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ABSTRACT

NASA has a long range goal of constructing a fully equipped,

manned lunar base on the near side of the moon by the year 2015. During

the Apollo missions, lunar dust coated and fouled equipment surfaces and

mechanisms exposed to the lunar environment. In addition, the atmosphere

and internal surfaces of the lunar excursion module were contaminated by

lunar dust which was brought in on articles passed through the airlock.

Consequently, the need exists for a device or appliance to remove lunar

dust from equipment and finished surfaces. Five concepts were investigated

to determine their effectiveness in removing lunar dust from surfaces of

material objects used outside of the proposed lunar habitat. Additionally,

several concepts were investigated for preventing the accumulation of lunar

dust on mechanisms and finished surfaces.

The character of the dust and the lunar environment present unique

challenges for the removal of contamination from exposed surfaces. In

addition to a study of lunar dust adhesion properties, the project examines

the use of various energy domains for removing the dust from exposed

surfaces. Also, prevention alternatives are examined for systems exposed to

lunar dust.

A concept utilizing a pressurized gas is presented for dust removal

outside of an atmospherically controlled environment. The concept consists

of a small astronaut/robotic compatible device which removes dust from

contaminated surfaces by a small burst of gas.
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1,0 INTRODUCTION

The National Aeronautics and Space Administration conducted

several exploratory missions to the moon during the period from 1969

through 1973. These missions, known as the Apollo program, resulted in

the accumulation of an enormous amount of data pertaining to the

composition and geology of Earth's only natural satellite. During the

course of these information gathering missions, the astronauts observed

that the layer of dust covering the surface of the moon exhibited a high

affinity for material objects. Items such as the space suits, hand tools,

optical equipment and mechanical equipment with moving parts were

representative of the objects the lunar dust adhered to quite readily. This

layer of material, known as the lunar regolith, produced numerous

unforeseen problems during the Apollo missions. Most notably, the dust

impaired the proper operation of seals and lubricants used on various

mechanisms and also ffccumulated heavily on exposed optical surfaces. In

addition, the atmosphere and internal surfaces of the lunar excursion

module were contaminated by lunar dust which was brought in on articles

passed through the airlock.

It is anticipated that the United States will begin construction of a

lunar base by the turn of the century. Establishment and operation of this

base will result in repeated and continual exposure of equipment and space

suits to the lunar surface. As a resuR of the large scale dust contamination

which is anticipated during construction and operation of the base, an

urgent need exists for a device or system which will effectively clean lunar

dust from material surfaces without altering the quality of the surface

finish.

The objective of this project was to design a system or a device

which will effectively remove lunar dust from material surfaces in a zero

atmosphere, one-sixth gravity environment. Due to the number of different

materials and surface geometries encountered in this project, it was

necessary to narrow the scope of the task to make it more tractable for a

one semester design problem. The scope of the project was restricted to the

design of a device which is capable of removing lunar dust from delicate

optical surfaces such as camera lenses and mirrors. This particular material

surface was selected for study because of its inherent delicate nature. A



design capable of successfully removing lunar dust from optical surfaces
without altering the operational capabilities of these devices may be

extended to cleaning other devices where surface finish is not of great

importance. This would include space suits, painted surfaces, and

mechanical equipment with various moving parts.

This report sets forth the general project requirements, the

environmental constraints which the conceptual design must satisfy to

achieve the intended function, a description of alternative designs using

various energy domains, and provides a detailed description of the final

design solution. The conclusions and recommendations section provides

information for extending this work beyond the current scope of the

project.

1.1 Proiect Reouirements

Three main requirements governed this project:

1. Characterize the use of various energy domains for achieving the

aforementioned goals in a one-sixth gravity, zero atmosphere

environment.

2. Design a device or system which will be capable of removing

lunar dust from optical surfaces without altering the surface

finish.

3. Propose methods of preventing lunar dust from accumulating on

finished surfaces.

1,2 Design Specifications

A detailed list of the design specifications for this project is given in

Appendix 1. The following section on the lunar environment details some

of the important aspects pertaining to this project.
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1,3 Lunar Environment

The lunar environment will present unique circumstances and

constraints that the final design solution must satisfy to achieve its intended

function. The primary objective of the project is to design a device for

removing lunar dust from optical surfaces in the harsh lunar environment.

Therefore, it will be necessary to ascertain the characteristics with which

the device must contend. The following information provides a description

of the lunar environmental aspects which must be considered for designing

dust removal equipment.

1.3.1 Temperature

The temperature on the lunar surface varies over a wide range of

values. Daytime temperatures, which occur when the sun's rays are directly

incident on the lunar surface, approach 384 K (232 °F) in the equatorial

regions of the moon. Lunar night temperatures are as low as 102 K (-276

°F). Temperature extremes on the order of 44 K (- 380 ° F ) are possible in

the permanently shadowed areas near the lunar poles [41].

Problems commonly associated with high temperatures of the lunar

day include severe outgassing of materials and lubricants and large strains

due to thermal gradients which exist between sunlit and shaded sides of

equipment [41]. Outgassing occurs when the temperature of a material

object is high enough to produce evaporation of some of the molecules.

