1.6 ERROR MESSAGES AND WARNINGS

None.

6.1.7 PROCEDURE FLOWCHART

6.1.8 PROCEDURE LISTING

*procedure HISTOKY ( input_ldi ffi 1 ; -- .

input_de ; -- .

output_ldi ffi 2 ; -- .

output_de ; -- .

output.rn ; -- .

location = NODES ; --

nmt_steps = I ; --

steps =0:0; --

nunnodes = 1 ; --

nodes ; --

component ; --

ldief input database

root name of input dataset

ldief output database

full name of output dataset

root name of output record

• pest nodal quantities

number of steps

step numbers

number of nodes go process
node numbers

nodal dof or element stress

sun : <false> ; -- summation fla K (over nodes)

average = <false> ; -- . average flag

node_ds

node_rn

element_de

eleaent_rn

nun_elements

elements

; -- name of node-list dataset

; -- name of node-list record

; -- name of element-list dataset

; -- name of element-list record

; -- number of elenente to process
-- element numbers

• Procedure go Postprocess Kesponse History free/to Database

Revised 5/24/90 CSM Testbed Procedures Manual 6.1- 5



HISTORY Post-Processing Procedures

*def/i st,poll: [nun_st.psi] = [steps]

*if < <IFELSE([LOCITION];NODES;1;0)> > /then

*iS < <IFELSE(_node_ds]; ;1;0)> > /then

edef/i nun_nodes = [nun_nodes]

edsf/i nodes[l:<nun_nodes>] :: [nodes]

*else

*find record [input_ldi], [node_de], In.de.m] /nor=nun_nodes

*g2s /nanezznodes /type=i /maxn=<nun.nodes> [input_ldi] [node_ds] --

Cnode_rn]. 1 :<nun_nodes>

**ndif

[XQT vEc
*find detaset [output_ldi] [output_ds] /8eqzids

*if (<ids> /le 0 > /then

*put dare,or [output_ldt] [output_de] /afar=2000 /soq=ids

*endif

*do 8is z 1. [nun_steps]

*dof/i step_nun : <step,[<Sis>I>

*find dare,st [input_ldi] [input_ds].<step_nun> /seq=hist_ids

*if < <hist_ids> /le 0 > /then

*renark

*renark Dataset [input_ds] .<stop_nun> not Sound by HISTORY

*renark

*return

eendif

eif < [sun] /or [averase] > /then

*def/e resultant : 0.0

eendif

ode Sin = I p _nun.nodes>

*def/i node_nun 8 <node,[<tin>I>

COMPONENT <node_nun> [conponent] [input_ds].<stop_nun> -> va/

*if < [SUn] /or [average] > /then

edef/e resultant = < _resultant> + <val> •

*else

en2 S /nane=val /type=d [output_ldi] <ids> --

[output_m]. <step_nun>

*endif

eenddo

elf < [sun] /or [average] • /then

*if < [average] > /then

edof/e resultant • < <resultant> / <nun_nodes> •

*endif

*n2g /nane=resultant /type:d [output_ldi] <ids> --

[output_m]. <step_nun>

eendtf

*enddo

eelsoif _ <IFELSE( [LOCATION] ; ELEMENTS ; 1 ; 0) > > /then

*if < <IFELSE([elenont_ds]; ;1;0)> > /then

*dtf/i nun.elements = [nun_elements]

*dsf/i elenents[l:<nun_elenents>] :: [el,non*s]

*else

*_ind record [input_ldi], [elenent_ds], [elenent_rn] --

6.1- 6 CSM Testbed Procedures Manual Revised 5/24/90



Post-Processing Procedures HISTORY

/nor=muM_element J

eg2n /naneffielonents /typefi /naxn=<nun.elenents> [inputoldi] --
[element_ale] [element_m]. l:<nua_elonents>

*ondif

[IQT VEC

*do $is: 1, [nun_steps]

edef/t step_nun : <steps[<Sis>]>

*find dataset [Input_idl] [Input_ds] .<step_nua> /seq:hlst_Ids

elf < <hlst_Ids> /le 0 > /then

*remark

*renark Datasot [input_ds] .<step_nun> not found by HISTOKT
*renark

*ret_

*endif

*if < [sun] /or [average] > /than
edef/e resultant ffi 0.0

*ondif

*do 8in : 1, <ntm_elonents>

*dof/i element.nun : <elonents[<Sin>]>

COMPONENT <element_nun> [component] [input_d,] .<stop_nun> -> val

elf < [sun] /or [average] • /then

*def/e resultant : < <resultant> + <val• >

*else

*n2g /nanefval /typefd [output_ldi] [output_ds] --

[output rn]. < st ep_nun>

eendif

eonddo

*if < [Sun] /or [average] > /then

elf < [average] • /then

edef/e resultant = < <resultant> / <nun_elements• •

eendtf

ea2g /name:resultant /typefd [output_ldi] [output_ds] --

[output_m]. <step_nun•

*ondtf

eonddo

*endlf

eend

6.1.9 REFERENCES

6.1-1 Stewart, Caroline B.: The Computational Structural Mechanic8 Testbed User'8

Manual. NASA TM-100644, October 1989.

6.1-2 Felippa, Carlos A.: The Computational Structural Mechanica Testbed Architecture:

Volume II- Directives. NASA CR 178385, February 1989.

Revised 5/24/90 CSM Testbed Procedures Manual

t,

6.1- 7



IIISTORY Post-Processing Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

6.1- 8 CSM Testbed Procedures Manual Revised 5/24/90



Post-Processing Procedures POST

6.2 Procedure POST

6.2.1 GENERAL DESCRIPTION

Procedure POST is used to extract the response history of one or more nodes from one

database and to consolidate it into another database. This procedure differs from procedure

HISTORY in that POST cannot operate on element data (e.9. , element stress resultants).

6.2.2 PROCEDURE USAGE

Procedure POST may be used by preceding the procedure name by the *call directive,

and following it by a list of arguments enclosed in parentheses. Procedure arguments are

order-independent, and most have default values thus making them optional. The formal

syntax is as follows:

*call POST ( axgl = valt ; axg2 ffi val2 ; ...)]

where axgl and arg2 represent argument names, and vall and val2 represent their cor-

responding values. Note that semi-colons are required between arguments, and a double

dash (--) may be used to continue the argument list on the next line.

The allowable arguments for procedure POST are summarized in the following table, along

with their default values (if they exist). Note that arguments without defaults are generally

mandatory, while those with defaults are generally optional. Exceptions to this rule are

noted in the following section under detailed argument descriptions.

For procedure POST, the following table lists each argument, its default value and meaning.

Parameter

D0F

INPUT_DS

NODES

NODES_DS

NODES_RN

0UTPUT_DS

0UTPUT_RN

Default Value

Q--

Meaning

Nodal degree of freedom index

Root name of input dataset
Node numbers

Name of node-list input dataset

Name of node-list input record

Full name of output dataset

Root name of output record
INPUT_LDI

0UTPUT_LDI

NSTEPS

STEPS

NNODES

SUM

1

1

1

0:0

1

<false>

Logical device index of input database

Logical device index of output database

Number of steps

Step numbers

Number of nodes to process

Summation flag (over node list)

Revised 5/11/90 CSM Testbed Procedures Manual 6.2- 1

PRECEDING PAGE BLANK NOT FILMED



POST Post-Processing Procedures

6.2.3 ARGUMENT DESCRIPTIONS

6.2.3.1 INPUT_LDI

Logical device index of input database (default: 1).

6.2.3.2 0UTPUT_LDI

Logical device index of output database (default: 1).

6.2.3.3 NSTEPS

Number of steps for historical data recovery (default: 1).

6.2.3.4 STEPS

Step numbers for historical data recovery (default: 0). This argument is an array of length

gUM_STEPS.If the argument STEPS=O, the linear solution is used.

6.2.3.5 NNODES

Number of nodes to process (default: 1).

6.2.3.6 $..__

Flag to sum over nodes (default: <false>). If the argument SUMf<true>, the summation
and not the nodal values will be saved in the database.

6.2.3.7 D0.__F_F

Nodal degree of freedom index (i.e., 1, 2, 3, 4, 5, or 6).

6.2.3.8 INPUT_DS

Root name (first two words) of source dataset. This argument is mandatory.

6.2.3.9 NODES

Node numbers for which historical data are extracted. The argument NODES is an array of

length NODES. Node numbers may be input either through the NODES argument or through

a dataset containing the list (i.e., using the NODES_DS and NODES_RN arguments).

6.2.3.10 NODES_DS

Name of dataset containing list of nodes to be processed.

6.2.3.11 NODES_RN

Name of node-list record.

6.2- 2 CSM Testbed Procedures Manual Revised 5/11/90



Post-Processing Procedures POST

6.2.3.12 00TPOT_BS

Root name (i.e., first two words) of destination dataset. This argument is mandatory. The

dataset is written one record per step per node.

6.2.3.13 0_rrPUT_l_

Root name (i.e., first word) of destination record. This argument is mandatory.

6.2.4 USAGE GUIDELINES AND EXAMPLES

Procedure POST may be used by preceding the procedure name by the *call directive.

Procedure arguments may be changed from their default values by including any or all

of the arguments and their new values when the procedure is called. A space or blank

is required between the end of the procedure name and the left parenthesis. If the default

values of the procedure arguments are to be used, then only the procedure name is required.

*call POST ( input_ldi = I ; -- idi

input_ds ; --

output_idi = 1 ; --

output_ds ; --

output_rn ; --

nsteps = 1 ; --
steps _O:O; --
nnodes = 1 ; --

nodes ; --

dof ; --

sum = <false> ; --

nodes_ds ; --

nodes_rn --

of input database
root name of input dataset

ldi of output database

full name of output dataset

root name of output record

number of steps

step numbers

number of nodes to process
node numbers

nodal degree of freedom index

summation flag (over node list)

[name of node-list input dataset]

[name of node-list input record])

6.2.5 LIMITATIONS

Due to a restriction on the number of active macrosymbols, no more than 700 nodes should

be processed using NODE_DS and NODE_EN.

6.2.6 ERROR MESSAGES AND WARNINGS

None.

6.2.7 PROCEDURE FLOWCHART

Procedure POST is self-contained and has no subprocedures.

Revised 5/23/90 CSM Testbed Procedures Manual 6.2- 3



POST Post-Processing Procedures

6.2.8 PROCEDURE LISTING

*procedure POST ( input_ldi = I ; --

input_de ; --

output_Idi = I ; --

output_de ; --

output_rn ; --

nstepe = 1 ; --

steps :0:0; --

nnodes : 1 ; --

nodes ; --

dof ; --

sun = <false• ; --

nodes_de ; --

nodes_rn --

ldl of input database

root name of input dataset

Idl of output database

full naae of output dataeot

root nan. of output record

nuaber of steps

step numbers

number of nodes to process

node numbers

nodal, degree of freedom index

suaaation flag (over node list)

[nolo of node-list input data, st]

[nume of node-list input record]

• CLIMP Procedure to Post Response History in a Database

*def/i stsps[l:[nsteps]] = [steps]

*if < <IFELSE([nodes_ds]; ;1;0)> • /then

*def/i nnodes = [nnodes]

*def/i nodos[l:<nnodes>] : [nodes]

*else

efind record [tnput_ldi], [nodes_de],

*do 8in = 1, <nnodes>

eg2a /naae=nodes[<lin>] /type:l [Input_ldl]

[nodes_m] .<Sin>

*enddo

*endif

[IQT VEC

*find defacer [output_ldi] [output_ds] /eeq=ide

elf < <Ids> /Is 0 > /then

*put dataset [output_Idi] [output.de] /afar:2000 /seq:ide

eendif

ode $is: 1, [nsteps]

*def/i step_nun = <stepe[<$is>]>

*if < [sue] > /then

*def/e resultant : 0.0

*endif

ode Sin : I, <nnodes•

*def/i node.nun = <nodes[<$in>]>

COMPONENT <node_hum> Idol] [input_ds].<step_nua> ->

*if < [sua] > /then

*def/e resultant = < <resultant> + <value• •

*else

*m2g /naae=value /type:d [output.ldl]

[output_n] _<node_num>.<stsp_num>

eendlf

eenddo

*if < [sum] > /then

[nodes_m] /nor=nnodes

[nodes_de] --

value

[output_d*] --

6.2- 4 CSM Testbed Procedures Manual Revised 5/24/90



Post-Processing Procedures POST

*a2g /nmae=resultant /type=d [output_Idl] [output_de] --

[output_rn]._step_nua>

*endif

*enddo

send

6.2.9 REFERENCES

6.2-1 Stewart, Caroline B.: The Computational Structural Mechanics Testbed UJer's

Manual. NASA TM-100644, October 1989.

6.2-2 Felippa, Carlos A.: The Computational Structural Mechanics TeJtbed Architecture:

Volume II. Directives. NASA CR 178385, February 1989.

Revised 5/24/90 CSM Testbed Procedures Manual 6.2- 5



POST Post-Processing Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

6.2- 6 CSM Testbed Procedures Manual Revised 5/24/90



Postprocessing Procedures STRESS

6.3 Procedure STRESS

6.3.1 GENERAL DESCRIPTION

Procedure STRESS drives the calculation of stress resultant and strain component datasets

for either linear or nonlinear analyses. The user may select recovery of stress resultants or

strain components at element centroids, element nodes, element integration points or at
all three locations.

6.3.2 PROCEDURE USAGE

Procedure STRESS may be used by preceding the procedure name by the *call directive,

and following it by a list of arguments separated by semicolons (;) and enclosed in paren-

theses. Procedure arguments are order-independent, and most have default values thus

making them optional. The formal syntax is as follows:

*call STRESS ( argl = vall; arg2 = va12 ; ...)]

For procedure STRESS, the following table lists each argument, its default value and mean-

ing.

Argument Default Value

CONS_SET 1

COROTATION 1

DIM 2

DIRECTION i

DISP_DS STAT.DISP

LOAD_SET 1

LOCATION NODES

NL_GEOM 0

_..STEPS 1

NVAL..METH 3

PRINT <false>

ROTN_DS STAT.ROTN

SMOOTH <false>

STEPS 0

STRAIN <false>

STRESS <true>

Meaning

Constraint set number

Corotational flag (0=OFF, 1-ON)

Intrinsic element spatial dimension (2=2D, 3=3D)

Direction for element stress and strain recovery

First two words of displacement dataset name
Load set number

Location of the evaluation points for dement stresses

Geometric nonlinearity flag

Total number of steps requiring stress calculations

Method to be used for global smoothing

Flag to print computed results

First two words of rotation-vector data.set name

Flag to compute smoothed global stresses

Step numbers

Flag to compute dement strains

Flag to compute dement stresses

Tables 6.3-1, 6.3-2, and 6.3-3 list the datasets used or created by procedure STRESS, the

procedures invoked by procedure STRESS, and the processors invoked by procedure STRESS,

respectively.

Revised 5/11/90 CSM Testbed Procedures Manual 6.3- 1

PRECEDING PAGE BLAI_ NOT FILMED



STRESS Postprocessing Procedures

Table 6.3-1

Dataset

ES.SUMMARY

Datasets Input/Output by procedure STRESS

PROP.BTAB.,

STAT.DISP.i.j t

Description

ES Processor Status

Material/Section Properties

System Displacement Vector

STRS.<ES_NAME>.i.j_ = Element Stresses

t i = <load_set> and j = <cons_set>

Lib Input Output

1 ,/ j

1 j

1 j

1 ,/

Table 6.3-2

Procedure Type

ES External

STRESS Internal

Sub-Procedures Invoked by procedure STRESS

Function

Element utility procedure

Computes element stresses

Table 6.3-3

Procedure

ESi

Processors Invoked by procedure STRESS

Type

External

_unction

Element processors based on GEP

NVAL Internal Perform global smoothing

PESR Internal Print element stresses

Print nodal stressesInternalPNSR

6.3.3 ARGUMENT DESCRIPTIONS

6.3.3.1 CONS_SET

Constraint set number (default: 1). This argument selects which constraint set to use in

solving the linear system of equations.

6.3- 2 CSM Testbed Procedures Manual Revised 5/11/90



Postprocessing Procedures STRESS

6.3.3.2 COROTATION

Corotational update switch for large-rotation problems (default: <true>). This switch

, ,I wlt_lt _lt_ ,tvulv_ ,ul_ _l_uA_lt.._ _,_ requir_ corotationsnoulu bc set to <true) __.t__,t_ model :....i....,._:__,I.... ,_ ,I._, • •

for geometric nonlinearity.This is true of most beam and shellelements, and may be

true for some solid(3D) elements used to model shellstructures.Consult the appropriate

element processor (ES£) sectionin the CSM Testbed User's Manual (see ref. 6.3-1)for

specificguidelines.

6.3.3.3 DIM

Intrinsic element spatial dimension (default: 2). This argument selects the element spatial
dimension: 2 for a two-dimensional element or 3 for a three-dimensional solid element.

6.3.3.4 DIRECTION

Direction for the element stress (stress resultant) output (default: 1). The element stress

coordinate system will be used if DIRECTION=0. The material axes (z,_,, y,,,, z,,,) will be

used if DIRECTIONffil; the material axes (y,,, z,_,, z,,) will be used for DIRr..OTION=2; and

the material axes (z,,, z,,, y,_) will be used for DIR_.CTI01I=3. For isotropic materials, the

first material axis is replaced by the corresponding global axis (see Section 4.3.3.9 of the

CSM Testbed User's Manual, ref. 6.3-1).

6.3.3.5 DISP_DS

First two words of the data.set name for the displacement solution (default: STAT. DISP).

6.3.3.6 LOAD_SET

Load set number (default: 1). This argumentselectswhich load set to use asa fight-hand
side vector.

6.3.3.T LOCATION

Location of the evaluation points for the element stresses or stress resultants (default:

NODES). The element stresses or stress resultants are optionally computed. This argument

may have four values. For LOCATION=INTEG_PT5, the element stresses are computed at

the element integration points. For LOCATION=CF__TROIDS, the element stresses are com-

puted at the dement centroid. For LOCATION=NODES, the element stresses are extrapolated

from the integration points to be element nodes. These dement nodal stresses will be

discontinuous across interelement boundaries. For L0CATIONflLL, the dement stresses are

computed at the dement integration points, element centroid, and dement nodes.

6.3.3.8 NL_GEOM

Geometric nonlinearity level: 0, 1, or 2 (default =2). A value of zero means that the

problem is geometrically linear; a value of one means that the geometric nonlinearity will

be handled globally (i.e., using corotational updates only); and a value of two means that

Revised 5/11/90 CSM Testbed Procedures Manual 6.3- 3



STRESS Postprocessing Procedures

the nonlinear element strain-displacement relations will be used in addition to any global

treatment of geometric nonlinearity. If COROTATION ffi <true), options 1 and 2 refer to

first-order and second-order corotation, respectively. The latter option can be significantly

more accurate than the former for a given finite element model -- depending on which

element types are involved.

6.3.3.9 NUH_STEPS

Number of steps for stress recovery (default: 1).

6.3.3.10 NVAL_METH

Select method to be used for computing the smoothed global stresses (default: 3). Proces-

sor NVAL is used to compute the smoothed global stresses using the method defined by the

argument NVALJIETIt (see Section 12.5 of reference 6.3-1). If NVAL_HETHffil, a topological

interpolation of the element centroidal stresses is performed, and the element stresses must

have been computed using LOCATIONfCENTROIDS. If NVAL_RETH=2, a projected least-squares

interpolation of the element centroidal stresses is performed, and the stresses must have

been computed using LOCATION=CENTROIDS. If NVAL_HETH=3, the element nodal stresses

(discontinuous across interelement boundaries) are averaged, and the element stresses must

have been computed using LOCATION=NODES. Using LOCATIONfALL will generate element

stresses at the element centroids, element nodes, and element gauss points. Acceptable

values of location for specific values of NVAL_METHare as follows:

NVAL_NETH Location

1 CENTROIDS, ALL

2 CENTROIDS, ALL

3 NODES, ALL

6.3.3.11 PRINT

Flag to print computed results (default: <false>). If the argument PRINT=<true>, then

the element stresses and/or nodal stresses will be printed.

6.3.3.12 ROTN_DS

First two words of the dataset name for the rotation solution (default: STAT.ROTN).

6.3.3.13 SHOOTH

Flag to compute smoothed global stresses (default: <false>). If the argument

SH00THf<true>, then smoothed global stresses will be computed by processor NVAL using

the method defined by the argument NVAL./qETH.

6.3.3.14 STEPS

Step numbers for stress recovery (default: 0). This argument is an array of length

NUN_STEPS. If the argument STEPS=0, the linear solution is used.

6.3- 4 CSM Testbed Procedures Manual , Revised 5/11/90
.

t



Postprocessing Procedures STRESS

6.3.3.15 STRAIN

Flag to compute element stresses or stress resultants (default: <false>). If the argument

.............. - ......................... _ vwsxA _ _.OJ_AA_q.L_l.*_L _u _JkA%, X_Jl.,_OAIJkJL f.k_LL_L AAk bAk_

direction specified by the arguments LOCATION and DIRECTION.

6.3.3.16 STRESS

Flag to compute element stresses or stress resultants (default: <false>). If the argument

STRESS=<true>, then the element stresses will be computed at the location and in the

direction specified by the arguments LOCATION and DIRECTION.

6.3.4 USAGE GUIDELINES AND EXAMPLES

Procedure STRESS may be used by preceding the procedure name by the *call directive.

Procedure arguments may be changed from their default values by including any or all

of the arguments and their new values when the procedure is called. A space or blank

is required between the end of the procedure name and the left parenthesis. If the default

values of the procedure arguments are to be used, then only the procedure name is required.

*call STRESS ( STRESS = <true> ; --

STRAIN ffi<false> ; --

LOCATION = CENTROIDS ; --

DIRECTION = 0 ; --

NL_GEOM = 0 ; --

CORO = 1 ; --

LOAD_SET = 1 ; --

CONS_SET ffii ; --

BUM_STEPS = I ; --

PRINT = <false> ; --

NVAL_METH = 3 ; --

SMOOTH = <false> ; --

DIM = 2 ; --

STEPS = 0 ; --

DISP_DS = STAT.DISP ; --

ROTN_DS = STAT.ROTN )

6.3.5 LIMITATIONS

Applicable only to elements implemented using the generic element processor template.

Procedure STRESS assumes that all datasets either required or generated reside on library

one (LDI = 1).

Revised 5/11/90 CSM Testbed Procedures Manual 6.3- 5



STRESS Postprocessing Procedures

6.3.6 ERROR MESSAGES AND WARNINGS

An error message is printed and global stress smoothing will not be performed if the values
of NVAL_NETHand LOCATION are inconsistent. Processing of element data will continue. See

Section 12.5 of reference 6.3-1 for usage of processor NVAL.

