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ABSTRACT 

Nine cooperating rule-based systems, collectively called 
AUTOCREW, were designed to automate functions and decisions 
associated with a combat M t ' s  subsysrems. The organization of 
tasks within each system is described; performance memcs were 
developed to evaluate the workload of each rule base, and to assess the 
cooperation between the rule-bases. 

Each AUTOCREW subsystem is composed of several expen 
systems that perform specific tasks. AUTOCREW'S NAVIGATOR 
was analyzed in derail to understand the difficulties involved in 
designing the system and to identify tools and methodologies that ease 
development. The NAVIGATOR determines optimal navigation snat- 
egies from a set of available sensors. A Navigation Sensor Manage- 
ment (NSM) expen system was systematically designed from Kalman 
Firer covariance data; four ground-based, a satellite-based. and two 
on-board INS-aiding sensors were modelled and simulated to aid an 
INS. The NSM Expen was developed using the Analysis of Variance 
(ANOVA) and the ID3 algorithm. Navigation strategy selection is 
based on an RSS position error decision meaic, which is computed 
from the covariance data. Results show that the NSM Expen predicrs 
position error correctly between 45% and 1 0 %  of the time for a 
specified navaid c o n f i ~ t i o n  and uaiccrorv. The NSM Exwn 
ahapts to new simati&s, and provides reasokab1e;srimates of hybrid 
performance. The systematic nature of the A N O V m 3  mehod makes 
it broadly applicable to expen system design when experimental or 
simulation dam is avadable. 

INTRODUCTION 

The computational and symbolic processing rtquircmenu for pilot- 
$ding systems pose many problems, e.g., multi-task scheduling and 
intzrsystem cooperation [1,2]. Expen systems, which are computer 
programs usually developad in a sytnbolic ing language such as 

heuristics and specific 

Problm identification in the flight ' and expert system 

cation scheme is a key factor in the succcssN 
development of multiple mle-based systems. In this paper a logical 
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snvctun for providing assistance to the pilot of a military aircraft was 
panemed on the functions of a World War Il brnbcr n e w  [8j. Based 
on this model, an ensemble of nine cooperating nie-based systems 
called AUTOCREW [9,10] was developed. Each system figuratively 
emulates a crew member's task nspsibii i t ies.  

To illustrate some of the issues involved in h e  design of an 
AUTOCREW subsystem, the problem of navigation sensor selecuon 
was studied in derail. With a large n m k  of availatlle navaid sensors, 
choosing an optimal or near-oprimal sensor set becomes a large 
combinatorial problem. Convergence towards a:1 oprimai sensor 
configuration requires an exhaustive computer search utilizing simul- 
ation resulu as the basis for selection. In conuasr, a small number of 
available navaids mluces the decision space c~nsic~erably. Hence, a 
dilemma occurs; increasing sensor capability (and thus reliability and 
performance) increases dec i s ion -dng  complexity. 

A Navigation Sensor Management (NSM) Expen System that 
conmls the selection of multi-sensor configurations ,was developed for 
AUTOCREW. Two on-board navigation aids (Doppler radar and A x  
data sensor) and five radio navigation systems (Global Positioning 
System, LORAN, TACAN. D m ,  and VOR) we:re modelled and 
covariance resuits obtained using a U-D implemenration of the Kalrnan 
Filter equations [9]. Up to three ground stations md four saiellires 
wen simulated for igh, corrme:rcial jet m s p o n .  
and general aviatio mJ cd sensor sirnuiacions aiso 
were performed. These results provided the combinaaoriai, rnulri- 
factor source r q u d  for howledge-base developmenr 

The Analysis of Variance (ANOVA) sueistical tfxhnicjue: j 131 was 
applied to the covariance results to identify the factors ha t  cause 
variation in navigation ce. Once rhe impomt fxron were 
idenS~ed. the relationshius k w e e n  hem were determind. The D3 
algorih'[14],  an inductibe S m n m  technique based-on he: probabil- 
istic accumnce of events, was used to find these annibutc relation- 
ships. Details of the developmnt ofthe NSM Exper? are described in 
Ref. 4, and the rnain results an s b w n  io, this paper. 