This promotes rapid degradation of the material characteristics. Any

equipment reliant on lubrication and seals must be carefully designed so

that the lubricant does not evaporate and increase the frictional

characteristics and hence the power requirements of the device. Also, as

mentioned previously, thermal gradients arise from the differential heating

between the sunlit and shaded sides of exposed surfaces. Materials which

possess a low coefficient of thermal expansion should be considered for this

situation in order to minimize thermal strains.

Low temperatures produce embrittlement of certain materials [41].

This will result in component failure at a smaller value of stress than

normally anticipated because of the reduction in ductility. This condition

3



must be accounted for when selecting materials for fabrication of the

device. Materials which exhibit favorable characteristics in a cryogenic

(extremely low temperature) environment will be suitable for such

applications.

1.3.2 Vacuum

Since the moon is absent of any significant atmosphere, pressure

generally ranges from 10 -6 to 10 "10 Pascals, which is a near perfect

vacuum [41]. The main problems associated with the lunar vacuum are

similar to those previously mentioned with high temperatures, namely
/.

outgassing. Outgassing occurs because of either extremely high

temperatures or very low pressures. Vacuum conditions destroy surface

films which are normally present on physical objects in a terrestrial

environment [41]. Surface films on material objects are due to gases,

vapors and oxides present in the Earth's atmosphere. Since the moon is

void of an atmosphere these surface films do not exist. This increases

surface friction between moving parts. As a result, equipment design must

account for the possibility of outgassing and should therefore require a

minimum number of components susceptible to this type of degradation.

1.3.3 Gravity

Gravity varies in magnitude over the entire surface of the moon. By

and large, the acceleration due to gravity on the moon is taken to be one-

sixth the value experienced on Earth [46]. Although physical objects will

weigh less on the surface of the moon, care must be taken to minimize the

mass of equipment because inertial effects remain the same as on Earth.

1.3.4 Micrometeorites

Micrometeorites are high velocity, low mass, microscopic cosmic

particles which collide with material objects present in the lunar

environment. Particle mass ranges in value from 10 -7 to 10 -4 grams and

have an average speed of 20,000 meters per second [41]. These high

velocity impacts will produce pitting of exposed surfaces which could lead
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to premature equipment failure. While micrometeorite impact is not as

frequent as it once was, destruction of exposed surfaces is still possible.
Information obtained from the Surveyor 3 experimental spacecraft
indicates that the micrometeorite flux received on the moon may be great

enough to impair operation of optical equipment [14]. Design of equipment
to be used outside of the lunar habitat should include protection as a

precaution against micrometeorite impact.

1.3.5 Lunar Regolith

The surface of the moon is covered with a layer of meteorite

generated debris known as lunar regolith. The regolith consists of a

mixture of poorly sorted fragmental debris that ranges in size from very

small particles to large rocks 0.8 meters in diameter. Surface regolith is

porous and weakly coherent. It is relatively easy to trench to depths of

several centimeters and is easily disturbed by kicking or walking [41].

Dust on the lunar surface behaves differently than terrestrial dust

because of the lack of an atmosphere. Dust is not stirred up and carded by

wind currents as on Earth and as a result remains stable unless dislodged by

kicking or micrometeorite impact. If lunar dust is dislodged from the

surface of the moon, the particles will remain spaceborne for a longer

period of time [41]. This is due to the lack of an atmosphere and to the

reduced lunar gravitational attraction. Consequently, the dust travels longer

distances and has more opportunity to make contact with material surfaces.

Therefore, the device should be designed so that it is not susceptible to

contamination also.

1.3.6 Summary

The lunar environment presents many challenges and obstacles which

must be addressed in designing equipment for lunar dust removal. Device

configuration, sealing mechanisms, and material selection are all of great

importance to the durability and effectiveness of the equipment. Attention

to detail must not be sacrificed for the sake of simplicity in the final

analysis. A feasible working solution which satisfies the aforementioned

constraints is presented later in this report.
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2,0 LUNAR DUST CHARACTERISTICS

The characterization of the lunar dust is the first step in the search

for the solution to the dust adhesion problem. The energy required to

break the adhesive bond of the dust to various surfaces is dependent on the

dust properties as well as those of the surfaces to which the dust adheres.

This section of the report will characterize lunar dust in terms of

composition, morphology, and electrostatic charge. In addition, some

empirically derived estimates of dust adhesion forces will be discussed.

Much of this information is from the results of the "Analysis of Surveyor 3

material and photographs returned by Apollo 12". [15., 38., 44., 49.]

The composition of the lunar dust has been determined through

electron microprobe analyses of samples obtaine4by mean of a cellulose

stripping technique. Robertson et. al. [44., pp. 29+] report on the results

obtained through analysis of samples taken from the surface of Surveyor

3's clear television camera filter, while Carr and Proudfoot [15., pp. 46+]

report on those from the surface of a Surveyor 3 mirror. The results of
the studies of Robertson et. al. and Carr and Proudfoot indicate the

following average composition of the lunar dust:

SiO 2 39.0 %

FeO 15.8

CaO 17.3

A1203 19.8

TiO 2 2.6

MgO 3.2

K20 0.7

Cr203 0.06

S 0.3

ZnO 2 0.07

The silicon, ferrous, calcium, and aluminum oxides make up over 90% of

the average composition, silicon being the prevalent element. The glassy
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composition of the dust accounts for its highly abrasive character. Since

the ferrous content is only a small percentage of the overall average

composition, the magnetism of the dust is insignificant. Robertson et. al.

