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ABSTRACT

A semi-empirical model is described for predicting unsteady aerodynamic forces on

arbitrary airfoils under mildly stalled and unstalled conditions. Aerodynamic forces are modeled
using second order ordinary differential equations for lift and moment with airfoil motion as the
input. This model is simultaneously integrated with structural dynamics equations to determine

flutter characteristics for a two degrees-of-freedom system. Results for a number of cases are
presented to demonstrate the suitability of this model to predict flutter. Comparison is made to the
flutter characteristics determined by a Navier-Stokes solver and also the classical incompressible
potential flow theory.
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NOMENCLATURE

A0, A1, etc coefficients in the,model, Equations (1) and (10)
a, ah distance of elastic axis from the origin

ac^o speed of sound

B1 coefficient in the model, Equations (1) and (10)

b semichord
Ch damping coefficient in plunging

CL lift coefficient

CM moment coefficient about elastic axis

Ca damping coefficient in pitching

c chord

h plunging (bending) displacement, positive downward

Ia polar mass moment of inertia

Kh plunging spring constant

Ka pitching spring constant

M Mach number

in per unit length

Qh generalized force in plunging

Qa generalized force in pitching

Re Reynolds number based on chord
% radius of gyration about elastic axis

S static unbalance, mbxa

s nondimensional time, Vt/b

t time

V resultant air velocity
VF flutter velocity

V* nondimensional velocity V/bcoa

wO.75 c upwash at 3/4 chord

w nondimensional upwash, w0.75 cN
xa distance between ;elastic axis and center of gravity

a pitching (torsion) displacement, positive nose up
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(XS
	 steady angle of attack

O(s)
	

Wagner function

µ	 mass ratio

^A
	

damping associated with fluid forces

^h
	 critical damping coefficient in plunging

Ca
	 critical damping coefficient in pitching

P
	 air density

6	 time scale for superposition integral

ti
	 nondimensional time, t ate/ c

CO
	 small amplitude harmonic oscillation frequency

wp;	 frequency associated with fluid forces

wh
	

uncoupled plunging frequency, fKh—Im

wa	 uncoupled pitching frequency, MOa
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INTRODUCTION

The aeroelastic response and flutter analysis of a helicopter rotor or an airplane wing or a

turbomachine blade requires accurate information about aerodynamic forces under stalled and

unstalled conditions. The theoretical approaches for prediction of aerodynamic forces including the

effects of flow separation consist of the Navier-Stokes methods, the discrete vortex methods and

the zonal methods. In the Navier-Stokes methods, the fundamental equations of fluid mechanics

are solved by numerical techniques 1,2,3. The discrete vortex methods solve for potential flow

without the boundary layer 4,5,6. The viscous nature of the flow is modeled by the generation and

subsequent induced transport of discrete combined vortices. The manner and location of their

generation is obtained empirically or through appropriate boundary layer calculations. The zonal

methods model the flow as a combination of viscous, inviscid and transition zones 7,8 . In the

numerical implementation of the model, these zones interact in an iterative manner. These

theoretical models lack generality (due to various assumptions and restrictions of the formulation)

and are computationally expensive. They are extremely difficult and expensive to incorporate into

aeroelastic analysis codes.

For use in a standard aeroelastic analysis, various empirical and semi-empirical models

have been developed to model the nonlinearity and phase changes in airfoil forces with respect to

its motion. These methods are computationally fast and allow for various airfoil motions and flow

conditions. These phenomenological models are not based on the first principles of fluid

mechanics, but are obtained from understanding the physical relationship between the forces on

airfoil and its motion. The different ways for modeling the nonlinearity in lift and moment are (1)

corrected angle of attack, where the actual angle of attack is corrected to get the effective angle of

attack 9 , which is a very popular approach in the aerospace industry, (2) time-delay, synthesis

procedures, which involve curve-fitting experimental data with algebraic or transcendental

functions 10, and (3) ordinary differential equations, where the relationship between lift and angle

of attack is described with an ordinary differential equation along with parameter identification

