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ABSTRACT

Nine cooperating rule-based systems, collectively called
AUTOCREW, were designed to automate functions and decisions
associated with a combat aircraft's subsysiems. The organizaton of
tasks within each system is described; performance metrics were
developed 1o evaluate the workload of each rule base, and 10 assess the
cooperation between the rule-bases.

Each AUTOCREW subsystem is composed of several expert
systems that perform specific tasks. AUTOCREW's NAVIGATOR
was analyzed in detail to undersiand the difficulties involved in
designing the system and to identify tools and methodologies that ease
development. The NAVIGATOR determines optimal navigation strat-
egies from a set of available sensors. A Navigation Sensor Manage-
ment (NSM) expert system was systematically designed from Kalman
Filter covariance data; four ground-based, a satellite-based, and two
on-board INS-aiding sensors were modelled and simulated to aid an
INS. The NSM Expert was developed using the Analysis of Variance
(ANOVA) and the ID3 algorithm. Navigadon swategy selection is
based on an RSS position error decision metric, which is computed
from the covariance data. Results show that the NSM Expert predicts
position error correctly between 45% and 100% of the time for a
specified navaid configuration and aircraft rajectory. The NSM Expent
adapts 10 new situations, and provides reasonable estirates of hybrid
performance. The systematic nature of the ANOVA/ID3 method makes
it broadly applicable to expert system design when experimental or
simulaton data is available.

INTRODUCTION

The computational and symbolic processing requirements for pilot-
aiding systems pose many problems, e.g., muld-task scheduling and
intersystem cooperation {1,2]. Expert systems, which are computer
programs usually developed in a symbolic processing language such as
LISP or PROLOG, have cmerged t solve difficult domain-specific
problems [3]. The designer generally extracts heuristics and specific
knowledge from domain experts. This information is used to
formulate a knowledge base consisting of parameters and rules. An
inference engine uses rules to conduct a search and to set parameters,
thereby inferring knowledge about the problem domain.

Problem identification in the flight environment and expert system
development has led to the design and implementation of expert
systems in the areas of navigation, emergency procedures, and air
traffic control [4-6]. The introduction of multple system concepts
such as global blackboard architectures for information exchange
between knowledge bases has been successful in aerospace
implementations [2,7]. However, methods in multiple knowledge-
base development, sysiems integration, and ensemble prototyping need
further research if complex systems are to be developed for flight
domain operations or other problem areas.

A logical task classification scheme is a key factor in the successful
development of multiple rule-based systems. In this paper a logical
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structure for providing assistance to the pilot of a military aircraft was
patterned on the functions of a World War II bomber crew [8]. Based
on this model, an ensemble of nine cooperating rule-based systems
called AUTOCREW [9,10] was developed. Each system figurauvely
emulates a crew member's task responsibilites.

To illustrate some of the issues involved in the design of an
AUTOCREW subsystem, the problem of navigadon sensor selection
was studied in detail. With a large number of available navaid sensors,
choosing an optimal or near-optimal sensor set becomes a large
combinatorial problem. Convergence towards an opumal sensor
configuration requires an exhaustive computer search utilizing simul-
ation results as the basis for selection. In conuast, a small number of
available navaids reduces the decision space considerably. Hence, a
dilemma occurs; increasing sensor capability (and thus reliability and
performance) increases decision-making complexity.

A Navigation Sensor Management (NSM) Expert System that
controls the selecton of multi-sensor configuratons was developed for
AUTOCREW. Two on-board navigation aids (Doppler radar and Air
data sensor) and five radio navigaton systems (Global Positoning
Systern, LORAN, TACAN, DME, and VOR) were modelled and
covariance results obtained using a U-D implementation of the Kalman
Filter equations [9]. Up to three ground stations and four satellites
were simulated for typical high-performance, commercial jet rransport,
and general aviation aircraft trajectories. Mixed sensor simulations also
were performed. These results provided the combinatorial, mului-
factor source required for knowledge-base development.

The Analysis of Variance (ANOVA) stanstical technique [13] was
applied to the covariance results 1o identify the factors that cause
variation in navigation performance. Once the important factors were
identified, the relatdonships berween them were determined. The ID3
algorithm [14], an inductive inference technique basedon the probabil-
istic occurrence of events, was used to find these atribute relation-
ships. Details of the development of the NSM Expert are described in
Ref. 9, and the main results are shown in this paper.