report that these results for average composition are consistant with

previously examined lunar fines and soils. The microprobe data of
Robertson et. al. also showed variation among individual dust particle

compositions indicating that the particles are mixtures of more than one

mineral. [44., p. 45]
The morphology of lunar dust particles was studied with X-ray

diffraction by Robertson et. al. and with electron microscopy by Carr and

Proudfoot. In general, the shapes of dust particles have been described as

'uniquely shaped', 'fine grain angular fragments', 'spherical', and 'rodlike

with bulbous ends'. [38, p. 9, A., p. 34] Scanning electron microscope

microphotographs (from Robertson et. al.) in Figure 2.0-1. illustrate some

of the typical irregular shapes. In addition, the X-ray examination of

individual particles, performed by Robertson et. al., indicates that "... the

majority of the particulates are complex mixtures of more than one

crystalline phase and not merely micrometer-sized pieces of single-phase

materials." [44., p. 45] They conclude that the most likely source of the

dust is the lunar breccia. A breccia is a coarse-grained, clastic rock,

composed of angular broken rock fragments held together by a mineral

cement or a fine-grained matrix; lunar breccias are, in part, the result of

crushing and grinding associated with meteorite impact. [2.,56.]

The overall range of particle sizes is approximately 0.2 microns to

40 microns. The size range for dust samples taken from the Surveyor 3

television filter were spread over a range of 2 to 40 microns, with about
90% of the visible material at less than 10 microns. 90% of the size range

for the samples taken from the Surveyor 3 mirror are in the range of 0.3

to 3 microns, with 'very few' particles greater than 4 microns. Carr and

Proudfoot report that spherical particles from the mirror, as opposed to

the fine grained angular fragments, tended toward a smaller size range,

with the majority at 0.2 micron diameter. [15., p. 47+] The surface finish

for optical surfaces is on the order of the size of the smallest particles at

0.1 to 0.2 microns. It is these smaller particles that will adhere more
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Figure 2.0-1: Scanning electron microscope photomicrographs of

typical dust particles, a.) 2,000 X, b.) 4,000 X,

c.) 15,000 X, d.) 15,000 X

from Robertson, et. al. "Characterization of dust on clear filter

from returned Surveyor 3 television camera" [44.]
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strongly because of a greater contact area to particle mass ratio. The

'smooth' surface of the spherical particles may also allow for more contact

area per particle between the particle and the surface to which it adheres.

In fact, Scott and Zuckerman, in their analysis of the Surveyor 3's soil

sampler scoop, found that the spherical particles adhered more strongly

than the jagged, angular fragments (removal with a vacuum from painted

surface). [49.,p. 114]

Electrostatic charging of the lunar dust is accomplished by the solar

wind. [56.] The emission of photoelectrons from the surface of the moon,

due to solar radiation, produces electric fields which levitate the charged

dust particles 2cm above the lunar surface. The electrostatic lifting of

these particles is aided by their 'high' resistivity and extreme retention time

of charge. [27.,p.546] The 1/6 g environment and the large surface to

volume ratio of the particles insure that the electrostatic surface forces will

dominate body forces. The vacuum environment of the moon results in a

lack of surface films (gases, vapors, and oxides) which coat soil particles

on Earth. The strong adherance of the dust to surfaces is due to the lack of

these films that normally act to lower surface energy. [41., pp. 6,20,25]

As determined from the analysis of the Surveyor 3 surface soil

sampler scoop, the order of magnitude of dust adhesion is dependent upon

the surface to which it adheres. Scott and Zuckerman estimate that the

adhesive strength of dust particles to a painted surface is on the order of

689.4 Pa (0.1 psi), while their adhesive strength to metallic surfaces is in

the range of 68.94 to 689.4 Pa (0.01 - 0.1 psi). [49., p. 114] In the

"Summary and conclusions" section of the Analysis of Surveyor 3 material

and photographs returned by Apollo 12, Nickle and Carroll report the

adherence strength of dust to Teflon surfaces is between that of painted

surfaces and metal surfaces. [38., p.10] Therefore, it is assumed that, as

the surface finish becomes smoother, the adhesive strength between the dust

and the surface decreases. This implies that the adhesive strength of dust

on polished optical surfaces is smaller than that on the aforementioned

surfaces.

9



3,0 ALTERNATIVE DESIGNS

3,1 Prevention

All support equipment for moon base which has the possibility of

being exposed to the lunar environment, directly or indirectly, must

consider the existence of the lunar dust in its design. Although removal

may not be required in some cases, the cleaning task will play a major role

in the allocation of crew time and equipment maintenance if prevention

measures are not taken. In addition, many items are difficult to clean due

to their geometry, scale, surface properties, operating condition, and

location. Also, the safety of the crew should not be dependent on regular

performance of lunar dust removal from equipment and surfaces.

