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ABSTRACT
/- '

—. . a ~~---~

Th-i-s----repo-r.t examines the principal-plane scattering from

perfectly conducting and coated strips and rectangular plates .^

Previous reports have detailed Geometrical Theory of

Diffraction/Uniform Theory of Diffraction (GTD/UTD) solutions for

these geometries. The GTD/UTD solution for the perfectly conducting

plate yields monostatic RCS results that are nearly identical to

measurements and results obtained using the Moment Method (MM) and the

Extended Physical Theory of Diffraction (EPTD). This was demonstrated

s* '
in previous reports. This_report extends the previous analysis/toj

bistatic cases. GTD/UTD results for the principal-plane scattering

from a perfectly conducting, infinite strip are compared to MM and

EPTD data. A comprehensive overview of the advantages and

disadvantages of the GTD/UTD and of the EPTD and a detailed analysis

of the results from both methods are provided.

Several previous reports also presented preliminary discussions

and results for a GTD/UTD model of the RCS of a coated, rectangular

plate. Several approximations for accounting for the finite coating

thickness, plane-wave incidence, and far-field observation were

discussed. I-n-̂ this report, these approximations are replaced by a

revised wedge diffraction coefficient that implicitly accounts for a

coating on a perfect conductor, plane-wave incidence, and far-field

observation. This coefficient is computationally more efficient than

the previous diffraction coefficient because the number of
i

Maliuzhinets functions that must be calculated using numerical

integration is reduced by a factor of 2. The derivation and the



revised coefficient are presented in detail for the hard polarization

case. Computations and experimental data are also included. The soft

polarization case is currently under investigation.



I. INTRODUCTION

The research of previous reporting periods [l]-[6] has dealt with

high-frequency methods for the prediction of scattering from basic

geometries whose properties are of interest for modeling more

complicated, practical radar targets. Nonprincipal-plane scattering

from perfectly conducting, rectangular plates has been explored using

the Method of Equivalent Currents (MEC). Several variations on the

technique have been investigated for first-order diffraction

prediction. Second-order effects and corner diffraction have also

been investigated using several different models and measurements.

More recent reports [l]-[3] have concentrated on monostatic,

principal-plane scattering from perfectly conducting and coated strips

and plates with an emphasis on near-grazing and grazing incidence arid

higher-order diffractions. This report presents bistatic results for

the perfectly conducting strip/plate geometry and a comprehensive

overview for applying the Geometrical Theory of Diffraction/Uniform

Theory of Diffraction (GTD/UTD) [7], [8] and the Extended Physical

Theory of Diffraction (EPTD) [9]-[11] to problems involving the

scattering between two parallel wedges separated by an electrically

small distance (A/2 - 2A). Extensive comparisons among GTD/UTD, EPTD,

and Moment Method (MM) results are included.

In addition to the perfectly conducting plate model, a revised

model for the coated plate is discussed. Previous reports [1], [3]

have discussed approximations for incorporating a finite-thickness

coating on top of a perfect conductor and plane-wave incidence,



far-field observation into the impedance wedge diffraction coefficient

developed by Tiberio, et al. [12] and Griesser and Balanis [13] from

Maliuzhinets' solution [14]. This report examines the diffraction

coefficient for the general impedance wedge and revises the

expressions for the specific case of a coating backed by a conductor

for plane-wave incidence, far-field observation. The result is more

intuitively correct than the previously used approximations and also

more computationally efficient because the number of 'Maliuzhinets

functions that must be computed by numerical integration is reduced

from 12 to 6. Computed results and measured data are included for the

hard polarization. Work is currently in progress on the soft

polarization case.

II. THEORY AND RESULTS

A. PRINCIPAL-PLANE SCATTERING FROM A PERFECTLY CONDUCTING,
RECTANGULAR PLATE

The infinite strip and corresponding plate geometries are shown

in Fig. 1. The strip width is w; the plate length is L. The

incidence and observation angles are <f>' and <f>, respectively. [1] and

[3] contained details and analyses of. the monostatic GTD/UTD model.

The bistatic model is simply a more generalized version of the

previous model. As a review, the infinite strip is modeled as two

infinite half planes. This approximation is, of course, more valid

for electrically large strip widths; however, it was demonstrated in

[1] and [3] that the monostatic model performs remarkably well for

widths as small as A/2. The radar cross section (RCS) of a finite,



Fig. I. Perfectly conducting strip/plate geometry
for principal-plane scattering.



rectangular plate is approximated from the scattering width (SW) of

the corresponding infinite strip using the truncation approximation

[15] :

2L2
<r3.D a -̂  <r2.D (1)

The GTD/UTD model consists of Keller's diffraction coefficient

[7] for first-order terms. For the soft polarization, no higher-order

tetms exist due to boundary conditions; however, a slope term is

included in the model using the slope diffraction coefficient [16] .

Higher-order terms for the hard polarization are easy to include using

the UTD diffraction coefficients [8] . Typically up to fourth-order

terms are sufficient for accurate prediction, even for diffraction

distances as small as A/2; thus, the results presented here include

first-, second-, third-, and fourth-order terms only.

The incident fields for both polarizations are:

Soft Polarization

az

Hard Polarization

E. = -a, Ee (2b)— 1- m O

An e3 time convention is assumed and suppressed. The resulting

diffracted fields are obtained using a straightforward application of

the GTD/UTD in which the diffracted field is a product of the incident

field at the point of diffraction, the diffraction coefficient, an

amplitude spreading factor, and a phase factor. The details are

omitted. The resulting first-order fields are:



Soft Polarization
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Hard Polarization
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The distance, p, is measured from the center of the strip to the

observation point.

For the soft polarization, the slope field is:

e-jkp

D ~~̂ .̂>Tkjr
j(kw/2)

,slope
(4)

ĉ
BA DSA

-j(kw/2) (cos<j>' -
AB

' -cos(f» \
f

where

DSA = DS(soft, w, 0 , 0, 2, 90 )

DSB = DS(soft, w, 0 , -#, 2, 90)
DBA = D(soft, w, 180 -<f>', 1 , 2, 90 )

DAB = D(soft, w, <f>', 1°, 2, 90°)

DSA and DSB are slope diffraction coefficients of the general form

DS (polarization, d, ^', ifi, n, (3), and DBA and DAB are UTD diffraction

coefficients of the form D (polarization, d, ty', tfi, n, £) . Subroutines

for calculating both types of coefficients are in [17], where:

d = diffraction distance

ifi' = wedge incidence angle



\l> = wedge diffraction angle

n = wedge parameter

^ = the oblique incidence angle

For the hard polarization, higher-order terms are expressed

through repeated application of the UTD diffraction coefficient [8] .

The general nth-order diffracted field is:

nth ~

n^ v w"1 i(

f (n-1)
( ( - j k w / 2 ) [ ( - 1 ) <

( jkw/2 ) f(-1)
+ e v

where

Dn = D(hard, w, 0°, 0°, 2, 90°)

DAi

DBi DBo|

o
180 -<p' (n=even)t -<p n=even \

DAi = DJhard, w, or , 0°, 2, 90°
*• <> n = dd 'odd)

DAo = D(hard, w, 0°, <f>, 2, 90°)

f 180 -0' (n=odd)

Bi = D hard, w, or , 0°, 2, 90
*• 0' (n = even)

DBo = D(hard, w, 0°, 180°-0, 2, 90°)

As previously, D (polarization, d, 0', ^, n, p) is the UTD diffraction

coefficient.

The GTD/UTD formulation is not theoretically valid at and near

grazing incidence because overlapping transition regions exist at

these angles. One method that is capable of dealing with the fields

in overlapping transition regions is the EPTD. This method is a



high-frequency asymptotic technique that is as computationally

efficient as the GTD/UTD; however, explicit diffraction coefficients

do not exist. The method is, thus, much more difficult to apply than

the GTD/UTD. The last report [1] analyzed the error in the GTD/UTD

formulation for monostatic scattering. Extensive comparisons among

measurements, MM data, and EPTD data for the monostatic case revealed

that the error due to using the GTD/UTD in overlapping transition

regions was minor for this case except within a few degrees of grazing

incidence, even for very narrow diffraction distances. It was also

demonstrated that the error due to using the truncation approximation

of Eq. (1) was increasingly significant as the diffraction distance

increased, whereas the error due to using the GTD/UTD in overlapping

transition regions decreased with increasing diffraction distance.

This report continues the investigation of the errors inherent in

the GTD/UTD model by comparing MM and EPTD results with the GTD/UTD

results for bistatic scattering from the infinite strip. The EPTD

model follows from the formulation of [9]. The first-order fields are

the GTD fields of Eq. (3) . For the soft polarization, a slope

diffracted field similar to that of Eq. (4) is used for the edge that

is not in an overlapping transition region for a particular incidence

angle. Recall, however, that the expression of Eq. (4) is for the

total slope-diffracted field from both edges not from a single edge.