The nine AUTCDCRE\N components [9,10] are COPILOT (flight 
a. following), ENGImER (systern 

diagnosis, reconfiguration, enncrgency procedures). NAVI 
g-nr, dynaanic maa: plannLing), 03 

operations), OBSERmR (lookout 
idencificarion fiend or foe) A n A C Z R  (oBensiv~: weapon conml, 
target q i s i a o m / p m o r i u ~ ~ t i o n ) ,  DEFIEmER (defensive weapon 
control), and S P O O m  ( e l m n i c  masures/countimwu~-es). $ire 
ninth mle-based system, the EXECUTIm, coordinates rnission- 

when q u e s t e d  In 
tasks, is comprised of 

Knowledge-Bwe Development of AUTOCREW Comp- 
onents  

Five main task p u p s  are pedomed. by each AmOCREW 
companent: 1) tasks exocured during an attack on the (2 )  
tasks executed d h g  subsystem m e r g e n q  m ptened h a . [  
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Figure 1. Knowledge Base of AUTOCREW 
Member NAVIGATOR 

siruations, (3) arlditional tasks ordered by the UCE . (4) tasks 
cxecuteol on a miutine bad& and (5) mission-sp6nfic tasks that (for the 
most pan) me executed once and that require a high degree of 
coopcradon m3ng the various systems. Mission-specific tasks ax 
d v i d d  into gm~aps ate to each mission phase [lo]. 

Figure P shlows the graphical npnsentation o 
NAVIGATOR lonowledge base (see Refs. 9 and 10 
AUmCREW knowledge bases). The NAVIGATOR'S tasks include 
navigarion senstn management navigation state and erm estimation, 
and dynaolic mute planning. As seen in the figure, detection of an 
anbound e n m y  laigktrs the NAVIGATOR to perform defensive tasks. 
Rule NOQ shou~s that VIGATOR fin ndly 
~ e M  able to s t m e  the fnxn its st& 

The NAVIGATOR also uses the OBSERVER'S information on 

of the navaid selected. 
satellite radio navaids 
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Figure 2. AUTOCREW Workload - Mission-Specific Tasks and Emergency Scen.arios 

in the area to determine if they are sufficiently operational for integra- 
tion purposes (Rule 1 l). From this list of navaids, the NAVIGATOR 
recommends the best combination meeting the computational resource 
constraints. The Pilot can change the NAVIGATOR'S selection if 
desired (Rule N14). 

The NAVIGATOR also is responsible for routinely monitoring 
flieht ~ l a n  Dromss. The NAVIGATOR first determines if the aircraft 
is clo;mg dn tlk target arcs Th~s information initiates additional tasks 
in the n w n i n g  AUTOCREW knowledge bases. The NAVIGATOR 
keeps a record-of aircraft positions, re>tricted zones. and areas of 

by the OBSERVER (Rule N18). The 
emate flight path for the following 

conditions: flight path conflicts, flight plan behind schedule. and fuel 
considerations. The EXECUTIVE is consult 
NAVIGATOR recornnrends an alternate route. The 
considers the effect of the route change on the overall rnission plan and 
aircraft's safety, and it makes a GO/NO 60 recommendation (Rule 
Ni7). The Pilot can accept or reject the EXECUTIVE'S 
recommendation in Rule N19. If the new route is selected, the 
NAVIGATOR posts the route plan details on the display. As noted 
above, the COPILOT changes its strrring c o r n &  in response to the 
route change. When the ATTACKER acquires enemy targets and the 
plan is to engage. the NAVIGATOR generates routes to each target, as 
seen in Rule N20. 

AUTOCREW Sirnulation Results 

Simulation and comparative workload results for two mission 
scenarios an given in this sbction. The scenarios are inbound SAM 
anack on the and Pilm incapacitation. Results arc presented for 
five rnission phases (rourine, preflight, launch, attack, and recovery) 

and three emergency conditions (inbound wez~pon, enemy aircraft 
detected, and pilot incapacitated). 

AUTOCREW workloads for three emergeincy conditions were 
obtained and compared with the routine workJoad, referred to as 
"cruise mode" (Table I). For the three scenarios the workload 
progressively increases as the situation gets wow:. There i s  a dramac 
incnmse in workload between cruise and anack modes with an inbound 
S A M ,  and there is an additional increase betwuzn the inbound SAM 
scenario (cruise), and inbound SAM with the: Pilot incapacitated 
(cruise). The workload nearly doubles for an intound SAM when the 

(anack, mcde). 