3.1.2 Prevention Alternatives

Prevention alternatives exist in both hardware and operation design

for all systems exposed to the lunar dust. Areas of particular interest are:

• Large surface areas (solar arrays, thermal radiators)

• Optical Equipment (windows, lenses, mirrors)

• Extravehicular Mobility Unit (spacesuit, portable life support)

• Mechanical Systems (lunar rovers, robotics)

• Interfaces (tools, connectors)

These areas were grouped according to the mode in which lunar dust

contamination presents the greatest difficulty to their operation. In the

following discussion, concepts are presented for the prevention of

problems associated with exposure to the lunar dust environment.

3.1.2.1 Large Surface Areas

Large areas such as solar arrays and thermal radiators present a

large and possibly critical problem for lunar dust removal [22 pg. 74]. For

these surfaces the layer of dust present on the surface will decrease the

system's efficiency approximately linearly with the amount of
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contamination present [6 pg. 91-96]. All such large surface areas should be

designed with a polished outer surface to minimize the adhesion of the dust
to the surface and help prevent excessive accumulation. In addition, a

polished surface will greatly aid the cleaning task should it be necessary.
Since complete removal or prevention of dust on these large exposed

surfaces is not possible, all thermal radiators and solar arrays must be

designed and sized to account for the loss of efficiency due to the lunar dust

layer. This will add another predicted efficiency loss in addition to the loss

of efficiency accounted for due to radiation damage [34 pg. 301-305]. In
addition, due to the high mobility of the dust and ease at which it becomes

spacebome, operations in the vicinity of solar arrays and thermal radiators

should be planned in order to provide the least amount of dust exposure to

these mission critical systems.

3.1.2.2 Optical Surfaces
Surfaces such as mirrors, windows, and lenses pose a unique

problem for lunar dust removal due to the delicate surface finish which
must be preserved. As previously discussed in section 2.0, the hardness

and sharpness of the lunar dust crystals prevents direct mechanical removal

of the dust particles from optical surfaces. Although dust adhesion to

highly polished surfaces is low relative to other exposed surfaces, repeated

cleaning and direct contact between the dust and surface should be avoided

to prevent damage. As a result, a prevention method should reduce the

possibility of dust particles coming in contact with the polished lens
surface.

During Apollo 12, astronauts inspected the Surveyor III which was

in close proximity to the Apollo 12 landing site. As previously mentioned,

a mirror of the Surveyor was completely obscured by the lunar dust

disturbed by the landing of the Apollo spacecraft. In general, the primary

source of lunar dust mobility is disturbances due to man-systems activities.

Therefore, a major role of dust accumulation prevention is to protect

optical surfaces from the sources of lunar dust disturbances.
For optical systems which do not require continuous coverage of

critical operations, an automated iris may be used. The iris would be
closed at times when the view provided is not needed, particularly at times

when a local disturbance is generating moving dust [13 pg. 278-287]. In
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essence, the iris serves as an automated lens cap. This has the disadvantage

of creating another possible failure mode for the camera. Another

possibility would be to use orientations of the optical surface which avoid

the possibility of the dust settling directly onto the surface. Specifically,

orientations which face away from the gravity vector of settling lunar dust.

For optical systems which must provide a continuous view of

operations, sacrificial surfaces may be used to mask the critical optical
surface. Sacrificial surfaces would consist of thin clear layers of material

placed directly over an optical surface. Once an outer layer became
sufficiently coated with contamination, it would be removed to reveal a

new sacrificial surface layer. Suggestions for the use of sacrificial surfaces
can be found in volume 11 of the Man-Systems Integration Standards [33

pg. 48-55]. Some disadvantages of sacrificial surfaces are the probable
reduction in optical quality, disposal of the spent protection surfaces, and

crew time required to conduct regular maintenance.

3.1.2.3 Extravehicular Mobility Unit (EMU)

The EMU consists of the spacesuit, portable life support system, and

any associated support equipment. Primarily, the cleaning difficulty of the

EMU is determined by the contamination requirements of the lunar habitat.

This results from the need for the astronaut and any associated equipment

to pass through the airlock. For instance, during the Apollo missions a

significant amount of lunar material was brought into the lunar excursion

module during and following each EVA. Although the astronauts

attempted to remove as much lunar dust as possible from the suits with a

brush before entering the airlock, a very significant amount of material

remained in the folds and crevices of the EMU. In addition, the sharp

edges of the dust easily interlocked with the suit outer material [3 pg. 165].

It is apparent from the requirements for a lunar surface EMU that

current suit technology will need to be updated to maintain EVA capability

during the long duration lunar base mission. The intensive maintenance

schedule, long pre-breathe and donning time, and restricted mobility of the

current EMU derived for Space Shuttle would greatly limit the lunar

crew's ability to perform planned and contingency maintenance. As a

result, NASA has been developing hard-suit technology for the lunar

outpost as well as Space Station missions [42 pg. 91].
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The hard-suit consists of a hard outer protective shell and pressure

wall as opposed to the current fabric pressure suits. In the area of

prevention of lunar dust contamination, the hard-suit provides a smooth

and somewhat polished outer surface for reduced adhesion of the lunar
dust. In addition, the lack of a fabric outer surface helps prevent

interlocking of lunar dust particles to the suit surface. A potential problem

with the hard-suit is the fouling of mechanical bearing seals with lunar

dust. The hard-suit derives its flexibility from the bearing seals rather than

the fabric joints of conventional suit technology. One possible solution is

the use of disposable covers located over critical or hard to clean areas of

the EMU. A problem with this alternative is the disposal of the used
contaminated covers.