The field diffracted from an edge in an overlapping transition region

is expressed using the EPTD:



Left Edge (Edge A)

- jkp f - j i r /4
,slope * v e ' r |e

1 az Eo
kp I/Sri

/• -jkw (6a)

-e
- JTI /4

nikw

8
+ COS(f>

2 (cos«t>'/2) 4

-44 cos(-f-) F(iT2kw|cos(0/2)
> Z ' I V ^ / I \ l

-in (4-)

Right Edge (Edge B)

slope

kp

-jn/4

8ir J

/• - jkw ( - j k w / 2 ) (cos<f>'-cos<p)\ (6b)

-e
- j n / 4

nikw ' / 2 ) + cos (0/2))

8
COS#'+COS0

Sin (4-)
There are no specific criteria for determining the range of

incidence angles for which an edge is in an overlapping transition

region. Through trial and error, however, it was found that excellent

results are obtained by approximating that the left edge is in an

o o
overlapping transition region when 0 £ #'£ 90 and that the right edge

0 O
is in an overlapping transition region when 90 < 0's 180 . These same

criteria are used for determining when an edge is in a transition

region for the hard polarization.

10



For the "hard polarization/ the second-order field diffracted by

an edge that is not in an overlapping transition region is represented

by an expression similar to that of Eq. (5) . Note that Eq. (5)

represents the total second-order field, not just the field from a

single edge. The second-order field for an edge in an overlapping

transition region is represented using the EPTD as:

Left Edge (Edge A)^

' -JJI/41

kp Sir

-jkw ( j k w / 2 ) (cosd>'-cosd» *

- J7T/4

<7a)

nrkw
cos

- J7T /4

- /8nkw sin(_£^ J

8nkw cos

Right Edge (Edge B)

2nd

kp 8n

(e-jkweM

- JTI/4

(7b)

nikw
cos(0'/2) sin(0/2)

- J7I/4

8nkw

87rkw cos -

Higher-order fields for the hard polarization case are formulated

in terms of the UTD coefficients, and the results are similar to Eq.

11



(5). The EPTD fields must be incorporated as the incident fields.

The formulation is trivial. Since the resulting equations are similar

to those of Eq. (5), they will not be repeated here.

Results from the GTD/UTD and the EPTD models are compared with MM

data for bistatic scattering from a strip in Figs. 2 - 9. The

bistatic SW is shown for both polarizations, various incidence angles,

and two different strip widths (w=A/2 and w=2A). In general, the EPTD

results for the soft polarization cases of Figs. 2, 3, 4, 'and 6 are in

exact agreement with the MM data, even for the electrically small

distance of A/2 and grazing incidence case of Fig. 2. The only soft

polarization case for which the EPTD yields results that are not

identical to the MM is the A/2, #'=135° case of Fig. 8. In this

O

instance, a discrepancy of approximately 1.5 dB exists at 0=180 .

Nearly exact agreement between the EPTD and the MM is obtained for the

hard polarization cases of Figs. 5, 7, and 9. Results for grazing

incidence, hard polarization are not shown because they are trivially

zero due to boundary conditions. Exact agreement is obtained in the

forward direction, for hard polarization; and the agreement begins to

slowly deteriorate in the backscattering direction. The EPTD results

in and near the backscattering direction improve with increasing strip

width. For the 2A-width strip of Fig. 7, the largest error in the

EPTD results is approximately 1-dB.

The GTD/UTD model does not perform well at exactly grazing

incidence, as is demonstrated in Figs. 2 and 3. The GTD/UTD results,

however, quickly converge to the MM/EPTD values as the backscattering

direction is approached to the extent that the GTD/UTD result for the

12
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A/2-width strip of Fig. 2 differs by only 0.08 dB from the MM/EPTD

result at the backscatter direction (0=180 ). The GTD/UTD results of

Figs. 4-9 illustrate the general improvement of the model with

increasing strip width away from but still near grazing incidence.

The soft polarization results are, in general, better than the hard.

In the backscatter direction, the GTD/UTD model yields nearly the same

results as the EPTD, which are usually the same as the MM values for

the soft polarization. ' .

Other bistatic cases for both polarizations were analyzed to

compile a comprehensive set of data. Strip widths considered ranged

from A/4 to 3.183A in width and incidence angles from grazing

($'=180 ) to 45 from grazing (#'=135 ) . The most interesting and

representative results are given in Figs. 2 - 9; however, an analysis

of all the available data affords the following observations

concerning the effectiveness of the GTD/UTD and the EPTD:

(1) For most backscattering (<p=<t>r) cases, the GTD/UTD yields
results identical to the EPTD for both polarizations and
strip widths as small as A/4, including grazing incidence
(0'=180 ) . The two exceptions to this are for the hard
polarization, A/2 and $'=170 case of Fig. 5 and for the
soft polarization, A/2 and #'=135 case of Fig. 8. In the
first case, a difference of 2.1 dB exists between the
GTD/UTD and the EPTD. It is important to note that for this
case the EPTD differs from the MM by over 4 dB. In the
second case, the GTD/UTD differs from the EPTD by 0.4 dB.
In this case the GTD/UTD provides nearly exact agreement
with the MM whereas the EPTD differs from the MM by almost
0.4 dB.

(2) For both polarizations, the GTD/UTD results improve rapidly
as the strip width increases and as the incidence angle
moves beyond the grazing angle. For soft polarization and
near-grazing incidence (#'=170 ), the GTD/UTD results agree
identically with the MM and EPTD data for a large range of
observation angles away from the forward scattering
direction. The range of agreement increases dramatically
with increasing strip width. Even for a width as small as
A/4 at #'=170 , accurate results (less than 0.4 dB

17



discrepancy) are obtained for observation angles in the
range 90 s#<180 .

(3) The range of agreement between the GTD/UTD and the EPTD is
smaller for the hard polarization and near-grazing incidence
cases <0'=170 ); however, differences of less than 2 dB are
obtained for this case for a strip width as small as A/3 in
the observation range of 90°s#<l80 .

(4) For angles away from grazing incidence (0'=135 ) for both
polarizations, the GTD/UTD model yields nearly identical
results to the MM and the EPTD models for the 2A-width
strip. For this incidence angle, soft polarization, and the
A/2-width strip, the GTD/UTD model agrees identically with
the MM for 45 £#£180°. The accuracy of the GTD/UTD slowly
deteriorates in the 0 S0<45 range to a maximum error of 1.5
dB at $=0 . For the same incidence angle and A/2-width
strip for the hard polarization, the GTD/UTD agrees within
0.5 dB with the MM and the EPTD in the 45°£0£160° region;
however, the error in the GTD/UTD gradually becomes
unacceptable in the 0 s$<45 region and increases to 2 dB in
the 160£0S180 region.

(5) The EPTD yields highly accurate, results for nearly all
scattering widths, incidence and observation angles and both
polarizations. For most cases it is difficult to
distinguish between the EPTD and the MM results. The few
exceptions are interesting. The only soft polarization case
for which the EPTD differs remarkably from the MM is for the
0.5A strip and $'=135 . The EPTD model gradually begins to
deteriorate in the backscatter region (125 £05180 ) to a
maximum discrepancy of 1.5 dB at $=180 . For this case, the
GTD/UTD agrees exactly with the MM in the backscatter region
(125 £$£180 ) and, thus, provides much better results than
the EPTD. A similar trend of deterioration in the
backscattering direction is much more evident in the hard
polarization results. For all strip widths and incidence
angles considered for this polarization, the EPTD results
differ, usually within acceptable limits, from the MM data.
The worst agreement observed is for the A/2 and $'=170 case
of Fig. 5. The discrepancies between the EPTD and MM
decrease with increasing strip width.

(6) For soft polarization and grazing incidence ($'=0 or 180 ),
the GTD/UTD yields highly inaccurate results except in the
backscattering direction ($=$' ) .

B. PRINCIPAL-PLANE SCATTERING FROM A COATED, RECTANGULAR PLATE

The geometry for the coated, rectangular plate is shown in Fig.

10. The incidence and observation angles are $' and 0, respectively.

The plate width is w. As for the perfectly conducting plate, the RCS

18
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Fig. 10. Geometry for principal-plane scattering from a strip/plate
with a finite-thickness coating backed by a perfect conductor.
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Fig. 1 1. Impedance wedge geometry.
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will be approximated from the SW of the infinite strip using Eq. (1).

The relative permittivity and permeability of the coating material are

er0 and jir0, respectively. The plate is modeled as two infinite

half-planes. The geometry of the impedance wedge is illustrated in

Fig. 11. The incidence and observation angles with respect to the

wedge are designated as \f>' and 0, respectively. These angles, for the

plate of Fig. 10, are designated as ̂ ' and ̂  for the left edge (Edge

1) and as 02'
 anc* ̂ 2 ̂ or fc^e r^9nt edge (Edge 2) . In Fig. 11, n is

the wedge parameter (n=2 for a half plane); T)0 is the impedance of the

"0" face, normalized with respect to the free-space impedance; and 7)n

is the normalized impedance of the "n" face.