6.3.7 PROCEDURE FLOWCHART

STRESS (main procedure)

ES (calculate element stresses and/or strains)

6.3.8 PROCEDURE LISTING

*procedure STRESS ( STRESS ffi <true> ; --

STItAIN = <false> ; --

LOCATION ffi CENTKOIDS ; --

DIRECTION ffi0 ; --

NL_GEOM = 0 ; --

COKO = 1 ;printz<false>; --

LOID_SET = 1 ; --

CONS_SET = 1 ; --

NUN_STEPS ffi 1 ; --

SMOOTH ffi <false>; NVAL_NETH ffi 3; --

DIN ffi 2 ; --

STEPS = 0 ; --

DISP.DS z STAT.DISP ; --

KOTN_DS = STAT.KOTN --

*remark *****eees,eee**

*remark STRESS IECOVEIY

*remark ,**********,,,e

Loop on Solution Steps

*def/i steps [1 : [ntm_steps] ] = [steps]

*do 81s : 1, [him_stops]

*dof/l Istop = <steps[<$1s>]>

*if <<Istep> /ne O> /then

*def/m DS_SFI ffi <istop>

*elms

*dof/a DS_SFX ffi [load_set]. [cons_set]

*endif

*if < <[STIIIN] /no (false>> /or <[STRESS] /he <false>> > /then

Define Element Stress/Strain Option and Dmtaset Names

6.3- 6 CSM Testbed Procedures Manual Revised 5/24/90



Postprocessing Procedures STRESS

*if < <[STRAIN] /eq

*def/p function

*def/a STEIIN_DS

*dof/a STKESS_DS

*elseif < <[ST3tAIN]

*def/p function

*def/a STKIIN_DS

*def/a ST3LESS_DS

<true>> /and <[STRESS] /oq <false•• > /then

ffi 'FO_ STRAIN'

= <DS_SFX>

Z J

/eq <true•> /and <[STILESS] /eq <true>> • /then

ffi 'FOKH STRESS'

= <DS_SFX•

= <DS_SFI>

*elseif < <[STRAIN] /eq <false>> /and <[STEESS] /oq <true>> • /then

*def/p function ffi 'FORJ4 STRESS'

*def/a STKAIN_DS ffi ' '

edof/a STKESS_DS = <DS_SFI•

*ondif

Invoke Element Processors to Fern Stress/Strain

eif< ifeqs([location];ALL) • /then

Calculate the stresses/strains at elonent nodes, centrolds,

and gauss points

*do $iloc ffi 1,3

*if < ifeqs(<$iloc>;1) • /then

*dof/a location = CENTEOIDS

*olsoif < ifoqs(<$iloc>;2) • /then

*dof/a location = NODES

*elsoif < ifeqs(<Jiloc>;3) • /then

*def/a location = INTEG_PTS

eondif

ecall ES (

*enddo

*else

function = <function> ; --

es_nl_geoa ffi [nl_seoa] ; --

as_core : [core] ; --

es_dis_ds = [DISP_DS].<DS_SPX> ; --

es_rot_ds = [KOTN_DS].<DS.SFX> ; --

es_str_dir = [DIRECTION] ; --

es_str_loc : <location• ; --

es_strain_ds : <strain_ds> ; --

es_stress_ds : <stress_ds>

Calculate the stresses/strains only at [LOCATION]

*call ES (

*endif

function = <function> ; --

es_nl_geoa : [nl_geoa] ; --

as_core = [core] ; --
es_dis_ds = [DISP_DS].<DS_SFI> ; --

es_rot_ds : [KOTN_DS].<DS_SFX> ; --

es_str_dir : [DIRECTION] ; --

es_str_loc : [LOCATION] ; --

es_strain_ds : <strain_ds> ; --

es_stress_ds : <stress_ds>

Revised 5/24/90 CSM Testbed Procedures Manual 6.3- 7



STRESS Postprocessing Procedures

Print the Elonent Stresses

*if < [print] > /then

sit < ifeqs([location];ILL) > /then

edef/i stress_lee = 0

*elsoif < ifoqs([location];CENTKOIDS) > /then

edef/i stress_lee = 1

selseif < tfeqs([location];NODES) > /then

*def/i stress_loc ffi 2

*olseif < tfoqs([location];INTEG_PTS) > /then

*def/i stross_loc = 3

*endil

[xqt peer

SELECT /81obalz[direction] /LOClTIONf<stress_loc>

*if < <tstop> /oq O> /then

PlINT /LO£D_SETffi[load_set] /CONSTKIINTf[cons_sot]

eolse

PKINT /LOAD_SETf<istop> /CONSTKAINTffi0

*ondif

STOP

*ondif

*endif

Calculate nodal stresses using processor NViL

*if < [SMOOTH] > /then

*if < ifeqs([LOCATION];ALL) > /then

*ale,if /then < <[NVIL_METH] /eq 3> /and --

<ifoqs([LOCATION];NODES)>

*elseif /then < <[NVAL_NETH] /ne 3> /and --

<ifeqs([LOCITION];CENT_OIDS)> >

*else

*remark ********ee**ERROK *************************

erenark Stress evaluation point not consistent gith

erenark stress sheathing aethod selected.

*renark 0***,,.8*********************************.8

*Jump :EXIT

*endif

*def/a STKS s STKS.<es_nans>.<stross_ds>

[xqt NVIL

reset aethz[NVIL_METH], DIN=[DIM], DS=<ST_S>

reset ftrst:l, lastffi<os_nstr>

*if < [NVIL_NETH] /eq 3 > /then

*dof/a KEC = iODES_S[direction]

*else

*def/a KEC = CENTEOIDS_S[direction]

*endif

reset KECNIME:<KEC>

STOP

Print the Nodal Stresses

6.3- 8 CSM Testbed Procedures Manual Revised 5/24/90



Postprocessing Procedures STRESS

*if < [print] > #then

[xqt pnsr

*if _ <£stop> #oq 0 > #than

PIIlrr /loadffi[load=sotl /constraintf[cons_sot] /nothodf[nval_noth]

*o18o

PKIrr /loadffi<istep> #constrlintffi0 /nethodf[nva]._neth]

*ondi_

STOP

:EXIT

*ondi_

*ondif

*enddo

*end

6.3.9 REFERENCES

6.3-1 Stewart, Caroline B.: The Computational Structural Mechanic8 TeJtbed User'J

Manual. NASA TM-100644, October 1989.

Revised 5/24/90 CSM Testbed Procedures Manual 6.3- 9



STRESS Postprocessing Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

6.3- 10 CSM Testbed Procedures Manual Revised 5/24/90



Postprocessing Procedures TOTAL_LOAD

6.4 Procedure TOTAL_LOAD

6.4.1 GENERAL DESCRIPTION

Procedure TOTAL_LOAD sums the reaction forces to determine the total applied load for

problems with applied displacements for either linear or nonlinear analyses. The computed

total load may be divided by a constant and scaled by a second constant.

6.4.2 PROCEDURE USAGE

Procedure TOTAL_LOAD may be used by preceding the procedure name by the *call direc-

tive, and following it by a list of arguments separated by semicolons (;) and enclosed in

parentheses. Procedure arguments are order-independent, and most have default values

thus making them optional. The formal syntax is as follows (see example usage in Section

6.4.4):

l* an TOTALLOAD( . gl *v ll ; .rg2= ; ...)l
t J

For procedure TOTAL_LOAD, the following table lists each argument, its default value and

meaning.

Argument Default Value

INPUT..LDI 1

0UTPUT_LDI 1

NL_RES./.DI 3

LOAD_SET 1

CONS_SET 1

NSTEPS 0

BEGIN_STEP 1

END_STEP -1

LD_DIR 1

EQUIL_CK 0

EA 1.0

FAC 2.0

NAME1 'STAT'

NAME2 'REAC '

INPUT_DS ' '

0UTPUT_DS ' '

NL_RES_DS ' '

INPUT-REC 'DATA '

OUTP_r_REC ' '

0UTPUT_FILE ' '

Meaning

Input library number

Output library number

Library containing nonlinear results dataset
Load set number

Constraint set number

Total number of load steps to be processed

First load step to be processed

Last load step to be processed

Load direction

Flag enabling an equilibrium check

Scaling constant

Scaling constant

First word of input dataset name

Second word of input dataset

Full name of input dataset

Full name of output dataset

Full name of dataset containing nonlinear results

Input dataset record key

Output record key

Output file name

Table 6.4-1 lists the datasets used by procedure TOTAL_LOAD.

Revised 5/11/90 CSM Tcstbed Procedures Manual 6.4- 1

PRECEDING PAGE BLAr_K NOT FILMED



TOTAL_LOAD Postprocessing Procedures

Table 6.4-1

Dataset

STAT.REAC.i.jt

JDF1.BTAB.1.8

Datasets Input/Output by procedure TOTAL_LOAD

Description Lib Input Output

INPUT_LDI _/

INPUT_LDI _/

Reaction Force Vector

Number of nodes and active d.o.f.

t i = <load_set> and j = <cons_set> for linear analyses
i = <step> and j=O for nonlinear analyses

6.4.3 ARGUMENT DESCRIPTIONS

6.4.3.1 INPUT_LDI

Input library number (default: 1).

6.4.3.20UTPUT_LDI

Output library number (default: t). This argument sets the number of the output data

library if an output dataset name (OUTPUT._VS) has been set. If an output dataset name

has not been specified, this argument is ignored.

6.4.3.3 NL_RES_LDI

Library containing nonlinear results dataset (default: 3). This argument is used only if

the number of nonlinear load steps is to be calculated automatically (i.e., NSTEP$ = ALL).

In this case, the number of load steps is calculated based on the number of records found

in the results dataset contained in the NL_RES_LDI library.

6.4.3.4 LOAD_SET

Load set number (default: 1). This argument selects the load set to be used as a right-hand

side vector. LOAD_SET is an active argument only if NSTEPS ffi 0 and END_STEP = -1 (the

default values).

6.4.3.5 CONS_SET

Load set number (default: 1). This argument selects the constraint set to be used in the

solution of the linear system of equations. CONS_SET is an active argument only if NSTEPS

ffi 0 and END_STEP ffi -1 (the default values).

6.4.3.6 NSTEPS

Number of steps to be processed (default: 0). The number of load steps may be set to

an integer or to the character string ALL. If NSTEP5 = ALL, the number of load steps to

be processed is calculated based on the information contained in the NL_RES..VS in library

NL_P,ES_LDI. For use in linear static analyses, NSTEP5 must be set to zero.

6.4- 2 CSM Testbed Procedures Manual Revised 5/11/90



Postprocessing Procedures TOTAL_LOAD

6.4.3.7 BEGIN_STEP

First load step to be processed (default: 1). This argument is active only if END_STEP is

o_o.to,- the. _,_._ ;,_ whirh ca_P ]_.A _to_ BEGIN_STEP through rNn _T_D _,;11 t, ......... A

6.4.3.8 END_STEP

Last load step to be processed (default: -1). This argument is active only if it is greater

than zero in which case, load steps BEGIN_STEP through END_STEP will be processed.

6.4.3.9 LD_DIR

Load direction (default: 1). This argument defines the direction in which to perform the

summation. The value of LD_DIR must be an active degree of freedom (i.e., 1, 2, 3, 4, 5,

or 6 and not specified as globally constrained in TAB/START).

6.4.3.10 EqUIL_CK

Flag enabling an equilibrium check (default: 0). The total load is calculated by summing

the absolute value of the nodal contributions in the direction of LD_DIIt. When EqUIL_CK

is set to one (1), the absolute value is not used when performing the summation.

6.4.3.11 E__A

Scaling factor (default: 1.0). Frequently the total load may be normalized by the exten-

sional stiffness or critical buckling load. The total will be divided by the scaling factor EA

before being saved or written out.

6.4.3.12 FA_C

Scaling factor (default: 2.0). The default value of 2.0 will be used in most applications

where the total load is being calculated. This is due to the use of the absolute value in

the summation which essentially doubles the applied load. Frequently for finite element

models with symmetry conditions imposed, the total load is only half the value of the

summed reaction forces. The total load will be divided by the scaling factor FAC before

being saved or written out.

6.4.3.13 NAME1

First word of reaction force dataset name (default: STAT). This is an active argument only

if INPUT_DS ffi ' ' (the default value).

6.4.3.14 NAME2

Second word of reaction force dataset name (default: REAC). This is an active argument

only if INPIYr_DS = , ' (the default value).

Revised 5/11/90 CSM Testbed Procedures Manual 6.4- 3



Postprocessing Procedures TOTAL'LOAD

*call TOTAL_LOAD ( --
nsteps = ALL ; -- . process all load steps
id_dir = 3 ; -- . direction of load is 3

name1 = 'REAC' ; -- . first word of input dataset
name2 = 'FORC' ; -- . second word of input dataset
output_file = 'sum_load.dat' ) . output file name

6.4.5 LIMITATIONS

None.

6.4.6 ERROR MESSAGES AND WARNINGS

None.

6.4.7 PROCEDURE FLOWCHART

Procedure TOTAL_LOADis self-contained and ca]Is no other procedures.

6.4.8 PROCEDURE LISTING

*procedure TOTAL_LOAD ( --

input_ldi ffi 1 ; --

output_ldi ffi 1 ; --

nl_res_idl = 3 ; --

load_set = I ; --

cons_set : i ; --

nsteps : 0 ; --

begin_step : 1 ; --

end_step = -1 ; --

ld_dir : 1 ; --

equil_ck = 0 ; --

gA : 1.0 ; --

fac = 2.0 ; --

nanel : 'STAT' ; --

nane2 : 'R_AC' ; --

_mput_ds : ''' '''; --

output_ds : ''' '''; --

nl_res_ds : 'ES*' ; --

input_rec : 'DATA' ; --

output_roc = 'TOTAL_LOAD';

output_file : ''' ''')

Input library

Output library

Library containing nonlinear results ds

load set (linear only)

constraint set (linear only)

nusber of load steps to process

first load step to process

last load step to process

direction of load

if = O, total load; if = I, check equil.

EA (to get P/El)

divide final load

first word of input dataset

second word of input datasot

full naso of input dataset

output dataset

nonlinear results datasst name

input dataset record key

-- . output record

output file nase

[xqt LOAD

reset inlibf[input_ldi],

reset isetf[cons_set].

reset nstepsf[nsteps],

reset idirf[ld_dir],

outlib= [output_Idi],

ncon: [cons_set]

strt= [begln_stop],

eqck= [equil_ck]

reslib: [nl_res_ldi]

stop= lend_step]

Revised 5/23/90 CSM Testbed Procedures Manual 6.4- 5

PRECEDING PAGE BLANK NOT FILMED



TOTAL_LOAD Postprocessing Procedures

*end

reset ea=[E1],

reset nl=[naael],

reset dsln=[Input_ds],

reset mint[input_real,

reset outfil=[output_file]

stop

l fat= [fac]

n2= [naae2]

dsout= [output_ds],

rnout = [output_rec]

dsres=[nl_res_ds]

6.4.9 REFERENCES

None.

6.4- 6 CSM Testbed Procedures Manual Revised 5/23/90



Utility Procedures

7.0 Utility Procedures

The procedures documented in this chapter are convenient utility procedures that are

aly , 1__....u_ztutr"lin many an 8i8 ta.sa_.

A summary of the procedures found in this chapter is provided in Table 7.0-1.

Procedure Name

CONSTRAIN

Table 7.0-1 Utility Procedures

Utility Description

Impose Scaled Applied Displacements

COPY_DS Copy a Data,set and Rename

EIGEN Perform Eigenvalue Analysis

ES Generic Element Processor Control

FACTOR Factor (Decompose) System Stiffness Matrix

FORCE Form Force Vectors

IMPERFECTION Superpose Initial Geometric Imperfection

INITIALIZE Model initialization

MASS Form Mass Matrix

MODEL_SUIOL_RY Model Summary Information

PRINT_EFIL Print Selected Segments of EFIL Dataset

RESEQUENCE Resequence Nodal Equations

SOLVE Solve System of Equations

STIFFNESS Form Stiffness Matrix

SWITCH_DS Switch the Names of Two Datasets

Revised 5/24/90 CSM Testbed Procedures Manual 7.0- 1



Utility Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

7.0- 2 CSM Testbed Procedures Manual Revised 5/24/90



Utility Procedures CONSTRAIN

7.1 Procedure CONSTRAIN

7.1.1 GENERAL DESCRIPTION

Procedure CONSTRAIN scales the applied motion vector. This procedure is generally used

for nonlinear analyses with applied displacements.

7.1.2 PROCEDURE USAGE

Procedure C01STRAIN is used by preceding the procedure name by the *call directive,

and following it by a list of arguments enclosed in parentheses. Procedure arguments are

order-independent, and most have default values thus making them optional. The formal

syntax is as follows:

,call CONSTRAIN ( argl = vall; arg2 = val2 ; ...)[

where argl and arg2 represent argument names, and vall and val2 represent their cor-

responding values. Note that semi-colons are required between arguments, and a double

dash (--) may be used to continue the argument list on the next line.

The allowable arguments for procedure CONSTRAIN are summarized in the following table,

along with their default values (if they exist). Note that arguments without defaults are

generally mandatory, while those with defaults are generally optional. Exceptions to this

rule are noted in the following section under detailed argument descriptions.

Revised 5/10/90 CSM Testbed Procedures Manual 7,1- 1

PRECEDING PAGE BLAI_K ['lOT FILMED



CONSTRAIN Utility Procedures

For procedure CONSTRAIN, the following table lists each argument, its default value and

meaning.

Argument Default Value

APPLIED_HOTI0$

CONSTRAINT_SET 1

DISPLACEMENT

LDI 1

LOAD_FACTOR 1.0

Meaning

Name of applied motion dataset
Constraint set number

Name of scaled applied motion dataset

Logical device index
Load factor

7.1.3 ARGUMENT DESCRIPTIONS

7.1.3.1 APPLIED_NOTION

Full dataset name of the basic applied displacements (e.g., APPL.MOTI.I.1).

7.1.3.2 CONSTRAINT.SET

Constraint set number (default: 1). This argument selects which constraint set to be used

in solving the linear system of equations.

7.1.3.3 DISPLACEMENT

Full dataset name of the scaled applied displacements (e.g., TOT.DISP.1).

7.1.3.4 LD___I

Logical device index (default: 1).

7.1.3.5 LOAD_FACTOR

Load factor (default: 1.0). This argument defines the load factor or scaling constant to

be used to scale the basic applied motions.

7.1.4 USAGE GUIDELINES AND EXAMPLES

Procedure CONSTRAIN is used by preceding the procedure name by the *call directive.

Procedure arguments may be changed from their default values by including any or all

of the arguments and their new values when the procedure is called. A space or blank

is required between the end of the procedure name and the left parenthesis.

*call CONSTRAIN ( LDI = 1 ; CONSTRAINT_SET = I

LOAD_FACTOR ffi1.0 ;
APPLIED_MOTION ffiAPPL.MOTI.I.1;
DISPLACEMENT = TOT.DISP.1 )

7.1- 2 CSM Testbed Procedures Manual Revised 5/23/90



Utility Procedures CONSTRAIN

7.1.5 LIMITATIONS

Procedure ¢0NSTI_tIN assumes that processor VEC is executing.

7.1.6 ERROR MESSAGES AND WARNINGS

None•

7.1.7 PROCEDURE FLOWCHART

Procedure CONSTRAIN is self-contained with no subprocedures.

7.1.8 PROCEDURE LISTING

*procedure CONSTRAIN ( ldi = 1 ; --

constraint_set ffi 1 ; --

load_factor ffi 1.0 ; --

applied_motion ; --

dlsplacenont )

• Iapose Specified Displaceaent Constraints (Single Point)

*if < <spe©_disp_flag> > /then

SPECIFY [load_factor] [applied_aotion] -> [displaceaent]

eondif

Send

7.1.9 REFERENCES

7.1-1 Stewart, Caroline B.: The Computational Structural Mechanic8 Testbed User'8

Manual. NASA TM-100644, October 1989.

Revised 5/24/90 CSM Testbed Procedures Manual 7.1- 3



CONSTRAIN Utility Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

7.1- 4 CSM Testbed Procedures Manual Revised 5/24/90



Utility Procedures COPY_DS

7.2 Procedure COPY_DS

7.2.1 GENERAL DESCRIPTION

Procedure COPY.,DS copies a dataset in a given library to another data.set in possibly a

different library. This procedure only uses directives from the command language (see

reference 7.1-1).

7.2.2 PROCEDURE USAGE

Procedure COPY_J)$ may be used by preceding the procedure name by the *call directive,

and following it by a list of arguments enclosed in parentheses. Procedure arguments are

order-independent, and most have default values thus making them optional. The formal

syntax is as follows:

*call COPY_DS ( argl = vall ; arg2 = va12 ; ...)]

where argl and arg2 represent argument names, and vall and val2 represent their cow-

responding values. Note that semi-colons are required between arguments, and a double

dash (--) may be used to continue the argument list on the next line.

The allowable arguments for procedure C0PYA)S are summarized in the following table,

along with their default values (if they exist). Note that arguments without defaults are

generally mandatory, while those with defaults are generally optional. Exceptions to this

rule are noted in the following section under detailed argument descriptions.

For procedure COPY..DS, the following table lists each argument, its default value and mean-

ing.

Parameter

FROM.DS

TO_DS

Default Value Meaning

Source dataset name

Target dataset name

FROM_LDI 1

T0_LDI 1

Source logicaldeviceindex

Target logicaldevice index

7.2.3 ARGUMENT DESCRIPTIONS

7.2.3.1 FROM.,LDI

Source logical device index (default: 1).

7.2.3.2 FROM_DS

Source dataset to be copied.

Revised 5/8/90 CSM Testbed Procedures Manual 7.2- 1

PRECEDING PAGE BLANK i'_OT FILMED



COPY_DS Utility Procedures

7.2.3.3 TO_I.DI

Target logical device index (default: 1).

7.2.3.4 TO_DS

Target dataset for copying source data.set into.

7.2.4 USAGE GUIDELINES AND EXAMPLES

Procedure C0PY_VS may be used by preceding the procedure name by the *call directive.

Procedure arguments may be changed from their default values by including any or all

of the arguments and their new values when the procedure is called. A space or blank

is required between the end of the procedure name and the left parenthesis. If the default

values of the procedure arguments are to be used, then only the procedure name is required•

*procedure COPY_DS ( from_idA=l; from_ds; to_ldi=l; to_ds )

?.2.5 LIMITATIONS

None.

7.2.6 ERROR MESSAGES AND WARNINGS

None.

7.2.7 PROCEDURE FLOWCHART

Procedure C0PY_DS is self contained with no subprocedures.

7.2.8 PROCEDURE LISTING

*procedure COPY_DS ( froa_ldi=l; fron_ds; to_ldiffil; to_d, )

• CLAMP Procedure to copy dataset and renan,

*if < [fron_ldi] /eq [to_ldi] > /then

*def/i ldix = 30

*open/scratch (ldix>

scopy <ldix> • [fron_ldi]. [fron_ds]

srenane <ldix>. [fron_ds] = [to_d,]

*copy [to_ldA] • <ldix> . [to_d,]

*close <ldtx>

*oleo

*copy [to_ldi] = [from_IdA]. [_ron_ds]

*renaae Ire_IdA]. Cfron_ds] ffi Cto_ds]

7.2- 2 CSM Testbed Procedures Manual Revised 5/24/90



Utility Procedures COPY_DS

REFERENCES

Felippa, Carlos A.: The Computational Structural MechanicJ

Volume H. Directivea. NASA CR 178385, February 1989.