In addition to new hardware possibilities, some operations solutions

may be helpful to prevent lunar dust contamination; specifically,

minimizing the time crewmembers are exposed to the lunar environment.

Although reducing the number of EVAs performed would proportionately

reduce the amount of material brought into the airlock on the surface of

the EMU, other reasons exist for limiting EVA time. Crew safety is the
ultimate benefit of reduced EVA time, in addition to concentrating crew

time on specific mission goals. As a result, advanced automation which

remains in the lunar environment might be necessary to perform planned
routine maintenance.

3.1.2.4 Mechanical Systems

A variety of mechanical systems will be exposed to the lunar dust

environment. Equipment such as manned and autonomous lunar rovers

and robotic systems will present the difficulty of keeping lunar dust from

abrading critical moving parts. Fortunately, mechanical systems have been

tested in previous lunar experience; for instance, the Apollo lunar rover.

Beyond sealing critical moving parts, the true challenge of prevention will

be in preparation for maintenance. The area of primary concern is the
interfaces which must be mated and unmated during maintenance in the

lunar environment. These interfaces are discussed in the following section.
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3.1.2.5 Interfaces

A primary source of mechanical interfaces is derived from the

maintenance of systems outside the lunar habitat. Devices such as fluid and

electrical connectors, tools, and replacement parts will need to be directly

interfaced with surfaces exposed to lunar dust. The current EVA Catalog

contains an array of tools and equipment which have characteristics which

would inhibit their use on the surface of the moon [53 pg. T-27].

Particular problems exist with threaded fasteners, pip-pins, velcro, and

connectors. Equipment of these types have complex geometry and delicate

mechanisms which are exposed to direct contamination with lunar dust.

Extensive planning on tool designs and interfaces will be needed to permit

reliable maintenance operations.

3.1.3 Prevention of Dust Accumulation on Lenses

In this section, a concept for preventing dust accumulation on the

surface of lenses is explored. The concept is based on the lens cleaning

problem associated with cameras and vision systems. Two of the ideas

from the previous section discussing the prevention of dust on lenses are

used; the automated iris and sacrificial surfaces.

A concept for a camera lens protection system is shown in Figure

3.1.3-1. The protection system consists of a cartridge which provides both

a clear sacrificial protective cover and an automated iris. The clear Lexan

protective cover is spooled across the lens after a sufficient amount of

contamination accumulates and precludes clear vision. The automated iris

on the cartridge remains closed when the camera is not in use, and is

opened by activation of the camera. During operation, the cartridge is

attached to the front of the camera shown in the figure. The entire system

is packaged as a cartridge to facilitate maintenance by either a crewmember

performing an EVA or an end-effector of a maintenance system.

3.1.3.1 Operation

The system is proposed to operate either autonomously, by

crewmember at a control station, or by an astronaut conducting an EVA.

a
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Figure 3.1.3-1: Lunar dust prevention cartridge and camera

Automatic lens covers have been used on previous space missions [13

pg. 278-287]. Essentially, the iris is provided to protect the lens and Lexan
cover from lunar dust and other contaminants while the camera is not in

operation. When the camera is activated the iris opens automatically. As

shown in Figure 3.1.3-1, an EVA iris lever is provided to manually close

the iris in the event of system failure or activity in close proximity to the

camera. The iris has the disadvantage of providing an additional failure

point to the camera system; as a result, it is integrated as a part of the

replaceable protection cartridge.

The clear Lexan protective sacrificial surface is incorporated into a

film spool system very similar to a standard 35rnm still camera. Lexan

was chosen due to its scratch resistance, optical properties, and proven

performance on previous space missions. In addition, since Lexan does not
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outgas, it does not provide its own source of contamination [4 pg. 4.108].

The sacrificial surface serves to protect the lens from direct contact with

lunar dust and other contaminants. Once the protective surface itself

becomes sufficiently contaminated, a new surface is scrolled into the

position of the old one. This operation can be performed directly by

pulling on the EVA override knob labeled in Figure 3.1.3-1, or by

activation of a DC motor located in the cartridge housing. The advantage

of having a motor is that the scrolling can be included as an additional

function at a camera control station. A disadvantage of the motor is the

additional power requirements and weight of the protection system.

Current terrestrial fully automatic 35mm camera systems (with automated

lens covers and flash systems) utilize a single 6V lithium battery and weigh

approximately 400 grams. In the past, modified terrestrial sequence and

still photographic equipment has been used on each of the Apollo missions

[Apollo Summary].

3.1.3.2 Autonomous Contamination Detection

Contamination detection for lenses and optical surfaces is an area of

intensive study for missions such as the Hubble Space Telescope and Space

Station. Currently, the strict Space Station requirements for contamination

detection are driving the state of the technology [14 pg. 138-145]. The

detection of lunar dust on optical surfaces for manned lunar base may be

necessary to permit some degree of autonomy for optical systems. Systems

such as those needed for proposed autonomous lunar rovers may not be

reachable for service by manned systems. In addition, crewmembers at

control stations may not be able to easily make qualitative decisions on the

level of contamination of a particular lens or optical surface. Research and

applications for the detection of contamination are primarily dominated by

optical devices and piezoelectrics. Measurement of thin film deposition is

commonly performed in industry by determination of the reflectance

and/or transmittance of coatings by the detection of light from an incident

infrared source [37 pg. 10-15]. Research in piezoelectrics centers on the

monitoring of surface acoustic wave mass to meet the strict Space Station

contamination detection requirements [55 pg. 189-199].