AUTOCREW DESCRIPTION

The nine AUTOCREW components [9,10] are COPILOT (flight
control, aircraft performance, terrain following), ENGINEER (systern
diagnosis, reconfiguraton, emergency procedures), NAVIGATOR
(navigation sensor management, dynarmic route planning), COMMUN-
ICATOR (radio/data operations), OBSERVER (lockout and alarm,
identification friend or foe) ATTACKER (offensive weapon control,
target acquisition/prioritization), DEFENDER (defensive weapon
control), and SPOOFER (electronic measures/countermeasures). The
ninth rule-based system, the EXECUTIVE, coordinates mission-
specific tasks and has knowledge of the mission plan. In the
AUTOCREW scheme, the human aircraft Pilot acts in the capacity of
missién coordinator. The Pilot has full control of the aircraft and its
on-board systems; AUTOCREW can provide automagc assistance
when requested. In total, the AUTOCREW sysiem performs 511
tasks, is comprised of 406 rules, and uses 89 shared parameters [9].

Knowledge-Base Development of AUTOCREW Comp-
onents

Five main task groups are performed. by each AUTOCREW
component: 1) tasks executed during an attack on the aircraft, (2)
tasks executed during aircraft subsystem emergency or potential threat
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Figure 1.

Knowledge Base of AUTOCREW

Member NAVIGATOR

sitwations, (3) additonal tasks ordered by the EXECUTIVE, (4) tasks
executed on a routine basis, and (5) mission-specific tasks that (for the
most part) are executed once and that require a high degree of
cooperation among the various systems. Mission-specific tasks are
divided into groups appropriate 10 each mission phase [10].

Figure 1 shows the graphical representation of AUTOCREW's
NAVIGATOR imowledge base (see Refs. 9 and 10 for details of the
AUTOCREW knowledge bases). The NAVIGATOR's tasks include
navigarion sensor management, navigaton state and error estimation,
and dynamic route planning. As seen in the figure, detection of an
inbound enemy triggers the NAVIGATOR to perform defensive tasks.
Rule NO4 shows that the NAVIGATOR finds the nearest friendly
airfield able 1o serve the aircraft from its stored airbase information.

The NAVIGATOR also uses the OBSERVER's information on
friendly aircraft in the area and plans a recovery route. It is exmemely
important that the aircraft’s location is known accurately in order to
avoid such danger zones as Surface-to-Air Missile (SAM) belts.
Tactical aircraft carry inertial navigaton systems (INS) for high-
frequency navigation information. A Kalman Filter can be used to
integrate external navaids with an INS to estimate navigation errors.
The integrazed or hybrid INS gives accurate high-frequency navigaton
information with bounded errors in the state estmates (Rule N09).
The error magnitudes depend on the accuracy of the navaid selected.
The NAVIGATOR monitors ground-based and satellite radio navaids
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Figure 2. AUTOCREW Workload - Mission-Specific Tasks and Emergency Scenarios

in the area to determine if they are sufficiently operational for integra-
ton purposes (Rule 11). From this list of navaids, the NAVIGATOR
recommends the best combination meeting the computational resource
constraints. The Pilot can change the NAVIGATOR's selecton if
desired (Rule N14).

The NAVIGATOR also is responsible for routinely monitoring
flight plan progress. The NAVIGATOR first determines if the aircraft
is closing on the target area. This information initiates additional tasks
in the remaining AUTOCREW knowledge bases. The NAVIGATOR
keeps a record of aircraft positions, restricted zones, and areas of
weather disturbances as reported by the OBSERVER (Rule N18). The
NAVIGATOR generates an alternate flight path for the following
conditions: flight path conflicts, flight plan behind schedule, and fuel
considerations. The EXECUTIVE is consulted when the
NAVIGATOR recommends an alternate route. The EXECUTIVE
considers the effect of the route change on the overall mission plan and
aircraft's safety, and it makes a GO/NO GO recommendation (Rule
N17). The Pilot can accept or reject the EXECUTIVE's
recommendation in Rule N19. If the new route is selected, the
NAVIGATOR posts the route plan details on the display. As noted
above, the COPILOT changes its sicering commands in response to the
route change. When the ATTACKER acquires enemy targets and the
plan is to engage, the NAVIGATOR generates routes to each target, as
seen in Rule N20.