Te_tbedArchitecture:

Revised 5/24/90 CSM Testbed Procedures Manual 7.2- 3



COPY_DS Utility Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

7.2- 4 CSM Testbed Procedures Manual Revised 5/24/90



Utility Procedures EIGEN

7.3 Procedure EIGEN

7.3.1 GENERAL DESCRIPTION

Procedure EIGEN solves a linear eigenvalue problem using an eigensolver defined by the

global macrosymbol eigensolver_uame. If eigensolver_name is EIG or EIG2, a matrix

iteration procedure with subspace iteration is used as implemented in processors EIG and

EIG2, respectively (see Section 9.1 of reference 7.3-1). If eigensolver_uame is defined

to be LAN, a Lanczos algorithm implemented in processor LAN will be used (see Section

9.2 of reference 7.3-1). If eigensolver..uame is defined to be LANZ, the alternate Lanczos

method implemented in processor LANZ will be used (see Section 9.3 of reference 7.3-1).

7.3.2 PROCEDURE USAGE

Procedure EIGEN is used by preceding the procedure name by the *call directive, and

following it by a list of arguments enclosed in parentheses. Procedure arguments are

order-independent, and most have default values thus making them optional. The formal
syntax is as follows:

,call EIGEN ( argl = vall ; arg2 = val2 ; ...)I

where argl and arg2 represent argument names, and vall and val2 represent their cor-

responding values. Note that semi-colons are required between arguments, and a double

dash (--) may be used to continue the argument list on the next line.

The allowable arguments for procedure EIGF_ are summarized in the following table, along

with their default values (if they exist). Note that arguments without defaults are generally

mandatory, while those with defaults are generally optional. Exceptions to this rule are

noted in the following section under detailed argument descriptions.

Revised 5/23/90 CSM Testbed Procedures Manual 7.3- 1

PRECF.DIi'_IGPAGE BLA,_ I'_OT F;LMED



EIGEN Utility Procedures

For procedure EIGEN, the following table lists each argument, its default value and meaning.

Argument Default Value

CONSTRAINT_SET 1

LDI 1

LOAD_SET 1

KNAME K

PROBLEIq_TYPE 'BUCK'

HAS S_TYPE 'CONSISTENT '

ERROIt_TOL 1.OE-4

N_MODES 1

INIT_VECTORS 0

SHIFT O.0

MAX_ITERS 20

Meaning

Constraint set number

Logical device index
Load set number

First word of the name of the dataset

containing the assembled stiffness matrix.

Define problem type for either buckling
or vibration.

Form of mass matrix (consistent or diagonal)

Error tolerance for eigenvalue convergence

Number of converged eigenmodes desired
Number of iteration vectors

Eigenvalue shift

Maximum number of iterations

Tables 7.3-1 and 7.3-2 list the datasets used or created by procedure EIGEN and the pro-

cessors invoked by procedure EIGEN, respectively.

7.3- 2 CSM Testbed Procedures Manual Revised 5/23/90



Utility Procedures EIGEN

Table 7.3-1

Data.set

AMAP..ic2.isize

Description

Factorization Map for INV

Datasets Input/Output by procedure EIGEN

Input

J

Output

CON..j Constraints _/

INV.<KNAME>.j Factored Stiffness Matrix v/

JDF1.BTAB.1.8 Model Summary x/

JSEQ.BTAB.2.1? Nodal Elimination Sequence _/

KMAP..nsubs.ksize Model Connectivity Map x/

<KNAME>.SPAR.jdf_ Assembled Stiffness Matrix v /

<KGNAME>.SPAR.jJf_ Assembled Geometric Stiffness Matrix v/

<MNAME>.SPAR.jd/_ Assembled Consistent Mass Matrix x/

VIBR.MODE.i.fl Vibration eigenmodes v /

VIBR.EVAL.i.fl Vibration eigenvalues v/

BUCK.MODE.i.fl [Buckling eigenmodes v/

BUCK.EVAL.i.fl Buckling eigenvalues

i = <load_set> and j = <cons_set>

,/

Table 7.3-2 Processors Invoked by procedure EIGEN

Procedure

EIG/EIG2

Type

Internal

LAN External Solves eigenproblem uing Lanczos method

LANZ External Solves eigenproblem using Lanczos method

GETK Internal

Function

Solves eigenproblem using subspace iteration

Converts nodal block matrix format to compact sparse for-
mat

Revised 5/23/90 CSM Testbed Procedures Manual 7.3- 3



EIGEN Utility Procedures

7.3.3 ARGUMENT DESCRIPTIONS

7.3.3.1 PROBLEM_TYPE

l)elines problem type (default: 'BUCK'). This argument selects tile type of eigenproblem

to solve either buckling (BUCK) or vibration (VIBR).

7.3.3.2 ECON_SET

Constraint set number for eigenproblem (default:I). This argument selectswhich con-

straintset to he used in solvingthe cigenproblem which may be differentfrom that used

for determining the prestressstate.

7.3.3.3 LDI

Logicaldeviceindex (default:1).

7.3.3.4 LOAD_SET

Load set number (default: I). This argument selectswhich load set to be used as a

right-hand sidevector.

7.3.3.5 KNAME

First word of the dataset name containing the assembled stiffness matrix

(default: K).

7.3.3.6 KGNAME

First word of the dataset name containing the assembled geometric stiffness matrix (de-

fault: KG).

7.3.3.7 MNAME

First word of the dataset name containing the assembled mass matrix (default: CF_hl).

7.3.3.8 MASS_TYPE

Form of mass matrix (default: 'CONSISTENT'. This argument defines the form of the mass

matrix to be either consistent or diagonal.

7.3.3.9 ERROR_TOL

Error tolerance for convergence of eigenvalues (default: 1.0E-4).

7.3.3.10 N_MODES

Number of converged eigenmodes desired (default: 1).

7.3- 4 CSM Testbed Procedures Manual Revised 5/23/90



Utility Procedures EIGEN

7.3.3.11 INIT_VECTORS

Number of initial iteration vectors (default: 0). If the default wlue is used, then the
number of initial_ iteration vectors will be the _rni_.m,,,_ of <2* <N_MODES>> and

<<N_MODES>+8>.

7.3.3.12 SHIFT

Eigenvalue shift (default: 0.0).

7.3.3.13 MAX_ITER

Maximum number of iterations in solving the eigenproblem (default: 20).

7.3.4 USAGE GUIDELINES AND EXAMPLES

Procedure EIGEN is used by preceding the procedure name by the *call directive. Proce-

dure arguments may be changed from their default values by including any or all of the

arguments and their new values when the procedure is called. A space or blank is required

between the end of the procedure name and the left parenthesis.

*call EIGE$ ( KNAME ffiK ; ECON_SET ffi1 ;

LOAD_SET ffiI ; KGNAME = KG )

Before procedure EIGEN is called the global macrosymbol eigensolver..name should be
defined as described in Section 7.3.1 and should be consistent with the value used when

procedure FACTOR was called. If it is not specified, then the default value EIG2 will be
used.

7.3.5 LIMITATIONS

None.

7.3.6 ERROR MESSAGES AND WARNINGS

None.

7'.3.7 PROCEDURE FLOWCHART

Procedure EIGEN is self-contained with no subprocedures.

Revised 5/24/90 CSM Testbed Procedures Manual 7.3- 5



EIGEN Utility Procedures

7.3.8 PROCEDURE LISTING

*procedure EIGEN ( PROBLEN_TTPE = 'BUCK' ; -- . Problem type: BUCK or VIBR

Idl = I ; -- . library number

khans : PK' ; -- . First name of material stiffness matrix

kKnane = 'KG' ; -- . First name of geometric stiffness matrix

nnane = 'CEN' ; -- . First name of mass matrix

error_tel = 1.0o-4 ; -- . Error tolerance on eigenevalues

load_set = 1 ; -- . Load sot number

lass_type = 'CONSISTENT' ; -- . For1 of laSS matrix

N_lodes = 1; -- . Number of nodes desired

INIT_vectors = 0 ; -- . Number of initial vectors

SHIFT =0.0 ; -- . Eigenvalue shift

nmx_itors = 20 ; -- . Naxinma number of iterations

scan_set = 1 ) . Constraint set for eigenproblom

Procedure to solve the aisenvalue problem using different

eigonsolvors. The eigensolver is selected using the

global macrosyibol "eigensolver_nane".

Perforn Eigonvaluo lnalysis (with [knano].SPIR and [kgnane].SPlR)

elf < [INIT_vectors] /eq 0 > /then

*dof/i B_vectors = < NIN( 2siN_modes]; [N_nodes]+8) >

*else

edef/i N_voctors • [INIT_voctors]

*endif

Select oisensolver

oR ........ 0--_ .....

Use processor EIG

eif < ifeqs(<eimsnsolvor_nase>;EIG) > /then

*def NS_0VER_ITE = <false>

[XQT EIG

RESET PROB=[PKOBLEM_TTPE]

RESET IBIT=<N_vectors>, SHIFT:[shift], NKEQ:[N_nodos]

RESET CONV=[error_tol], NDTN=[nax_iters], con=[econ_set],NENSET=[load_set]

RESET K=[knume]

RESET KG:[kgnaae]

RESET N=[smmss]

RESET KLIB=[LDI],KILIB=[LDI],KGLIB=[LDI],MLIB=[LDI],OUTLIB=[LDI]

RESET INLIB=[LDI],OLDSET=[LDI]

STOP

Use processor EIG2

7.3- 6 CSM Testbed Procedures Manual Revised 5/24/90



Utility Procedures EIGEN

eolsoif • ifoqs(<eisensolver_nano>;EIG2) > /then

*dos NS_0VEK_LITE = <false>

[IQT EIG2

RESET PKOB=[PKOBLEM_TTPE]

RESET INITs•N_vectors>, SHIFT=[shift], NKEQ=[N_modes]

KESET

RESET

KESET

EESET

KESET

KESET

STOP

eolsetf

CONVffi [error_tel], NDTN= [nax_iters], con= [econ_set] ,NEWSETffi [load_set]

K=[_-ue]

KG= [kgnuo]

X=[nmuo]
KLIBffi[LDI], KILIB= [LDI], K GLIBffi[LDI], NLIB= [LDI], OUTLIBffi [LDI]

INLIB= [LDI], OLDSETffi [LDI]

< ifoqs(<oigonsolvor_nue>;LIN) • /then

Use processor LAN

*dos NS_OVEKWKITE = <false>

[xqtLIN
KESET PKOBffi[PKOBLEM_TYPE],LDI=[LDI]

KESET KNlM=[knuo],KGNlffi[kgnuo],MNAM=[nnue]

RESET NKn[nax_itors], shiftf[shift], nconf[ocon_sot]

STOP

eolseif < tfoqs(<eigensolvor_nus>;LANZ) > /then

*def NS_0VEK_LITE = <false>

elf • ifeqs([PKOBLEM_TTPE];BUCK) • /then

[xqt GETK

reset siprmO, fornffi2, save=l

reset k=k, redo=O, kred=k, teat=0

[xqt GETK

reset liprftO, fern:2, savo:l

reset k:kg, redo:l, kredfk, rea¢:O

[xqt LANZ

RESET PKOB-2, plvls3,chockzl, ¢onz[ocon_sot]

KESET nroqn[N_nodos], conv=[error_tol]

IESET kg=[ksnue]

*olsoif • ifoqs([PROBLEM_TYPE];VIBR) > /then

[xqt GETK

reset siprffiO, form:2, savo:l

reset kffik, redo=O, kred=k, reac=O

elf < ifoqs([nass_typo];CONSlSTENT) > /then

edof/i ncasoffil

[xqt GZ_
reset slpr:O, fern:2, savo:l

zaset kf[smmaa], redo=l, krod=k, reac=O

*else

edof/t n©aso=O

*endif

[xqt LANZ

LESET ncaso:<ncase>, plvl:3,check:l,con:[econ_set]

KESET nreq:[N_nodes], cony:[error_tel]

IESET nf[nnue]

*endlf

Revised 5/24/90 CSM Testbed Procedures Manual 7.3- 7



EIGEN Utility Procedures

7.3.9 REFERENCES

7.3-1 Stewart, Caroline B.: The Computational Structural MechanicJ Testbed User'a

Manual. NASA TM-100644, October 1989.

7.3- 8 CSM Testbed Procedures Manual Revised 5/24/90



Utility Procedures Procedure ES

7.4 Procedure ES

i.a.! GENERAL DESCRIPTION

Procedure gS is a high-level procedure that controls the structural element processors

(ESi). The Generic Element Processor (GEP) provides a template with which many indi-

vidual finite-dement processors may be developed and coexist as independent modules in

the CSM Testbed (see ref. 7.4-1). The GEP template for _tructural dements is referred

to as ES, and all element processors built with this template have names that begin with

ES (e.g., ES1, ES2, ... ). Each of these ESi processors performs all operations for all of

the elements implemented within the processor n including dement definition, stiffness,

force, mass (etc.) generation, and various pre/post-processing functions.*

Since ESi processors are typically built by different developers, you might expect a wide

variety of User-interface characteristics. However, because of the generic template em-

ployed, all ESi processors share the same command language and global datasets. This

means that once the user has learned to invoke one ESi processor, the user has learned

them all.

The main difference between ESi processors will be in the specific elements implemented

within them. Some ESi processors may have only one element type inside. Others may

have a family of dements of a certain class (e.g., 4-, 9- and 16-node shell dements). StiU

others may embed an entire library of structural dements, containing various members

of each class (e.g., beam, shell, solid). Each of these specific dement types is given a

corresponding name within each ESi processor; so that the combination of ESi processor

name and dement type is unique. Thus, to employ a particular ESi processor correctly,

the user will have to consult specific documentation on the individual dements contained

within that processor. Such documentation is provided in the CSM Testbed User's Manual

(see ref. 7.4-2).

In the following sections, the generic features of ESi processors are described in detail.

* Exception: Element connectivity for all element processors is currently performed by Testbed

processor ELD.

5/23/90 CSM Testbed Procedures Manual 7.4- 1



Procedure ES Utility Procedures

The description includes ESi processor commands and macrosymbols, and the data.sets

required or produced by these commands (Section 2.2), the high-level procedure interface,

which makes it possible to write analysis procedures that invoke a single, generic procedure

(called ES) to generate dement arrays automatically for all ESi processors required in a

given problem; a glossary of ES macrosymhols, which gives more detailed definitions for

the macrosymbols and procedure arguments; and some explicit examples of how to use

ESi processors, interactively, or using the procedure ES interface.

7.4.2 PROCEDURE USAGE

Procedure ES may be invoked by the *call directive, and following it by a list of arguments

separated by semicolons(;) and enclosed in parentheses. Procedure arguments are order-

independent, and most have default values thus making them optional. The formal syntax

is as follows:

[,o.ll Es ( vail; . g2 --val2; ...)]

where a.rgi are argument names and vali are the corresponding values. The foUowing are

valid arguments for procedure gs; note that those arguments without default vedues are

mandatory, while the others are optional.

7.4- 2 CSM Testbed Procedures Manual 5/23/90



Utility Procedures Procedure ES

Argument

ES_NAME

ES_NL_GEOM

ESJL_MATL

ESJL_LOAD

ES_PAILS

ES_PKOC

FUNCTION

Default Value Meaning

Element-type name

Geometric nonlinearity

s_ ,_- _, nordineaxityIVA _- _CJ.-I kJl,l

Load nonlinearity

Research parameters

Processor name

Processor command

ES_COR0

ES_COUNT

ES_DIS_DS

ES_DOF_DS

ES_ECC_DS

ES_FRC_DS

ES_ROT_DS

ES_STR_LOC

ES_STR_DIR

ES_STRAIN_DS

ES_STRESS_DS

ES_SUM_DS

LDI

MUN_COM_DS

1

0

STAT.DISP.I.1

ES.DOFS

MALL.PROP

INT.FORC.I.1

STAT_0TA.I.1

CENTROIDS

0

ES. SUMMARY

1

1

Corotational option

Create or accumulate ES.SUMMARY

Displacement dataset
Active-freedom dataset

Eccentricity dataset
Force vector dataset

Rotation vector dataset

Stress locations

Stress directions

Element strain dataset

Element stress dataset

ES summmary dataset

Logical device index
Number of constraint datasets

5/23/90 CSM Testbed Procedures Manual 7.4- 3



Procedure ES Utility Procedures

Table 7.4-1

Dataset

ES.SUMMARY

Datasets Input/Output by Procedure ES

ES.DOFS

<ES_NAME>.EFIL.0.nnod

DIR.<ES_NAME>.0.nnod

DEF.<ES_NAME>.0.nnod

PROP.BTAB.2.*

STAT.DISP.i.j

STAT.ROTA.i.j

QJJT.BTAB.

INT.FORC.i.j

DEM.DIAG

CEM.SPAR.jdf_

STRN.<ES_NAME>.

<ES_STRAIN_DS>

STRS.<ES_NAME>.

<ES_STRESS_DS>

K.SPAR.jdf2

KG.SPAR.jdff,

Description Lib Input Output

ES Processor Status 1 _/

J

1 J

1 J

1 J

1 J

1 J

1 J

1 J

1

Element Computational Data

Element EFIL Directory

Element Definition (Connectivity)

Material/Section Properties

System Displacement Vector

System Rotation Vector

Nodal Transformations

System Internal Force Vector

Diagonal (Lumped) Mass Matrix

Assembled Consistent Mass Matrix

Element Strains

Element Stresses

Assembled material stiffness matrix

iAssembled geometric stiffness matrix

1 ,/

t i = <load_set> and j = <cons_set>

7.4- 4 CSM Testbed Procedures Manual 5/23/90



Utility Procedures Procedure ES

Table 7.4-2 Sub-Procedures Invoked by Procedure ES

Procedure Type

ES Internal

ES..DOFS Internal

Function
Ill II I I

Main procedure

Automatic DOF Suppression for ESi

Table 7.4-3 Sub-Procedures Invoked by Procedure ES
i i ii

Processor Type _nc_ion
|l i ii I ii

ESi External Various element processors

VEC Internal Vector functions

5/23/90 CSM Testbed Procedures Manual 7.4- 5



ProcedureES Utility Procedures

Table 7.4-4

Macrosymbol Type

ES_C I

ES PROCESSOR MACROSYMBOL GLOSSARY

Definition

Continuity of interelement "displacement" field, e.g.,

0 =_ C o (displacement continuity only)

1 =_ C 1 (displacement and slope continuity)

ES_CLAS t Element class. Currently valid classes:

BEAM, SHELL, SOLID, WILD

(See Section 3.4 for examples.)

ES_CNS I Constitutive interface option (see Chapter 5).

0 :_elements use the standard constitutive interface for

stress and tangent-modulus calculations;

1 =_elements compute their own stresses, but use standard

constitutive interface for tangent-modulus calculations;

>2 =_elements compute their own stresses and tangent-

moduli; standard constitutive interface is not used.

ES_CORO I Corotation switch; employed by ES processor for auto-

matic treatment of geometric nonlinearity due to large

rotations. Relevant only if problem is geometrically non-

linear. (See Chapter 4 for an explanation of these op-

tions.)

0 =_ Off: corotational operations will be skipped;

1 =_ Low-Order Option: basic corotational transforma-

tions will be employed to enable large rotations;

2 =_ High-Order Option: a more accurate (and expensive)

treatment of large rotations and consistent linearization

than option 1 will be employed.

ES_COUNT I Element processor count. Relevant only for DEFINE EL-

EMENTS command.

0 =_ First element processor to be defined; create
ES.SUMMARY dataset.

> 0 =_ Not first element processor to be defined; use ex-

isting ES.SUMMARY dataset and Increment element pro-

cessor number by one.

ES_DIM I Number of intrinsic element spatial dimensions, e.g.,
1 if ES_CLAS = BEAM

2 if ES_CLAS = SHELL

2 or 3 if ES_CLAS = SOLID

7.4- 6 CSM Testbed Procedures Manual 5/23/90



Utility Procedures Procedure ES

Table 7.4-4 ES PROCESSOR MACROSYMBOL GLOSSARY (continued)

Macrosymbol Type

ES_DIS_I)S 1

Detlnition

Name of system displacement-vector data.set (SYSVEC
format). Relevant for most FORM commands and some

POST commands. (Default: STAT.DISP.I.1)

ES_DOF_DS 1 Name of element freedom-table data.set (SYSVEC for-

mat). Relevant only for DEFINE FREEDOMS com-

mand. When using procedure ES, this dataset will au-

tomatically be created, initialized, and updated cumu-

latively with contributions from all pertinent ES pro-

cessors. (Default: ES.DOFS)

ES_ECC_DS 1 First two words of dataset name that contains section

property data including reference surface eccentricities.

(Default: WALL.PROP).

ES_EXPE_CMD 1 Complete EXPE command line appropriate for defin-

ing elements with processor ELD. This macrosymbol is

constructed only in response to a call to procedure ES
with FUNCTION='DEFINE ELEMENTS'.

ES_FRC_DS A Name of system force-vector dataset (SYSVEC format),

where element distributed forces (internal and/or ex-

ternal) are to be assembled. Relevant only for FORM

FORCE command, in which case this vector must be

created and initialized before issuing the command (or
calling procedure ES). Contributions from all pertinent

ES processors will be assembled into this vector if proce-

dure ES is called with argument FUNCTION = 'FORM

FORCE...'. (Default: INT.FORC.I.1)

ES_LOAD_FACTOR F Load factor. (Default: 1.0)

ES_LOAD_SET I Load set number. (Default: 1)

5/23/90 CSM Testbed Procedures Manual 7.4- 7



Procedure ES Utility Procedures

Table 7.4-4

Macrosymbol

ES_MASS_DIAG

ES PROCESSOR MACROSYMBOL GLOSSARY (continued)

Type Det_nition

t First word of the dataset name for a diagonal mass matrix.

(Default: DEM).

ES_MASS_DS it First two words of the dataset name for a diagonal mass
matrix.

(Default: < ES_MASS_DIAG >.DIAG).

ES..NAME it Name of element type, within current ES processor, to

be processed by subsequent commands. (For example

EX97 would be a valid element-type name within pro-

cessor ES1.)

ES_NDOF Number of freedoms per element node.

Currently valid options (2, 3 or 6), e.g.,

2 for 2-D solid elements (u, v)

3 for 3-D solid elements (u,v,w)

6 for beam, plate or shell elements (u, v, w, 0t, 0_, Oz)

ES_NEE Number of element equations;

= ES_NEN × ES_NDOF.

ES_NEN I Number of element nodes.

ES__NIP Number of element integration points; i.e., points at which

stresses (continuum or resultants, depending on element

type) are stored.