from experimental data 11

Tran and Petot 11 originally proposed the idea of using ordinary differential equations to

model the unsteady behavior of airfoil loads. The form of the ordinary differential equations was

obtained by curve-fitting the experimental data for various airfoils. Substantial manual adjustment

was needed to that model to predict accurately the airfoil loads. In the present wgrk, a different

semi-empirical model is developed to predict the lift and moment loads on an airfoil using an
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ordinary differential equation. The form of equation is motivated by physical considerations. It is

assumed that the fluid lift force has the characteristics of a damped harmonic oscillator because of

the fluid's inertia, dissipation and compliance. The airfoil motion is assumed to drive the fluid lift

oscillator and the driving terms have nonlinear as well as linear components. The pitching moment

is also represented using the same form of equation. The parameters in these equations are

determined from comparison with airfoil load data for small amplitude oscillatory motion about a

large steady angle of attack from a Navier-Stokes solver 1 . The model is then compared with the

Navier-Stokes solver for large amplitude oscillatory motion of airfoil.

This model is then used to provide the aerodynamic loads to a two degrees-of-freedom

structural dynamics model. The coupled second order ordinary differential equations are solved

using an implicit linear multistep method with backward differentiation formula, also known as

Gear's stiff method. The time response for a two degrees-of-freedom structural-fluid system using

these equations is compared with those from the Navier-Stokes solver and the classical

incompressible potential flow model.

MATHEMATICAL AND NUMERICAL FORMULATION

It is postulated that the lift coefficient of the airfoil, CL, is related to the motion of the

airfoil, its angle of attack, a, through an ordinary differential equation of the following form:

CL + 2CAwACL + coj CL= Ao + Al a +A2 a2 + A3 a3 + B 1 (a + 'a)	 (1)

where (^) denotes a time derivative.

This equation at present is postulated and not derived from first principles, e.g. from the

Navier-Stokes equations. On the left hand side it is assumed that the fluid lift force has the

characteristics of a damped harmonic oscillator because of the fluid's inertia, dissipation and

compliance. On the right hand side, the body motion is assumed to drive the fluid lift oscillator and

the driving terms have nonlinear as well as linear components in a, a and a . The a, *a and CL
terms allow for modeling the phase shifts between CL and a. Once CA, coA, A 1 , A2, A3, B 1 are

known, it is relatively simple to solve Equation (1) by analytical or numerical means for any
arbitrary time dependent motion in combination with the structural dynamics equations. CA and coA
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can be physically interpreted as a characteristic damping and frequency of the fluid. They are in
general functions of a.

To determine CA, wA, A l , A2, A3, and B 1 for a given airfoil at some Mach number and

Reynolds number, a numerical or physical experiment is undertaken. First in a static experiment,
Equation (1) simplifies to

CLs = (Ao + A l as + A2'as2 +A 3 as3)/
 .c^A2
	 (2)

where the subscript s refers to static or steady flow conditions. Note that wA2 appears for static

conditions in Equation (2) due to the choice of harmonic oscillator representation in Equation (1).
By curve-fitting the experimental data of C Ls vs as , the coefficients Al/wA2, A2/wA2 and
A3/c0A2 are determined.

Now the airfoil is oscillated about asp i.e.,

a(t) = as + a(t)	 (3)

To determine ^A, wA, B 1, it is sufficient to consider l a I - <I as I , i.e. only (infinitesimal) small

oscillations about various static angles of attack need be considered to determine all the model

parameters. In analogy to Equation (3), the lift coefficient can be written as,

CL = CLs + CL	 (4)

For I a I << I as I , then I CL I << I C41 and Equation (1) becomes

X.