The incident fields for both polarizations are the same as those

of the previous section, given by Eq. (2) . Using the standard

formulation for determining diffracted fields as a product of the

incident field, the diffraction coefficient, a phase factor, and an

amplitude spreading factor, the first-order diffracted fields can be

expressed as:

Soft Polarization

D (w, ill,' ,$i, 60, Qj, 2) (8a)

(jkw/2) (cos#'+ cos<+ e'J ^
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Hard Polarization

.,1st __ _* p e J ^(-jkw/2) (cos$' + cos0) . f , h h _ fox\

D(d, 0', 0, 60, 0n, n) is the diffraction coefficient for an impedance

wedge, where:

d = diffraction distance

0' = incidence angle

0 = observation angle

60, 0n = Brewster angles of the "0" and "n" faces, respectively

n = wedge parameter = 2 for a half plane

The Brewster angles are:

sin~ (1/T)0) soft polarization

sin (7)0) hard polarization

sin d/T)n) soft polarization

sin (T)n) hard polarization

where 7)0 and Tjn are the impedances of the "0" and "n" faces normalized

with respect to the free-space impedance.

The UTD diffraction coefficient for the impedance wedge was

originally developed by Tiberio, et ai. [12] from Maliuzhinets' wedge

solution [14] . Griesser and Balanis [13] revised the coefficient to

make it computationally tractable. The coefficient of [13] is for

finite, non-zero surface impedances and for cylindrical-wave

incidence. .In this work, the coefficient is simplified for the

specific case of plane-wave incidence, far-field observation, and an

21



"n" face with T)n=0 (i.e. the "n" face is a perfect electric

conductor) .

The original diffraction coefficient of [13] is:

f -Jir/4 x
D(d,0',0,e0,en,n) —— (9)

V 2n V 2nk J

*(». !2 - 01 sin( £. U sin ( Si)
v 2 ' * n • ' » n' / 11-8 -\ / - - \
- — -- -r— - s— COt ( -̂ -} F (kdd+cosO -2n7TN_)) J_ / nTi x . , w-n \ . , en\ v 2n / v ^ y
*( -2 - 0') s in( £_ )+ s i n ( -J

*(-*+ 25 _ 0) s inr *1 ). s i n( §
*• 2 */ v n ' V

+ sin

sinf 5^- )- sinf 2tt)

tf"« ^ • *-*( -̂  - ̂ r') sin( 2L_

For plane-wave incidence, far-field observation, the Fresnel

transition functions, F(x), in Eq. (9) can be set to 1. *(z) is the

auxiliary Maliuzhinets function, which can be expressed in terms of

Maliuzhinets functions, *n(z), as [14]:

*n (z+ (nit/2) - (7i/2 ) +60) *n (z- (nrr/2) + (rt/2 ) -8n)
x -
*n (z+ (nit/2) - (n/2) -90) *n (z- (nn/2) + (ir/2) +8n)

*n(z) can be numerically integrated. The procedure for this is

outlined in [13] . For hard polarization, using Eq. (10) and 0n=0 for

a perfectly electrically conducting "n" face, Eq. (9) can be

simplified to:

22



[ - J7I/ 4 i

-^=r]
(ID

*n (-(it/ 2)

cos

t «n(-<3n/2)+nn-<H»5) f
» 2n

,h

f n

^

•cos --s — sin2n cot I
2n

A •) + sin

2n

..cos ---̂  — cot2n ' V. 2n ' *• 2n

where & =i{j±if>' . Using the above coefficient is much more

computationally speedy than the previous solutions to the coated strip

problem which report were reported in [1] - [3] because the number of

Maliuzhinets function in the coefficient has been reduced from 12 to

6.

Computational results are compared to measurements in Figs. 12

and 13 for a plate with a coating of thickness t=0.0423A with material

parameters Mro
=1•539-jl.2241 and cr0=ll.826-JO.16639. The plate

dimensions are 2A x 2A. The measurements were made at 10 GHz. The

computed hard polarization results are obtained using Eqs. (8b) and

(11) . In Fig. 12, the computed results are obtained using:

(12a)
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where nr0 and er0 are the relative permeability and relative

permittivity, respectively, of the "0" face. In Fig. 13, TJO is

approximated using the shorted-transmission-line equivalent impedance

for normal incidence:

(12b)

where t is in free-space wavelengths. The results of Fig. 13, using

the i)0 of Eq. (12b) are much better than those of Eq. (12a) . Although

the diffraction coefficient of Eq. (11) accounts for the perfectly

conducting face of the wedge, it is necessary to use the

shorted-transmission-line approximation of Eq. (12b) to account for

the effect of the perfectly conducting backing on the coating

o
impedance. The discontinuity at 0=180 occurs because surface waves

are not included in the model. Future work will involve revising the

model to include the surface-wave terms. In addition, higher-order

terms will be added to better predict the side lobes.

III. FUTURE WORK

Future work will involve finalizing the model for the coated

strip/plate in order to provide a comprehensive analysis as was

presented in this report for the perfectly conducting strip/plate.

Surface-wave and higher-order diffraction terms will be added to the

present model. Nonprincipal-plane scattering from the coated plate

will also be considered. Furthermore, research will continue on the
/

nonprincipal-plane scattering from the perfectly conducting plate,
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which has been the topic of previous reports. Questions concerning

higher-order and corner diffractions still remain. Research will also

continue on the subject of impedance coatings. Finally, the coated

dihedral corner reflector model of [18] will be revised to better

account for a finite-thickness lossy coating on top of a perfectly

conducting surface.

IV. PUBLICATIONS ' .

During this reporting period two papers were submitted to the

IEEE Transactions on Antennas and Propagation for consideration for

publication. The work reported in these papers was supported by this

NASA grant. The papers were as follows:

[a] Lesley Anne Polka and Constantine A. Balanis, "Measurements and a
method of equivalent currents model for nonprincipal-plane
scattering from a rectangular plate," submitted for publication
in IEEE Trans. Antennas Propagat.

[b] Lesley Anne Polka and Constantine A. Balanis, "Measurements and
theory for strip and narrow plate scattering at and near grazing
angles," submitted for publication in IEEE Trans. Antennas
Propagat.
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HI-ALPHA FOREBODY DESIGN: PART H
DETERMINATION OF BODY SHAPES FOR POSITIVE STABILITY

R. Ravi
William H. Mason

Virginia Polytechnic Institute and State University

SUMMARY
"*_• ^""^'

Computational Fluid Dynamics (CFD) has been used to study aircraft forebody fiowfields at

low speed high angle-of-attack conditions with sideslip. The purpose is to define forebody

geometries which provide good directional stability characteristics under these conditions. The

flows over the experimentally investigated and previously computed by the authors F-5A forebody

and Erickson forebody were recomputed with better and refined grids. The results were obtained \

using a modified version of cflSd to solve either the Euler equations or the Reynolds equations \
\

employing a form of the Baldwin-Lomax turbulence model. Based on those results, we conclude '!
*

that current CFD methods can be used to investigate the aerodynamic characteristics of forebodies •
1

to achieve desirable high angle-of-attack characteristics. An analytically defined generic forebody

model is described, and a systematic study of forebody shapes was then conducted to determine t

which shapes promote a positive contribution to directional stability at high angle-of-attack. A

novel way of presenting the results is used to illustrate how the positive contribution arises. Based

on the results of this initial parametric study, some guidelines for aerodynamic design to promote

positive directional stability are presented.



INTRODUCTION

Current and future fighter aircraft will be operating at high angles-of-attack where the

flowfields are dominated by large regions of separated vortical flows. Considerable research is

being done both in the experimental and computational areas to understand the physics of such

complex flows. A good understanding of these flows would enable the aircraft designer to design

fighter aircraft to achieve better maneuverability at high angles-of-attack. At high angle-of-attack

the forebody aerodynamic characteristics make significant contributions to the complete

configuration aerodynamics. The surveys by Chambers (Ref. 1) and Chambers and Grafton

(Ref. 2) present the basis of the current understanding of high angle-of-attack aerodynamics.

One of the specific characteristics of interest is directional stability. For the F-5A, which has

good high angle-of-attack characteristics, it has been shown experimentally (Ref. 3) that the

forebody makes a significant positive contribution to directional stability at angles-of-attack above

which the vertical tail ceases to be effective. That forebody had a smooth cross section, although it

was not axisymmetric. The current authors recently demonstrated that the experimental results

could also be predicted using Computational Fluid Dynamics (CFD) methods (Refs. 4 and 5). The

ability to reproduce previously obtained experimental results meant that it would be valid to use

CFD to try to design shapes for specific aerodynamic characteristics at high angle-of-attack, where

large regions of separated flow are present.