Table I Scenario Workload-Increase Comparisons 

Scenario Workload Increase, 96 
Tasks .Decision-Making 

Cruise Mode ---- 
In 26.3 28.1 
In 

39.5 38.6 
Inbound SMAftack Mode 77.2 75.2 

A comparison of the workload distribution among the AUTO- 
CREW membas for each of the given rnission phases is shown in Fig. 
2. The Rule Fraction is the ratio of number of lrules f i v d  during h e  

bases. These tnctrics wen used to characterize the howledge base 



workloads. Ti7e ENGIbZER. COMMUNICATOR, OBSERVER, 
NAVIGATOR and EXECUTIVE have the largest amount of routine 
tasks to perform each search cycle. During the pre-flight phase. the 
ENGINEER, COmUNICATOR, and NAVIGATOR are the busiest 
componenis, a each prepares the aircraft for takeoff. About 409% of a l l  
the launch phase rasks are pcrfomed by the COPILOT, as shown in 
Fig. 2, while the next largest task load is executed by the 
COMF/SUMCA,TOR and ENGINEER (each having 17% of the total 
launch woruoad). Most of the attack phase work is done by the 
ATTACKER (33%). whereas the recovery phase is dominated by the 
COPaOFs (35%) activities. Most of the workload during an inbound 
weapon a m k  is performed by the DEFENDER (about 30% in Fig. 2). 
Tne A%TBCm..R's workload also increases at this time, a s  it monitors 
the DEFEW6aER's frepower capabiliry. 

There is evjdence of more SPOOFER decision-making when an 
enemy aircraft is detected than when the OBSERVER detects an 
inbound weapon. This is due to its Electronic Counter Measures 
(ECM) strategy mnsultation with the EXECUTIVE. The COPILOTS 
woruoad d s o  i n m s e s  during these two emergency conditions; in 
both scenarios, the COPILOT selecs an appropriate evasive maneuver. 
These ~ 1 ~ t i o n : j  arc based on the aircraft capability information pro- 
vided by rhe ENGINEER. The EXE 's workload also increas- 
es at rhis time to assist the Pilot in making decisions. When the Pilot is 
incapacitated, ihe EXECUTIVE k o m e s  the primary decision-maker, 
as shown in Fig. 2. The ENGINEER'S major task during this scenario 
is to monitor the Pilot's condition, resulting in a 10% workload 
increase. 

DEVELCBPMENT O F  A NAVIGATION SENSOR 
!MANAGEMENT EXPERT SYSTEM 

w~rhin each 15-minure time frame. Four single-scation, six double- 
station, and four triple-station hybrids were simulated uslng 
combinations of four different Stadons (named Starions A-D) [9,l2j. 

The ANOVA technique was applied to the simulation results as 
follows: First, the mean value of the RSS position error and the 
variance using all simulation data were compured The ANOVA model 
decomposes the variance into a sum of variances, each associated with 
a potentially conmbudng facror and facror interactions. For example. if 
a two-factor ANOVA experiment using navaid type and number of 
ground stations was perfomed,.the total variation of the RSS position 
error in the complete set of simulation nsults would be: 

Here, SSmL is the total variation in the RSS position error based on 
all simulations, SSNAV is the variation in the RSS position error due to 
differences in navaid type, S S n A ~  is the variation in the RSS position 
error due to the nurnber of ground stations, and SSN~V.ST~T DJT is the 
variation in the RSS position error due to interaction effects. 
S S m p m  is the variation in the RSS position error that cannot be 
armbuted to navaid type, the number of stations, or interactions 
beween these two factors. 

Equation (1) was expanded for the four-factor navaid experiment 
defmed by Model t [9,12]. Using the computed sums-of-squares, 
~ c h e f f i  multiple comparison tests were performed to identify the 
specific differences within the groups (e.g.. RSS position error 
differences between different navaid types). 