CL + 2 ^AwACL + w CL = (Al + 2AZas + 3A3aa) a + B l( a + a)	 (5)

Note that Equations (3), (4) and (5) should hold for both attached and separated flow for a
sufficiently small, i.e. one can still linearize about a steady, separated flow state. This linear
relationship significantly simplifies the determination of ^ A , COA , B l . For small amplitude

harmonic oscillations, substituing ,
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a = a eicwt , CL = CL eiw t
	

(6)

in Equation (5) gives,

CL _ oc 
(A1+2A2 as+3A3 as - B 1 w^2 + (B 1 w)2 

>^ e'O
(urA - (0)2 + (2CA wA 0))2 	 (7)

where

[LIAtan-1 	 B1w
	 tan-1 	 A

[Al + 2A2 as + 3A3 as - B 1 w 2 ]	 co? - w2 	(g)

Considering the real part of CL Equation (6),

CL = a 
(A1+2A2 as+3A3 as - BI w) 2 + (B I w)2 W 

(wt+os o)
(A - w2)2 + (2CA wA w)2	 (9)

CA , wA and B 1 are determined by fitting Equation (9) to CL vs. a data from the Navier-Stokes

solver. After determining CA, etc, Equation (1) can be used to determine CL(t) from a given a(t)

even when the motion is large and transient (not just small and harmonic in time).

The moment coefficient of the airfoil, CM, as a function of its angle of attack, a, is also

modeled in a similar manner as follows

CM + 2CAwACM + wj CM = Ao + Al a +A2 a2 + A3 a3 + B 1 (a + *a)	 (10)

The coefficients CA , wA , A 1, A2, A3 , and B 1 for CM are determined using the same

procedure and the data from the Navier-Stokes solver. These coefficients may have different values
for Equation(1) and Equation(10). On physical grounds, one may expect (hope). that CA and wA

will be similar for Equations (1) and (10).
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Note that the coefficients of the semi-empirical model were determined from a combination

of theoretical/numerical and physical/experimental data for both attachednil separated flow. The

Sankar code was used for a < 12° to obtain both dynamic and static aerodynamic data. At higher a

the Sankar code displayed oscillating lift even for a steady angle of attack and the results appeared

sensitive to time step, artificial viscosity, grid spacing and other parameters. Therefore to determine
the static coefficients, e.g. A0, Al, etc., for 12° < a < 22° the experimental data from

McCroskey 12 were used. The available dynamic experimental data did not appear sufficient to

independently assess the dynamic characteristics of the semi-empirical model and were not used.

It should be noted that according to the Sankar code, static separation begins at about

a = 10° and at a = 15° the separation is still mild.

The Navier-Stokes solver was run on a CRAY XMP computer to generate small amplitude

oscillation loops for lift and moment on a NACA 0012 airfoil at a Mach number of 0.3 and a

Reynolds number of 4 million. The mean angle of attack was varied between 0° and 12° with the

amplitude of oscillation being 0.1 °. These values of Mach number, Reynolds number and angle of

attack were selected, as the Navier-Stokes solver was validated over this range of values and gave

physically meaningful results. Equation (9) was fitted for mean angles of attack between 0° and

12% Equation (2) was fitted to physical/experimental data for static angles of attack between 0° and

15° to incorporate the static stall behavior into the model. If a Navier-Stokes solver were available,

that would generate reliable data in dynamic stall regime, the proposed model could be easily

extended to predict dynamic stall behavior with reasonable accuracy.

The values of CA, COA, A 1 , A2, A3, and B 1 for CL and CM are given in Appendix 1 for a

NACA 0012 airfoil at M = 0.3 and Re = 4 million. These parameters were determined using a

nonlinear regression fitting procedure from the Statistical Analysis System (SAS) 13 . A

comparison between this model and the Navier-Stokes solver for a large amplitude oscillation is

shown in Figures 1 and 2. It can be seen that the model, which was fitted to small amplitude

oscillation data, predicts large amplitude oscillation data accurately. These results are typical for the

range of angles of attack considered in this paper.

To incorporate a plunging motion of the airfoil into the model, a is replaced by (a + h/'V)

in Equations (1) and (10). This model is now integrated with structural dynamics equations for a 2

degrees-of-freedom system to analyze the flutter behavior of a NACA 0012 airfoil.

8



STRUCTURAL DYNAMICS MODEL

A typical section model of an airfoil, as shown in Figure 3, is used for the flutter study.
The typical section has two degrees-of-freedom, plunging (h) and pitching ((x), positive as shown.