Future advanced fighters are likely to possess chine type forebodies, as evidenced by the YF-

22 and YF-23 configurations. For these aircrafts high levels of agility are demanded, and the

aerodynamic characteristics at high angle-of-attack play an important role in determining aircraft

handling qualities and agility.

Because of the interest in chine-shaped forebodies, a key issue in the application of

computational methods to forebody design is the ability to treat chine sectional shapes. Few general

chine-shaped forebody wind tunnel tests are available to use for comparison with computational



methods. One is the wind tunnel investigation conducted by Erickson and Brandon (Ref. 6, the

"Erickson Forebody"). In that study the chine effects were investigated for a generic fighter

configuration, and pressure distributions were measured on the chine forebody. All forebody

results were acquired in the presence of the wing. More recently Kegelman and Roos (Refs. 7

and 8) studied experimentally the influence of cross-sectional shape on the vortex flowfield at high

alpha. They compared the surface pressures and the aerodynamic loads between a circular,

elliptical and a chined cross section at high angles of attack. Hall (Ref. 9) studied the influence of

the forebody cross-sectional shape on wing vortex-burst location. This study also involved the

comparison of a two chine cross-sections with a circular section.

The results were obtained using cf!3d (Ref. 10) to solve either the Euler equations or the

Reynolds equations employing a form of the Baldwin-Lomax turbulence model. Version 1.1 of the

code with the modifications as described in Ref. 5 was used in all the computations.

In this report we first repeat the results obtained on the F-5A forebody (Ref. 4) using a grid

better suited to the geometry to assess possible sensitivity of the previous results to the grid.

Secondly, we compare computed predictions with the experimental data for the "Erickson

Forebody" at a = 30° (5° and 10° sideslip)and at a = 40° (10° sideslip). The above two cases

were used to establish a methodology base for analysing generic cross-sectional forebodies.

A generic forebody which can be used to systematically study forebody aerodynamics for

families of forebody shapes at high alpha is proposed. Using this model, a computational study is

carried out to determine which shapes lead to the best directional stability characteristics. The

reference parameters used in computing the forces and moments for the cases studied in this report

are presented in Table 1. The report concludes with some guidelines for high angle-of-attack

forebody design.



LIST OF SYMBOLS

a maximum half breadth of the generic forebody definition

b maximum centerline of the generic forebody definition

b ' wingspan

c mean aerodynamic chord

CL lift-force coefficient, lift/^^^y

Cn yawing-moment coefficient, yawing

Cnn directional stability derivative, dCn I dp

Cp pressure coefficient, (p-poo)/q<>o

C side-force coefficient, si

cy local side-force, section si

FS fuselage station

ra , n adjustable parametric coefficients

MO,, free stream Mach number

/ model length

Re i Reynolds number based on model length, /

Sref reference area

u wall friction velocity, V-r^, / p

Vsep cross flow velocity magnitude at separation point ( chine edge)

x,y, z body coordinate system : x positive aft along model axis,

y positive to right and z positive up

XN distance from the tip of the nose to the station where the planform span becomes

a constant.

y+ inner law variable, yu Iv

a. angle of attack, deg

P angle of sideslip, deg

difference between leeward and windward Cp across the vertical plane of

symmetry



F-5A FOREBODY

The wind tunnel experiment demonstrating the dominant contribution of the F-5A forebody

to directional stability at high angle-of-attack was simulated computationally in the first phase of

this work (Ref. 5). This forebody had been tested by Sue Grafton, et.al. at NASA Langley

Research Center and the results are available in Ref. 3. The geometry math model and the

comparison with the wind tunnel model was described in detail in Ref. 5. In that study the grid

was constructed from two dimensional O-type cross flow grids which are longitudinally stacked,

constituting a single block H-O topology as shown in fig. 1. It is difficult to resolve the flow

details near the nose using an H-O topology. Hence, we investigated the same geometry using an

alternate grid system to assess possible grid effects on the results.

F-5A Grid Details

The inviscid calculations on the F-5A (Ref. 5) were repeated on the new grid shown in

fig. 2. This grid consists of two blocks, where the first block used a C-O topology to improve the

grid resolution at the nose. This grid was generated using a transfinite interpolation grid generator

provided by Ghaffari (Ref. 11). The first block extends from the nose to the point where the flat

sidewall starts i.e., 14.025 inches from the nose, as explained in Ref. 5. The inviscid calculations

were performed on a grid which used 32 axial, 93 circumferential and 45 radial points ( 32 x 93 x

45 ). The outer boundary extends 32.7 inches radially outward and is comparable to the length of

the forebody which was 31.02 inches. The second block used the previous H-O grid topology

with 13 axial, 93 circumferential and 45 radial points (13 x 93 x 45). The C-O grid generator used

for the first block requires a user specified normal distance to the first grid point and the distance of

the outer boundary as the input. The H-O grid generator used for the second block uses the

distance of outer boundary and a stretching parameter as the input. Care was taken to ensure that



the distance of the first grid normal to the surface is the same for both the blocks at the interface.

Figures 3 and 4 show the grid used for inviscid calculations at different cross-sections

downstream from the nose. Figure 3(a) shows the entire cross-sectional grid at FS 14.02 and

fig. 3(b) shows the details near the body at the same station. Figures 4(a) and 4(b) contain the

same information at FS 29.61. Because of the presence of the flat sidewall at sections downstream,

the grid points were clustered near the maximum half breadth points forward of the flat sidewall.

This provided adequate definition of the flat wall portion of the forebody.

A grid refinement study was done for both inviscid and turbulent solutions for an angle-of-

attack of 40°. The grids used in this study were the same stacked grids used in the first phase of

this work (Ref. 5). The baseline inviscid grid had 33 (axial), 93 (circumferential) and 45 points in

the radial direction. The baseline viscous grid had 33 (axial), 93 (circumferential) and 65 points in

the radial direction. During the grid refinement study, the number of points in the radial direction

were increased with improved radial stretching, so that at least four fine grid points were present in

the first grid point of the crude grid. The circumferential and axial densities were kept the same.

The inviscid refined grid had 90 points in the radial direction while the refined viscous grid had

100 points radially.

Results and Discussion of Computations on the F-5A Forebody

Inviscid calculations were performed for a = 30° and ft = 5° to compare the results of this

new grid system with those obtained using a stacked grid earlier in Ref. 5. The boundary

conditions were the same in both the cases except on the axis that runs from the nose to the

upstream farfield boundary where a singularity type boundary condition was imposed for the new

grid. In the earlier computations this boundary was a part of the surface and so an inviscid

boundary condition was imposed.

Figures 5 and 6 show the comparison of the inviscid surface pressures between the two grid



systems at FS 6.58 and FS 26.77 respectively. It is very difficult to identify a difference between

the two results at these stations. A comparison of the longitudinal variation of Cp on the leeward

plane is shown in fig. 7. This figure shows the improved resolution of the solution near the nose

with the new C-O grid. There was negligible change in the value of the directional stability Cn^

A detailed study of the results obtained with the stacked grid was also performed. Figure 8

shows the sign convention used in computing the side-force and yawing moment. The F-5A

forebody experimental directional stability data from Ref. 3 are shown along with the computed

inviscid and viscous results in fig. 9. The computed results revealed the same trend found in the

wind tunnel data and were already presented in Refs. 4 and 5. Additionally, we show the results

obtained with the refined grid for both inviscid and turbulent cases at a = 40°. Although the

results changed slightly with grid resolution, the trends were the same in both the cases.

Figure 10 shows the axial distribution of side-force contributing to the yawing moment

presented in fig. 9 at a = 40°. The importance of the viscosity in producing the positive stability is

clearly demonstrated. The viscous solution develops a significant restoring force, with a positive

side-force over most of the forebody and generally increasing with downstream distance. This is a

consequence of the increasing asymmetry of the forebody vortices with distance from the nose.

The inviscid solution shows essentially no side-force over the majority of the forebody. Figures 11

and 12 provide the circumferential pressure distributions at two stations for both inviscid and

turbulent cases. The corresponding cross-sectional shape, the direction of incoming flow and the

origin of reference for the angular measure are shown below each of these figures. The negative

peak pressures are due to the vortices on the upper surface of the cross section and are shown more

clearly in the following flow visualization pictures to be presented in fig. 14. The asymmetry in the

pressure distribution due to the sideslip can be seen in fig. 11, and is much more noticeable in

fig. 12. At FS 14.02 the viscous solution results clearly show the effect of the vortices, with two

low pressure regions, denoted B and C, underneath the vortices. The low pressure peaks A and D

are due to the flow around the highly curved sides of the body. At station FS 29.61 the inviscid

results contain four distinct low pressure peaks corresponding to the high curvature regions at the



cross-section corners. Considering viscous effects, the turbulent flow is massively separated and

the primary vortices are moving away from the body. The small low pressure peak at C in fig. 12

is due to the secondary vortex, as shown in fig. 14 The inviscid results contain low pressure

regions that are due to the distinct corners in the cross section (high cross-section curvature).