In many cases, optical systems are used to provide essential and

mission-critical information. In the event that a lens is obscured by lunar
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dust or any other contamination, the time and resources may or may not be

available to perform the maintenance action of either cleaning the lens or

removing an attached sacrificial surface. In addition, the priority of crew

safety and the great demand and expense of crew time should not be

compromised by the critical or frequent need to clean or maintain an

optical surface. As a result, a system for prevention of the obscuring of
lenses by contamination should be automated to improve mission safety and

reduce overall maintenance time and expense [21 pg. 74].

As shown in Figure 3.1.3-1, an infrared source and detector are

proposed to provide an indication of the contamination level and an

autonomous signal to scroll the sacrificial protective surface [14]. The

system would operate when the camera is activated and the cartridge iris is

initially closed. Light emitted from the infrared source is measured by the

photodetector located opposite the emitter. Lunar dust located on the
surface of the Lexan reflects a portion of the light and increases the amount

of light incident on the photodetector. Once the reflectance reaches a

predetermined threshold, the protective sacrificial surface is scrolled. The
emitter and detector are located behind the protective surface to prevent

contamination and resulting false readings.

The salient problem with the proposed system is the calibration of
the emitter and detector. The threshold of each protection system would

probably have to be set individually prior to launch. Power requirements
for infrared emitters and detectors are very low (on the order of

milliwatts), with operating temperatures of standard devices ranging from

233 K to 373 K (-110°F to +212°F) [39 pg. 3.1].

3.1.3.3 Maintenance

System maintenance is performed by direct removal and replacement

of the dust prevention cartridge. As the concept in Figure 3.1.3.3-1 shows,

side mounted latches are used to hold the system in place. The use of

latches of this type on electrical connectors has been successfully tested

with suited astronauts and telerobotics on earth [23 pg. 5].

Maintenance would begin with the crewmember on EVA manually

closing the iris located in front of the lens of the camera. This iris,

permanently attached to the camera, covers the camera lens during

maintenance and prevents any direct contamination of the lens during
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replacement of the cartridge. Next, the existing cartridge is removed by
releasing the latches and directly pulling the cartridge off of the camera. A

new cartridge is then placed in the position of the previous one. Finally,

once the new cartridge is latched in place, the crewmember opens the iris

in front of the lens. It is proposed that this maintenance operation could

be performed by either an astronaut or automation system. Following

replacement, it may be possible for the spent cartridge to refurbished with

a new lithium source and Lexan film spool.

EVA Release __ Latch

Latch

mera

Figure 3.1.3.3-1: Prevention cartridge maintenance concept

3.1.4 Prevention Summary

In many cases, lunar operations may require the use of

contamination prevention; however, the use of contamination prevention

on optical lenses has some distinct disadvantages. Primarily these are,

added weight and system complexity, as well as a probable reduction in

optical properties. The added weight may be offset by weight savings in

cleaning systems, replacement optical components, and EVA resources

required for optical system maintenance. In addition, another trade-off

occurs between the system complexity and crew time; an independent
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system of contamination prevention requires crew attention only when the

system requires replacement. The reduction in optical properties
associated with the use of a sacrificial surface must be balanced with the

cleaning requirements of a particular system, and the budgeting of crew

time and resources.

The proposed prevention system concept utilizes readily available

technology which has been tested and proven in industry and on previous

space missions. In addition, the system attempts to account fo_ the priority

of crew safety and the great demand and expense of crew time.

The contamination prevention alternatives which exist •for planned

lunar systems constitute an extremely large body of work which will add to

the operational requirements of every lunar base subsystem.

3,2 Removal

3.2.1 Electrostatic Solutions

3.2.1.1 Transportation of Dust by Electrostatics

There are many theories that explain the transportation of dust

particles, but the transportation or erosion of dust by electrostatics seems to

explain it best and satisfies all conditions. Erosion is assumed to be carried

out in two step liberation of the particle in the transportation phase and

actual transportation of the particles by the transportation mechanism.

Initially, the particles are not readily moved but when the particles

are disturbed then they can be easily transported by the transportation

mechanism. Only a small amount of particles are put in the transportation

phase to be carried away; this mechanism of carrying only few dust

particles is best explained by the electrostatic theory.

Many actions are considered responsible for the transportation of

material from the lunar surface such as thermal variations,radiation

pressure, forces arising from traces of gas and cycles of evaporation and

condensation; but all these are considered inferior and unimportant when

electrostatic phenomena is explained.

The transported dust is small in size because of degradation by

meteoritic impact. The dust is also characterised by low thermal

conductivity and low volumetric specific heat.
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Light, X-ray radiations and particle bombardment from the sun all
cause emission of secondary electrons on the surface. The emitted

electrons form a thin layer near the lunar surface and are referred to as a

plasma sheath. This sheath is carded away to the dark side of moon by

solar wind thus forming a potential difference on the lunar surface between
the sunlit and dark side.

There are two reasons for differential charging of the dust particles.