The remainder of this paper focuses on the issues involved in Extracting Rules Using Induction: The ID3 Algorithm 
designing rhe navigation sensor selection expen in NAVIGATOR. 
This exmple demonsmtcs how simulation data and statistical analysis The ID3 Algorithm uses inductive inference to exmcr mles [14] 
can be used to systematically design an expen system from an example set. The problem space is descr.bed in terms of 

amibutes, when each atmbute is characterized by a set of values that 
e: the Wmzmce of the various hybrid navaid combin- define the possible "states." For example, in Model 1, the navaid type 

ations, Lhe fouowring U-D Kalman filter simulations were performed: and number of m u n d  stations were shown to be attributes affecting 
RSS position &or. The ID3 algorithm defines the shape of th; 

: GPS, LORAN, TACAN, DME, VOR, decision me as it identifies be he 
' atuibute as each decision 

or Air Data Sensor aiding an INS node. The a lgo r i th  uses an In eoretic Measure (ITM) 
used in a single-type hybrid that minimizes the nmber  of tests (amibute nodes) necessary to define 

3. Mda-rype h!/bnds: Combinations of different navaid ws aiding the decision me  ID^ algorithm uses the in a splitting smtegy 
NS [I41 to decide which ataibute provides the most information from the 
mjastories sirnulad: High- ce, comm~cial, example set, (See Refs. 9, 12.14 for details of the ID3 algorithm.) 

g e n d  a 3 ~ o n  

'Ke root S W ~  of squares (RSS) of the nonh and east component 
e m  was ~k le~ tCd  for the hybrid system ce metric. The 
pbimaq fwcrion of this expen s y s m  is to selecr the external navaid 
sensors h a t  p ~ f i d e  the snnallest possible RSS position a r o r  from a 
luge set of avdable sen-. The Anatysis of Variance (ANOVA) 
t e c h q u e  1131 is used to identify the facton that rnakc statistically 
significent conraiburions to the decision metric. Then. the ID3 
a l g o r i b  cBeaenrokes tbe relarimships beween these factors [13,14]. 

Identifying I m p r l a n t  Facton Using ANOVA 

3%~ mS psieion a r  histories from over 2W covariance simul- 
ations - O b ~ M  and the data were usad in an ANOVA four-factor 

nt The goal of the ex 
lavaid type, number 

e E m s ,  @m:mce hisuory) and the 
s i e c a n r  imp RSS p s i &  

he M O V A  were: 

(Model 1) 

al 
General Aviation) 

als: I, II, III, IV) 

Developing the ID3 Attribute Framework Using ANOVA 
Results 

The W e i  1 mariance simulations w a e  used to exuact decision 
uees for the NSM Expert system. Eleven araributes were defined for 

: Navaid type, aajectory leg, aircraft groundspeed, 
stations. I l l i ~ m  geodetic distance from stanon, 
c disrance from stadon, (Max - Min) distance on 

urn line-of-site angle from station, minimurn line- 
e fro111 the stition. direction of flight (approaching or 

RSS position a ro r  class on pnvious 
dcscnnincd how these aaribuus were 

relafui to each orher and u, the final RSS position amr. 

The classificarion scherne chosen to -sent the RSS position 
enor endnode in the NSM docision trees is depicted in Table 11. The 
velocity, distance, and line-of-sight angles w e n  e x p s s t d  in terms of 
ranges instead of individual values. so the expen system weights 
uends more heavily than es. This makes the expen 
SY S adaptable to , because matches between 
the hnowldge-base cases an k otnained more fquentiy. 

Since each mjeclory m s i s t r  of four. IS-minutc legs, the P ce 
Hismq (or " b e  inlcrval") f m o r  refers to the RSS crror obtain& 



Table I1 RSS Pos i t ion  Error Class i f ica t ion 
Scheme 

A c c u r a c y  
[Nigh]  [Medium] [LOW] 

Error Error Error 
Range, Code Range, Code Range, c o d e  
N. Mi. N. Mi. N. Mi. 

The example set was developed using the amibute framework 
described above. The RSS position errors for each simulation were 
classified on each trajectory leg using the scheme in Table 11. The ID3 
example base was then created from each single-, double-, and mple- 
swion simulation. 