Figure 13 contains the pressure differences, ACp, between the leeward and windward sides

of the body at the same stations at which the pressures were plotted in figs. 11 and 12. These

provide insight into the distribution of side-force at a particular station to help explain the effect of

viscosity in creating the restoring force. Although the viscous effects are primarily associated with

the vortex and separated flowfield on the top side of the forebody, the effects of viscosity are seen

to alter the balance of pressures between the sides of the body over most of the side projection. It is

particularly interesting to notice that the near zero side-force associated with the inviscid flow arises

as a delicate balance between a side-force in one direction on the lower portion of the body, and a

side-force in the opposite direction on the upper part. The effects of viscosity are to reduce the

magnitudes of the peak effects as well as producing a shift which results in a distribution which

has a much larger net side-force.

Figures 14(a) and 14(b) show the cross-sectional stagnation pressure contours at axial

stations x = 14.02 inches and x = 29.61 inches from the nose for the viscous calculation at the

same flow conditions shown in figs. 11 and 12. The incoming flow is the same as shown in

figs. ll(b) and 12(b). The leeward (LHS) vortex is farther away from the surface than the

windward (RHS) vortex. The asymmetry of the low pressures on the body under the vortices is

generally considered to be pulling the body to smaller sideslip, and thus provides a stabilizing

moment. However, we have shown in fig. 13 that the side-force is affected by the separated flow

indirectly through its effect on the pressure distribution over virtually the entire surface. These local

effects of the vortices actually act primarily on the essentially flat top-surface and don't directly

contribute to the side-force. At FS 29.61 we can also see the secondary vortices under the primary

vortices.



Figures 15 and 16 show the inviscid and turbulent calculation pressures at FS 14.02 and FS

29.61 plotted as vectors perpendicular to the surface. In these diagrams, the surface is treated as a

line of zero pressure and the vectors going outward from the surface represent negative pressure

coefficients. These diagrams should be studied in conjunction with pressure plots of fig. 11 and

12. At FS 14.02 the viscous diagrams show clearly the effect of the vortices resulting in two low

pressure peaks on the upper surface. At FS 29.61, the inviscid results show two peaks as the flow

accelerates around the corners on the upper surface. However, the viscous flow calculation

separates closer to the windward plane on the leeward side and the peak is almost insignificant. On

the windward side, as expected, the flow separates away from the windward plane and the low

pressure peak is therefore still visible. The intermediate peak in this case is because of the

secondary vortex.

Figure 17 shows the vortex path development along the body. The leeward vortex (here on

the RHS of the body) is seen to be rising above the body much faster than the windward vortex

(LHS). The windward vortex is actually "blown back" over the forebody, and is moving along the

top surface near the center. This is also evident from fig. 14.

ERICKSON CHINE FOREBODY

Erickson and Brandon experimentally investigated the chine effects on a generic fighter

configuration and have published the detailed pressure data over a large range of angles of attack

and sideslip (Ref. 6). This flowfield on such a model was computationally investigated in the

earlier part of this work and the details were presented in Ref. 5. The geometry math model and the

comparison with the wind tunnel model was also described in detail there. In that study, the grid

was constructed from two dimensional O-type cross flow grids which are longitudinally stacked,

constituting a single block H-O topology as was done earlier in the case of F-5A. Here we

investigate the same geometry using an alternate grid system and also study the grid resolution

requirements for a chined forebody.



Erickson Forebody Grid Details

The inviscid calculations on the Erickson forebody were repeated on the alternate C-O grid

shown in fig. 18. The baseline inviscid calculation grid had 45 points in the radial direction and

101 points in the full circumferential direction. Longitudinally, the grid was clustered near the nose

with 25 stations on the forebody as shown in fig. 18. The axial grid planes were defined at

stations corresponding to the experimental measured stations. These were at a distance of 7.19,

13.56 and 19.94 inches from the nose along the length of the body. The smoothing of the surface

unit normals introduced some grid skewness near the chine nose as well as around the chine edge.

This was done to avoid large cell volume discontinuities.

As compared to the inviscid solution grid, the viscous calculation used a grid with 65 points

in the radial direction, and with longitudinal and circumferential grid points remaining identical

with the grid used for the inviscid calculations. The baseline grid was established with sufficient

normal clustering near the surface to adequately resolve the laminar sublayer in the turbulent

boundary layer flow. This grid produced an average normal cell size of approximately 10"4/. At

the wind tunnel freestream conditions for the Erickson forebody (MM = 0.2, Re^ = 1.02 x 106

based on model length, and a = 20°) the baseline grid typically resulted in a value of y+ ~ 2 at the

first mesh point above the surface.

Figure 19 shows the grid used for inviscid calculations at the last section downstream from

the nose. Figure 19(a) shows the entire cross-sectional grid at FS 14.02 and figs. 19(b) and 19(c)

provide the details near the surface and chine edge respectively.

A grid refinement study was done with both the inviscid and turbulent grids. In each of these

cases the number of grid points were doubled in the normal direction with increased clustering in

the normal direction. The circumferential and axial densities were kept the same. Approximately

four fine grid points were packed in the first cell of the baseline grid for both the fine inviscid and

the fine turbulent grids. The fine Navier- Stokes grid provided a y+ value of approximately 0.5.
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Results and Discussion of Computations on the Erickson Forebody

Inviscid calculations were performed for a = 30° and 0 = 0° to compare the results of this

new grid system with those obtained using a stacked grid earlier in Ref. 5. The stacked grid used

earlier had 33 axial stations with 25 on the surface and 8 ahead of the nose. The radial and

circumferential densities were the same. As in the case of F-5A, the boundary condition on the axis

that runs from the nose to the upstream farfield boundary was altered to a singularity type

boundary condition. In the earlier computations this boundary was a part of the surface and so an

inviscid boundary condition was imposed.

Figures 20 and 21 show the comparison of the inviscid surface pressures between the two

grid systems at FS 7.19 and FS 13.56 respectively. The difference is almost insignificant as was

seen in the case of F-5A. The advantage of using this grid system is that you can maintain the same

grid density on the surface while reducing the number of axial stations.

Figures 22 - 24 present the computed upper surface pressure distributions at three stations

obtained on the isolated forebody along with experimental data on the forebody-wing model for

various angles of attack and sideslip. The details of the experimental investigation are available in

Ref. 6. Figure 22 shows the upper surface pressures for the a = 30° and /J = 5° case. At the

section closest to the nose (FS 7.19) the inviscid computations predict the pressures very close to

the experimental values. At stations further downstream the agreement deteriorates. At FS 19.94

the wind tunnel data appears to reflect the higher local incidence induced by the wing flowfield.

The inviscid refined grid results show a suction peak in slightly better agreement than the baseline

grid at the first station, but provide no improvement further downstream. Turbulent viscous effects

do not change the pressure levels at the mid section of the forebody, but do have some effect on the

peak suction pressure level. The peak suction pressures were reduced, as expected, resulting in

poorer agreement with the experimental data. In the turbulent flow case the refined grid solution

resulted in only minor changes in the pressure distribution. The trend remains the same when the
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sideslip is increased to 10° as shown in fig. 23. Figure 24 shows the pressures for a = 40° and

ft = 10°. Erickson and Brandon (Ref. 6) suggest that the extent of upstream influence of vortex

breakdown occurring downstream was found to differ at different combinations of angles of attack

and sideslip. For example, vortex core bursting had occurred at a = 40° whenever the sideslip

angle exceeded 5°. The computations neither model the wing effects or vortex burst effects.

Figure 25 shows the side-force computed for the Erickson forebody. Both the inviscid and

the viscous solutions show similar trends, and the minor grid effects indicate that the solutions are

grid resolved. Here, in contrast to the smooth forebody cross-section results for the F-5A, both

inviscid as well as the turbulent results develop restoring forces, with a positive side-force over

most of the forebody and generally increasing with downstream distance. This is expected because

of the fixed separation lines along the edge of the chine, regardless of viscosity, and is in marked

contrast to the smooth cross-section results obtained on the F-5A forebody (Ref. 4). There the

inviscid and viscous solutions were completely different, with the inviscid solution providing

essentially no side-force. The vortical flow in this case is being governed essentially by inviscid

phenomena. The directional stability characteristics in fig. 26 show the stabilizing effect of the

chined forebody over the entire range from 20° to 40° angle-of-attack. Qualitatively, the trend

shown by both Euler and Navier-Stokes grids are very similar. This observation is important, and

provides a basis for deciding on the solution strategy to be used for the parametric computations on

a generic forebody to be discussed later.The directional stability computed for this forebody is

similar using either Euler or Navier-Stokes solutions at 30° angle of attack. At a = 40°, the refined

Navier-Stokes grid calculation resulted in improved correlation with Euler results.