ES_NL_GEOM Geometric nonlinearity switch;

0 =_ Off: problem is geometrically linear (small displace-

ments/rot ations);

1 =_ Low-Order Option: problem is geometrically non-

linear, but elements should use linear strain-displacement

relations. Meaningful only if ES_CORO > 0, so that large

rotations can be handled automatically by the corota-

tional algorithm;

7.4- 8 CSM Testbed Procedures Manual 5/23/90



Utility Procedures Procedure ES

Table 7.4-4

MacrosymboI

ES PROCESSOR MACROSYMBOL GLOSSARY (continued)

Type Definition

2 =_ High-0rder Option: problem is geometrically non-
linear and elements should use non//near element strain-

displacement relations. May be used in conjunction with

ES_CORO > 0 to obtain higher-order accuracy for beam

and shell elements that employ moderate-rotation strain-

displacement relations;

3 =_ same as 2 plus finite strains are expected.

ES_NL_LOAD Load nonlinearity switch;

1 =_ process displacement-dependent element loads only;

0 :_ process displacement-independent element loads only.

ES_NL_MATL Material nonlinearity switch;

1 :_ element is materially nonlinear;

0 _ element materially linear.

ES_NORO Element normal-rotation parameter. Relevant only for au-

tomatic freedom suppression of plate/shell elements. In-

dicates minimum angle (in degrees) between shell element

normal vector and any computational basis vector -- at

each element node -- below which the corresponding rota-

tionai freedom should be suppressed if no other elements

are attached;

=0 _Element has normal-rotation ("driUing') stiffness;

normal rotational freedoms will automatically be sup-

pressed.

>0 =*,Element does not have normal-rotation ("drilling")

stiffness; it is assumed that rotational stiffness exists

about any computational axis that makes an angle of at

least <ES_NORO> degrees with the element normal vec-
tor at an element node.

5/23/90 CSM Testbed Procedures Manual 7.4- 9



Procedure ES Utility Procedures

Table 7.4-4 ES PROCESSOR MACROSYMBOL GLOSSARY (continued)

Macrosymbol Type Det_nition

ES_NPAR I Number of element research parameters in array ES_PARS.

ES_NSTR I Number of stress components per integration point. Cur-

rently valid options compatible with standard constitutive
interface:

8 for ES_CLAS = SHELL and ES_C = 0;

6 for ES_CLAS = SOLID and ES_DIM : 3;

6 for ES_CLAS = SHELL and ES_C = 1;

6 for ES_CLAS = BEAM and ES_C = 0;

4 for ES_CLAS = BEAM and ES_C = 1;

3 for ES_CLAS : SOLID and ES_DIM = 2.

ES_OPT I Element-type option number. Meaningful only to the ele-

ment developer; it is the developer's numerical equivalent
of ES_NAME.

ES_PARS D Array of element research parameters. Meaning depends

on specific element type. (Consult appropriate section in

CSM Testbed User's Manual, ref. 4).

ES._PROC t Name of element (ES) processor to be executed (e.g., ES1,

ES2, ...); currently relevant only as an argument for pro-

cedure ES, and only when argument FUNCTION = 'DE-

FINE ELEMENTS'.

7.4- 10 CSM Testbed Procedures Manual 5/23/90



Utility Procedures Procedure ES

Table 7.4-4 ES PROCESSOR MACROSYMBOL GLOSSARY (continued)

._lacrosymbol Type Definition

ES_.PROJ I Rigid-body projection option. Used to automatically re-

move (most of) the spurious energy generated by some

dements during infinitesimal rigid-body motion. This is

performed by operating on the element stiffness and force

arrays with a projection matrix (or projector). The pro-

jector, and its derivative, can have a beneficial effect on

dement accuracy in both linear and geometrically nonlin-

ear regimes.

0 =_Off: projection will be omitted;

1 =_Low-order Option: basic projection will be included;

2 =_High-order Option: basic projection plus a differential

correction to the geometric stiffness will be included.

ES_.ROT..DS L Name of system rotation pseudo-vector dataset (SYSVEC

format). Relevant for most FORM commands dur-

ing geometrically non//near analysis, but only if de-

ments with rotational freedoms are involved. (Default:

STAT.ROTA.I.1)

ES_SHAP A Shape of element surface used to define coordinate triad;

currently recognized options: LINE, TRIA or QUAD.

ES_STOR I Number of "private" variables to be stored/retrieved for

the dement developer in dataset EFIL.<ES_NAME>.

ES_STR_DIR I Element stress/strain direction option. Indicates in which

coordinate system element stresses or strains in datasets

defined by <ES_STRESS_DS> or <ES_STRAIN_DS>

(respectively) will be computed. Rdevant only for com-
mand = 'FORM STRAIN' or 'FORM STRESS'. Valid

options:

0 =_ element stress coordinate system

I =_ material axes {zm,ym,zm} -----{zg,yg,zg}

2 =_ material axes {ym,zm,zm} = {yg,Zg,Zg}

3 :_ material axes {z,,,z,,,y,,,} = {Zg,Zo,yg }

(Note: For isotropic materials, the first material axis is

replaced by the corresponding global axis; see the SREF

command under processor ELD in the Testbed User's

Manual (ref. 4) for details. Default: 0)

5/23/90 CSM Testbed Procedures Manual 7.4- 11



Procedure ES Utility Procedures

Table 7.4-4

Macrosymbol

ES_STR..LOC

ES PROCESSOR MACROSYMBOL GLOSSARY (continued)

Type Definition

A Element stress/strain evaluation point option. Indi-

cates where stresses or strains in datasets defined by

<ES_STRESS.J)S> or <ES_STRAIN_DS> (respectively)

will be computed. Relevant only for command = 'FORM

STRAIN' or 'FORM STRESS'. Currently valid options:

CENTROIDS =_ element centroids; creates record group:

CENTROID S_< ES_STR_DIR> .1 :nel

NODES =_ element nodes; creates record group:
NODES_< ES_STR_.DIR>.I:ne1

INTEG_POINTS =_ element integration points; creates:
INTEG_PTS_<ES_STR_DIR>.I:ne1

where "nel" is the number of elements in the dataset,

and where macrosymbol ES_STR_DIR designates the di-

rections of the stress/strain components, and is defined

elsewhere in this Glossary.

(Default: 'CENTROIDS')

ES_STRAIN_DS Third part of element strain dataset name. The first

name is always STRN; the second name is always the

element-type name, i.e., <ES._NAME>; and the third

name, <ES_STRAIN_DS> must be a string of integers

separated by periods.

For example, if <ES_STRAIN_DS> = <step>.<iter>

where <step> = 20 and <iter> = 3, and if the element-

type name were EX97, then the full data.set name would
be: STRN.EX97.20.3

Relevant only for command = 'FORM STRAIN'.

(No default; absence means that strains will be stored

(embedded) within data.set EFIL.<ES_NAME> only m

currently not implemented.)

7.4- 12 CSM Testbed Procedures Manual 5/23/90



Utility Procedures Procedure ES

Table 7.4-4

Macrosymbol

ES_STRESS_DS

ES PROCESSOR MACROSYMBOL GLOSSARY (concluded)

Type Definition

A Third part of element stress dataset name. The first

name is always STRS; the second name is always the

element-type name, i.e., <ES_NAME>; and the third

name, <ES_STRESS_DS> must be a string of integers

separated by periods. For example, if <ES.STRESS_DS>

= <step>.<iter>,

where <step> = 20 and <iter> = 3, and if the element-

type name were EX97, then the full dataset name would
be: STRS.EX97.20.3

Relevant only for command = 'FORM STRESS'.

(No default; absence means that stresses will be stored

(embedded) within dataset EFIL.<ES._NAME> only.)

ES_SUM..DS h Name of ES summary dataset, which contains nominal

records corresponding to most of the macrosymbol pa-

rameters appearing in this Glossary -- for each ES pro-

cessor/element defined in the model. Relevant for all ES

commands. (Default: ES.SUMMARY)

ES_TWIS I Sign of twisting curvature for shell elements.

+1 =_twist based on continuum definition of shear

strain;

-1 @twist based on negative of continuum definition.

(Note: The default convention for constitutive matrices

output from processor LAU corresponds to the -1 op-

tion. Hence processor ES compensates for this reversal

if ES_TWIS = +1.)

ES_TGC..DS I Name of nodal transformation dataset (QJJT.BTAB.,.,)

ES__XYZ_DS I Name of nodal coordinate dataset (JLOC.BTAB.*.*)

LDI I Logical device index or library number for archiving and

retrieving data. (Default: 1)

5/23/90 CSM Testbed Procedures Manual 7.4- 13



Procedure ES Utility Procedures

7.4.3 ARGUMENT DESCRIPTION

7.4.3.1 ES_C0110

Corotation switch; employed by ESi processors for automatic treatment of geometric non-

linearity due to large rotations. Relevant only if problem is geometrically nonlinear. (See

Chapter 4 of reference 7.4-1 for an explanation of these options.) If ES_C0R0 equals zero,

then the corotational operations will be skipped. If ES_C01t0 equals one (low-order option),

then the basic corotational transformations will be employed to enable large rotations. If

ES_COR0 equals two (high-order option), then a more accurate (and expensive) treatment

of large rotations and consistent linearization than option 1 will be employed.

7.4.3.2 ES_COUNT

Element processor count (default: 0). This argument is used to create and/or accumu-

late data in the ES.SUMMARY dataset for finite element models using multiple element

processors.

7.4.3.3 ES_DIS_DS

Name of system displacement-vector dataset in SYSVEC format (default: STIT.DISP. 1.1).

Relevant for most FOILS[commands.

7.4.3.4 ES_DOF_DS

Name of element freedom-table data.set (SYSVEC format). Relevant only for DEFINE FREE-

DOMS command. When using procedure ES, this dataset will automatically be created,

initialized, and updated cumulatively with contributions from all pertinent ESi proces-

sors. (Default: ES.DOFS)

7.4.3.5 ES_ECC_DS

Name of element section property eccentricity dataset (default: WALL.PROP). Relevant for

all FORMcommands.

7.4- 14 CSM Testbed Procedures Manual 5/23/90



Utility Procedures Procedure ES

7.4.3.6 ES_FRC.DS

Name of system force-vector dataset in SYSVEC format, where element distributed forces

(internal and/or external) are to be assembled (default: STAT.REAC. 1. !). Relevant only

for FORM FORCE command, in which case this vector must be created and initialized before

issuing the command (or calling procedure ES). Contributions from all pertinent ESi pro-

cessors will be assembled into this vector if procedure ES is called with argument FUNCTION

= _FORM FORCE.

7.4.3.7 ES_NAME

Name of element type, within current ESi processor, to be processed by subsequent com-

mands. (For example, EX97 would be a valid element-type name within processor ES1.)

7.4.3.8 ES_NL_GEOM

Geometric nonlinearity switch. If ES_NL_GEOM equals zero (no corotational frames), then

the problem is geometrically linear (small displacements/rotations). If ESJL_OEOH equals

one (low-order option), then the problem is geometrically nonlinear, but elements should

use linear strain-displacement relations. Meaningful only if ES_COR0 > 0, so that large

rotations can be handled automatically by the corotational algorithm. If ES..liL_GEOM equals

two (high-order option), then the problem is geometrically nonlinear and elements should

use nonlinear element strain-displacement relations. May be used in conjunction with

ES_COR0 > 0 to obtain higher-order accuracy for beam and shell elements that employ

moderate-rotation strain-displacement relations.

7.4.3.9 ES_RL_MATL

Material nonlinearity switch. If ES_tlL.MATL is greater than zero, then the element is

materially nonlinear. If ES_NL_MATLis zero, then the element is materially linear.

7.4.3.10 ESJL_LOAD

Load nonlinearity switch. If ESJL_LOAD is greater than zero, then the element loads

are displacement dependent. If ESJIL..LOAD equals zero, then the element loads are not

displacement dependent.

5/23/90 CSM Testbed Procedures Manual 7.4- 15



Procedure ES Utility Procedures

7.4.3.11 ES_PARS

Array of element research parameters. Meaning depends on specific element type. Consult

appropriate section in CSM Testbed User's Manual, ref. 7.4-2.

7.4.3.12 ES_PROC

Name of element (ES)i processor to be executed (e.g., ES1, ES2, ... ); currently relevant

only as an argument for procedure ES, and only when argument FUNCTION = _DEFINE

ELEMENTS J

7.4.3.13 ES_ROT_DS

Name of system rotation pseudo-vector dataset in SYSVEC format (default: STAT. ROTA. 1.1).

Relevant for most FORMcommands during geometrically nonlinear analysis; but only if el-

ements with rotational freedoms are involved.

7.4.3.14 ES_STLLOC

Element stress/strain location option (default: 'CENTROIDS_). Indicates where stresses or

strains in datasets defined by <ES_STILESS_DS> or <ES_STILtIN..DS> (respectively) will he

computed. Relevant only for FUNCTION = _FORN STRAIN_ or _FORN STRESS'. Currently

valid options:

• CF__TROIDS =_ element centroids; creates record group:

CENTROIDS_<ES_STR_DIR>. 1:nel

• NODES ==_element nodes; creates record group:

NODES_<ES_STR_DIR>. 1 :nel

• INTEG_POINTS _ dement integration points; creates:

INTEG_PTS_<ES_STR_DIR>. I:nel

where "nel" is the number of elements in the data.set, and where macrosymbol ES_STR_DIR

designates the directions of the stress/strain components, and is defined elsewhere in this

glossary.

7.4- 16 CSM Testbed Procedures Manual 5/23/90



Utility Procedures Procedure ES

7.4.3.15 ES_STR_DIR

Element stress/strain direction option (default: v.). Indicates in which coordinate system

element stresses or strains in datasets defined by <ES_STRESS_DS> or <ES_STIUtIN_DS> (re-

spectively) will be computed. Relevant only for FUNCTION ffi 'FORM STRAIN' or 'FORM

STRESS '. Currently valid options include E for the element stress coordinate system, Mfor

the material coordinate system, and Gi for the coordinate system whose z axis corresponds

to global coordinate axis zi.

7.4.3.16 ES_STRAIN_DS

Third part of element strain dataset name. The first name is always STRN; the

second name is always the element-type name, i.e., <ESJAME>; and the third name,

<ES_STP_IN_DS> must be a string of integers separated by periods (see CSM Testbed Data

Library Description, reference 7.4-3). For example, if <ES_STRAIB..DS> = <step>.<iter>

where <step> = 20 and <iter> = 3, and if the element-type name were EX97, then the

full dataset name would be: STRN. EX97.20.3. Relevant only for FUNCTION ffi 'FORM

STIUtII'. No default; absence means that strains will be stored (embedded) within data.set

EFIL. <ESJAI_> only -- currently not implemented.

T.4.3.1T ES_STRESS..DS

Third part of element stress data.set name. The first name is always STRS; the second name

is always the element-type name, i.e., <ES_BAME>; and the third name, <_.S_STRESS_DS>

must be a string of integers separated by periods same as previously stated. For example,

if <ES_STRESS_DS> = <step>.<iter>, where <step> = 20 and <Stew> = 3, and if the

element-type name were EX97, then the full dataset name would be: STRS. EX97.20.3.

Relevant only for FUNCTION ffi 'FORM STRESS'. No default; absence means that stresses

will be stored (embedded) within dataset EFIL. <ES..BLME> only.

7.4.3.18 ES_SUM_DS

Name of ES summary dataset, which contains nominal records corresponding to most of

the macrosymbol parameters appearing in this glossary -- for each ESi processor/element

defined in the model (default: ES. SUMMARY).Relevant for all ES commands.

5/23/90 CSM Testbed Procedures Manual 7.4- 17



Procedure ES Utility Procedures

7.4.3.19 FUNCTION

All structural element (ESi) processors based on the genetic element processor template,

share the same processor commands. This makes it easier for the User, and enables the

construction of a generic command procedure to handle any combination of ESi proces-

sors. The commands recognized by ESi processors fall into three categories: INITIALIZE,

DEFINE, and FORM, which roughly correspond to preprocessing and computation phases of

analysis. The INITIALIZE command initializes the element data. The DEFINE commands

are used to prepare or re-format model definition datasets, such as element connectivity,

freedom activity, loads, etc.* The FOP,H commands are used to form element computational

data, such as stiffness matrices, force vectors, etc. Table 7.4-5 provides a summary of ES

processor commands and their respective functions.

* Again, element connectivity is currently performed using Testbed processor ELD.

7.4- 18 CSM Testbed Procedures Manual 5/23/90



Utility Procedures Procedure ES

Table 7.4-5

INITIALIZE

DEFINE

FORM

ELEMENTS

FREEDOMS

STIFFNESS [/MATL/GEOM/LOAD/TANG]

Summary of Generic ES Processor Commands

Command Description

Initialize element data

Define element parameters

Perform automatic DOF

suppression

Form element stiffness

FORCE [/INT/EXT/RES/DYN]

MASS [/CONS/DIAG]

STRAIN

STRESS

Form element force

Form element mass

Form element strains

Form element stress

In addition to these commands, ESi processors can be controlled with a number of built-in

macroaymbols, all of which begin with ES_. The macrosymbols typically set logical switches

and/or control parameters, and allow re-assignment of database names from their default

values.

5/23/90 CSM Testbed Procedures Manual 7.4- 19



Procedure ES Utility Procedures

Table 7.4-6 ANALYSIS/COMMAND CORRESPONDENCE

ES Processor Commands vs Analysis Type

AnaJysis Type Processor Commands

All Preprocessing INITIALIZE

DEFINE ELEMENTS

DEFINE FREEDOMS

Linear Statics FORM STIFFNESS/MATL

FORM FORCE/EXT

Linear Dynamics FORM STIFFNESS/MATL

FORM MASS/CONS

Buckling Eigenvalue

FORM

FORM

FORM

FORCE/EXT

STIFFNESS/MATL

STIFFNESS/GEOM

Vibration Eigenvalue

Nonlinear Statics

Nonlinear Dynamics

,FORM FORCE/EXT

FORM STIFFNESS/MATL

FORM MASS/{CONS [ DIAG}

FORM STIFFNESS/TANG

FORM FORCE/INT

FORM FORCE/EXT

FORM FORCE/RES

FORM STIFFNESS/TANG

FORM MASS/{CONS [ DIAG}

FORM FORCE/INT

FORM FORCE/EXT

FORM FORCE/DYN

7.4- 20 CSM Testbed Procedures Manual 5/23/90



Utility Procedures Procedure ES

7•4.4

7.4.5

PROCEDURE FLOWCHART

ES

ES_DOFS

(main procedure)

(automatic DOF suppression for ESi)

LIMITATIONS

Procedure ES assumes that all datasets either required or generated will reside on library

one (LDI=I).

7.4.0 ERROR MESSAGES AND WARNINGS

None•

7.4.7 USAGE GUIDELINES AND EXAMPLES

Procedure ES may be used by preceding the procedure name by the *call directive. Pro-

cedure arguments may be changed from their default values by including any or all the

arguments and their new values when the procedure is called. A space or blank is required

between the end of the procedure name and the left parenthesis.

*call ES ( FUNCTION =

ES_PROC = ; --

ES_NAHE = ; --

ES_PARS = 0.0 ; --

ES_C0R0 = 1 ; --

ES_NL_GEON = <false> ; --

ES_NL.NATL = <false> ; --

ES_NL_LOAD = <false> ; --

ES_DIS_DS = STAT.DISP ; --

; -- Processor coneaand

• Processor name

• Element-type name

. Research parameters

. Corotational option

. Geom. nonlinearity

• Marl. nonlinearity

• Load nonlinearity

• Displacement dataset

5/23/90 CSM Testbed Procedures Manual 7.4- 21



Procedure ES Utility Procedures

ES_DOF_DS = ES.DOFS ; --

ES_ECC_DS = ES.ECCEN ; --

ES_FRC_DS = STAT.REAC ; --

ES_ROT_DS ffi STAT.ROTA ; --

ES_SUM_DS = ES.SUMNAR¥ ; --

ES_STRAIN_DS ffi <false> ; --

ES_STRESS_DS = <false> ; --

ES_STR_LOC = 'CENTROIDS' ; --

ES_STR_DIR = _E' ; --

NUM_CON_DS = 1 ; --

LDI = 1 --

)

• Active-freedom dataset

• Eccentricity dataset

• Force-vector dataset

• Rotation-vector dataset

• ES sunnnary dataset

• Element strain dataset

• Element stress dataset

• Stress locations

• Stress directions

• No. of constraint datasets

• Logical device index

The following examples illustrate how element processors based on the generic structural°

element (ES) processor template can be used to perform structural analysis with the CSM

Testbed. For simplicity, we consider preprocessing (i.e., model generation), linear analysis,

nonlinear analysis, and postprocessing (i.e., stress recovery, etc.) examples separately. The

differences between employing individual ESi processors directly versus accessing them

using the generic ES procedure interface will be stressed, with an intended bias towards

the latter.

7.4.7.1 Preprocessing Examples

For clarity, a very simple problem will be considered, and the use of the generic structural-

element processor illustrated by showing all of the steps involved in generating a finite

dement (FE) modd for this problem. Both the physical problem and the discrete model

to be used is given in Figure 7.4-1. The problem is a rectangular plate (10 in. by 5 in.),

cantilevered on one edge, and loaded on the other by a concentrated lateral force• For

the model, a 3 by 3 grid is used which corresponds to a 2 by 2 mesh of 4-node pIate/sheH

dements• The Testbed procedure for this model is given in Figure 7.4-2• The interpretation

of each line of the procedure will now be described•

7.4- 22 CSM Testbed Procedures Manual 5/23/90



Utility Procedures Procedure ES

The *proczduxz statement in Figure 7.4-3 shows the arguments (parameters) for the

procedure and sets default values for each of them (z-length, y-length, thickne_s_ elastic

modulus, Poisson's ratio, and precision). Thus the dimensions and properties of the plate

model are parameterized, but the finite element discretization is fixed.t The next two lines

( [xqt TAB and START 9) run the processor TAB and reserve space for a total of 9 nodes.

Then, the JLOC command and subsequent data define the global coordinates for these 9

nodes in a rectangular 3 by 3 grid.

Material and section properties are then defined by first executing processor AUS to tabu-

late the raw data, and then executing processor LAU to generate an integrated constitutive

matrix for shell elements (see the CSM Testbed User's Manual for details on processor

LAU).