AUTOCREW Simulation Results

Simulation and comparative workload results for two mission
scenarios are given in this secion. The scenarios are inbound SAM
attack on the aircraft and Pilot incapacitation. Results are presented for
five mission phases (routine, pre-flight, launch, attack, and recovery)

and three emergency conditions (inbound weapon, enemy aircraft
detected, and pilot incapacitated).

AUTOCREW workloads for three emergency conditions were
obtained and compared with the routine workload, referred to as
"cruise mode" (Table I). For the three scenarios the workload
progressively increases as the situation gets worse. There is a dramatic
increase in workload between cruise and artack modes with an inbound
SAM, and there is an additional increase between the inbound SAM
scenario (cruise), and inbound SAM with the Pilot incapacitated
(cruise). The workload nearly doubles for an inbound SAM when the
aircraft is already engaging another aircraft (anack mode).

Table I Scenario Workload-Increase Comparisons

Scenario Workload Increase, %
Tasks  Decision-Making
Cruise Mode —-- ———nm
Inbound SAM/Cruise Mode 26.3 28.1
Inbound SAM & Pilot Incap-
acitated/Cruise Mode 39.5 38.6
Inbound SAM/Artack Mode 77.2 75.2

A comparison of the workload distribution among the AUTO-
CREW members for cach of the given mission phases is shown in Fig.
2. The Rule Fraction is the ratio of number of rules fired during the
mission phase for the specified AUTOCREW member to the total
number of mission phase rules in all AUTOCREW knowledge bases
[9]. The Parameter Fraction is the ratio of number of tasks performed
during the mission phase for the specified AUTOCREW component to
the total number of mission phase tasks in all AUTOCREW knowledge
bases. These metrics were used to characterize the knowledge base
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workloads. The ENGINEER, COMMUNICATOR, OBSERVER,
NAVIGATOR and EXECUTIVE have the largest amount of routine
tasks to perform each search cycle. During the pre-flight phase, the
ENGINEER, COMMUNICATOR, and NAVIGATOR are the busiest
components, as each prepares the aircraft for takeoff. About 40% of all
the launch phase tasks are performed by the COPILOT, as shown in
Fig. 2, while the next largest task load is executed by the
COMMUNICATOR and ENGINEER (each having 17% of the total
launch workload). Most of the anack phase work is done by the
ATTACKER (33%), whereas the recovery phase is dominated by the
COPILOT's (35%) activities. Most of the workload during an inbound
weapon anack is performed by the DEFENDER (about 30% in Fig. 2).
The ATTACKER's workload also increases at this tme, as it monitors
the DEFENDER's firepower capability.

There is evidence of more SPOOFER decision-making when an
enemy aircraft is detected than when the OBSERVER detects an
inbound weapon. This is due 1o its Elecronic Counter Measures
(ECM) strategy consultation with the EXECUTIVE. The COPILOTs
workload also increases during these two emergency conditions; in
both scenarios, the COPILOT selects an appropriate evasive maneuver.
These selections are based on the aircraft capability informaton pro-
vided by the ENGINEER. The EXECUTIVE's workload also increas-
es at this tme 1o assist the Pilot in making decisions. When the Pilot is
incapacitated, the EXECUTIVE becomes the primary decision-maker,
as shown in Fig. 2. The ENGINEER's major task during this scenario
is to monitor the Pilot's conditon, resulting in a 10% workload
increase.

DEVELOPMENT OF A NAVIGATION SENSOR
MANAGEMENT EXPERT SYSTEM

The remainder of this paper focuses on the issues involved in
designing the navigation sensor selection expert in NAVIGATOR.
This example demonstates how simulation data and statistical analysis
can be used to systernatically design an expert systern.

To determine the performance of the various hybrid navaid combin-
ations, the following U-D Kalman filter simulatons were performed:

1. Single-type hybrids: GPS, LORAN, TACAN, DME, VOR,
Doppler Radar, or Air Data Sensor aiding an INS

2. Number of siatons used in a single-type hybrid

3. Mult-type hybrids: Combinations of different navaid types aiding
an INS

4. Aircraft rajectories simulated: High-performance, commercial,
general aviaton

The root sum of squares (RSS) of the north and east component
errors was selected for the hybrid system performance metric. The
primary functon of this expert sysiem is 10 select the external navaid
sensors that provide the smallest possible RSS position error from a
large set of available sensors. The Analysis of Variance (ANOVA)
technique {13] is used to identify the factors that make statistically
significant contributions to the decision metric. Then, the ID3
algorithm determines the reladonships between these factors [13,14].