Figures 27 and 28 show the inviscid and turbulent calculation pressures at FS 7.19 and FS

19.94 plotted as vectors perpendicular to the surface. As before, the surface is treated as a line of

zero pressure and the vectors going outward from the surface are proportional to the negative

pressures. These diagrams should be studied in conjunction with pressure plots of fig. 23. Unlike

the case of F-5A, the inviscid and turbulent cases are very similar at both the stations because of

the fixed separation line as discussed earlier. The flow decelerates as it approaches the chine edge
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because of the change of the body cross-sectional shape, and separates at the chine edge.

Figures 29 and 30 show inviscid and turbulent stagnation pressure contours respectively at

two different stations. These clearly show the chine-edge generated vortices. The position and

magnitude of the primary vortices are nearly identical in both the inviscid and turbulent cases. The

turbulent solution also shows the formation of secondary vortices near the chine edge due to

boundary layer separation. For chine shapes the effects of viscosity are a secondary effect on

vortex size, position and strength. Strong vortex formation can be seen all along the forebody in

fig. 31 with the leeward vortices rising above the surface much faster than the windward vortices.

Such strong vortex formation on bodies with sharp chines is responsible for positive directional

stability even at 20° angle of attack which was not found in the F5-A case.

SOLUTION STRATEGY FOR PARAMETRIC FOREBODY GEOMETRY STUDY

Based on the analysis of the computational solutions obtained on the Erickson chine

forebody, a solution strategy for forebody shaping study was chosen. When ft was fixed at 5° it

was shown in the case of the Erickson chine forebody that the inviscid pressures were very close

to the experimental data and the side-force and Cn „ trends were qualitatively similar and nearly

the same for the Euler and turbulent flow computations. Though refining the grid made a slight

improvement in the Euler results, it was very expensive considering the minor change in the

results. Hence, it was decided that to assess aerodynamic trends arising from forebody geometry

variations on chine-shaped forebodies, the computations could be done using the Euler equations

and the baseline grid.

To study the advantage of using multigrid and multisequencing, the inviscid flow over a

generic analytical forebody was computed at a = 30° and ft = 5°. Three levels of sequencing

were used with multigridding on each level. The surface pressures as shown in fig. 32 were

identical when the residual went down to the same order of magnitude in both cases. However,
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there was a 33% reduction in CPU time. After this approach was established, the remaining Euler

calculations were performed with three levels of sequencing and multigridding on each level of

sequencing.

GENERIC CHINE FOREBODY STUDY

To study geometric shaping effects on forebody aerodynamic characteristics, an analytical

forebody model with the ability to produce a wide variation of shapes of interest was defined in

Ref. 5. This generic forebody model makes use of the equation of a super-ellipse to obtain the

cross-sectional geometry. The super ellipse, used previously to control flow expansion around

wing leading edges (Ref. 12), can recover a circular cross section, produce elliptical cross-sections

and can also produce chined-shaped forebodies. Thus it can be used to define a variety of different

cross-sectional shapes.

The super-ellipse equation for the forebody cross section was defined in Ref. 5 as:

2+m
= 1

where n and m are adjustable coefficients that control the surface slopes at the top and bottom

plane of symmetry and chine leading edge. The constants a and b correspond to the maximum

half-breadth and upper or lower centerlines respectively. Depending on the value of n and m, the

equation can be made to meet all the requirements specified above. The case n = m = 0

corresponds to the standard ellipse. The body is circular when a = b.

When n = -1 the sidewall is linear at the maximum half breadth line, forming a distinct crease

line. When n < -1 the body cross-section takes on the cusped or chine-like shape. The derivative
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o f z / b with respect to y I a is:

'2 + wf\
(

where z = z / b and y=y I a. As y —> 1, the slope becomes:

00

* 0

Different cross-sections can be used above and below the maximum half-breadth line. Even

more generality can be provided by allowing n and m to be functions of the axial distance x,

although in this study the parameters n and m were taken to be constants with respect to x. The

parameters a and b are functions of the planform shape and can be varied to study planform

effects. Notice that when n = -1 the value of m can be used to control the slope of the sidewall at

the crease line.

Using the generic forebody parametric model defined above, and the computational strategy

developed based on the Erickson forebody results, an investigation of directional stability

characteristics of various chine-shaped forebody geometries was made. It was decided to analyse

the effect of changing b/a, chine angle and combinations thereof. This range of cross-sectional

shapes provides an extremely broad design space to investigate aerodynamic tailoring of forebody

characteristics through geometric design.

For the present study the following cases were initially selected:

(a) Geometrical parameters:

m = 0

-1.5<n<-1.0, An = -0.25
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Q.5£b/a<L5, Afe/a = 0.5

(b) Flow conditions:

20°<a<40°,Aa=10°

0°<J3<5°, AJ3=5°

The resulting cross-sectional shapes are shown in fig. 33. The computational study was

carried out to determine the shape which leads to the largest increase in directional stability. This

test case matrix, shown in Table 2, resulted in 54 different configurations with symmetrical upper

and lower surfaces, showing how large the possible set of cases could be without careful selection.

The 13=0° cases were included to compare the flow physics with and without sideslip. However,

with Cn = 0 at ft = 0° and the number of cases being excessive, the /J = 0° cases were

eliminated. Further combinations were eliminated as the study progressed and the results

examined. Some asymmetric upper/lower cross-section geometries were also analysed. These

geometries were defined using different b/a or different n for upper and lower surfaces.

It was also decided that the planform shape would initially be defined to be similar to the

Erickson chine case and to study the effects of varying cross-section geometry. In this calculation

the moment center for the computation of the directional stability was kept fixed at the value used in

the Erickson forebody test (Table 1). Based on the best cross-sectional shape, limited planform

effects were studied.

Discussion of Results for the Generic Chine Forebodies

Effect of varying b/a

This study was conducted for cross-sectional shapes with m = 0 and n = -1.5 and b/a = 0.5,

1.0 and 1.5. Figure 34 shows CnR vs angle of attack with b/a as the varying parameter. It is

interesting to note that the contribution to positive directional stability increases as b/a decreases.at
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a fixed angle-of-attack. bla = 0.5 is the best cross-section. An understanding of these results

requires an examination of the flowfield details presented below.

Figure 35 shows the variation of the side-force with the axial distance at each angle-of-attack.

Near the nose the force is initially destabilizing, being negative for all cases computed. Moving aft

from the immediate vicinity of the nose, the trend is reversed and the side-force starts to increase

toward positive values. The side-force becomes more positive with increasing angle-of-attack. In

general, the side-force becomes increasingly negative as the value of bla increases, making the

body more unstable. However, some crossover occurs at the aft end of the body at the higher a,

where the bla = 0.5 case is not as positive as the bla = 1 case.

Figures 36 to 38 show the AC~ vs z plots at a typical cross-section ( x = 18.35 ). The

integration of this pressure difference produces the side-force values presented in the fig. 35. The

cross-section below the chine edge always makes a negative contribution to the side-force. Above

the chine edge there is an abrupt large positive spike in the side-force. This arises because of the

asymmetry in strength and position of the vortices. At a = 20° the shallow bla = .5 case produces

a much larger spike than the bla =1.5 case. At higher a the bla = I case has nearly the same size

spike.

The asymmetry in the position and strength of the windward and leeward vortices which is

responsible for the positive side-force on the forebody is shown in fig. 39 for a = 30° and bla =

0.5 and 1.5. Figure 39(a) shows the minimum static pressure found in the vortex over the length

of the body. In this case the lower pressure for the bla = 0.5 geometry is much stronger compared

to the bla =1.5 case. Also, the windward vortex for this geometry is much stronger than the

leeward vortex resulting in a larger asymmetry. This corresponds to the large difference in

directional stability shown in fig. 34. In the sideview shown in fig. 39(b), for bla = 0.5 both the

vortices are farther away from the surface than in the bla =1.5 case, and they are above the top

centerline, allowing communication between the windward and leeward vortices. In the planform

view, fig. 39(c), the bla = 0.5 case shows more lateral movement particularly in the aft region than
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the bid = 1.5 case, where the windward and leeward vortices are separated by the large hump on

the upper surface all along the length of the forebody and thus restricting the vortex movement.

This is illustrated in fig. 40, which presents stagnation pressure contours to show the increase in

vortex movement as bla decreases

Using these results the physics of chined forebody aerodynamics emerges. A shallow upper

surface (bla = 0.5) results in a stronger, more asymmetric vortex system compared to a deep

surface (bla = 1.5). A deep lower surface results in a larger negative contribution to directional

stability. Hence, higher bla for the upper or the lower surface is undesirable.

Effect of varying chine angle

In this study bla was held constant at 0.5 (corresponding to the best result obtained above)

and n was varied over -1.5,-1.25 and -1.0, which increases the edge angle from a sharp chine to a

straight wall. Recall that theoretically the chine edge has a zero angle when n = -1.5 and n = -1.25

and therefore has a 180° slope discontinuity. When n = -1.0 the included edge angle is finite (127°)

and the slope discontinuity is smaller.