The key portion of the example begins with the *call to procedure ES with FUNCTION ffi

DEFINE ELF.RENTS', in which element type EX42 of processor ES1 is registered for partici-

pation in the model. This call also causes a number of element type-oriented macrosymbols,

all beginning with ES_, to be defined -- for example, ES_NEN (number of element nodes),

ES_NIP (nuber of element integration points), etc. These macrosymbol values are automat-

ically built into the character string macrosymbol ES_EXPE_CI4D (by procedure ES), which

serves as the RIPE command for processor ELD. Note that in the PLATEJ40DEL exam-

ple, <ES_EXPE_CMD> appears immediately after [IQT ELD (execute processor ELD). This

sequence causes the ES_EIPE_CND macrosymbol to expand internally into the following

commmand line:

EXPE <ES_NAME> <ES__EN> <ES_OPT> <ESJEN> <ES_NDOF> I

i<ES_STOR> I IO<ES_DIR> <CSM_PRECISION>

which would eventually decode into:

IEXPE EX42 4 2 4 6 0 1 102 2 1

The execution of processorELD with the above EXPE command isnecessary forgeneration

of various element datasets such as DEF.EI42.* and DIR. EI42. * (see the CSM Testbed

t In practice, it is often the other way around: The model properties and dimensions are fixed,

while the discretization is varied. We have fixed the discretization here merely to simplify
the example.

5/23/90 CSM Testbed Procedures Manual 7.4- 23



Procedure ES Utility Procedures

User's and Dataset Manuals, references 7.4.2 and 7.4-3, respectively). Note that the E5_

macrosymbols referenced in this example are all described in the Macrosymbol Glossary

in Table 7.4-4.

Next, the NSECr command is used as a section property pointer. NSECTffil means that

the integrated constitutive matrix stored in the first column of dataset PROP. BTAB. 2. 101

will be employed by all elements whose nodal connectivity is defined on the following

lines. The element nodal connectivity is then defined for four 4-node elements. Note

that the numbering convention is counter-clockwise within each element (see Fig. 2.2-1).

Boundary conditions and loads are then defined using the CON command of processor

TAB, and the SYSVEC command of processor AUS, respectively (see Figure 7.4-2). The

CON command suppresses all freedoms along z = 0 (the built-in edge), and the SYSVEC

command distributes transverse nodal forces along the other edge, which add up to a unit

load. Note that both boundary conditions and loads have been defined with respect to

nodes rather than elements. Automatic consistent element nodal load generation will be

available once the DEFINE LOADS command has been implemented within the ES processor

sheU.

Finally, procedure E5 is called again to perform automatic degree of freedom suppression,

using the DEFIliK FREEDOMScommand. In this case, the effect will be for processor ES1 to

suppress drilling rotational freedoms (i.e., the 6th degree of freedom) at all nodes, since

element type F.J[42 has no stiffness associated with these freedoms. (Note: If the plate had

blade stiffeners which were also modeled with EX42 elements, all 6 degrees of freedoms at

nodes along the plate/stiffener intersection lines would be retained, since at least one of

the intersecting elements at those nodes would possess the necessary stiffness.)

7.4- 24 CSM Testbed Procedures Manual 5/23/90



Utility Procedures ProcedureES

*Procedure PLATE_MODEL( Lx=lO.; Ly=5.; hffi.1; E=l.e7; PRffi.3; precffi2 )

[xqt TAB
START 9

GENERATE NODES ( rectangular grid, 3 x 3 nodes )

JLOC

1 o., o. , o. [Lx], O. , O•

3 0., [Ly], O• [Lx], [Ly], O.

• TABULATE MATERIAL AND SECTION PROPERTIES

3, 1, 3

[xqt AUS.

TABLE(NI=16,NJ=l): 0NB DATA 1 1..

I-1,2,3,4,5,6 : J=l : [E] [PR] [E] <G> <G> <G>

TABLE(NI=3,NJ=I,ITYPE=O): LAM ORB 1 1
I=1,2,3 : 2=1: 1 [h] 0.0.

• RUN CONSTITUTIVE PRE-PROCESSOR

[xqt LAU

• GENERATE ELENENTS

*call ES ( function='DEFINE ELEMENTS'; ES_PROC=ES1; ES_NENEffiEX42 )

[xqt ELD

<ES_F_PE_CMD>

NSECT = I

eli I elt 2 elt 3 elt 4

1254 : 2365 : 4587 : 5698

Figure ?.4-1 Sample Preprocessing Procedure•

5/23/90 CSM Testbed Procedures Manual 7.4- 25



ProcedureES Utility Procedures

IMPOSEBOUNDARYCONDITIONS

[xqt TAB
CON

ZERO 1:6 : 1 : 4 : 9

APPLY LOADS

[xqt AUS
SYSVEC : APPL FORC 1

i=3 : j=3 : .25 : i=3 : j=6 : .50 : i=3 : j=9 : .25

*call ES ( function = 'DEFINE FREEDOMS' )

*end

Figure 7.4-2 Sample Preprocessing Procedure.

7.4- 26 CSM Testbed Procedures Manual 5/23/90



Utility Procedures Procedure ES

7.4.8 Linear Analysis Examples

s_,-t,,e linear analysis .... a ....... 1.... the ^--a .... =¢p ........ , which "_'t',"s ....... pr,J_.,.u,aL,. _._ t^ " .... 1.A tl,_ i, tLbl U t_.w

appropriate ESi processors is shown in Figure 7.4-4. For purposes of illustration, the

problem has been kept simple (notice that there are no procedure arguments), but keep

in mind that many analysis procedures may involve more sophisticated features. The

procedure in Figure 7.4-4 can be read as follows. The [xqt E directive causes processor E

to construct *. EFIL. * datasets for all participating element types. Note that, while space

for these datasets is reserved in the database, meaningful data has not yet been deposited

there.

The first call to procedure ES then causes INITIALIZE to be stored in the EFIL datasets

by all participating ESi processors -- as prescribed by previous calls to procedure ES

with function = 'DEFINE ELEMENTS'. For example, if the preprocessing example given

in Figure 7.4-3 had preceded the call to L_STATIC, then only processor ES1, element type

EX42, would be invoked to INITIALIZE. More information on the effect of the INITIALIZE

command may be found in Section 2.2. The second call to procedure ES is to form the

element material (linear) stiffness matrices for all elements in the model using *call ES

(function-'FORR STIFFNESS/HATL'). The element matrices are deposited in Segment 5

of the EFIL dataset. Since no other arguments are employed in this call to the procedure

ES, the default values are implied. Thus, for example, the problem is assumed to be linear

(ES_NL_GEOH = 0), and there is no need for a displacement dataset (whose name is given [

by argument ES_DIS_DS) to be input by the ES Processors.

Next, assembly of the element stiffness matrices into a system matrix is performed by

processor K. Note that the dement matrices have already been transformed to the com-

putational (nodal degrees of freedom) bases, so that the function of processor K is merely

to add appropriate submatrices.

Finally, processors INV and SSOL are executed in order to factor and solve the assembled

system of equations, respectively. The displacement solution will be stored, as indicated

by the RESET command for processor SSOL, in dataset STAT.DISP. 1.1.

5/23/90 CSM Testbed Procedures Manual 7.4- 27



Procedure ES Utility Procedures

*procedure L_STATIC

ol

Initialize Element Datasets

[xqt E

Initialize Element Computational Data

*call ES ( function = 'INITIALIZE' )

Form Element Material Stiffness Matrices

*call ES ( function = 'FORM STIFFNESS/MATL' )

Assemble Material Stiffness Matrix

[xqt K

Factor Stiffness Matrix

[xqt INV

• Solve for Displacements

[ZQT SSOL

RESET SET=l, CON=I

*end

Figure 7.4-3 Sample Linear Static Analysis Procedure

7.4.9 Nonlinear Analysis Examples

A brief example of how to employ ESi processors in nonlinear analysis procedures, by

including selected excerpts from an actual nonlinear static analysis procedure that will

7.4- 28 CSM Testbed Procedures Manual 5/23/90



Utility Procedures Procedure ES

hopefully convey the essential aspects. Typically, engineering-oriented users v,'iU invoke

an existing nonlinear analysis procedure rather than writing their own, so this example is

intended more for researchers involved in algorithm development.

The "skeleton" of a nonlinear static analysis procedure is shown in Figure 7.4-5, with only

those aspects involving ESi processors shown. There is very little difference in the use

of the procedure gS to invoke ES processors from what was employed in the linear static

analysis procedure compare with Figure 7.4-4, except that some additional arguments must

be explicitly defined.

First, the usual call to INITIALIZE for all ESi processors is present. This call enables

the participating element processors to generate, and store, any data that will be used

repeatedly during the analysis m rather than having to recompute it at each iteration of

every analysis load step.

Next, the nested load-step and iteration loops, typical of most incremental/iterative non-

linear solution algorithms for structural analysis are encountered. Within these loops, it is

necessary to compute residual force vectors (right-hand sides) at each iteration and tangent

stiffness matrices at selected load steps/iterations.

The assembled residual force vector is computed by first initializing a system internal

force vector (using processor VEC), calling the procedure ES to form/assemble all element

contributions to the internal force vector, and finally subtracting the assembled internal

force vector from a load-step scaled external force vector, which is assumed to have been

generated elsewhere.

Notice that in the FORM FORCE/INT call to procedure ES, arguments ES_NL__EOM, ES_COR0,

E$_DI$_DS, ES_ROT_DS and ES_FRC_D$ are each explicitly defined. The reader is urged to

look up these arguments in the Macrosymbol/Argument Glossary, Table 7.4-4. These ar-

guments let the ESi processors know that the problem is geometrically nonlinear (both

globally and at the element level). The corotational algorithm is to be employed to make

the rotational motion "appear" small at the element level, but allow it to be arbitrar-

ily large globally. The current displacement dataset is called TOT.DISP. <$stop>, where

<$step> is the load-step number; the current rotation (pseudo-vector) dataset is called

5/23/90 CSM Testbed Procedures Manual 7.4- 29



Procedure ES Utility Procedures

TOT.ROTA. <$step>; and the current system internal force vector into which the element

contributions are to be assembled is called INT. FORC. <$step>.

Finally, the formation/factorization of the tangent stiffness matrix is shown in Figure 7.4-5

which involves first the formation/transformation of the element tangent stiffness matrices

by ESi processors, which are deposited in the *. EFIL. * datasets; then the assembly of the

element matrices into the system tangent stiffness matrix by processor K; and finally the

factorization of the assembled (system) tangent stiffness matrix by processor INV. Note

that both material and geometric stiffness contributions have been superimposed at the

element level.

7.4- 30 CSM Testbed Procedures Manual 5/23/90



Utility Procedures Procedure ES

*procedure NL_STATIC ( NUN_STEPS ffi 1; NUM_ITERS ffi 10 )

• Initialize Element Computational Data

*call ES ( function = 'INITIALIZE' )

*do $step ffi 1, /NUN_STEPS/

*do $iter = I, [NUM_ITERS]

FORM RESIDUAL FORCE VECTOR

[xqt VEC

INT.FORC <- O.

*call ES ( function = 'FORM FORCE/INT'; --

es_nl_seom = 2; es_coro = 1; --

es_dis_ds = TOT.DISP.<$step>; --

es_rot_ds = TOT.ROTA.<$step>; --

es_frc_ds = INT.FORC.<$step> )

[xqt VEC

RES.FORC <- <load_factor> * EXT.FORC -

FORM/FACTOR TANGENT STIFFNESS MATRIX

INT.FORC.<$step>

*call ES ( function = 'FORM STIFFNESS/TANG' ; --

es_nl_seom = 2; es_coro = 1; --

es_dis_ds = TOT.DISP.<$step>; --

es_rot_ds = TOT.ROTA.<$step>; --

es_frc_ds = INT.FORC.<$step> )

[xqt K

[xqt INV

*enddo

*enddo

Figure 7.4-4 Sample Nonlinear Static Analysls Procedure Excerpts

5/23/90 CSM Testbed Procedures Manual 7.4- 31



Procedure ES Utility Procedures

7.4.10 Postprocessing Examples

By postprocessing refers to functions which ca_a be performed after the displacement so-

lution has been obtained for a linear or nonlinear structural analysis. For example, in a

nonlinear static (or transient) analysis, the user may choose not to archive the stresses

and strains which were used as intermediate variables during the process of obtaining a

displacement solution history. The user may then compute stresses and/or strains at se-

lected load (or time) steps and save these in the database for perusal. The end-user phase

of postprocessing is of course the actual printing or display of the results (displacements,

stresses, strains, etc.); however, the main interest here is in the prerequisite functions that

are performed by ESi processors.

An example of a postprocessing procedure that employs ESi processors to form, and archive

in the database, both stresses and strains after the mainstream analysis has already been

performed. Procedure STRESS_STRAIN contains arguments to select the stress/strain lo-

cations (the default is at element centroids), component directions (the defanlt is in the

dement local stress/strain coordinate system), existing displacement and rotation (for

nonlinear analysis) datasets to be employed for strain computation.

Note that there is a step loop in the procedure, and that both stresses and strains for all

participating dements are formed by just a single call to procedure E5 per step. This is

because the FORM 5TI_ESS command automatically causes strains to be formed as well as

stresses, and when both ES_STIIAIN_DS and ES_STRESS_DS are explicitly defined, then both

of these quantities are also output to the database.

7.4- 32 CSM Testbed Procedures Manual 5/23/90



Utility Procedures Procedure ES

*procedure STRESS_STRAIN ( LOCATION = CENTROIDS ; DIRECTION = 0 ; --

NL_GEOM = 0 ; C0R0 = 0 ; --

NUM_STEPS = I ; STEPS = 1:1 ; --

DIS_DS = TOT.DISP ; ROT_DS = TOT.ROTA )

Loop on Solution Stops

*def/i stops [1 : Inure_steps] ]

*do \Sis = 1, [num_steps]

*def/i step = <steps [<\Sis>]>

: [steps]

Invoke Element Processors to Form Stress/Strain

*call ES ( function = 'FORM STRESS' ; --

es_nl_geom = [nl_geom] ; --

es_coro = [coro] ; --

es_dis_ds = [DIS_DS].<step> ; --

es_rot_ds = [ROT_DS].<step> ; --

es_str_dir - [DIRECTION] ; --

es_str_loc = [LOCATION] ; --

es_strain_ds = <step> ; --

es_stress_ds - <stop> )

*enddo

*end

Figure 7.4-5 Sample Postprocessing Procedure

7.4.11 PROCEDURE LISTING

*procedure ES ( function ; --

es_proc ; --

om.nane ; --

es_pazs ; --

5/24/90 CSM Testbed Procedures Manual 7.4- 33



Procedure ES Utility Procedures

• beg=update 06_MIY_1989 [GMS] ES_COUNT

es_cotmt + 0 ; -- . 0/lffi>crn:e/acctm ES.SUNMIR+

• end_update

es_coro = 1; --

es_nl_geon = 0 ; --

es_nl.satl ffi 0 ; --

es_nl_load = 0 ; --

es_dis_ds : STAT.DISP.I.1

es_dof_ds = ES.DOFS

es_ecc_ds : WILL.PKOP

es_frc_ds = INT.FOKC.I.1

es_rot_ds : STAT.ROTI.I.1

es_sus_ds : ES.SUMMIKY

es_sass_dia g = DEM

8s_strain_ds = P

8|_stress_ds z 3 J

es_str_loc = CEN'13,0IDS

es_str_dir : 0

nma_con_ds = I

• beg_update 26_APR.1989 [GNS] CONSISTENT LOIDS

ca_load_factor = 1.0

es_load_set : 1

• end_update 26_AP!_1989 [GMS] CONSISTENT LOADS

ldi = 1 )

Generic Proced_Lre for Structural Elenent (gS) Processors

7.4- 34 CSM Testbed Procedures Manual 5/24/90



Utility Procedures Procedure ES

*if < <IYELSE([function] ;DEFINE ELEMENTS; 1;0)> > /then

*de:f/a os_proc : [es_proc]

*della es_nauo : [es_naue]

*def/d os_pars[l:10] : [es_pars]

*def/a es_sun_ds : [es_sun_ds]

Initialize ES SUMMary Dataset

..... w .... . ..................

*find dataset [ldi] <os_sun_ds> /seq=os_ids

• beg_update 06_NAY_1989 [G_S] ES_COUNT

*if < < _es_ids> /le 0 > /or < [es_count] /eq 0 > > /then

*put dataset [ldi] <es_sun_ds> /nrat=2000 /seq=es_ids

*def/i os_nun : 1

*else

e£ind record [ldt], <os.sun_ds>, ES_PILOC /nor=u_nun

*def/t os_nua = < <os_nua> ÷ 1 >

*ondt£

• end_update

*n2 8 /nano:=es_proc /type:a [Idl] <es_ids> ES_PKOC.<es_nun>

*n2g /nane==os_nane /typeffia [ldi] <es_ids> ES.NAHE.<es_nua>

*12g /nane==es_pars /type=d /naxn=10 [ldt] <es_ids> ES_PIKS.<es_nua>

Run ES Processor

CIQT <os_proc>

[function]

5/24/90 CSM Testbed Procedures Manual 7.4- 35



Procedure ES Utility Procedures

Define nacrosynbol for ELD/EIPE coanand

*iS < <es_stor> /KS 0 > /then

*dsf/i es_nst : < ((<es_stor>-l)/<es_nen>) ÷ 1 >

*else

*dof/i u_nst = 1

*ondif

• BEG_UPDaTE MaY_5_1989 [SNO] EXPE CHANGE

*dof/a ES_EIPE_CMD:ffi'EXPE ,[es_nane]' '<es_nen>' '--

*def/a ES_EIPE_CMD=:JEXPE '[es_nane]' '4' '--

• END_UPDATE

<es_opt>' '<es_nen>' '<es_ndof>' '<es_nst>' I lO'<es_dia>' '<csn_precision>

*else

*find dataset [ldi] [es_sun_ds] /soqffies_ids

*def/a es.aass_dia 8 := [es_nass_diag]

edof/a os.aass_ds =ffi [es_nass_diag].DIiG

Find Number of El,sent Processors fron Database

*flnd record [Idi], <es_ids>, ES_PKOC /nor:nun_es_proc

*if < <nus_es_proc> /lo 0 > /then

*renark Cannot find any ES Processor names in dataset [es_sun_ds]

7.4- 36 CSM Testbed Procedures Manual 5/24/90



Utility Procedures Procedure ES

O

eendit

elf < <IFELSE([function];DEFiNE FKEEDOMS;1;O)> • /then

ecall ES_DOFS ( function=INITIILIZE; es_dof_dsz[es_dof_ds] )

*endif

Process all Elenent Processors Found

edo $ies z 1, <nun_es_proc>

*82n /nsne==ES_PKOC /type=a [ldi] <es_ids> ES_PKOC.<$ios>

e82m /nane==ES_NIME /type=a [ldi] <os_ids> ES_NINE.<$ios>

*82n /nane==ES_PaKS /type=d [ldi] <es_ids> ES_PaES.<$ios>

eg2n /nano=zES_NSTK /typezd [ldi] <es_ids> ES_NSTK.<$ies•

edet/i ES_COKO

*def/a ES_DIS_DS

)def/a ES_DOF_DS

sdef/a ES_ECC_DS

edof/$ ES_FIKX

edef/a ES_FKC_DS

• [u_core]

: lee_dis_de]

= [es_dof_ds]

: los_oct_de]

: [es_fikx]

='[es_frc.ds]

edof/i ES_NL_GEOK : [os_nl_soon]

edef/t ES_NL.LOJD : [es_nl_load]

edel/i ES.NL_MATL : [es_nl_aatl]

*def/a ES_KOT_DS : [es_rot_ds]

• beg_update 26_1PK_1989 [GMS] CONSISTENT LOIDS

edef/8 ES_LOJD_FACTOK : [es_load_factor]

ede_/i ES_LOID_SET = [es_load_set]

• end_update 26_1PK_1989 [GMS] CONSISTENT LOIDS

5/24/90 CSM Testbed Procedures Manual 7.4- 37



Procedure ES Utility Procedures

edef/a ES_STK_DI_ = [es_str_dir]

edef/a ES_STK_LOC : [es_str_loc]

*if < (IYELSE([es_strain_ds]; ;0;1)> > /then

edef/a ES_STgIIN_DS : [es_strain_ds]

*endif

*if ( <IFELSE([es_stress_ds]; ;0;1)> > /then

*def/a ES_STKESS_ds = [es_stress_ds]

*endif

[XQT <es_proc>

[function] . DEFINE FKEEDOMS [ FOKN FOKCE [ STIFFNESS [ ...

eenddo

*if < <IFELSE([function];DEFINE FREEDONS;1;O)> > /then

ocnll ES_DOFS ( _unction:FINILIZE; es_dof_ds:[es_dof_ds]; --

num_con_ds: [ntut_con_ds] )

*endif

eendif

STOP

eend

• =DECK ES_DOFS

eprocedure ES_DOFS ( function=INITiaLIZE; es_dof_ds=ES.DOFS; --

nun_con_ds=l; ldi=l )

elf < _IFELSE([function];INITIILIZE;1;O)> > /then

$relark

erenark ES_DOFS: Perforning lutonatic D0F Suppression for ES Elts

edef/t ns_ovorerite == <true>

Inltlalize Elenent DOF Dataset

• (if not blank)

• (if not blank)

7.4- 38 CSM Testbed Procedures Manual 5/24/90



Utility Procedures Procedure ES

082n /nane=parsseters /typo=i /naxn=18 [ldi] JDFX.BTIB.1.8 DATA.1

*def/i nun_nodes = <psrsnetors[t]

*do£/i nun_doll = <pareneters[2]>

[XQT VEC

INIT_TAB [es_dof_ds] •nmt_dofs) BY _:nun_nodasY

*elseif • ,IFELSE([£unotion] ;FINALIZE; 1;O)Y > /then

gorge Elonont DOF Dataset with Constraint Datasets

*dof/i ntm_cds ffi 0

ado Sods = 1, [nun_con_ds]

*dof/a con_de ffi CON..•$cds_

*find datasot [ldi], ,oon_ds> /soq=id_cds

*if • _$cds> /oq 1 ) /then

[XqT VEt

*ondif

elf • •id_cds) /gt 0 ) /then

*renark ES_DOFS Pro©ossing Constraint Dataset: •oon_ds)

NFaGE_DOF [os_dof_ds] -> •con_ds>

*dsf/i num_cds = _ (num_cds> + 1 )

*ondif

*anddo

*remark

*remark ES_DOFS Processed _num.cds_ Constraint Datasots

*ronark

*de£/i ns_overwrite --= <£alse>

5/24/90 CSM Testbed Procedures Manual 7.4- 39



Procedure ES Utility Procedures

7.4.12 REFERENCES

7.4-1 Stanley, G. M.; and Nour-Omid, S.: The Computational Structural Mechanic8

TeJtbed Generic Structural.Element Processor Manual. NASA CR-181728, March
1990.

7.4-2 Stewart, Caroline B.: The Computational Structural Mechanic8 Teethed U_er8

Manual. NASA TM-100644, October 1989.

7.4-3 Stewart, Caroline B.: The Computational Structural Mechanics TeJtbed Data Li-

brary De6cription. NASA TM-100645, October 1988.

7.4- 40 CSM Testbed Procedures Manual 5/24/90



Utility Procedures FACTOR

7.5 Procedure FACTOR

7.5.1 GENER_AL DESCRIPTION

Procedure FACTOR decomposes or factors a system matrix using a solver defined by the

global macrosymbol solver_name. If solver_name is defined to be INV, the original nodal-

block sparse solver implemented in processor INV will be used (see Section 6.7 of reference

7.5-1). If solver._name is defined to be BAND, a variable-bandwidth direct solver imple-

mented in processor BAND will be used (see Section 8.5 of reference 7.5-1).