First, size variations within the particles result in varying charges in the
dust due to emission of electrons from the outermost orbit. This sets up

strong electric fields and causes dust movement. When bombarded with
electrons of sufficient energy in the form of radiation, solar radiation, the

outermost orbit of an atom in an insulator can be removed, thus making the

atom positively charged. When many atoms give out electrons from the

outermost orbit the body overall becomes positively charged. Similarly

when different particles on the lunar surface, in the same vicinity, emit

varying numbers of electrons, the particles have different charges. A

typical value of the energy to remove electron from the outermost orbit is
about 300V. This is one of the reasons for differential charging. This

electron emission sets up differential charges on the individual dust

particles.
The second reason for differential charging is local topography.

Grains on the high spots have more exposed area and tend to give up

electrons more readily. Grains in the hollows, tend to absorb the

secondary electrons from their exposed neighbours (they emit less
electrons). So the ones in the hollows are at a lower positive potential than

the particles on the higher level. The electric forces result from the

differential charges set up, and make the dust grain move and expose a

different set of surfaces. Then a new surface is set up with a new potential
for movement.

Other effects are that powders are caused to migrate downhill by

electron bombardment in the energy range of 200-800V [17].

The charging process may also cause electrostatic hopping and

gliding of the particles resulting in particle movement. Electrostatic

hopping is explained as the process in which particles acquire charge due to

the differential charging by sun radiation (solar wind) and the photoelectric

effect. The photoelectric effect is the phenomenon in which the metal plate

20



or object when exposed to radiation (X-rays or solar radiation) emits

electrons after the plate or the object is heated to a certain level. This

heating is measured in terms of electronvolts (eV). This emission of
electrons is known as Photoelectric Emission. Two such particles may then

jump apart if they are not welded, resulting in the process called

electrostatic hopping. The electrostatic hopping results in particles

moving downhill and thereby flattening the hills.

Another important process in surface transportation is electrostatic

gliding. The concept behind this is the constant emission of electrons from

the surface of moon, so the moon is at a positive potential of several volts,

surrounded by a blanket of electrons, which are in transit between emission
and return to the lunar surface [18].

This is similar to thermionic space charge. For an emission of

10E+I 1 electrons/cm**2 the space charge would be confined to about 2cm
from the surface of moon.and the potential to which the moon is raised is

about 3-30V [19]

So, when a small grain is lifted above the surface of moon for any

reason, it may experience a large force between itself and the moon

sufficient enough to cause the grain to float. If 100 electrons are

discharged from the dust grain, it would experience a force of 5"10E-9

dynes. This force is large enough to cause particles of size 1"1"10 microns
to float.

If any disturbance occurs on the lunar surface that disturbs dust

grains, such as micrometeoritic impact or electrostatic hopping, the grains
are so lifted up that they will find the potential gradient insufficient to

support them anywhere except within a thin layer above the surface. If a

particle is lifted to a height above 2 cm it will fall back to the surface with
the electric effect unable to arrest it's momentum. But if the dust had not

been lifted above 2 cm it would remain suspended in the potential field

[20].

Any slope on the Moon's surface will cause a floating particle to

glissade downhill. These particles will travel down the slope under the

action of the gravity and continue in this frictionless descent for a short

distance depending on the topography of the area. If the speed acquired is

more than the electrostatic support, the particle will precipitate down and

result in the smoothening of slopes and filling of small depressions.
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In daytime, photoemission can produce surface potentials of only a
few volts due to uniformity the of illumination and exposure to solar wind

plasma. As the sunset approaches, solar wind particles are reduced greatly

and illumination becomes patchy, thereby increasing the potential

differences between positive (sunlit) and negative (shadowed) regions.

Electric fields of 100-1000V cm-1 may be developed around the

objects. The sunlit part maintains a constant potential because low energy

photoelectrons hop along the surface making it conductive. This conductor

like effect concentrates positive charge towards the sunlit patch. The dark

areas retain all photoelectrons striking them. This results in an intense

dipole field at the sun-dark boundary. The charge density may be

intensified further by the sunset effect as the freshly darkened areas

become new sinks for photoelectrons, thereby increasing charge density

and voltage of remaining sunlit areas.

3.2.1.2 Force Analysis of Dust Particles

Lunar soil emits photoelectrons when the soil is exposed to solar

radiation. The dust particles will be levitated only when the electrostatic

force exceeds the gravitational force of attraction between lunar dust and

soil. Therefore from Appendix 2, the voltage is

V =Q/C
= 4.1 *10E4

= 1.1"10E4

volts for the parallel plate condenser

volts for the hollow cylinder condenser

and the power is calculated as

Power = 0.5 * C *(V **2 )

= 8.3 watts (parallel plate condenser )

= 2.1 watts (hollow cylinder condenser)

For the parallel plate electrostatic device the voltage or potential

difference applied across the plates of area 0.75*0.75 is about 41000V and

for the hollow cylinder type the voltage is about 11000V. If we were to

consider dust particles bigger in size, then the potential difference to be

applied would be greater. For different sizes the voltage applied is
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different and as the size of the particles increases the voltage increases as

shown in Table 1. in Appendix 2.
The voltage is very high in both the casps (parallel plate and hollow

cylinder type condenser). The means of producing this electricity in great

amounts by solar and fuel cells is not possible because voltages developed

by such cells is on the order of 200V. Even if solar cells are used in an

array the voltage developed is not as high as 1lkV. The voltage developed

by fuel cells is much lower than the solar cells. The power developed by

the solar cells is as high as 25 kW but the voltage is not as required.

