

Data Management System Concept

- The Data Management System is unique in the Space Station
 - It has no "function" like other subsystems, i.e., it does not generate a state vector, or maintain cabin temperature, or hold vehicle attitude, etc.
- The Data Management System provides a set of services for all other subsystems
 - Provides computational resources
 - Transmits commands, messages and data between application programs
 - It is the means by which avionic systems integration is accomplished
- Since every subsystem is dependent on the DMS, it was identified as a long lead item during Phase B studies not because it was technically difficult, but because it had to be ready before any other subsystem design could be finalized
- Any other Space Station subsystem can be modified, enhanced or replaced with new technology and only has to reverify a single interface with the DMS
- Before the DMS data bus network, processor, operating system or system software can be changed in any way, potential impacts to every subsystem must be determined

NASA Ames Research Center

567

DMS Evolution Rationale

- DMS has been designed from the beginning to support growth and evolution
- Although the present design is limited in capacity, the basic architecture will allow expansion by many orders of magnitude
- The Space Station has the benefit of building on past experience in software intensive digital avionics systems
 - Hardware, system software and applications programs are being developed as independent layers
 - Permits replacement, or upgrade, of any one layer without impact to the others
- Fiber optic global data bus loading at MTC expected to be < 5% of its stated capacity, and the bus does have growth capability
 - Processors, system services and operating systems may change over the years
 - The data bus is like wiring in your house, you might add extension cords but you do not want to tear out the walls

NASA Ames Research Center

The DMS Advanced Architecture Task

- The time to consider evolution is during the original design phase
- Although hard lines must be drawn and the final flight designs developed, growth and evolution paths can be defined based on technology projections
- The DMS Advanced Architectures task at the Ames Research Center has been chartered by the Level 1 Space Station Engineering Office to evaluate potential candidates for DMS growth and evolution
 - Task includes: hardware and software technology, system software enhancement, payload augmentation and software tool evolution
 - Task is done in coordination with Johnson Space Center
 - Status reports presented to other Nasa Centers and contractors at quarterly SATWG meetings and monthly Architecture Panel telecons
 - Payload integration studies being done in cooperation with several Ames payload research scientists
- An advanced development test bed is being assembled to support simulations and analytical studies with hardware and software evaluation

NASA Ames Research Center

The DMS Advanced Architecture Task Status

- Detailed evaluation of 386 processor selected for the Station EDP completed
 - Determined that flight processor will have 3 MIPS computational speed compared to 4 MIPS for commercial equivalent
 - Difference is due to absence of cache memory in flight unit
- Recommended that Station Project Office not consider the 486 as a viable upgrade candidate
 - 486 has on-chip cache memory but it does not have parity

575

- Flight units are susceptible to single event upsets (SEU) from high particle impacts and high density memory chips need parity or EDAC
- Have arranged for early delivery of 586 chips from Intel for evaluation
- Commercial version of FDDI has been received and evaluation tests started
- Three advanced parallel processing systems developed by DARPA are being evaluated for increased computational capacity and fault tolerance
- Technique for converting digraph models to fault trees for reliability analysis has been completed. Fault tree to digraph conversion now under consideration

——— NASA Ames Research Center

DARPA IWARP PROCESSOR EVALUATION

iWarp Functional Unit Placement

Task to evaluate a DARPA-sponsored processor and software architecture for future Space Station Freedom DMS upgrades through applications testing.

- Evaluation of iWarp integration into DMS baseline architecture.
- Seven degree-of-freedom spatial motion planning application on the iWarp.
- Complex sensor processing applications on the iWarp.

The goal of this work is to determine the iWarp's suitability as a processing device for space missions.

Ames Research Center

e n

ADVANCED SOFTWARE ENGINEERING TOOLS

Ames Research Center

OF POOR ORIGINAL QUALITY PACE

ົດ

,

DMS Advanced Architecture Task 92 Goals

- Begin timing studies of the Station Lynx OS with Ada application programs
- Start colaborative effort with UC-Davis on detailed evaluation of the Space Station Ada compiler
- Initiate long term effort on techniques for dynamically updating DMS operating system
- Continue evaluation of parallel processers and expand fault tolerant system investigations
- Begin detailed testing of 586 processor
- Prototype an end-to-end payload experiment to define DMS capabilities and limitations
- Develop a detailed Ada model of the on-board RODB for use in cooperative Ames/JSC/UH-CL flight data base testing
- Implement a multi-node test bed that emulates the flight configuration plus additional nodes for a payload command station, ground control console and advanced fault tolerant processors for growth potential

NASA Ames Research Center