7.5.2 PROCEDURE USAGE

Procedure FACTOR is used by preceding the procedure name by the *call directive, and

following it by a list of arguments enclosed in parentheses. Procedure arguments are order-

independent, and most have default values thus making them optional. The formal syntax

is as follows:

.call FACTOR ( argl = vall; arg2 = val2 ; ...)[

where azgl and axg2 represent argument names, and vall and va12 represent their cor-

responding values. Note that semi-colons are required between arguments, and a double

dash (--) may be used to continue the argument list on the next line.

The allowable arguments for procedure FACTOR are summarized in the following table,

along with their default values (if they exist). Note that arguments without defaults are

generally mandatory, while those with defaults are generally optional. Exceptions to this

rule are noted in the following section under detailed argument descriptions.

For procedure FACTOR, the following table lists each argument, its default value and mean-

ing.

Argument Default Value

CONSTRAINT_SET I

INPUT_MATRIX K

0UTPUT_MATRIX K

INPUT_LDI 1

0UTPUT_LDI 1

Meaning

Constraint set number

First word of the name of the dataset containing

the assembled stiffness matrix

Second word of the name of the dataset containing

the factored system stiffness matrix

Logical device index for input_matrix

Logical device index for output_matrix

Tables 7.5-1 and 7.5-2 list the datasets used or created by procedure FACTOR and the

processors invoked by procedure FACTOR, respectively.

Revised 5/23/90 CSM Testbed Procedures Manual 7.5- 1



FACTOR Utility Procedures

Table 7.5-1 Datasets Input/Output by procedure FACTOR

Dataset

AMAP..ic2.isize

Description

Factorization Map for INV

Input

,/

J

Output

Constraints

INV. O_M.j_* Factored Stiffness Matrix x/

JDF1.BTAB.1.8 Model Summary _/

JSEQ.BTAB.2.17 Nodal Elimination Sequence x/

KMAP..nsubs.ksize Model Connectivity Map ._

I_M.SPAR.jdf_** ,/Assembled Stiffness Matrix

t ] = <constraint_set> * O_M = <output_matrix> **I_M = <input_matrix>

Table 7.5-2

Procedure Type

INV Internal

BAND External

Processors Invoked by procedure FACTOR

Function

Factor stiffness matrix in nodal-block-sparse format

Factor stiffness matrix in variable-bandwidth format

7.5.3 ARGUMENT DESCRIPTIONS

7.5.3.1 CONSTRAINT_SET

Constraint set number (default: 1). This argument selects which constraint set to be used

in solving the linear system of equations.

7.5.3.2 INPUT_MATRIX

First word of the dataset name containing the assembled stiffness matrix (default: K).

7.5.3.3 0UTPUT.MATRIX

Second word of the data.set name containing the factored system stiffness matrix (default:

K). This notation is only valid if the macrosymbol solver_name is set to INV.

7.5- 2 CSM Testbed Procedures Manual Revised 5/23/90



UtilityProcedures FACTOR

7.5.3.4 INPlrr_LDI

Input logical device index containing the input matrix (default: 1).

7.5.3.50UTPUT_LDI

Output logical device index containing the output matrix (default: 1).

7.5.4 USAGE GUIDELINES AND EXAMPLES

Procedure FACTOR may be used by preceding the procedure name by the *call directive.

Procedure arguments may be changed from theirdefault values by including any or all

of the arguments and their new values when the procedure is called. A space or blank

isrequired between the end of the procedure name and the leftparenthesis.

*call FACTOR ( INPUT_MATRIX = K ; CONSTRAINT_SET = i )

Before procedure FACTOR iscalled,the globalmacrosymbol solver_name should be defined

as described in Section 7.5.1;otherwise,the defaultvalue of INV willbe used.

7.5.5 LIMITATIONS

None•

7.5.6 ERROR MESSAGES AND WARNINGS

None.

7.5.7 PROCEDURE FLOWCHART

Procedure FACTOR isself-containedwith no subprocedures.

7.5.8 PROCEDURE LISTING

*procedure FACTOR ( Input_matrix ffi K ; output.matrix ffi K ;

input_ldi = 1 ; output.ldi = 1 ;

constraint_set = 1 )

• Procedure to factor a system matrix using different solvers•

• The solver is selected using the global aacrosyabol "solver_name".

*if < ifeqs( <solver_name>; ) > /then

*def/a solver_name == INV

*endif

Revised 5/24/90 CSM Tcstbed Procedures Manual 7.5- 3



FACTOR Utility Procedures

*if < ifeqs(<solver_nane>;INV) > /then

• Use original nodal block spLrse solver originally in SPAK

[IQT INV

reset E ffi [input_matrix]

reset KLIB = [input_ldi]

reset KILIB = [output_ldi]

reset CON = [constraint_mot]

reset LIA = 40000

reset DZe-RO z 1.E-20

reset spdp ffi <osn_precision>

*el,elf < ifeqs(<solver_nano>;BAND) • /then

• Use Banded solver

[XqT BIND

reset hath=28, idl=l, klib=[input_Idl]

reset noons[constraint_set], dzeroffil.0e-20, k=[input_natrix]

reset opt=l, res=-I

*endif

STOP

• Define factored-natrix paraneters as global aacrosyabols

*if < ifeqs(<solvor_nane>;ITEK) • /then

*def/e coef_det == 1.OE+01

*def/i explO_dot == 1

*dof/i nmt_ne K =J 0

*dof/i sisn_dot == l

*else

*renark Deterninant of [input_natrix] = <cool_dot> * 10 ** <oxplO_det>

*ren_rk Nunbar of nosativo roots = <nuu_nes>

*def/i sign_det _ffi <SIGN(1.;<coof_det>)>

*ondif

*end

7.5.9 REFERENCES

7.5-1 Stewart, Caroline B.: The Computational Structural Mechanics

Manual. NASA TMo100644, October 1989.

Testbed U_er'8

7.5- 4 CSM Testbed Procedures Manual Revised 5/24/90



Utility Procedures FORCE

7.6 Procedure FORCE

7.6.1 GENERAL DESCRIPTION

Procedure FORCE drives the calculation of force vectors for either linear or nonlinear anal-

yses.

7.6.2 PROCEDURE USAGE

Procedure FORCE may be used by preceding the procedure name by the *call directive, and

following it by a list of arguments separated by semicolons (;) and enclosed in parentheses.

Procedure arguments are order-independent, and most have default values thus making

them optional. The formal syntax is as follows:

*call FORCE ( argl = vall; arg2 ffi va12 ; "")1

For procedure FORCE, the following table lists each argument, its default value and meaning.

Argument Default Value

COKOTATION 1

DISPLACEMENT

LDI 1

LOAD_SET 1

LOAD_FACTOR 1.0

NL_GEOM 0

NL_LOAD 0

NL_HATL 0

ROTATION

TYPE RESIDUAL

INPUT_FORCE

OUTPUT.FORCE SYS.FOKCE

Meaning

Corotational flag (0, 1, 2)

First two words of displacement dataset name

Logical device index
Load set number

Load factor

Geometric nonlinearity flag

Nonlinear load terms (live terms)

Material nonlnearity flag
First two words of rotation-vector dataset name

Type of force vectoF (residual, external, internal)

Input force vector data.set name

Output force vector dataset name

Tables 7.6-1, 7.6-2, and 7.6-3 list the datasets used or created by procedure FORCE, the

procedures invoked by procedure FORCE, and the processors invoked by procedure FORCE,

respectively.

Revised 5/10/90 CSM Testbed Procedures Manual 7.6- 1



FORCE Utility Procedures

Table 7.6-1

Data.set

ES.SUMMARY

Datasets Input/Output by procedure FORCE

Description Input Output

ES Processor Status x/ x/

INT.FORC.i.fl System Internal Force Vector _/

STAT.DISP.i.fl i System Displacement Vector _/

STAT.REAC.i.fl System Reaction Force Vector

i = <load_set> and j = <cons_set>

,/

Table 7.6-2

Procedure

ES

FORCE

Sub-procedures Invoked by procedure FORCE

Type

External

__ncgion

Element utilityprocedure

Main Procedure

Table 7.6-3

Procedure Type

ESi External

VPRT Internal

Processors Invoked by procedure FORCE

Function

Element processors based on GEP

Print SYSVEC-format vectors

7.6.3 ARGUMENT DESCRIPTIONS

7.6.3.1 COROTATION

Corotational update switch for large-rotation problems (default: 1). This switch should

be set to 1 when the model involves finite elements that require corotation for geometric

nonlinearity. This is true of most beam and shell elements, and may be true for some solid

(3D) elements used to model shell structures. Consult the appropriate element processor

(ESi) section in the CSM Testbed User's Manual (see ref. 7.6-1) for specific guidelines.

7.6.3.2 DISPLACEMENT

First two words of the dataset name for the displacement solution.

7.6- 2 CSM Testbed Procedures Manual Revised 5/23/90



Utility Procedures FORCE

7.6.3.3 INPUT_FORCE

Full dataset name for the input or basic force vector.

7.6.3.4 OUTPUT_FORCE

Full dataset name for the output force vector (default: S¥S. FORCE).

7.6.3.5 LD..___I

Logical device index (default: I).

T.6.3.6 LOAD_FACTOR

Load factor used to scale the basic applied loads or displacements (default: 1.0).

7.6.3.7 NL_GEOM

Geometric nonlinearity level: O, I, or 2 (default: 2). A value of zero means that the

problem is geometrically linear; a value of one means that the geometric nonlinearity will

be handled globally (i.e., using corotational updates only); and a value of two means that

the nonlinear element strain-displacement relations will be used in addition to any global

treatment of geometric nonlinearity.

7.6.3.8 ES..NL_MATL

Material nonlinearity switch. If ES_NL.MATL is greater than zero, then the element is

materially nonlinear. If ES_NL_MATLis zero, then the element is materially linear.

?.6.3.9 NL_LOAD

Nonlinear loading index for live loads (default: 0).

7.6.3.10 ROTATION

First two words of the dataset name for the rotation solution.

7.6.3.11 TYPE

Type of force vector to form (default: RESIDUIL. This argument selects the type of force

vector to form (RESIDUAL, INTERNAL, or EXTERNAL).

Revised 5/23/90 CSM Testbed Procedures Manual 7.6- 3



FORCE UtilityProcedures

7.6.4 USAGE GUIDELINES AND EXAMPLES

Procedure FORCE may be used by preceding the procedure name by the *call directive.

Procedure arguments may be changed from their default values by including any or all

of the arguments and their new values when the procedure is called. A space or blank

is required between the end of the procedure name and the left parenthesis. If the default

values of the procedure arguments are to be used, then only the procedure name is required.

*call FORCE ( LOAD_SET = I ; INPUT_FORCE = APPL.FORC.[load_set] .i;
0UTPUT_FORCE = EXT. FORC; TYPE = EXTERNAL;

LOAD_FACTOR = 2.5; LDI = I )

7.6.5 LIMITATIONS

Applicable only to elements implemented using the generic element processor template.

7.6.6 ERROR MESSAGES AND WARNINGS

None.

?.6.'/ PROCEDURE FLOWCHART

FORCE (main procedure)

ES (internalforcecalculation)

7.6.8 PROCEDURE LISTING

sprocedure FORCE (

[xqt VEC

type = RESIDUAL ; --

input_force

output_force = STS.FORCE ;

load_set = 1 ;

RESIDUAL I EXTERNAL I INTERNAL

load_factor = 1.0 ; --

nl_geon = 0 ; --

hi_marl = 0 ; --

nl.load = 0 ; --

displacement ; --

rotation ; --

corotation = 0 ; --

ldi = 1 )

Initialize Output Force Vector

..............................

*find [ldi] [output_force] /aeq=ids_oforce

*if < <ids_oforce> /le 0 > /then

7.6- 4 CSM Testbed Procedures Manual Revised 5/24/90



Utility Procedures FORCE

*end

*g2n /naneffinun.nodes /typoffit [ldi] HODEL.SUMMAIT NUN.NODES

*g2a /nane=nun_dofs /typefi [ldi] HODEL.SUMHIKY NUH_DOFS

INIT_VEC [output_force] <nun_dofs> BY <nun_nodes>

*else

[output_force] <- O.

*endtf

----.------. .......... . ......... ..-

ldd Scaled Input Force Vector

--. .... . ........ ... ...... . ....

*if • <IFELSE([tnput_force]; ;0;1)> > /then

*find [ldi] [input_force] /seqffiids_tforce

elf < <ids_iforce> /gt 0 > /then

[_utput_forco] _- [load.factor] [input_force]

eendif

*endif

ldd Element Forces

.0 ................

stall ES ( function = 'FOR_ FOKCE/[type]'; --

ldt ffi [ldt] ; --

es_nl_geon ffi [nl_geon] ; -.

es_nl_load = [nl_load] ; --

es_coro ffi [c,rotation] ; --

es_dis_ds = [displacenont] ; --

es_rot.ds = [rotation] ; --

el_load_factor = [load_factor]; --

es_losd.set • [load_set] ; --

os_fr©_ds • [output.force] )

7.6.9 REFERENCES

7.6-1 Stewart, Caroline B.: The Computational Structural MechanicJ

Manual. NASA TM-100644, October 1989.

Testbed User'_

Revised 5/24/90 CSM Testbed Procedures Manual 7.6- 5



FORCE Utility Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

7.6- 6 CSM Testbed Procedures Manual Revised 5/24/90



Utility Procedures Initial Geometric Imperfections

7.7 Procedure IMPERFECTION

7o7.1 GENERAL DESCRIPTION

Procedure IMPERFECTION to superpose a set of normalized buckling modes to form an

initial geometric imperfection shape. This imperfection shape is then added to the nodal

coordinates of the structure. The original nodal coordinates are first copied into another

dataset and saved for subsequent use if desired.

7.7.2 PROCEDURE USAGE

Procedure IMPERFECTION is used by preceding the procedure name by the *call directive,

and following it by a list of arguments enclosed in parentheses. Procedure arguments are

order-independent, and most have default values thus making them optional. The formal
syntax is as follows:

*call IMPERFECTION ( argl ffi vall; arg2 ffi val2 ; ...)]

where argl and arg2 represent argument names, and vall and val2 represent their cor-

responding values. Note that semi-colons are required between arguments, and a double

dash (--) may be used to continue the argument list on the next line.

The allowable arguments for procedure IMPERFECTION are summarized in the following

table, along with their default values (if they exist). Note that arguments without defaults

are generally mandatory, while those with defaults are generally optional. Exceptions to

this rule are noted in the following section under detailed argument descriptions.

For procedure IMPERFECTION, the following table lists each argument, its default value and

meaning.

Argument Default Value

AMPS 1.0

MODE 1

N./IODES 1

LDI 1

Meaning

Amplitude of each buckling mode
Mode numbers

Number of buckling modes used

in computing imperfection shape

Logical device index

Processor IMP is used to perform the modal superposition (see reference 7.7-1).

7.7.3 ARGUMENT DESCRIPTIONS

7.7.3.1 AMPS

Amplitudes of buckling mode shapes (default: 1.0). This argument gives an array of

amplitudes for the buckling mode shapes. The array amps has N_MODES entries.

Revised 5/11/90 CSM Testbed Procedures Manual 7.7- 1

PRECED|t_G PAGE BLAt'_K i_IOT FILMED



Initial Geometric Imperfections Utility Procedures

7.7.3.2 LD__I.I

Logical device index (default: 1).

7.7.3.3 MODE

Buckling mode shape numbers (default: 1). This argument gives an array of mode numbers

to be used in generating the initial geometric imperfection shape. The array HODE has
_i_MODE$ entries.

7.7.3.4 N_MODES

Number of buckling mode shapes to use (default: 1). This argument gives the total number

of buckling mode shapes to be superposed to form the initial geometric imperfection shape.

7.7.4 USAGE GUIDELINES AND EXAMPLES

Procedure IMPERFECTION may be used by preceding the procedure name by the *call

directive. Procedure arguments may be changed from their default values by including

any or all of the arguments and their new values when the procedure is called. A space or

blank is required between the end of the procedure name and the left parenthesis. If the

default values of the procedure arguments are to be used, then only the procedure name

is required.

*call IMPERFECTION ( n_modes=l; modes=l; amps=l.0 )

7.7.5 LIMITATIONS

Procedure IMPERFECTION only considers normalized buckling modeshapes in forming the

initial geometric imperfection shape.

7.7.6 ERROR MESSAGES AND WARNINGS

None.

7.7.7 PROCEDURE FLOWCHART

IMPERFECTION

C0PY_DS

SNITCH_DS

(main procedure)

(copy datasets)

(switch datasets)

7.7- 2 CSM Testbed Procedures Manual Revised 5/24/90



Utility Procedures Initial Geometric Imperfections

7.7.8 PROCEDURE LISTING

*procedure IMPEKFECTION ( n_nodes=l; nodes=l; anps=l.0; ldi=l )

• CLAMP Procedure to Supo_oso Buckl_ 8 Modes as Initi_ Imperfections

*remark

*remark Xnposlng Geometric Imperfections
*remark

*remark - - - Saving old nodal coordinates in JLOC.OLD.2.5

*call COPY_DS ( fron_Idi=[ldl]| froa_ds = JLOC.BTiB.2.5 ; --

to_ldi • [idl]; to_ds = JLOC.OLD.2.5 )

*¢a11 SNITCH_DS ( ldiffi[Idi] ; --

ds_1 = JLOC.BTaB.2.5 ; ds_2 = JLOC.OLD.2.5 )

*remark

*remark - - - adding l_oar combination of buckling modes to coords
*remark

[XqT XMP
*dof/i nodes[l: [n_aodes]] = [nodes]

*dof/e12.4 saps[l: In_nodes]] • [saps]

*do Sis • 1, In_nodes]

SUPEKPOSE (saps [<Sin>] > BUCK•NODE. 1.1 /sodo=<nodes [<Sis>] > /NORM

*remark Mode • _nodes[<$im>]> , amplitude = <saps[<$1n>]>
eenddo

*end

7.7.9 REFERENCES

7.7-1 Stewart, Caroline B.: The Computational Structural Mechanics Testbed User's

Manual. NASA TM-100644, October 1989.

Revised 5/24/90 CSM Testbed Procedures Manual 7.7- 3



Initial Geometric Imperfections Utility Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

7.7- 4 CSM Testbed Procedures Manual Revised 5/24/90



Utility Procedures INITIALIZE

7.8 Procedure INITIALIZE

7.8.1 GENERAL DESCRIPTION

Procedure INITIALIZE performs standard initialization functions and resequencing of the

joint.

7.8.2 PROCEDURE USAGE

Procedure INITIALIZE is used by preceding the procedure name by the *call directive,

and following it by a list of arguments enclosed in parentheses. Procedure arguments are

order-independent, and most have default values thus making them optional. The formal

syntax is as follows:

*call INITIALIZE ( axgl = vall; arg2 ffi val2 ; ...)]

where ar81 and arg2 represent argument names, and vall and val2 represent their cor-

responding values. Note that semi-colons are required between arguments, and a double

dash (--) may be used to continue the argument list on the next line.

The allowable arguments for procedure INITIALIZE are summarized in the following table,

along with their default values (if they exist). Note that arguments without defaults are

generally mandatory, while those with defaults are generally optional. Exceptions to this

rule are noted in the following section under detailed argument descriptions.

5/23/90 CSM Testbed Procedures Manual 7.8- 1

PRECEDING PAGE BLAt_K NOT FILMED



INITIALIZE Utility Procedures

For procedure INITIALIZE, the following table lists each argument, its default value and

meaning.

Argument

CONSTKAINT_SET 1

LDI 1

MAXCON 35

RENUMBER <false>

RSEQ_METHOD -I

Default Value Meaning

Constraint set number

Logical device index

Maximum number of joints connected to any one joint

Flag to resequence the joints internally

Resequencing method

7.8.3 ARGUMENT DESCRIPTIONS

7.8.3.1 CONSTRAINT_SET

Constraint set number (default: 1). This argument selects which constraint set to be used

in solving the linear system of equations.

7.8.3.2 MAXCON

Maximum number of joints connected to any one joint (default: 35).

7.8.3.3 RENUMBER

Flag to resequence the joints internally (default: <false>).

7.8.3.4 RSEq_METHOD

Resequence method (default: "1). This argument selects which resequencing method to

use. The procedure RESEqUENCE is called for this task (see Section 7.12).

7.8.3.5 LD__.I_I

Logical device index (default: I).

7.8.4 USAGE GUIDELINES AND EXAMPLES

Procedure INITIALIZE is used by preceding the procedure name by the *call directive.

Procedure arguments may be changed from their default values by including any or all

of the arguments and their new values when the procedure is called. A space or blank

is required between the end of the procedure name and the left parenthesis.

*call INITIALIZE ( LDI = 1 ; CONSTRAINT_SET = i ; RENUMBER = <true> )

7.8.5 LIMITATIONS

None.

7.8- 2 CSM Testbed Procedures Manual 5/23/90



Utility Procedures INITIALIZE

7.8.6 ERROR MESSAGES AND WARNINGS

None.

7.8.7 PROCEDURE FLOWCHART

INITIALIZE

ES

RESEQUENCE

MODEL_SUMMARY

(main procedure)

(initializeelement processor)

(resequencethe joints)

(createMODEL.SUMMARY data.set)

7.8.8 PROCEDURE LISTING

*proc.dure IIITIALIZE ( renuaber=<false>; oonstraint_s.t = I; ld2=1; --

rseq_nethod ffi -I; aaxcon = 35 )

Parlors Standard Initialization Functions

INITIALIZE ELEMENT CONFIGURATION

[XqT E
*call ES ( function = 'INITIALIZE'; ldi=[ldi] )

*Remark Element configuration initialized.

RESEqUENCE NODES FOR SOLVER EFFICIENCY

*if < [ronusber] > /then

*call RESEQUENCE ( rseq_aathod=[rsoq_asthod] ;

*endlf
ldi=[ldi] ; aaxcon=[aaxcon] )

CONSTIUCT MATRIX TOPOLOGY MAPS

[XqT TOPO
reset aaxsub = 100000, lran=40OO0, lrkn=lO0000

RESET BLIBffi [ldi]

RESET HLIB= [ldi]

RESET ILIB= [ldi]

*if < ifeqs((solver_nane>;INV) > /then

salsa

reset ANAP=O

*endif

CONSTRUCT DOF TABLE

[XqT VEC

INIT_DOF CON..[constraint_sst] -> DOF.TABL

5/24/90 CSM Testbed Procedures Manual 7.8- 3



INITIALIZE Utility Procedures

*Kenark DOF TtBLE initialized.

CKEITE MODEL SUMNIKY DITISET

*call MODEL_SUMMIRY ( Idi=[idi] )

STOP

*end

7.8.9 REFERENCES

7.8-1 Stewart, Caroline B.: The Computational Structural Mechanics

Manual. NASA TM-100644, October 1989.