The effect of changing the shape parameter n on the directional stability is shown in fig. 41.

Essentially, all the results are similar at a = 20° and 30° but show differences at a = 40°. The

sudden decrease in Cn „ for n = -1.0 at a = 40° was further investigated by looking at the side-

force variation in fig. 42. Based on the results shown in this figure for the n = -1 case over the

axial distance from about 3 to 23, the source of the decrease of €„ 0 at a - 40° for n = -1.0 can
P

be identified. This result provides an indication of how to keep Cn _ from becoming too positive

at high angles-of-attack. Figures 43 to 45 show the ACL vs z plots at a typical cross-section

(x = 18.35 ). At a = 20°and 30° the effect of the chine angle is predominant on the upper surface.

Though the behavior changes on the upper surface, the area under the curves remains nearly the

same. At a = 40° the area under the curve suddenly decreases for the n = -1.0 case and this leads
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to a decrease in side-force at this cross-section. Figure 46 shows the vortex strength and position

for the case of n = -1.0. This shows that the side-force could arise from the asymmetry in both the

relative strengths and relative positions of the windward and leeward vortices.

The vorticity being generated due to separation has been shown to be proportional to the

square of the velocity at the separation point in Ref. 14. When n < -1 the slope discontinuity is

maximum at the chine edge, and results in large velocities approaching the separation point. This

results in larger vorticity being generated at the chine edge for these cases. Figure 47 shows the

square of velocity at the separation point plotted for different chine angles at a = 40°. The

n = -1.0 case is distinctly different than the other cases. When n < -1 the edge angle is zero and

hence the strengths of the corresponding leeward and windward vortices are comparable. Also,

very close to the nose the leeward vortex is stronger than the windward vortex leading to a negative

side-force. As the axial distance increases the vorticity shed on the windward side increases and

hence the side-force is positive. Such observations were also made by Kegelman and Roos based

on experimental results in Ref. 7. When n - -1, as expected, the vorticity shed is much less and of

an entirely different character because of reduced slope discontinuity. Moving downstream from

the nose, the edge with the largest separation velocity switches sides several times. This is reflected

in the side-force plot of fig. 42(c). In this case, very close to the nose the windward vorticity shed

is larger than leeward vorticity leading to a positive side-force. As we move aft, the side-force

changes sign as the relative shed vorticity strength changes.

Effect of unsymmetrical bla

Unsymmetrical cross-sections were generated using different values of bla for the upper and

lower surfaces while keeping the same functional form with m = 0 and n = -1.5. This maintains the

zero chine edge angle for all the cases. Two cases were tested. The first one had bla = 0.5 for top

and bla =1.5 for bottom. The second one had bla = 1.5 for top and bla = 0.5 for bottom. Figure

48 shows the cross-sectional shapes together with the computed Cn_ for these bodies alongside
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the results already presented for symmetrical bla.. The Erickson forebody result is also included,

which is geometrically similar with symmetrical bla lying between 0.5 and 1.0. The shallow upper

surface is seen to provide higher Cn „ than the shallow lower surface geometry. This is because

the shallow upper surface results in a stronger vortex and provides a bigger contribution to stability

than the use of a shallow lower surface to reduce the negative contribution to stability.

Effect of unsymmetrical cross-sections to vary chine angle

Unsymmetrical cross-sections were generated using different values of shape parameter n for

the upper and lower surfaces while keeping the same bla = 0.5 which was found to be the best

ratio earlier. Such a variation of n would vary the chine angle. The effect of varying this parameter

on the directional stability is shown in fig. 49. The chine angles were zero for symmetrical cross-

sections with n < -1 and were finite for all other cases shown in that figure. Only the symmetrical
!

case with n = -1.0 which had the highest chine angle shows a sudden decrease in CnR at a =

40°. This difference in behavior with the different chine angles suggests the existence of a critical

angle which controls the rate of feeding of the vortex as the angle-of-attack changes.

Effect of varying the planform shape

The planform shape for the forebodies studied thus far was same as that of the Erickson

forebody. This planform is shown in fig. 50. The parameter XN shown for the tangent ogive

forebodies is the distance from the tip of the nose to the station where the planform span becomes a

constant. The side-force variation in figs. 35 and 42 showed that most of the positive side-force

came from the aft portion of the forebody where the chine line was swept nearly 90°. Hence it was

postulated that expanding to a constant cross-section faster would give greater positive side-force.
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Because the Erickson planform approximates a tangent ogive with XN = 18, the alternative

planform was chosen to expand faster with XN =7, as shown in fig. 50.

The effect of the planform variation on the directional stability is shown in fig. 51. There is a

small increase in Cn _ for a fixed cross-sectional shape with bla = 0.5, m = 0 and n = -1.0. One

other cross-section, with a flat lower surface, was computed with this planform, and resulted in a

CnK increase. This supported our previous assertion that a smaller .bla on the lower surface

reduces the adverse contribution to Cn „ at a = 20° and also at a = 40°. Here, note that the chine

included angle is much less than the symmetrical case. The directional stability continues to

increase at ex = 40°, rather than remain nearly constant, reinforcing the idea that a critical chine

angle might exist which reduces extreme contributions to stability at high angle-of-attack.

Figures 52 and 53 show the effect of planform shape on side-force variation at a = 20° and

a = 40° respectively. As expected, after the initial negative side-force, the rate of increase of side-

force is greater in the aft portion of the forebody for the blunt nosed planform. Also note that at

a = 40°, the double hump is eliminated with a blunt-nosed planform and with a flat bottom

surface the configuration is even better. However very close to the nose the side-force is more

negative. A look at the slopes and curvatures of the different planforms in fig. 54 shows that the

tangent ogive planform has a large negative curvature close to the tip of the forebody.

CONCLUSIONS AND DESIGN GUIDELINES

A number of conclusions arise based on the results obtained here. For chined-shaped

forebodies, where the separation position is not influenced by viscosity, the Euler solutions were

found to be in reasonably good agreement with the results of Navier-Stokes calculations using the

Baldwin-Lomax turbulence model as modified by Degani and Schiff. Thus Euler solutions could

be used to carry out the parametric study. CFD has been used to explicitly identify the method in
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which the pressure distribution on the chine contributes to the directional stability. A novel

approach to presentation and evaluation of forebody aerodynamics has been introduced.

For aerodynamic design consideration the following guidelines were obtained:

• The best ratio of maximum half-breadth to the maximum centerline width proves to be

bla = 0.5 among the cases analysed for positive directional stability. In general, lower bla

for both the upper and lower surfaces is better from point of view of directional stability. In

cases where higher bla is a requirement, it is better to increase the lower surface bla which

results in a smaller penalty than if we were to increase upper surface bla.

• The effect of chine angle on the directional stability characteristics was found to be

insignificant except when the chine angle was large. There could be a critical chine angle

beyond which it becomes an important factor (we did not attempt to find one in this study).

If such a critical angle exists, it provides an indication of how to keep CnR from becoming

too positive at high angles of attack.

• The positive contribution to the stability is seen to come from the aft portion of the

forebody where the chine line is swept nearly 90°. Changing the planform shape by

allowing it to expand faster to a constant value increases the Cnf. only by a small amount.

However, the behavior of the side-force plots vary significantly for different planform

shapes.
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APPENDIX A

The following is the list of directories under which the solutions are saved on Voyager.

These are stored on the Mass Storage under the userids (1) RAVI or (2) WHMAS.

GEN1 m = 0, # = -1.5, bla = 1.0 (top and bottom), Erickson planform

GEN2 m = 0, n = -1.5, bla = 0.5 (top and bottom), Erickson planform

GEN3 m = 0, n = -1.5, bla = 1.5 (top and bottom), Erickson planform

GEN4 m = 0, n = -1.25, bla = 0.5 (top and bottom), Erickson planform

GENS m = 0, n = -1.0, bla = 0.5 (top and bottom), Erickson planform

GEN6 m = 0, n = -1.5 (top and bottom), bla =1.5 (top) and 0.5 (bottom), Erickson planform

GEN7 m = 0, n = -1.5 (top and bottom), bla = 0.5 (top) and 1.5 (bottom), Erickson planform

GENS m = 0, w = -1.5 (top) and -1.0 (bottom), bla = 0.5 (top and bottom),

Erickson planform

GEN9 m = 0, n = -1.0 (top) and -1.5 (bottom), bla = 0.5 (top and bottom),

Erickson planform

GENllm = 0, « = -1.0 (top and bottom), bla = 0.5 (top) and0 (bottom),

Tangent ogive planform

GEN12 m = 0, n = -1.0, bla = 0.5 (top and bottom), Tangent ogive planform

Files have been stored for a = 20°, 30°, 40° and ft = 5° for each of the above cases with the

following nomenclature:

Grid files suffixed with " .grd "

Restart files suffixed with " .rest "

Output files suffixed with " .out " and " .prout "