The governing equations for this model are

mh+Sa+Chti+Khh=Qh

S h + I(X + Caa + Kaa = Qa	 (11)

where m is the mass, S is static unbalance, C h , Ca are structural damping parameters, Kh and Ka

are the pitching and plunging spring constants, Qh and Qa are the generalized forces, and () is

d( )/dt. Defining h = h/2b, xa = S/mb, r& , = Ia/mb2 cod = KWm, coa = KotA(x, Ch = 2^h (Oh m

and Ca = 2^a wa Ia, where b is the semi-chord, Ia is the mass moment of inertia about the

elastic axis, (Oh and co(, are the uncoupled plunging and pitching frequencies, ^h and ^a are the

critical damping factors in bending and torsion, Equation (11) can be written as

h+[ 2] a+[2^hcut,]h+[Ai =
2mb

IT^ h+ [2 S2 a+^
^a ^ar6j& +[w

2ra]
2a= Qa

4mb2	(12)

The generalized forces, Qh and Qa are related to the lift and moment coefficients as

follows:

Qh = - 1 pV2 (2b) CL

Qa = 2 pV2 (2b)2 CM	
(13)

where CL is the lift coefficient, and CM is the moment coefficient about the axis of rotation (elastic

axis), V is the resultant air velocity and p is air density. Defining, t = t a./2b, and V* = V/(b coa),
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where a^ is the speed of sound and substituting Equation (13) into Equation (12), the final

aeroelastic equations can be written as

h +	 a +[4 _ Oh h + 2Mcoh 2 h ` _ 2CVI2
2 V coy	 [V w^,	 nµ

Lxlh+
rra12

*oc + ^a r^M a+	 2 CM M2
2	 2	 V*

	 ^m--a-,I
 V*	 nµ	 14

where (^) is now d( )/dt , M = V/a te and µ is m/n p b2 . Equations (13) and (14) are used with

any one of several aerodynamic theories.

Equations (1) and (10) for the semi-empirical aerodynamic theory are rewritten to include

the effect of plunging displacement as follows:

CL + 2CAcoACL + wj CL= AO + A, 0  +A2 02 +A30 3  + B, (0 + 8)

CM + 2^AwACM + wj CM = Ao + A 1 0 +A2 02 + A3 03 + B, (0 + 8)	 (15)

where 0 = a + h/V. Substituting h and it for h and t, and 0 = a + h/M. For simplicity, the bar on h

and t will be dropped for rest of the paper. Strictly speaking a should be replaced by a + fiN

Equation (1), but a and a should be left alone . (However, for illustration purposes the present

approach should suffice).

The Equations (14) and (15) form a system of four coupled, second-order ordinary

differential equations. These equations are written as eight simultaneous first-order differential

equations with corresponding initial conditions. These equations have widely varying time

constants and can be described as a stiff system. The explicit methods, such as Runge-Kutta

method, require a large number of small time steps in order to satisfy the accuracy requirement for

the global error in a stiff system. So this initial value problem is solved using an implicit linear

multistep method with a backward differentiation formula (Gear's method) from the 1MSL

library 14
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THE NAVIER-STOKES MODEL

The Navier-Stokes solver, that was used to generate data for fitting the semi-empirical

model, was also used to provide aerodynamic loads for time-marching the solution to Equation

(14). This code solves the full Navier-Stokes equations for 2-dimensional, unsteady, viscous
flows in a body-fitted moving coordinate system. The code calculates CL and CM for initial values

of a and h for an airfoil. These values are then used to solve Equation (14) for new values of a

and h at the next time step. These new values of a and h are then used by the code to calculate new
CI, and CM and so on. The fluid-structure interaction is thus analyzed in this explicit manner, even

though the individual calculations to solve the Navier-Stokes equations or the structural dynamics

equations are implicit. This procedure is described in detail, along with many examples, in 15,16

The Navier-Stokes code should be reliable for fully attached and mildly separated flows.