Testbed UJer's

7.8- 4 CSM Testbed Procedures Manual 5/24/90



Utility Procedures MASS

7.9 Procedure MASS

7.9.1 GENERAL DESCRIPTION

Procedure PASS forms the assembled unconstrained mass matrix.

7.9.2 PROCEDURE USAGE

Procedure PASS is used by preceding the procedure name by the *call directive, and

following it by a list of arguments enclosed in parentheses. Procedure arguments are

order-independent, and most have default values thus making them optional. The formal

syntax is as follows:

*call MASS ( argl = vall; arg2 = val2 ; ...)[

where argl and arg2 represent argument names, and vall and val2 represent their cor-

responding values. Note that semi-colons are required between arguments, and a double

dash (--) may be used to continue the argument list on the next line.

The allowable arguments for procedure PaSS are summarized in the following table, along

with their default values (if they exist). Note that arguments without defaults are generally

mandatory, while those with defaults are generally optional. Exceptions to this rule are

noted in the foUowing section under detailed argument descriptions.

Revised 5/23/90 CSM Testbed Procedures Manual 7.9- 1



MASS Utility Procedures

For procedure MASS, the following table lists each argument, its default value and meaning.

Argument Default Value

TYPE CONSISTENT

MASS CEN

LDI 1

Meaning

Type of mass matrix

Output data.set name

Logical device index

Tables 7.9-1 and 7.9-2 list the datasets used or created by procedure MASS and the proces-

sors invoked by procedure MASS, respectively.

Table 7.9-I

Data.set

JDF1.BTAB.1.8

Datasets Input/Output by procedure MASS

DEM.DIAG

Input

J

Description

Model Summary

Output

JSEQ.BTAB.2.17 Nodal Elimination Sequence v/

KMAP..nsubs.ksize Model Connectivity Map _/

<MASS>.SPAR.jdf_ Assembled Mass Matrix v /

Diagonal Mass Matrix x/

Procedure

VEC

'lhble 7.9-2

Type

Internal

Processors Invoked by procedure MASS

Function

Vector algebra utilities

K Internal Assembles unconstrained system matrices

ExternalESu Various element processors based on the GEP

7.9.3 ARGUMENT DESCRIPTIONS

7.9.3.1 LD__I_I

Logical device index (default: 1).

7.9.3.2 .}lASS

Name of the mass matrix dataset (default: CER). For a consistent mass matrix, the

dataset name is [NASS].SPAR.jdf_. For a diagonal mass matrix, the dataset name will

be <es.amss_diag> or DEM.DIAG.

7.9- 2 CSM Testbed Procedures Manual Revised 5/23/90



Uti_ty Procedures MASS

7.0.3.3 TYP___E

Type of mass matrix (default: CONSISTENT). This argument defines the form of the mass

matrix to be either consistent or diagonal.

7.9.4 USAGE GUIDELINES AND EXAMPLES

Procedure MASS is used by preceding the procedure name by the *call directive. Proce-

dure arguments may be changed from their default values by including any or all of the

arguments and their new values when the procedure is called. A space or blank is required
between the end of the procedure name and the left parenthesis•

*call MASS ( TYPE ffi DIAGONAL; MASS ffi <es_mass_diag>; Idi = I)

7.9.5

None.

7.9.6

None.

7.9.7

LIMITATIONS

ERROR MESSAGES AND WARNINGS

PROCEDURE FLOWCHART

MASS (main procedure)

ES (form element mass matrices)

7.9.8 PROCEDURE LISTING

eprocedure MISS

Idi=l; aass = CEM )
ereuark

eKeaark Foraing [type] Mass Matrix
*remark

*if < <IFELSE([TYPE];DIAGONAL;1;O)> > /then

Initialize Diagonal (Lumped) Mass Matrix

*g2a /nmaefnua_dofs /typoffii [ldi] MODEL.SUMMAKY NUM_DOFS

eg2n /nmaeffinum_nodes /typeffii [ldi] NODEL.SUNMAKY NUN_NODES

[XQT VEC
INIT_VEC <es_uass_ds> <N_q.DOFS> BY <NUN.NODES>

sendal

Fern Elonent Mass Matrices (in EFIL Dataset)

( type ffi CONSISTENT ; -- . CONSISTENT J DIAGONAL

• Output datasot

Revised 5/24/90 CSM Testbed Procedures Manual 7.9- 3



MASS UtilityProcedures

*call ES ( _unction = 'FOKN MISS/[type]'; ldi=[ldi] )

£ssonble Element Consiatent Mass Matrix into System Hatrix

*if < _IFELSE([TYPE] ;CONSISTENT;1;O)• • /then

[IQT K

reset nsJw z [nass]

RESET BLIB= [ldi]

RESET ELIB= [ldi]

RESET HLIB= [ldi]

RESET OUTLIB= [ldi]

RESET SPDP=_cen_precision•

*endit

*ond

7.9.9 REFERENCES

7.9-1 Stewart, Caroline B.: The Computational Structural Mechanic8

Manual NASA TM-100644, October 1989.

Testbed Userb

7.9- 4 CSM Testbed Procedures Manual Revised 5/24/90



Utility Procedures MODEL_SUMMARY

7.10 Procedure MODEL_SUMMARY

7.10.1 GENERAL DESCRIPTION

Procedure NODEL_SUNNARYgenerates a summary dataset which contains parameters about

the finite element model. These parameters include the number of element processors used

(<num_es_types>), the total number of nodes (<num_nodes>), the number of uncon-

strained degrees of freedom (<num_dofs>), and the number of equations (<num_eqns>).

These parameters are written to the MODEL.SUMMARY dataset.

7.10.2 PROCEDURE USAGE

Procedure HUDEL_SUNN.UtY is used by preceding the procedure name by the *call directive,

and following it by a list of arguments enclosed in parentheses. Procedure arguments are

order-independent, and most have default values thus making them optional. The formal

syntax is as follows:

*¢ali MODEL_SUMMARY ( argl ffivall; arg2 ffival2 ; ...)[

where argl and arg2 represent argument names, and vall and va12 represent their cor-

responding values. Note that semi-colons are required between arguments, and a double

dash (--) may be used to continue the argument llst on the next line.

The allowable arguments for procedure NODEL_S_RY are summarized in the following

table, along with their default values (if they exist). Note that arguments without defaults

are generally mandatory, while those with defaults are generally optional. Exceptions to

this rule axe noted in the following section under detailed argument descriptions.

Revised 5/23/90 CSM Testbed Procedures Manual 7.10- 1



MODEL_SUMMARY Utility Procedures

For procedure HODEL_SUI_tltY, the following table lists each argument, its default value

and meaning.

Argument Default Value

CONSTRAINT_SET 1

LDI 1

Meaning

Constraint set number

Logical device index

Table 7.10-1 lists the datasets used or created by procedure MODEL_SUMMAgY.

Table 7.10-1 Datasets Input/Output by procedure MODEL_SUMMARY

Dataset Description

JDF1.BTAB.1.8 Model Summary

MODEL.SUMMARY Model Summary Parameters

Lib

J

Input

,/

Output

7.10.3 ARGUMENT DESCRIPTIONS

7.10.3.1 CONSTRAINT_SET

Constraint set number (default: 1). This argument selects which constraint set to be used

in solving the linear system of equations.

7.10.3.2 LD_..__I

Logical device index (default: 1).

7.10.4 USAGE GUIDELINES AND EXAMPLES

Procedure MODEL_SUMMARY is used by preceding the procedure name by the *call directive.

Procedure arguments may be changed from their default values by including any or all of

the arguments and their new values when the procedure is called. A space or blank

is required between the end of the procedure name and the left parenthesis.

*call MODEL_SUMMARY ( LDI ffiI ; CONSTRAINT_SET = I )

7.10.5 LIMITATIONS

None.

7.10- 2 CSM Testbed Procedures Manual Revised 5/23/90



Utility Procedures MODEL.SUMMARY

7.10.6 ERROR MESSAGES AND WARNINGS

None•

7.10.7 PROCEDURE FLOWCHART

Procedure MODEL_SUNM£1tYis self-contained with no subprocedures.

7.10.8 PROCEDURE LISTING

*procedure MODEL_SUMMIKY ( Idiffil ; constraint_set=l )

. .... .---m ...... ...... ............ __._____

• Get sodel parmaoters free various datasets

efind record [ldi] ES•SUHHIKY, ES_PKOC /nor=nuu_es_typos

*g2n /nane=paraaeters /typeffii /naxn=18 [ldi] JDF1.BTIB.1.8 DITI.1

*def/i nun_nodes = <paraeters[1]>

edef/i nun_dole = <paraaoters[2]>

• Install the MODEL•SUMMIRY datasot, if necessary

*find dataset [ldi] MODEL.SUXMIKY /seqffiids_MS

eif< <ida_MS> /le 0 > /then

eput daftest [ldi] MODEL•SUMMIKY /afar=64 /seq=ids_MS

*endi£

• .... .--o.------...... ....... -- .......... _ ...... ___

• Store paraueters in the MODEL.SUMMIRY dataset

*n2 g /naao=nun_es_types /typozi [ldi] MODEL.SUKMIKY NUN_ES.TYPES

*n2g /name=nun_nodes /typeffii [ldi] MODEL.SUXMAKY MUM_NODES

an28 /nauo=nun_dofs /typo=i [ldi] MODEL.SUMMIKY NUM_DOFS

an2 S /nanoffinun_oqns /type=i [ldi] MODEL.SUMXIKY NUM_EQNS
*end

7.10.9 REFERENCES

7.10-1 Stewart, Caroline B.: The Computational Structural Mechanica Testbed UJer'a

Manual. NASA TM-100644, October 1989.

Revised 5/24/90 CSM Testbed Procedures Manual 7.10- 3



MODEL_SUMMARY Utility Procedures

THIS PAGE LEFT BLANK INTENTIONALLY.

7.10- 4 CSM Testbed Procedures Manual Revised 5/24/90



Utility Procedures PRINT_EFIL

7.11 Procedure PRINT_EFIL

7.11.1 GENERAL DESCRIPTION

Procedure PRINT_EFIL prints one or all segments of the es_name.EFIL.itype.nnod dataset

where es_name is the element name (e.g., EX97). The procedure processes all elements of

the specified element type.

7.11.2 PROCEDURE USAGE

Procedure PIIINT_EFIL is used by preceding the procedure name by the *call directive,

and following it by a list of arguments enclosed in parentheses. Procedure arguments are

order-independent, and most have default values thus making them optional. The formal

syntax is as follows:

*call PRINT_EFIL ( argl = vall; axg2 = val2 )[

where argl and axg2 represent argument names, and vall and va12 represent their cor-

responding values. Note that seml-colons are required between arguments, and a double

dash (--) may be used to continue the argument list on the next line.

The allowable arguments for procedure PltIffr_£FIL are summarized in the following table,

along with their default values (if they exist). Note that arguments without defaults are

generally mandatory, while those with defaults are generally optional. Exceptions to this

rule are noted in the following section under detailed argument descriptions.

For procedure PRINT_EFIL, the following table lists each argument, its default value and

meaning.

Argument Default Value Meaning

ELENENT E][97 Element name

SEGHENT ALL EFIL segment

The segments of the EFIL are printed using processor PRTE (see reference 7.11-1).

7.11.3 ARGUMENT DESCRIPTIONS

7.11.3.1 ELENEIFr

Element name (default: E197). The argument specifies the element name for which the

EFIL segments are to be printed.

Revised 5/23/90 CSM Testbed Procedures Manual 7.11- 1

PRECEDING PAGE BLANK NOT FILMED



PRINT_EFIL Utility Procedures

7.11.3.2 SEGMENT

EFIL segment to he printed (default: ALL). The EFIL (see reference 7.11-2) contains nine

segments. Any one or all of the segments may be selected for printing using the argument

SEGMENT. The EFIL segments are as follows:

Segment Item Length Type

i1 Definition Integ

2 Material Real

3 Geometry Real

XE0 (3,nen)

TEG (3,3)

TEC (3,3,nen)

XG0 (3,hen)

TEG0 (3,3)

DE (nee)

4 Property Real

i5 Matrix KM nmt Real*

6 Aux. Storage Real

J7 Stress Real

18 Therm. Force Real

9 Therm. Stress Real

Description

Same as dataset DEF.<ES__NAME>.

(currently unused)

Element geometric parameters.

Initial element nodal coordinates in

element basis.

Transl. from global to current element

basis.

Transf. from computational to element

basis at element nodes.

Initial elt. nodal coords

in global basis.

Transf. from global to initial element

basis.

Deformational displacements (ddet).

(currently unused)

Element matrix (stiffness/mass);

only upper triangle of nodal blocks.

Auxiliary storage for dement developer.

(currently unused)

(currently unused)

(currently unused)

*The element stiffness/mass matrix, item KM in Segment 5, may be stored in either single

or double precision, as specified in dataset DIR.es_name.itype.nnod (entry 15). However,

all of the other REAL data in the eJ_name.EFIL.itype.nnod dataset are stored exclusively

in single precision.

7.11.4 USAGE GUIDELINES AND EXAMPLES

Procedure PgINT_EFIL may be used by preceding the procedure name by the *call di-

rective. Procedure arguments may be changed from their default values by including any

7.11- 2 CSM Testbed Procedures Manual Revised 5/23/90



Utility Procedures P17HNT'EFIL

or all of the arguments and their new values when the procedure is called. A space or

blank is required between the end of the procedure name and the left parenthesis. If the

default values of the procedure arguments are to be used, then only the procedure name

is required.

*call PRINT_EFIL ( element = EX97; segment = ALL )

7.11.5 LIMITATIONS

None.

7.11.6 ERROR MESSAGES AND WARNINGS

None.

7,11.7 PROCEDURE FLOWCHART

Procedure PRINT_EFIL is self-contained with no subprocessors.

7.11.8 PROCEDURE LISTING

*procedure PEINT_EFIL ( element = EI97; segnent = ILL )

• Print SeKaent(s) of EFIL Dataset

*if < <Ifelso([segnont];ILL;X;O)> > /then

*def/i soS1 = 1

*defll se82 = 9
*else

*if < <ifelso([segnent];DEFINITION;1;0)> > /then

edef/i soS1 = 1
*elseif <

*def/i

*elself <

*de£1i

*elsoif <

*defli

*elso/f <

*def/t

*oZseif <

*def/i

eelseif

*def/i

*olseif

edef/i

*oleeif <

edef/i

<ifelse([sessent];HlTEKItL;1;0)> > /then

ee81 = 2

<ifelee([sesnent];GEOMET_T;1;0)> • /then

se81 : 3

<ifelse([seslent];PR0PEKTT;1;0)> • /then

se81 = 4

<ifelse([sesnent];STIFFNESS;1;O)> > /then

ses1 : 5

<ifelse([sepent];STKESS_RECOVEKY;1;0)> > /then

se81 : 6

<ifelse([segnent];STOKE;1;0)> > /then

ses1 = e

<tfelse([sesnent];STKESS;1;0)> > /then

sos1 : 7

<ifelse([se_aent];THEKHlL_FORCE;1;0)> • /then

ses1 = 8

Revised 5/24/90 CSM Testbed Procedures Manual 7.11- 3



PRINT_EFIL Utility Procedures

*elset_ < <i_else([segment];THERMIL_RECOVEKT;1;O)> > /£hon

*dof/i sogl = 9

*endif

*def/t sog2 = <segl>

*endlf

[IQT PKTE

RESET SEG1 = <segl>

RESET SEG2 = <seg2>

[element]

STOP

*end

7.11.9 REFERENCES

7.11-1 Stewart, Caroline B.: The Computational Structural Mechanics Testbed User's

Manual. NASA TM-100644, October 1989.

7.11-2 Stewart, Caroline B.: The Computational Structural MechanicJ Testbed Data I,i.

brary Description. NASA TM-100645, October 1988.

7.11- 4 CSM Testbed Procedures Manual Revised 5/24/90

i:.



Utility Procedures RESEQUENCE

7.12 Procedure RESEQUENCE

.7.12.1 GENERAL DESCRIPTION

Procedure ILgSEQ1TENCEresequences the node numbers internally for a solver defined by

the global macrosymbol solver_same. If rseq_method is -1, then a resequencing method

implemented in processor RSEQ (see Section 6.1 of reference 7.12-1) is selected which is

appropriate for the equation solver defined by the global macrosymbol solver.name. That

is,

solver_name

INV

BAND

ITER

SPK

rseq_method

1

2

1

none

If rseq_method is 10, then the profile-front minimization resequencing method imple-

mented in processor PFM (see Section 6.2 of reference 7.12-1). If the global macrosymbol

solver_.name is SPK, no resequencing is performed since processor SPK performs its own

resequencing (see Section 8.6 of reference 7.12-1). Other values of rseq-method will select

a specific resequencing method requested by a user.

.7.12.2 PROCEDURE USAGE

Procedure ItESEQUE$CE is used by preceding the procedure name by the *call directive,

and following it by a list of arguments enclosed in parentheses. Procedure arguments are

order-independent, and most have default values thus making them optional. The formal

syntax is as foUows:

*call RESEqUENCE ( argl = vall= val2 )[a.T_9 m • _

where argl and arg2 represent argument names, and vall and va12 represent their cor-

responding values. Note that semi-colons are required between arguments, and a double

dash (--) may be used to continue the argument list on the next Hne.

The allowable arguments for procedure RESEqUENCE are summarized in the following table,

along with their default values (if they exist). Note that arguments without defaults are

generally mandatory, while those with defaults are generally optional. Exceptions to this

rule are noted in the following section under detailed argument descriptions.

For procedure KESEqUENCE, the following table lists each argument, its default value and

meaning.

Argument Default Value

LDI 1

MAXCON 35

RSEQ_METHOD -I

Meaning

Logical device index

Maximum number of joints connected to any one joint

Resequencing method

Revised 5/23/90 CSM Testbed Procedures Manual 7.12- 1



RESEQUENCE Utility Procedures

Tables 7.12-1 and 7.12-2 list tile datasets used or created by procedure RESEQUENCE and

the processors invoked by procedure RESEqUENCE, respectively.

Table 7.12-1 Datasets Input/Output by procedure RESEQUENCE

Dataset Description Input Output

JSEQ.BTAB.2.17 Nodal Elimination Sequence %/

KMAP..nsubs.ksize Model Connectivity Map _/

Table 7.12-2

Procedure]

RSEQ

PFM

Type

Internal

Internal

Processors Invoked by procedure RESEQUENCE

Function

Joint resequencing

Joint resequencing using profile-front minimization

7.12.3 ARGUMENT DESCRIPTIONS

7.12.3.1 LD_.!I

Logical device index (default: 1).

7.12.3.2 I_t__._XCON

Maximum number of joints connected to any one joint (default: 35).

7.12.3.3 RSEO.METHOD

Resequencing method (default: -1). If rssq_method is -1, then a resequencing method

implemented in processor RSEQ (see Section 6.1 of reference 7.12-1) is selected which is

appropriate for the equation solver defined by the global macrosymbol solver..name.

solver_name

INV

BAND

ITER

SPK

rseq_method

1

2

1

none

If rssq_msthod is 10, then the profile-front minimization resequencing method imple-

mented in processor PFM (see Section 6.2 of reference 7.12-1). If the global macrosymbol

7.12- 2 CSM Testbed Procedures Manual Revised 5/23/90



Utility Procedures RESEQUENCE

solvor_amo is SPK, no resequencing is performe<t since processor SPK performs its own

resequeacing (see Sectiou 8.6 of reference 7.12-1). ()tiler values of rseq_method will select

a specific resequencing method requested by a uscr.

7.12.4 USAGE GUIDELINES AND EXAMPLES

Procedure ILESEQUF.JICEis used by preceding the procedure name by the *call directive.

Procedure arguments may be changed from their default values by including any or all

of the arguments and their new values when the procedure is called. A space or blank

is required between the end of the procedure name and the left parenthesis.

*call KESEQUENCE ( KSEQ_NETHOD ffi 2 )

7.12.5 LIMITATIONS

None.

7.12.6 ERROR MESSAGES AND WARNINGS

None.

7.12.7 PROCEDURE FLOWCHART

Procedure RESP-QU_NCE is self-contained with no subprocedures.

7.12.8 PROCEDURE LISTING

eproceduro RESEQUENCE ( rsoq_nothodffi-1 ; naxconffi35; ldiffil )

*if < ifeqs(<solver_nuo>;SPg) > /thon

*ronark *******************************************

erenark * Processor SPg does its ova rosequencing *
*renark *******************************************

eolso

*if < [rsoq_nothod] /eq tO > /then

[xqt PFM

KESET BLIB= [ldi]

reset nucon = [Ja_cox_

*olsoif < [rseq_nothod] /no -1 > /then

[XQT RSEQ
RESET BLIBffi[ldi]

reset nethodf[rssq_nsthod], naxconf[naxcon]

*else

elf < ifoqs(<solvor_nano_;INV) _ /then

*def/i rseq_nethod = 1

Revised 5/24/90 CSM Testbed Procedures ManuM 7.12- 3



RESEQUENCE Utility Procedures

*elseif < i_eqs(<solvor_nsne>;BAND) > /then

*de_/i rsoq_nethod ffi 2

*else

*dof/i rsoq_nethod n 1

*endi_

[XqT LSEq

IESET BLIBs[ldl]

reset nethodffi_rsoq_nethod>, naxconffi[nexcon]

*ondtf

eendif

eond

7.12.9 REFERENCES

7.12-1 Stewart, Caroline B.: The Computational Structural Mechanics

Manual. NASA TM-100644, October 1!)89.

Testbed User's

7.12- 4 CSM Tcstbed Procedures Manual Revised 5/24/90



Utility Procedures SOLVE

7.13 Procedure SOLVE

7.13.1 GENERAL DESCRIPTION

Procedure SOLVE solves a linear system of equations using a solver defined by the

global macrosymbol solver_name. If eolver_uame is IliV, the forward-reduction-back-

substitution phase of the original nodal-block sparse solver implemented in processor SSOL

will be used (see Section 8.3 of reference 7.13-1). If solver_name is defined to be BAND, a

variable-bandwidth direct solver implemented in processor BAND will be used (see Section

8.5 of reference 7.13-1). If solver_name is defined to be ITEg, an iterative method imple-

mented in processor ITER will be used (see Section 8.4 of reference 7.13-1). If solver..aame

is defined to be SPK, the SPARSPAK-A direct solver will be used to factor and solve the

system of equations (see Section 8.6 of reference 7.13-1).

7.13.2 PROCEDURE USAGE

Procedure SOLVE is used by preceding tile procedure name by the *call directive, and

following it by a list of arguments enclosed in parentheses. Procedure arguments are

order-independent, and most have defaalt wd,es thus making them optional. The formal

syntax is as follows:

*call SOLVE ( argl ffi vall ; arg2 ffi va12 ; ...)J

where axgl and arg2 represent argument names, and va11 and va12 represent their cor-

responding values. Note that semi-colons are required between arguments, and a double

dash (--) may be used to continue the argunlc.t list on the next line.