PLOT3D files suffixed with " .pig " and " .plq "
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GEN2 contains

mrw-r—r—
mrw-r—r—
mrw-r—r—
mrw-r—r—
mrw-r—r—
mrw-r—r—
mrw-r~r~
mrw-r—r—
mrw-r—r—
mrw-r~r—
mrw-r—r—
mrw-r—r—
mrw-r-r—
mrw-r— r~
mrw-r— r—
mrw-r— r—
mrw-r— r—
mrw-r—r—
mrw-r— ̂ --
mrw-^--r--
mrw-r—r—
mrw-r—r—
-rw-r—r—
mrw-r— r—

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

ravi
ravi
ravi
ravi
ravi
ravi
ravi
ravi
ravi
ravi
ravi
ravi
ravi
ravi
ravi
ravi
ravi
ravi
ravi
ravi
ravi
ravi

1 ravi
1ravi

372052
1158084
1930449
62631
4273400
372052
1158084
1930449
62631
4273400
35485
4275800
372052
35434
1158084
464202
1930449
773773
62631
34209
4273400
4274920
2494
5464728

Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr
Apr

8
8
8
8
8
9
9
9
9
9
19
19
9
15
9
15
9
15
9
15
9
15
9
8

1991
1991
1991
1991
1991
1991
1991
1991
1991
1991
1991
1991

1991
1991
1991
1991

1991
1991
1991
1991
1991
1991
1991
1991

a20b5.out
a20b5.plg
a20b5.plq
a20b5.prout
a20b5.restl
a30b5.out
a30b5.plg
a30b5.plq
a30b5.prout
a30b5.restl
a35b5.out
a35b5.restl
a40b5.out
a40b5.outl
a40b5.plg
a40b5.plgl
a40b5.plq
a40b5.plql
a40b5.prout
a40b5.proutl
a40b5.restl
a40b5.rest2
case.mult
job2.grd

(output file)
(PLOT3D grid)
(PLOT3D solution)
(output file)
(restart file)
(output file)
(PLOT3D grid)
(PLOT3D solution)
(output file)
(restart file)
(output file)
(restart file)
(output file)
(output file)
(PLOT3D grid)

(PLOT3D grid latest)
(PLOT3D solution)

(PLOT3D soln latest)
(output file)
(output file latest)
(restart file)
(restart file latest)
(input file)
(input grid file)
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Reference Parameters F-5A Erickson Generic

Mean Aerodynamic Chord c 16.08 in 32.04m 32.04m
Wing Span b' 52.68 in 46.80 in 46.80 in
Model Length/ 31.025m 30.00m 30.00m

Reynolds Number Re{ " 1.25 x 106 1.02 x 106 1.02 x 106

Reference Area Srej- 154.56 in2 1264.32 in2 1264.32 in2

Moment Reference Center from Nose 57.72 in 12.816m 12.816m

Table 1. Reference Data Used in Computing Forces and Moments
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Matrix of Cases for "Symmetric" Chine Forebody Directional Stability

bla = 0.5

b/a= 1.0

bla = \ .5

/i =-1.50

/i = -1.25

n = -1.00

/i = -1.50

/i = -1.25

/i = -1.00

/i = -1.50

/i = -1.25

« = -1.00

0 = 0°

a = 20°

X

X

X

X

X

X

X

X

X

a = 30°

X

X

X

X

X

X

X

X

X

a = 40°

X

X

X

X

X

X

X

X

X

/3=5°

a = 20°

V
</

</
<S
X

X

</
X

x

a =30°

</

<S

<s
<s
X

X

<s
X

X

a = 40°

<S

<s
</
<s
X

X

^
X

X

Table 2. Total Cases for Parametric Study

Each inviscid "crude grid" run = 3400 CPU seconds + 200 sec = 3600 sec

effect planforms b/a's s s s total

bla
sideslip (p = 10°)
chine angle (extra)
split bla
split chine angles
planform
flat bottom

Total CPU time for Euler design: 36 hours

Table 3. CPU Time for Parametric Study

1
') 1
•a) 1

1
s 1

2
1

3
1
1
2
1
1
1

3
3
3
3
3
2
2

1
1
1
1
1
1
1

1
1
2
1
2
1
1

9
3
6
6
6
4
2

36
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Figure 1. F-5 A grid with H-O grid topology used in earlier computations

Figure 2. F-5A grid with C-O grid topology for front block and H-O grid for rear block
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a) entire crossplane grid at FS 14.02

b) near body details at FS 14.02

Figure 3. F-5A forebody grid details in crossflow plane

30



a) entire crossplane grid at FS 29.61

b) near body details at FS 29.61

Figure 4. F-5 A forebody grid details in crossflow plane
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Figure 5. Comparison of inviscid surface pressures between the two grid systems
at FS 6.58
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Figure 6. Comparison of inviscid surface pressures between the two grid systems
at FS 26.77
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Figure 7. Comparison of F-5A inviscid surface pressures on the leeward plane
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Figure 8- Sign convention for forces and moments used in the present study
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Fig. 9 F-5A directional stability: Comparison of calculation with experiment
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Figure 10. Computed distribution of side force along the F-5A forebody.
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Figure 11. Comparison of F-5A inviscid and turbulent surface pressures at FS 14.02
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Figure 12. Comparison of F-5A inviscid and turbulent surface pressures at FS 29.61
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Figure 13. Variation of ACp vertically along the cross section at FS 14.02 and FS 29.61
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Figure 15. F-5A forebody pressure vectors at FS 14.02 for a = 40° and /? = 5C
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Figure 16. F-5A forebody pressure vectors at FS 29.61 for a = 40° and ft = 5°
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Figure 17. F-5A vortex path along forebody for a = 40° and ft = 5C

(turbulent stagnation pressure contours)
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(a) Full plane

(b) closeup at the nose

Figure 18. Erickson chine forebody longitudinal baseline grid details
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(a) Cross sectional grid

(b) Closeup at the surface

(c) Closeup at the chine edge

Figure 19. Erickson chine forebody cross sectional baseline grid details
x = 30 in. (i = 25 )
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Figure 20. Comparison of Erickson forebody surface pressures between stacked and pencil
grids at FS 7.19
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Figure 21. Comparison of Erickson forebody surface pressures between stacked and pencil
grids at FS 13.56
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Figure 22. Erickson chine forebody surface pressures at a = 30° and j3 = 5C
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Figure 23. Erickson chine forebody surface pressures at a = 30° and (5 = 10°
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Figure 24. Fjickson chine forebody surface pressures at a = 40° and (3= 10°
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Figure 25. Erickson chine forebody side force variation along the forebody
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Figure 26. Erickson chine forebody directional stability characteristics
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Figure 27. Erickson forebody inviscid and turbulent pressure diagrams at FS 7.19
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Figure 28. Erickson forcbody inviscid and turbulent pressure diagrams at FS 19.94
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Figure 29. Erickson forebody inviscid stagnation pressure contours for a = 30° and ft = 5C
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Figure 30. Erickson forebody turbulent stagnation pressure contours for a = 30° and f3 = 5C
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Figure 31. Erickson forebody vortex path along forebody for a = 30° and ft = 5°
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Figure 33. Cross-sections used in the present forebody design study
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Figure 34. Effect of varying b/a on the directional stability characteristics
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Figure 35. Effect of varying b I a on side force at various angles of attack

61



8.0

6.0

'4.0

2.0

z 0.0

-2.0

-4.0

-6.0

-8.0
-0.4 -0.2 0 0.2 0.4 0.6 0.8

i-i

"P

- 5 - 3 -1 1 3 5

-8.0 r

-6.0 -

-4.0 -

-2.0 —-

N 0.0 -

a) A C distribution

b) geometry variation

Figure 36. Effect of varying b/a on the variation of ACpat a = 20°
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Figure 41. Effect of varying chine angle on the directional stability characteristics for b/a = 0.5.
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70



3.0

2.0

1.0

z 0.0

-1.0

-2.0

-3.0
28.35 .

i i i i I i i r i I i I ill t i i i I i J I

-0.5 0 0.5 1 1.5 2
i~l

"P

a) ACL distribution

-3

-2

-1

z o

1

2

f—a— b/a = 0.5, m = 0. n = -1.50
J —•— P/a = 03, m = 0. n = -J251 —•— B/a = 03, m = 0, n = -LIT

-1

b) geometry variation

Figure 45. Effect of varying chine angle on the variation of ACp at a = 40°
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Figure 48. Effect of unsymmetrical b/a on the directional stability characteristics
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Figure 49. Effect of unsymmetrical shape factor n on the directional stability characteristics
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Figure 50. Planform shapes used in this study
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Figure 51. Effect of planform shape variation on the directional stability characteristics
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Figure 52. Effect of planform shape variation on the side force at a = 20°
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Figure 53. Effect of planform shape variation on the side force at a = 40°
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Figure 54. Variation of planform shapes with their slopes and curvatures
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