CLASSICAL INCOMPRESSIBLE POTENTIAL FLOW MODEL

The aerodynamic loads input to Equation (14) was also calculated using the classical

incompressible potential flow theory (linear aerodynamic theory) 17 . For an arbitrary time

dependent motion, assuming the airfoil starts from rest at t = 0,

2	 dwo. 75 c(a)Lift =npb [h +Voc- ba•a] - 2npVb wo.75c(0)O(s)+ 	 d60(s-6) d6fos

 

	 (16)
Moment = npb2 [bah - Vb(2 -a) a - b2 (g+ a^ a]

f

- 2npVb^(2 + a) wo. 75 c(0) O(s) +
dwod6c(6) $(

s-a) d6
 ]	 (17)

where 0(s) is Wagner function, s = Vt/b and wo.75 c = -Va - h - b(2 - a) a. Substituting h and t

respectively for h and t and writing C L, CM in terms of Lift and Moment
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_	 S

CL =
12M2h+ 2M 

4 x - 2n w(0) 0(s) + d6 0(s-6) d6
o	 (18)

Ic
CM 

2 2M2 22M - 
8 4M2 - 2n (2 + a) w(0) ^(s) + d6 ^(s-6) d6

0	 (19)

where w = wo, 75 c / V =- (x - M- 2 (2 a) 
M and s = 2t . It should be noted that in above

equations, Mach number appears due ,to the choice made for nondimensionalizing time and
velocity. It has nothing to do with compressibility effects and the flow is still incompressible.

Equations (14), (18) and (19) are solved in the same fashion as Equations (14) and (15) for the
same initial conditions to analyze the fluid-structure interaction. This aerodynamic model should be
reliable for attached flows at small angles of attack. It is used to provide a reference for the other
aerodynamic models.

RESULTS AND DISCUSSION

The flutter behavior of a NACA 0012 airfoil at a Mach number of 0.3 was studied with the

proposed semi-empirical model, the Navier-Stokes solver and the classical incompressible potential

flow theory. The particular flow conditions and structural parameters were selected, so that a

comparison can be made to some of the earlier flutter studies 15,16

For the flutter calculation using the semi-empirical model, first Equations (14) and (15)
were solved with initial conditions as a = 15°, h = 0, C L and CM as their steady state values at 15°

angle of attack, and the first derivatives with respect to nondimensional time as 0. At these
conditions, the airfoil is on the verge of stall. It was then released and was allowed to follow the
motion dictated by the structural dynamics equations and the fluid dynamics model. The structural
parameters used in this study are a h = - 0.5, COW% = 0.2, xa = 0.25, ra = 0.5, µ = 100, Ch,

Ca = 0. Distances are nondimensionalized with respect to semi-chord (b), see Figure 3 for

definitions. The dimensionless speed V* was varied between 4 and 8. The airfoil response to these

two dimensionless speed values are shown in Figure 4. It was found that at V* = 4, the airfoil

returned to steady state following a period of damped oscillations. For the higher flutter speed

case, V* = 8, the airfoil oscillations grew rapidly with time, and flutter was triggered, as clearly
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seen in Figure 4. As discussed subsequently, for some V * between 4 and 8 the motion was a limit

cycle flutter.

The calculations shown above were repeated at lower angles of attack ( ( X between 0° and

10°) and a similar flutter behavior was observed. The dimensionless speed V * was varied between

4 and 8. The airfoil response to these two dimensionless speed values at 5° angle of attack are

shown in Figure 5.

This was further analyzed by running the Navier-Stokes solver for these conditions and the

same flutter behavior was observed. The starting point was the steady viscous flow over a NACA

0012 airfoil at 0.3 Mach number and 4 million Reynolds number. At 15° angle of attack, the airfoil

response are shown in Figure 6. Flutter can be seen at the higher speed and the damped oscillations

at the lower speed. These calculations were repeated for 5° angle of attack and the same flutter

behavior was observed. These are shown in Figure 7.