Identifying Important Factors Using ANOVA

~ The RSS positon error histories from over 200 covariance simul-
ations were obtained, and the data were used in an ANOVA four-factor
navaid experiment. The goal of the experiment was to identify which
of the factors (navaid type, number of ground stations, trajectory
cffects, performance history) and their interactions had stadstcally
significant impacts on the RSS positon error. The factor values used
in the ANOV A experiment were:

Navaids={VOR, DME, LORAN, TACAN, GPS}
Number of Stations={One, Two, Three}
Trajectory Type={High-Performance, Commercial
Tran General Aviation}
Performance History = {Intervals: I, I, I, IV}

(Model 1)

Since each wajectory consists of four, 15-minute legs, the Performance
History (or "time interval”™) factor refers to the RSS error obtained
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within each 15-minute time frame. Four single-station, six double-
station, and four triple-station hybrids were simulated using
combinations of four different Stations (named Stations A-D) {9,12].

The ANOVA technique was applied to the simulation results as
follows: First, the mean value of the RSS position error and the
variance using all simulaton data were computed. The ANOVA model
decomposes the variance into a sum of variances, each associated with
a potentially contributing factor and factor interacdons. For example, if
a rwo-factor ANOVA experiment using navaid type and number of
ground stations was performed, the total variation of the RSS position
error in the complete set of simulation results would be:

SStoTaL = SSnav+SSsTaT + SSNAV.STATINT
+ SSUNEXPLAINED (€)]

Here, SStoraL is the total variation in the RSS position error based on
all simulations, SSnav is the variaton in the RSS position error due 0
differences in navaid type, SSstaT is the variadon in the RSS position
error due to the number of ground stations, and SSNaAvV.sTAT INT 1S the
variation in the RSS position error due to interaction effects.
SSuUNEXPLAINED is the variadon in the RSS position error that cannot be
atributed to navaid type, the number of stations, or interactions
berween these two factors.

Equation (1) was expanded for the four-factor navaid experiment
defined by Model 1 {9,12]. Using the computed sums-of-squares,

Scheffe multiple comparison tests were performed to identify the
specific differences within the groups (e.g., RSS position error
differences between different navaid types).

Extracting Rules Using Induction: The ID3 Algorithm

The ID3 Algorithm uses inductive inference to extract rules [14]
from an example set. The problem space is described in terms of
atributes, where each atwribute is characterized by a set of values that
define the possible "states.” For example, in Model 1, the navaid type
and number of ground statons were shown to be attributes affecting
RSS position error. The ID3 algorithm defines the shape of the
decision tree as it identifies the most impontant atwribute at each decision
node. The algorithm uses an Informadon-Theoretic Measure (ITM)
that minimizes the number of tests (attribute nodes) necessary to define
the decision tree. The ID3 aigorithm uses the ITM in a splitting strategy
[14] to decide which attribute provides the most information from the
example ser (See Refs. 9, 12, 14 for details of the ID3 algorithm.)

Developing the ID3 Attribute Framework Using ANOVA
Results

The Model 1 covariance simulations were used to extract decision
trees for the NSM Expert system. Eleven auributes were defined for
the ID3 framework: Navaid type, trajectory leg, aircraft groundspeed,
number of ground stations, minimum geodetic distance from staton,
maximum gecdetic distance from station, (Max - Min) distance on
trajectory leg, maximum line-of-site angle from station, minimum line-
of-sight angle from the station, direction of flight (approaching or
receding) relative to station, and RSS position error class on previous
trajectory leg. The ID3 algorithm determined how these auxibutes were
related to each other and o the final RSS position error.

The classification scheme chosen to represent the RSS position
error endnode in the NSM decision trees is depicted in Table II. The
velocity, distance, and line-of-sight angles were expressed in terms of
ranges instead of individual values, so the expert system weights
trends more heavily than specific examples. This makes the expert
system more adaptable to new conditions, because matches between
the actual and knowledge-base cases can be obtained more frequenty.



