NASA Johnson Space Center

COMMON LUNAR LANDER TRAJECTORY ANALYSIS

Lynn A. Wagner, Jr. Nancy A. Wilks Mission Definition Branch/ ET3 September 17, 1991

Systems Engineering Division

U.S. Gov't

NASA Johnson Space Center

COMMON LUNAR LANDER TRAJECTORY REQUIREMENTS

- Earth launch flexibility
 - •• 14-day launch window to be achieved by variable loiter time in lunar parking orbit
- Land at any specified lunar latitude and longitude
- Land at any specified time in the lunar day/night cycle
- Program will operate during the entire 18.6 year lunar cycle

Lynn Wagner/ET3/x33816

Systems Engineering Division

NASA Johnson Space Center 🛥

COMMON LUNAR LANDER TRAJECTORY CHARACTERISTICS

- Earth Parking Orbit (185 km circular orbit)
 - •• Due east launch from ETR into a 28.45 deg inclination
 - •• Standard circular orbit for the launch vehicles examined
- Minimum Energy Trajectories
 - •• 5 day transfer time
 - •• Near Hohmann transfers
- Lunar Parking Orbit (122 km circular orbit)
 - •• Minimizes deorbit, descent, and landing delta-V cost
 - Inclination and Ascending Node defined for each specific landing site and lunar loiter time
- All lunar landing sites are accessible

A rtemis

U.S. Gov t

U.S. Gov't

NASA Johnson Space Center

COMMON LUNAR LANDER TRAJECTORY TIMELINE

TRAJECTORY EVENT	DURATION	ALLOCATED DELTA-V *	COMMENTS
Launch	20-30 min		
Earth Parking Orbit Coast	0-90 min		185 km Circular Orbit
Translunar Injection		3200 m/s	
Translunar Coast	5 days	30 m/s	Midcourse correction (100% lighting)
Lunar Orbit Insertion		840 m/s	
Lunar Parking Orbit Coast	0-14 days		122 km Circular Orbit (Minimum of 61% lighting)
Deorbit Maneuver		30 m/s	
Deorbit Coast	51 min		122 x 15 km Orbit
Descent and Landing	9 min	1820 m/s	
* Does not include provisions for dis	persions and perfor	mance reserves	
Lynn Wagner/ET3/x33816		Sys	tems Engineering Division

NASA Johnson Space Center -

COMMON LUNAR LANDER ALTERNATE TRAJECTORY

- SCENARIO
 - •• 90° Inclination Orbital Plane required
 - •• 122 km. Circular Orbit
 - •• Approximately 90° or 90° Ascending Node location at LOI
- ADVANTAGES
 - •• 100% light during entire lunar orbit
 - •• Minimum batteries needed during lunar orbit coast
- DISADVANTAGES
 - Solar Panel shadowing may occur during translunar coast and maneuver/IMU realignments
 - •• Launch Windows occur once or twice a month
 - ••• The landing site determines which opportunity is valid based on the maximum lunar orbit loiter time
 - ••• The lighting constraints allowable are sunrise and sunset
 - Launch Window duration is estimated at 2-3 days at most

Artemis