The airfoil response were also calculated the classical potential flow model. The initial

conditions for Equations (14), (18) and (19) were same as those for the semi-empirical model as

explained earlier. At 5° angle of attack, the results are shown in Figure 8. It can be seen that flutter

occurs at higher speed and damped oscillations at lower speed. These calculations were repeated

for higher angles of attack and a similar flutter phenomenon was observed. Of course, using the

classical potential flow (linear) model, the flutter condition should be independent of initial

conditions and that is found to be so

For all three aerodynamic models, the damped and the flutter motions occurred at

frequencies that roughly correspond to the natural frequency associated with the pitching motion.

This, suggests that the pitching mode is the most dominant mode in the flutter phenomenon

considered here. In the present work, the Navier-Stokes solver was used to calculate the flutter
response in fully attached flow (at (x of 5°) and in mildly separated flow (at (x of 15°). It was

suggested in 16, that a different type of airfoil response was observed in these cases, i.e. no flutter

occurred in fully attached flow and flutter occurred in separated flow. In the present study,

however, flutter occurred under both flow conditions for all three aerodynamic models. The semi-

empirical model for prediction of aerodynamic forces works well for fully attached flows and

mildly separated flows, but was not extended to massively separated flows as no data were

available for fitting in that region. The flutter behavior shown by the classical potential flow model,

which assumes an inviscid flow and considers no stall effects, agrees reasonably well with that
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predicted by the other two methods. The agreement among these three different procedures further

confirms this flutter as essentially conventional flutter and not stall flutter, perse.

Flutter boundary as a function of initial angle of attack is plotted in Figure 9. It can be
observed that for angles less than 10% a particular value of 

VF* 
gives neutrally stable oscillations.

For V* greater than this value, growing oscillations occur and for V * less than this value, decaying

oscillations occur. The flow over airfoil is fully attached for these initial angles of attack.

Note the velocity for onset of flutter decreases as angle of attack increases as intuition might

suggest. However, at sufficiently large angle of attack, once flutter begins at some velocity it is a

finite amplitude limit cycle oscillation until some larger velocity is exceeded when the oscillation

then grows (exponentially) with time. For angles greater than 10% neutrally stable, limit cycle

oscillations occur over a range of values of V * instead of one particular value. Below this range,

decaying oscillations are seen and above this range, growing oscillations occur. These oscillations

are shown in Figure 10. A limit cycle behavior in the phase plane is observed over a range of V * as

seen in Figure 11. The emergence of this limit.cycle region coincides with the transition from fully

attached flow to mildly separated flow over the airfoil. This behavior was also exhibited by the

Navier-Stokes solver for similar initial conditions as, shown in Figures 12 and 13.

It should be noted, however, that the range of V * over which the limit cycle is observed is

somewhat different for the two fluid dynamics models. Typically the difference is modest, of the

order of 20% in flow velocity. For the semi-empirical fluid model, a limit cycle of finite amplitude

is observed over the range of V * = 5.25 - 6.75. For the Navier-Stokes fluid model, a limit cycle

was observed at V* = 4.75, but not at V* <_ 4 or V * > 5.5. A comparison of results from the

Navier-Stokes solver and the semi-empirical model for the maximum limit cycle amplitude is

shown in Figure 14. The results are similar qualitatively although there are obvious quantitative

differences.

Because of the substantial computational cost, only a limited number of results were

obtained using the Navier-Stokes solver. The flutter calculation using the Navier-Stokes solver

took about 6000 seconds of computer time on a CRAY-XMP. Whereas, the other two methods

required 4-5 seconds of computer time :for a similar calculation. This shows the considerable

savings in computer time (and memory), that can be achieved by use of the semi-empirical model

in a standard aeroelastic analysis. Unfortunately there are no available experimental flutter data to

compare to the present results from either the semi-empirical model or the Navier-Stokes model at

high angles of attack. Note that the flutter results obtained from classical, linear potential theory are
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included in the present discussion primarily as reference data. One would not expect the latter result

to be meaningful at large angles of attack of course. However the classical aerodynamic theory has

been experimentally validated for flutter at small angles of attack.