Table II RSS Position Error Classification

Scheme
Accuracy
[High] [Medium] [Low]
Error Error Error
Range, Code Range, Code Range, Code
N. Mi. N. Mi. N. Mi.
0.0-0.02 c-1 0.10-0.20 c-6 1.0-1.5 c¢-15
0.02-0.04 c-2 0.20-0.30 c-7 1.5-2.0 c-16
0.04-0.06 c-3 0.30-0.40 c-8 2.0-2.5 17
0.06-0.08 c4 0.40-0.50 c-9 2.5-30 c-18
0.08-0.10 c-5 0.50-0.60 c-10 3.0-3.5  c¢-19
0.60-0.70 c-11 3.5-40 ¢-20
0.70-0.80 c-12 4.0-45 ¢c-21
0.80-0.90 c-13 4.5-50 c-22
0.90-1.00 c-14 > 5.00 c-23

The example set was developed using the auribute framework
described above. The RSS positdon errors for each simulation were
classified on each trajectory leg using the scheme in Table . The ID3
example base was then created from each single-, double-, and triple-
staton simulation.

NSM Decision Trees

The NSM example set was divided into 17 smaller example sets.
The GPS and on-board navaid examples were grouped into one exper,
whereas the ground-based navaid examples were divided according to
navaid type and time (15-minute intervals). The ID3 algorithm
constructed decision trees for each of the 17 small expert systems to
comprise the larger NSM Expert. The total number of examples used
to develop the NSM Expert System was 932, based on 260 Kalman
Filier covariance simuladgons. An addidonal 37 simulations were per-
formed to obtain an RSS error-estimate decision tree for navaid-type
combinations. The NSM expert system prompts the user for a set of
flight conditions commensurate with the artribute/value lists used in the

example set, and the resulting RSS classificadon code is returned to the
user from the decision tree.

Figure 3 shows decision trees for single-, double-, and triple
TACAN suation combinations on the second 15-minute rajectory leg.
Here, the majority of the testing nodes are trajectory parameters
(distance, LOS angle, direction of flight with respect to the stations).
The top or root node is the aircraft's direction of flight. This is
expected because the distance and LOS angle auribuies are dependent
on directional modon. Distance, LOS angle, and groundspeed are
results of the aircraft's motion; hence, they represent more specific
problem parameters, and it is expected that these parameters appear
deeper in the decision tree. Figure 3 also shows that distance, ground
velocity, LOS angle, and hybrid pcrformancc history are significant
factors in RSS error prediction.

The decision tree in Fig. 4 shows the expected position error range
when ‘lifferent navaid types are integrated into a hybrid system. The
RSS position errors for these simulations were averaged over the entire
flight time for the high-performance trajectory. The tree is organized in
terms of the navigation method used: (1) Distance-Velocity (p-V). (2)
Bearing-Velocity (8-V), (3) Distance-Bearing (p—6), (4) Distance-

Distance (p—p), (5) Bearing-Bearing (8-8), and (6) Velocity-Velocity
(V-V). These results show that LORAN is a benter distance-measuring
navaid than DME and that Doppler Radar provides better navigation
accuracy than the Air Data Sensor when p-V navigation is used. The

(p—0 results show that it is possible to obtain good performance when
LORAN and VOR are used. The LORAN/DME hybrid gives better
resuits than two DME stations but worse performance than two
LORAN stations. By far the worst results are obtained using two VOR
stations.

Performance of NSM Expert on Test Trajectories

Two high-performance trajectories were used in the performance
cvaluation of the NSM Expert. Multi-station hybrids were simulated
on each test trajectory for the DME, VOR, TACAN, and LORAN
systems. In total, 60 covariance simulations were performed for the
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Figure 4. Decision Tree Predicting RSS Performance When
Different Navaid Combinations are Used to Aid an INS

two test rajectories. The results for each simulation were classified on
each trajectory leg according to the scheme in Table II. The total numn-
ber of matches was counted on each trajectory leg for the seven navaid
types studied. Figure 5 shows how well the NSM Expert predicts the
RSS positon error for each hybrid configuration. The predicrive
performance metric for each navaid is defined as the percentage of
number of matches obtained from the total number of combinations
tested for that navaid.
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Figure 5. Performance of Navaid Experts
on Test Trajectories
The NSM Expert performed very well on the two 'test ajectories.