NSM Decision Trees 

The NSM example sct was divided into 17 smaller example sets. 
The GPS and o n - b d  navaid examples wcrc grouped into one expen, 
whenas the ground-based navaid examples were divided according to 
navaid type and time (15-minute intervals). The ID3 algorithm 
consmcted decision m s  for each of the 17 small expen systems to 
comprise the larger NSM Expen. The total number of examples used 
to develop the NSM Expcn System was 932, based on 260 Kalman 
Filter covariance simulations. An additional 37 simulations were pcr- 
formed to obtain an RSS em-estimate decision tree for navaid-type 
combinations. The NSM expen system prompts the user for a set of 
flight conditions commensurate with the atmbure/value lists used in the 

example set, and the resulting RSS classdicadon code is rerumed to the 
user from the decision me .  

Figure 3 shows decision trees for single-, double-, and uipls- 
TACAN station combinarions on the second 15-mniire uajecrory leg. 
Here, the majority of the testing nodes are najecrory parameters 
(distance, LOS angle, direction of flight with respect to the stations). 
The top or root node is the aircraft's direction of flight. This is 
expected because the distance and LOS angle atmbules are dependeni 
on directional motion. Distance, LOS angle, and goundspeed are 
results of the aircraft's motion; hence, they represent more specific 
problem parameters, and it is expected that these parameters appear 
deeper in the decision tree. Figure 3 also shows that dismce, ground 
velocity, LOS angle, and hybrid performance history are significant 
factors in RSS error prediction. 

The decision tree in Fig. 4 shows the expccted position error range 
when ~lifferent navaid types are integrated into a hytlrid system. The 
RSS position errors for thesc simulations were averagcA over che entire 
flight h e  for the high-performance najectory. The nee is organized in  
terms of the navigation method used: (1) Distance-Velocity (p-V), (2) 
Bearing-Velocity (B-V), (3) Distance-Bearing (p-0). (4) Distance- 
Distance (p-p), (5) Bearing-Bearing (H), and (6)  Velocity-Velociry 
(V-V). rtresc results show that LORAN is a better dismce-measuring 
navaid than DME and that Doppler Radar provides Ixtter navigation 
accuracy than the Air Data Sensor when p-V navigation is used. The 
g-8 results show that it is possible to obtain goad perEomance when 
LORAN and VOR are used. The LORANDME hybrid gives better 
results than two DME stations bur worse performance than rwo 
LORAN stations. By far the worst results are obtained using two VOR 
stations. 

Pe r fo rmnce  of NSM Expert on Test Trajectalris 

Two high-performance aajectories were used in the periormance 
evaiuation of the NSM E x p  Multi-station hybrid:; were sirnulared 
on each test trajectory for the DME, VOR, TACAX, and LORAN 
systems. In total, 60 covariance simulations were performed for the 

Figure 3. Decision Trees Redieting RSS Position Error Range for an INS 
Aided by TACAN During the Second 15 Minutes of Flight 



Figure 4. Decision Tree Predicting RSS Performance When 
Different Navaid Combinations are Used to Aid an INS 

two rest rraiectories. The results for each simulation were classified on 
each trajwkny leg according to the scheme in Table II. The total num- 
ber of marches was countcd on each aajecmry leg for the seven navaid ~ccnarios i9.121. For example. the NSM Expen Was asked to find the 
types smdied. jzigure 5 shows how well the NSM E~~~ predicts he best two-measurement hybrid strategies for the following navaid 
RSS position enor for each hybrid configuration. The predicrive 
pe f i rmnce  rnefric for each navaid is defined as the percentage of 
number of matches obtained from the total number of combinations Sensor = f 2  GPS Station *, 
rested for that navaid. DME Station A, VOR Station C, Doppler Radar) 

TACW ab AIR DATA 

T S 

Figure? 5. Performance of Navaid Experts 
on Test Trajjectoria 

The NSM B,pnr very well on the two test uajectories. 
Figure 5 shows that the NSM Expert correctly predicts the RSS 
psition era~r k n e r  %an 70% d the time on tea Trajectory #l. The 
system qu ind  only rhe u a j m r y  tion and its knowledge of 
h y k d  sysrm pdonnmce u, make these predictions. However, its 
prdcrive mpd<ility on test Trajectory 1Y2 is slightly worse for the 
L O W  hybrid (69%). considerably worse for the VOR (45%) and 

lylxids (53%), and idendcal u, the najeaory #l results 
g configurarions. Hence, the results from Trajectory 

into aajcamy effects on VOR's 
and Air Dam Ser  Y be nefessary. 