CONCLUSIONS

A system of ordinary differential equations can be used to model the aerodynamic forces on

an airfoil for arbitrary motions. This semi-empirical model can be fitted for a variety of flow

conditions including separated flows, provided experimental (physical or numerical) data exist for

those conditions. This model then can be used with the structural dynamics equations to analyze

flutter behavior of an airfoil in a standard aeroelastic analysis including conditions of mild flow

separation. The savings in computer time and memory requirement are significant in comparison to

the methods based directly on the Navier-Stokes equations.

An interesting phenomenon is observed, where the structural-fluid interaction shows a limit

cycle behavior as a function of V *. For fully attached flows, this limit cycle behavior is seen for

only a certain value of V* , whereas for mildly separated flows, it is seen over a range of V*.

Further studies are being done to understand this phenomenon better.

At present, this semi-empirical aerodynamic model is postulated, but efforts are underway

to demonstrate its deduction from the first principles of fluid mechanics.
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APPENDIX 1

PARAMETERS FOR THE SEMI-EMPIRICAL MODEL
(NACA 0012 airfoil at M,,. = 0.3 and Re = 4 million)

Parameters for Equation (1) :

AO / coA2 = 0, Ai / coA2 = 5.4878, A2 / coA2 = 14.0997, A / coA2 = -55.198.

CA = CAO + CA1 a + CA2 a2' CAO = 2.898, W = 54.701, CA2 = -291.0861.

wA = 10A0 + 0o
A1 a + coA2 a2, wAO = 7.0293, wAl = -52.212, wA2 = 279.09.

BA = BAO + BA 1 a + BA2 a2, BAO = 242.709, BA 1 = 415.509, BA2 = -2230.9.

Parameters for Equation (10) :

For a < 10.0174 °,

A0 / coA2 = 0, Al / (oA2 = -0.01557, A2 / O)A2 = -0.0998, A3 / wA2 = 1.1753.

For 10.0174° < a < 13.5636°,

A0 / wA2 = 1.466, Al / wA2 = -22.585, A2 / O)A 2 = 115.66, A3 / (oA2 = -196.84.

For 13.5636° < a ,
AO / wA2 = 4.314, A i / O)A2 = -41.328, A2 / wA2 = 129.49, A3 / coA2 = -135.48.

For all a,

CA = CAO + CA 1 a , CAO = 3.4004, CA 1 = 3.3174.

wA = wAO + wA 1 a , SAO = 10. 1120, coA 1 = -4.0498.

BA = BAO + BA1 a , BAO = -71.87, BAl = 27.9352.
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Figure 1.—Lift coefficient from semi-empirical model and
Navier-Stokes solver(NACA 0012 airfoil, a =10° -50cos(wt),
M = 0.3, Re =4 million).
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Figure 2.—Moment coefficient from semi-empirical model and
Navier-Stokes solver (NACA 0012 airfoil, a =10° -5° cos(wt),
M = 0.3, Re = 4 million).
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Figure 3—Two degrees-of-freedom typical section model.
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Figure 4.—Time response of a two degree-of-freedom solid'-fluid system using the semi-empirical model (NACA 0012 airfoil, M = 0.3,
Re = 4 million, initial angle of attack =15°).
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Figure 5.—Time response of a two degree-of-freedom solid-fluid system using the semi-empirical model (NACA 0012 airfoil, M = 0.3,
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Figure 6—Time response of a two degree-of-freedom solid-fluid system using the Navier-Stokes solver (NACA 0012 airfoil, M = 0.3,
Re = 4 million, initial angle of attack =15°).
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Figure 7.—Time response of a two degree-of-freedom solid-fluid system using the. Navier"Stokes solver (NACA 0012 airfoil, M ='0.3,
Re = 4 million, initial angle of attack = 60).
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Figure &—Time response of a two degree-of-freedom solid-fluid system using the classical incompressible potential flow theory
(NACA 0012 airfoil, M = 0.3, Re = 4 million, initial angle of attack = 5°).
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V* (NACA 0012 airfoil, M = 0.3, Re = 4 million, initial angle of
attack =15°).
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