The allowable arguments for procedure SOLVE are summarized in the following table, along

with their default values (if they exist). Note that arguments without defaults are generally

mandatorII, while those with defaults are generally optional. Exceptions to this rule are

noted in the following section under detailed argument descriptions.

Revised 5/23/90 CSM Testbed Procedures Manual 7.13- 1



SO LV l'] Utility Procedures

For procedure SOLVE, the following table lists each argument, its default value and meaning.

Argument Default Value

APPLIED_NOTION 1

CONSTRAINT_SET 1

LDI I

LOAD_SET 1

MATRIX K

EHS APPL.FORC

SOLN STAT.DISP

Meaning

Flag for applied displacements
Constraint set number

Logical device index
Load set number

First word of the name of the dataset

containing the assembled stiffness matrix.
First two words of the dataset name for the

right-hand side system vector.
First two words of the dataset name for the

displaceme,t solution

'Fables 7.13-1 mid 7.13-2 list tile datasets used or created by procedure SOLVE and the

processors invoked by procedure SOLVE, respectively.

Table 7.13-1

Dataset

AMAP..ic2.isize

Datasets Input/Output by procedure SOLVE

Lib Input Output

APPL.FORC.i.lt

APPL.MOTI.i.lt

CON..j

EQNF.FORC.iset.1

INV.<KNAME>.j

JDF1.BTAB.1.8

JSEQ.BTAB.2.17

KMAP..nsubs.ksize

<KNAME>.SPAR.]d/t

STAT.DISP.i.fl

Description

Factorization Map for INV

Applied force vector 1 x/

Specified displacement vector 1 _/

Constraints 1 ,,/

Equivalent nodal forces 1 _/

Factored Stiffness Matrix 1 x/

Model Summary 1 x/

Nodal Elimination Sequence 1 x/

Model Connectivity Map 1 _/

Assembled Stiffness Matrix 1 x/

System Displacement Vector 1

System Reaction Force Vector 1

i = <load_set> and j = <cons_set>

STAT.REAC.i.fl

t

,/

7.13- 2 CSM Testbed Procedures Manual Revised 5/23/90



Utility Procedures SOLVE

Table 7.13-2 Processors Invoked by procedure SOLVE

External

I

[ I,_nwtlon

Solves system of equations using stiffness matrix in variable-

bandwidth solver

ITER External Solves system of equations using iterative method

SPK External Solves system of equations using SPARSPAK-A solve

SSOL Internal Solves system of equations using nodal-block-sparse solver

VEC Internal Vector algebra utilities

7.13.3 ARGUMENT DESCRIPTIONS

7.13.3.1 APPLIED_MOTION

Flag indicating that applied displacements are involved in the loading (default: 0 or FALSE).

7.13.3.2 CONSTRAINT_SET

Constraint set number (default: I). This argument selects which constraint set to be used

in solving the linear system of equations.

7.13.3.3 LD..._!I

Logical device index (default: 1).

7.13.3.4 LOAD_SET

Load set number (default: I). This argument selects which load set to be used as a

right-hand side vector.

7.13.3.5 lqATltlX

First word of the dataset name containing the assembled stiffness matrix (default: K).

7.13.3.6

First two words of the dataset name for the right-hand side system vector (default:

APPL. FOB.C).

7.13.3.7 SOL__I

First two words of the dataset name for the displacement solution (default: STAT. DISP).

Revised 5/23/90 CSM Testbed Procedures Manual 7.13- 3



SOLVE Utility Procedures

7.13.4 USAGE GUIDELINES AND EXAMPLES

Procedure SOLVE is used by preceding tile procedure name by tile *call directive. Proce-

dure arguments may be changed from their default values by including any or all of the

arguments and their ncw values when the procedure is called. A space or blank is required

between the end of the procedure name and the left parenthesis.

*call SOLVE ( MATRIX = K ; CONSTRAINT_SET = i ;
LOAD_SET = 'APPL.FORC' ; SOLN = 'STAT•DISP' )

Before procedure SOLVE is called the global macrosymbol solver_name should be defined

as described in Section 7.12.1 and should be consistent with the value used when procedure

FACTOR was called. If it is not specified, then the default value INV will be used.

7.13.5 LIMITATIONS

None.

7.13.6 ERROR MESSAGES AND WARNINGS

None•

7.13.7 PROCEDURE FLOWCHART

Procedure SOLVE is self-conta_ned with no subprocedures.

7.13.8 PROCEDURE LISTING

*procedure SOLVE ( rhs=Jappl.forcJ; soln='stat.disp ' ; matrix = K
load_set=l; constraint_set=l; applied_motion; --

Idi=l )

• Procedure to solve a linear system of equations using different solvers.

• The solver is _elected using the global aacrosylbol "solver_nane".

*if < ifeqs( <solver_name>; ) > /then

*dof/a solver_name == INV

*endif

Define Unique Pseudo Load Set Nulber for SSOL Vector Datasots

*def/i tunique • 9999

Copy light-Hand-Side Vector to SSOL Force Datasot ;,

[xqt YEC

7.13- 4 CSM Testbed Procedures Manual Revised 5/24/90



Utility Procedures SOLVE

APPL.FOKC.glunlque>,I <- L_u_jr-_-a /alngl__prQclslon

Copy Applied Motions to SSOL Applied Motion Dataaet

¢flnd rLldij gPPL.MOTl.(iuniquo).l /seqsids_AMU

eif((Ida.INU) /gt 0 ) /then

IPPL.XOTI.<iuniquO.1 <- O.
eolso

*g2m /naao_nua_nodos /typo=i [ldi] MODEL.SUMMARY NUN_NODES

*g2m /nasoznum_dofs /type=i [ldi] MODEL.SUMNI_Y NUM_DOFS

INIT_VEC IPPL.MOTI.(iunique>.l (nua_dofs_ BY <nua_nodes_
*endif

*if ( (IYELSE([appliod_motion]; ;0;1)) >/then

*find [ldi] [applied_notion] /aeqsids_lM

*if • •ida_AM> /st 0 > /then

IPPL.MOTI.•iuniqua).l •- [applied_notion]

*ondif

*andtf

*if • ifeqJ((aolver_naao>;INV) > /then

• Use original nodal block sparse solver originally in SPAi

[XQT SSOL

KESET g = [aatrix]

gESET KLIB = [ldi]

_SET KILXB = [ldi]

_SET ,LIB = [ldi]

]_SET SET = •iuniquO

]_SET CON = [constraint_set]

*olsoif • ifoqa(•aolvor_nano>;BIND) > /than

• Use Banded solver

[IQT Bin

reset mothn28, Idl=l

reset n¢on=[©onstraint_sot], dzero=l.Oo-20, ks[matrix]

reset opt=2, roe=l, isot=•iunlquo>

*olsotf < ifoq8(<8olvor_nuo>;ITgl) > /than

• Use Iterative solver

[XqT IT_

reset op=l,init=ll,xnit=-.l,noth=l,tlmo=l,itol=15

reset ncon=[constraint_sot], iset=<iunique>; k=[aatrix]

reset an=x=0.5

eelsoif • ifoqs(<aolver_naao>;SPK) > /then

• Use SPIKSPIK solver

[xqT sPx
select /const=[constraint_aet] /ks=as=[matrix]

select /as•lye=2 /nsglvl=2 /load=•iuniquo>

*ondtf

Revised 5/24/90 CSM Testbed Procedures Manual 7.13- 5



SOLVE Utility Procedures

[xqt VEC

Copy Solution Vector to gequirod Output Dataset

*dof/e std_n_e • 5TAT.DISP.[load_set].[constraint_set]

*if < _IFgLSE([ooln];<std_nmle>;i;O)> > /than

eronane [ldi] STlT.nlSP._iunique_.[constraint_sot]

STlT.DISP.[load_sot].[constraint_set]

*rename [ldi] ST&T.J_AC._iunique_.[constraint_sot]

STiT.KEAC.[load_sot].[constraint_set]

*else

[8oln] 4- STAT.DISP.<iuniqus).[constraLnt_set]

*ondif

*end

7.13.9 REFERENCES

7.13-1 Stewart, Caroline B.: The Computational Structural Mechanic_ TeJtbed U_er'8

Manual. NASA TM-100644, October 1989.

7.13- 6 CSM Testbed Procedures Manual Revised 5/24/90



Utility Procedures STIFFNESS

7.14 Procedure STIFFNESS

T.14.1 GENERAL DESCRIPTION

Procedure STIFFNESS forms the assembled unconstrained stiffness matrix.

T.14.2 PROCEDURE USAGE

Procedure STIFFNESS is used by prccedi,g tile procedure name by the *call directive,

and following it by a list of arguments el_closed in parentheses. Procedure arguments are

order-independent, and most have default values thus making them optional. The formal

syntax is as follows:

*call STIFFNESS ( argl = vall ; arg2 ffi val2 ; ...)]

where az'gl and arg2 represent argument names, and vall and va12 represent their cor-

responding values. Note that semi-colons are required between arguments, and a double

dash (--) may be used to continue the argument list on the next line.

The allowable arguments for procedure STIFFNESS are summarized in the following table,

along with their default values (if they exist). Note that arguments without defaults are

generally mandatory, while those with defaults are generally optional. Exceptions to this

rule are noted in the following section under detailed argument descriptions.

Revised 5/23/90 CSM Testbed Procedures Manual 7.14- 1



STIFFNESS Utility Procedures

For procedure STIFFNESS, the following table lists each argument, its default vaJue and

meaning.

Argument Default Value

TYPE TANG

CONSTRIINT_SET 1

COROTATION 1

NL_GEOM 0

NL_LOAD 0

NL._TL 0

INPUT..LDI 1

0UTPUT_LDI 1

LOAD_SET I

LOAD_FACTOR 1.0

STIFFNESS K

DISPLACEMENT

ROTATION

Meaning

Type of stiffness matrix to form (default: TANG).

This argument defines the type of stiffness to form linear

material stiffness matrix (PATL), geometric stiffness

matrix (GEOM), or the tangent stiffness matrix (TANG).

Constraint set number (default: tt 1). This argument

selects which constraint set to be used in solving the

linear system of equations.

Corotation flag

Geometric ,o,li,carity flag

Load nonlinearity tlag

Material nonlinearity flag

Logical device index with the element stiffness matrices

(default: 1).

Logical device index for the assembled unconstrained

stiffness matrix (default: 1).

Load set number (default: 1). This argument selects

which load set to be used as a right-hand-side vector.

Load factor for the basic load system (default: 1.0).

First word of the dataset containing the assembled

unconstrained stiffness matrix (default: K).

Full dataset name for the displacement vector.
Full dataset name for the rotation vector.

Tables 7.14-1 and 7.14-2 list the data.sets used or created by procedure STIFFNESS and the

processors inw_ked by proced.re STIFFNESS, resl-,ctively.

Table 7.14-1

Dataset

JDF1.BTAB.1.8

Datasets Input/Output by procedure STIFFNESS

<STIFFNESS>.SPAR.jdft

Input

,/

Description Output

Assembled Stiffness Matrix

Model Summary

JSEQ.BTAB.2.1T Nodal Elimination Sequence x/

KMAP..nsubs.ksize iModel Connectivity Map x/

,/

7.14- 2 CSM Testbed Procedures Manual Revised 5/23/90



Utility Procedures STIFFNESS

_[_sble 7.14-2 Processors Invoked by procedure STIFFNESS

I

Procedure [ Type

Internal

!

Unction

VEC Vector algebra utilities

ESi External Various element processors based on tile GEP

K Internal Assembles unconstrained stiffness matrix

7.14.3 ARGUMENT DESCRIPTIONS

7.14.3.1 TYP_..__E

Type of stiffness matrix to form (default: TANG). This argument defines the type of stiffness

to form linear material stiffness matrix (MATL),geometric stiffness matrix (GEOH), or the

tangent stiffness matrix (TANG).

7.14.3.2 CONSTRAINT_SET

Constraint set number (default: 1). This argument selects which constraint set to be used

in solving the linear system of equations.

7.14.3.3 INPUT_LDI

Logical device index with the element stiffness matrices (default: 1).

'/'.14.3.4 0UTPUT_LDI

Logical device index for the assembled unconstrained stiffness matrix (default: 1).

7.14.3.5 LOAD_SET

Load set number (default: 1). This argument selects which load set to be used as a

right-hand side vector.

7.14.3.6 LOAD_FACTOR

Load factor for the basic load system (default: 1.0).

7.14.3.7 STIFFNESS

First word of the dataset name containing the assembled unconstrained stiffness matrix

(default: K).

Revised 5/23/90 CSM Testbed Procedures Manual 7.14- 3



STIFFNESS Utility Procedures

7.14.3.8 DISPLACEMENT

Full dataset name for the displacement vector.

7.14.3.9 I_OTATION

Full data.set name for the rotation vector.

T.14.3.10 COROTATION

Corotation switch; employed by ESi processors for automatic treatment of geometric non-

linearity due to large rotations (default: t). Relevant only if problem is geometrically

nonlinear. (See Chapter 4 of reference 7.2-1 for an explanation of these options.) If COIt0-

TATION equals zero, then the corotational operations will be skipped. If COROTATION equals

one (low-order option), then the basic corotational transformations will be employed to

enable large rotations. If COROTATIONequals two (high-order option), then a more accurate

(and expensive) treatment of large rotations and consistent linearization than option 1 will

be employed.

T.14.3.11 ES_NL_GEOM

Geometric nonlinearity switch (default: 0). If ES_JL_GEOM equals zero (no corotational

frames), then the problem is geometrically linear (small displacements/rotations). If

NL_GEOM equals one (low-order option), then tile problem is geometrically nonlinear, but

elements should use linear strain-displacement relations. Meaningful only if COROT,tTION

> 0, so that large rotations can be handled automatically by the corotational algorithm.

If ML_GEOMequals two (high-order option), then the problem is geometrically nonlinear

and elements should use nonlinear element strain-displacement relations. May be used

in conjunction with ¢01t.OTATION > 0 to obtain higher-order accuracy for beam and shell

elements that employ moderate-rotation strai,-displacement relations.

T.14.3.12 NL_MATL

Material nonlinearity switch (default: 0). If NL..I_TL is greater than zero, then the element

is materially nonlinear. If L_J_TL is zero, then the element is materially linear.

7.14.3.13 NL_LOAD

Load nonlinearity switch (default: 0). If NL_LOADis greater than zero, then the element

loads are displacement dependent. If NLLOAD equals zero, then the element loads are not

displacement dependent.

7.14- 4 CSM Testbed Procedures Manual Revised 5/23/90



Utility Procedures STIFFNESS

T.14.4 US. A_I_. _ITIDELIN_q ann EXAMPLES

Procedure STIFFNESS is used by preceding the procedure name by the *call directive.

Procedure arguments may be changed from their default values by including any or all

of the arguments and their new values when the procedure is caUed. A space or blank

is required between the end of the procedure name and the left parenthesis.

*call STIFFNESS ( TYPE = NITL ; CONSTItAINT_SET = I ; STIFFNESS = K )

7.14.5 LIMITATIONS

None.

7.14.6

None.

ERROR MESSAGES AND WARNINGS

7.14.7 PROCEDURE FLOWCHART

STIFFNESS (main procedure)

ES (form element stiffness matrices)

7.14.8 PROCEDURE LISTING

*procedure STIFFNESS (

*ronark

*lLonark

oronark

type = TANG ; -- NATL J GEOM J TANG

nl_goon = 0 ; --

hi.nat1 = 0 ; --

nl.load • 0 ; --

displaconont ; -- . Input datasot

rotation ; -- . Input datasot

corotutlon • 1 ; --

load.factor • 1.0 ; --

load.sot • 1 ; --

stiffness • K ; -- . Output datasot

input_ldi • 1 ; --

output_ldi • 1 ; --

constraint.sot • 1 )

Foraing [type] Stiffness Matrix

Forn Elonont Stiffness Matrices (in EFIL Datasot)

*call IS ( function = 'FOKN STIFFNESS/[type]' ; --

ldl = [input_Idi] ; --

es_nl_goon • [nl_soou] ; --

Revised 5/24/90 CSM Testbed Procedures Manual 7.14- 5



STIFFNESS Utility Procedures

os.nl.natl : [nl_natl]

as_nl_load ffi [nl_load]

os_dis_ds : [displacenent]

os.rot_ds = [rotation]

es.coro = [corotation]

os_load.factor = [load.factor]

as_load_sot : [load_set] )

Assemble Element Stiffness Natrix into Systen Matrix

[xqz K
KESET NAME = [stiffness]

KESET BLIB • [input.ldi]

KNSET ELIB • [input_ldi]

KESET HLIB • [input_Idl]

_ESET OUTLIB • [output_ldi]

gESET SPDP • <csn_preclsion>

eend

7.14.9 REFERENCES

7.14-1 Stewart, Caroline B.: The Computational Structural MechanicJ To,abed User's

Manual. NASA TM-100644, October 1989.

7.14- 6 CSM Testbed Procedures Manual Revised 5/24/90



Utility Procedures SWITCH_DS

7.15 Procedure S WITCH_DS

7.15.1 GENERAL DESCRIPTION

Procedure SWITCH_DS switches two data.sets within the same data library. This procedure

only uses directives from the command language (see reference 7.7-1).

7.15.2 PROCEDURE USAGE

Procedure SWITCH_DS is used by preceding the procedure name by the *call directive,

and following it by a list of arguments enclosed in parentheses. Procedure arguments are

order-independent, and most have default values thus making them optional. The formal

syntax is as follows:

*call SWITCH_DS ( argl ffi va11 ; arg2 ffi val2 ; ...)[

where argl and arg2 represent argument names, and va11 and val2 represent their cor-

responding values. Note that semi-colons are required between arguments, and a double

dash (--) may be used to continue the argument list on the next line.

The allowable arguments for procedure SWITCH..DS are summarized in the following table,

along with their default values (if they exist). Note that arguments without defaults are

generally mandatory, while those with defaults are generally optional. Exceptions to this

rule are noted in the following section under detailed argument descriptions.

For procedure SWITCH_DS, the following table lists each argument, its default value and

meaning.

Argument

DS_I

DS_2

Default Value Meaning

Source dataset name

Target dataset name
LDI 1 Logical device index

7.15.3 ARGUMENT DESCRIPTIONS

7.15.3.1 LD....._.I

Source logical device index (default: 1). Data library number containing the two datasets
DS_I and DS_2.

7.15.3,2 DS_I

Source dataset to be copied from within tile data library with a logical device index of LDI

to the target dataset named DS_2.

Revised 5/24/90 CSM Testbed Procedures Manual 7.15- 1



SWITCH_DS Utility Procedures

7.15.3.3 DS_2

Target dataset for copying the source data.set named DS_I from within the data library

with a logi<:al device index of I,i)!.

7.15.4 USAGE GUIDELINES AND EXAMPLES

Procedure SWITCH..DS is used by preceding the procedure name by the *call directive.

Procedure arguments may be changed from their default values by including any or all

of the arguments and their new values when the procedure is called. A space or blank

is required between the end of the procedure name and the left parenthesis. If the default

values of the procedure arguments are to be used, then only the procedure name is required.

*call SWITCH_DS ( ida=l; ds 1; ds_2 )

7.15.5 LIMITATIONS

Nolle.

7.15.6 ERROR MESSAGES AND WARNINGS

None.

7.15.7 PROCEDURE FLOWCHART

Procedure SWITCH_DS is self contained with no subprocedures.

7.15.8 PROCEDURE LISTING

*procadura SVITCH_DS ( Ida=l; ds_l; ds_2 )

• CLIMP Proeadura to switch two dataslts within a data library

*dof/a tmp.ds = xxxx.xxxx.9999.9999.9999

*ronaso [ldi], Ida_l] • <tnp_ds>

*ransaa [ldl], [ds_2] = [ds_t]

*ranale [ldi], <tap_ds> • [ds_2]
*and

7.15.9 REFERENCES

7.7-1 Felippa, Carlos A.: The Computational Structural Mechanics Testbed Architecture:

Volume II - Directives. NASA CR 178385, February 1989.

7.15- 2 CSM Testbed Procedures Manual Revised 5/24/90



Form Approved

REPORT DOCUMENTATION PAGE OMB No 0_04-0188

I'L_I_II, ft'l_,- rt_t,l I,ilf(ll,i} h ,1 Ihl,, tdh., flll_ i)f iflt(lll_q,lll, )n i,, _,,lln'l.llt.d I() ,ivt'f,l,lP I h_)ut pw.i r_,•l),)n_P, rn_ ludlnq the tlfflf, for rc.vtew_nc] _n_tructll')n,, _¢,afrhlnq existing data sourcP_,,

.11 - , t,, .It,_ i_.t.dt.d..11_,1, Lpn_plr'llnq ,l_(t r_'wt'wgl_ t tht", _,lh', II_ )(I _)! lllt_ ,im,_tl(_n _nd comrn_.nl', ¢_(Jardtn_J thl-, burden e'_llrn,_tP or ,_ny other a_pe_t of this

i ;_1_',_. _'l_li,_,;v'.,i;_','l'p'i,,ii_li;_.,i,,,,l I...... /_ .,I2U. _ ,I l(J}. ,,,,J ,,, ,h. ,,tl ..... I M ....... i..... _ ,,,,d ,i,,d,]_-! ",,1 ...... k ,_ectu, l,,,n Pr,,IPL_ (0/,,_i ,J i88). Wa,.h,ncj .... DC 2050.J.

1. AGENCY USE ONLY (leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

December 1991 Technical Memorandum
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

The Computational Structural Mechanics Testbed
Procedures Manual

6. AUTHOR(S)

Caroline B. Stewart, Compiler

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center
Hampton, VA 23665-5225

9. SPONSORING/MONITORING AGENCY NAME(S) AND 'ADDRESS(ES)

National Aeronautics and Space Administration
Washington, DC 20546-0001

505-63-53-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

NASA TM-100646

11. SUPPLEMENTARY NOTES

Caroline B. Stewart was working for Analytical Services and Materials Inc., Hampton, VA.;
presently with Continuous Electronic Beam Accelerator Facility (CEBAF), Newport News, VA.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Unclassified - Unlimited

Subject Category 39

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The purpose of this manual is to document the standard high-level command language
procedures of the Computational Structural Mechanics (CSM) Testbed software system. A
description of each procedure including its function,commands, data interface, and use is
presented. This manual is designed to assist users in defining and using command
procedures to perform structural analyses in the CSM Testbed User's Manual (NASA TM-
100644) and The CSM Testbed Data Library Description (NASA TM-100645)

14. SUBJECT TERMS

Computational Structural Mechanics
Structural Analysis

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE

Unclassified Uncl assified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

NSN 7540-01-280-5500

15. NUMBER OF PAGES

597

16. PRICE CODE

A25
20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev 2-89)
Pre_,cr)bed by ANSI Std Z]9-18

298-102