Figure 5 shows that the NSM Expen correctly predicts the RSS
position error better than 70% of the time on test Trajectory #1. The
system required only the trajectory information and its knowledge of
hybrid system performance to make these predictions. However, its
predictve capability on test Trajectory #2 is slightly worse for the
LORAN hybrids (69%), considerably worse for the VOR (45%) and
Air Data sensor hybrids (53%), and identical to the trajectory #1 results
for the remaining configurations. Hence, the results from Trajectory
#2 suggest that addidonal investigation into trajectory effects on VOR's
and Air Data Sensor's performance may be necessary.

Selecting Navigation Strategies Using the NSM Expert
System

The NSM-Recommended Navaid strategies were compared with
covariance-determined strategies for various navigation sensor suite
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scenarios (9,12]. For example, the NSM Expert was asked to find the
best two-measurement hybrid strategies for the following navaid
Sensors:

Sensor Scenario #1 = {2 GPS satellites, LORAN Station A,
DME Station A, VOR Station C, Doppler Radar}

The results obtained by mixing combinations of the Scenario #1
sensors are shown in Fig. 6. The NSM Expert correctly idendfied the
best. next-best, and third-best navigation strategies. Additonal NSM
Expert results are given elsewhere [9,12].
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Figure 6. NSM-Recommended Navaid Strategies

In addition to recommending navigation strategies from a given set
of sensors, several heuristic sensor selection schernes were determined

from the ANOVA results, the Scheffe comparisons, and the ID3
decision rees. .

For single-type hybrids whose ground stations are at or near the
same location, the ranking in order of best to worst performance was
determined from ANOVA and the Scheffe tests as follows:

Ranking heuristic for = {GPS, LORAN or TACAN, DME, VOR}
co-located navaids



The ranking scheme above applies to single-station hybrids (or double-

satellite GPS hybrids). The Scheffe comparisons show that a TACAN
or LORAN selecton depends on trajectory effects; this means that
either a TACAN or LORAN hybrid could provide statistically lower
RSS position errors depending on the aircraft flight path with respect 0
the stations being compared. The ranking heuristdc is accurate with a
99% confidence level. If non-colocated statons are compared. trajec-
tory effects must be considered for these single-station hybrids. The

ANOVA and Scheffe comparison tests showed that double-station
hybrids provide much smaller RSS position errors than single-station
hybrids {9,11,12]. The performance difference between two and three
stations is not as dramadc but is nonctheless statstically significant
[12].

For mult-station hybrids of the same navaid type, the ANOVA and
ID3 results provide the following ranking scheme from best 1o worst
navigaton performance as follows [9]:

Ranking heuristic for
mult-station hybrids =
and on-board sensor
hybrids

{4 GPS, 3 GPS, 3 LORAN, 2 LORAN,
3 TACAN, 2 TACAN, 3 DME, 2 DME,
Doppler Radar, Air data sensor, 3 VOR,
2VYOR}

However, the decision trees highlight the importance of wajectory
effects in RSS position error esimation.

CONCLUSIONS

This paper summarized two research efforts to develop expert
systems using systematic methods: The design methodology for
multiple cooperating rule-based systems, and the development of a
navigation sensor management system. Nine modular rule-based
systems, collectvely called AUTOCREW, were designed to automate
functions and decisions associated with a combat aircraft's
subsystems. The nine AUTOCREW knowledge bases were designed
individually and areas of cooperation between the knowledge bases
were identified. Each knowledge-base was designed using a graphical
symbology that clearly illustrated the relationships between functional
and decision-making tasks. Performance metrics were developed to
evaluate the workload of each knowledge base and to assess the
cooperation between the rule-bases.

The NAVIGATOR's sensor management task was treated in detail.
The performances of seven navigation systems aiding a medium-
accuracy Inertial Navigaton System (INS) were investigated using

Filter covariance analyses. A Navigation Sensor Management

Expert System was formulated from covariance simulation data using
the Analysis-of-Variance (ANOVA) method and the ID3 algorithm.
ANOVA results show that statistically different position accuracies are
obtained when different navaids are used, the number of navaids aiding
" the INS is varied, the aircraft's trajectory is varied, and the
performance history is varied. The ID3 algorithm determines the NSM
Expert's classification "rules” in the form of decision trees. The
performances of these decision trees were assessed on two arbitrary
trajectories, and the results demonstrate that the NSM Expert adapts to
new sisations and provides reasonable estimates of the expected
hybrid performance. The NSM Expert demonstrates that carefully-
planned simulation experiments can be used to develop a fully-

operational expert system with a designer-specified performance
effectiveness.
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