Selecting Navigation Strategies Using the NSM Expert 
System 

The results obtained by mixing combinations of h e  Scenario #1 
sensors arc shown in Fig. 6. The NSM Expen correctly idendfied rhe 
best. next-best, and third-best navigation saategies. Additional NShl 
Expen results are given elsewhere [9,12]. 

0 10 20 00  40  50  8 0  

Tms% &aa 

Ftpm 6.. NSM-R~ommended Namid Strategies 

In addition to ding navigation suategies Erom a given set 
of sensors. several heuristic sensor selection schemes were determined 
from the ANOVA results, the ~ c h e f f i  comparisons. and the ID3 
decision trees. 

For single-type hybrids whose ground stations arc at or near the 
same locadon, the ranking in orda of k s t  to worst performance was 
detamincd h m  ANOVA and the Scheffe tests as follows: 

The NSM-R'mnnnoended Navaid strategies were compared with g heuristic far = (GPS. LORAN or TACAN, DME, VOR 1 
covar imce-dem~nd s~ategies for various navigation sensor suite ~1~~ navaids 



The ranking scheme above applies to single-station hybrids (or double- 
satellite GPS hybrids). The Scheff= comparisons show that a TACAN 
or LORAN selection depends on trajectory effects; this means that 
either a TACAN or LORAN hybrid could provide statistically lower 
RSS position e m  depending on the aircrafr flight path with respect to 
the stations being compared. The ranking heuristic is accurate with a 
99% confidence level. If non-colocated stations arc compared. trajec- 
tory effects must be considered for these single-station hybrids. The 
ANOVA and Scheffc comparison tests showed that double-station 
hybnds provide much smaller RSS position errors than single-station 
hybrids [9,11.12]. The performance difference between two and three 
stations is not as dramatic but is nonetheless statistically significant 
[121. 

For multi-station hybrids of the same navaid type, the ANOVA and 
ID3 results provide the following ranking scheme from best to worst 
navigation performance as follows [9]: 

Ranking heuristic for 
multi-station hybnds = ( 4  GPS, 3 GPS. 3 LORAN, 2 LORAN, 
and on-board sensor 3 TACAN, 2 TACAN, 3 DME, 2 DME, 
hybrids Doppler Radar, Air data sensor, 3 VOR, 

2 VOR 1 

However, the decision trees highlight the importance of trajectory 
effects in RSS position error estimation. 

CONCLUSIONS 

This paper summarized two research efforts to develop expen 
systems using systematic methods: The design methodology for 
multiple cooperating rule-based systems, and the development of a 
navigation sensor management system. Nine modular rule-based 
systems, collectively called AUTOCREW, were designed to automate 
functions and decisions associated with a combat aircraft's 
subsystems. The nine AUTOCREW knowledge bases were designed 
individually and areas of cooperarion between the knowledge bases 
were identified. Each bowledge-base was designed using a graphical 
symbology that clearly illustrated the relationships between functional 
and decision-making tasks. Performance memcs were developed to 
evaluate the workload of each knowledge base and to assess the 
c o o p d o n  beween the rule-bases. 

The NAVIGATOR'S sensor management task was mated in detail. 
The performances of seven navigation systems aiding a medium- 
accuracy Inemal Navigation System (INS) were investigated using 
Kalman Filter covariance analyses. A Navigation Sensor Management 
Expen System was foxmuiated from covariance sirnuladon data using 
the Analysis-of-Variance (ANOVA) method and the ID3 algorithm. 
ANOVA rrsults show that statisdcally different position accuracies arc 
obtained when different navaids arc used the numbtr of navaids aiding 
the INS is varied, the aircraft's trajectory is varied, and the 
performance hisuory is varied. The ID3 algarithm detamincs the NSM 
Expen's classification "rules" in the form of decision mes.  The 
perfoxmances of these decision trees were assessed on two arbitmy 
tnjcct*esr and the d u  demonstrate that the NSM Expen adapts to 
new sltuanons and provides reasonable estimates of the expected 
hybrid performance. The NSM Expen demonstrates that carefully- 
planned simulation experiments can be used to develop a fully- 
operational expen system with a designer-specified performance 
effectiveness 
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