Transformers to step up the voltage can't be justified because the size

is massive, the cost is very high, and losses (winding and iron ) are high

too. From a safety view, using l lkV voltages may be a big risk.

Transportability of the transformer to the moon is also a big problem

because of the massive size and weight. Disadvantages of using an

electrostatic device are it covers only a small area at a time, it may become

dust clogged after a long use, it requires a very high voltage, it may be

unsafe, the cost of the transformer is high, size and weight adds to the cost

of transport to the moon, and the source of power to be used is very

complicated. Therefore from cost, safety, weight and size, transportability

and portability we can infer that an electrostatic device is not feasible.

3.2.1.3 Lunar Magnetism

Strong magnetic fields are uncommon on the moon. The magnetic

field strength on the moon is very low, but samples were found which

show that some remnant magnetism does exist. The magnetic field strength

was once very strong, a long time back (3 aeons), but now it has weakened.

So the magnetic field present now is of very low intensity. The

composition of the dust indicates that the iron content in the soil is too

small to apply a strong magnetic field. (See Section 2.0. - Dust

Characteristics) Some of the dust samples do not contain iron at all and so

a magnetic device is of no use. It would remove only a portion of the

particles from the optical surface. So a magnetic device is considered to be

of no use in dust removal designs for the reasons stated above.
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3.2.1.4 Conclusions and Further Studies

From the analysis, it can be concluded that an electrostatic device is

not feasible with the data that is available. To get a better solution from

the electrostatic device we must have more quantitative data about the dust

charge on each individual particle. In short, the data required is charge on

the dust (with respect to size). If more data becomes available then a

possible solution might be seen since it is confirmed that dust has

electrostatic charge.

3.2.2 Fluid Solutions

As previously discussed, the rough irregular surface contours of the

dust cause strong mechanical adhesion. The jagged edges also scratch

delicate surfaces when wiped away. Thus, direct mechanical dust removal

can not be used on delicate surfaces without degrading the finish. This

section details three areas of dust removal techniques employing fluid

solutions. First, foams and gels are discussed, then liquids, and finally

gases.

3.2.2.1 Foams and Gels

The first idea considered here is the use of a chemical foaming

solution to lift dust particles from an optical surface. Once the dust is

suspended in the foaming solution, it could be removed by blowing the

foam from the surface. There are many problems implicit in this. A

chemical solution would have to be found that would be strong enough to

break the surface attraction forces of the lunar dust. Also, tests would have

to be performed to determine if the foam would leave a residue on the

surface. Another uncertainty is the concept of a foaming solution in a zero

pressure atmosphere. These questions were posed to an engineer at Space

Industries [1]. In his opinion that the zero pressure will cause immediate

evaporation and inhibit the effects of a bubbling solution. Also, the

application of foam to an optical surface would be difficult. If it was

sprayed, the solution would not adhere well the optical surface. If poured

over the surface, this method would be restricted to easily accessible

objects only. Surfaces in hard to reach places and surfaces with irregular
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contours and joints would be difficult to clean. For these reasons, foaming

solutions were not pursued any further.
The next idea was an adhesive sheet. This consists of applying sheets

of adhesive tape or flypaper to the optical surface. The sheets are then

removed, pulling dust from the surface. This process could be repeated as

many times as necessary. A major disadvantage of this idea is the disposal
of adhesive sheets. Another area of concern is whether the adhesive sheets

will leave a residue on the optical surface. More important is the interface
with an astronaut. It would be difficult to maintain a clean adhesive strip.

Some sort of backing would be needed for this purpose. Removing this

backing to expose the adhesive side of the strip and applying the strip
would be a tedious procedure for the gloved hand of the astronaut. Also,

irregular surface contours would be difficult to clean with this method.
For this reason, a variant of this idea was considered. It involves spreading

a thin layer of gel on the optical surface and waiting for it to harden. The

gel could then be peeled off to remove the dust. A suitable gel would need
to be researched for adhesive and mechanical properties. A disadvantage

of this idea is removing the hardened gel. Peeling it from the surface

would again be a difficult job for the gloved hand of the astronaut.

3.2.2.2 Liquid Solutions
Two basic ideas for the removal of lunar dust were developed in the

liquid domain. The first was a liquid rinse. A liquid would be sprayed
over the surface to be cleaned, thus breaking the dust adhesion forces. The

major problem with this alternative is the behavior of liquids in the moon's

atmosphere. If cleaning was performed during the lunar day, the high

temperatures and zero pressure would result in liquid evaporation. If used

during the lunar night, the low temperatures and zero pressure would cause

the result liquid to freeze. A frozen liquid would set up detrimental

thermal gradients on the optical surface. A boiling liquid might work, but

there are problems implicit in this. Some electrical components near the

optical surface could get wet and be damaged. Also, the liquid might wet

the astronaut's space suit after repeated cleanings. Finally, the boiling

liquid could leave a residue on the surface of the optical equipment. With

these problems in mind a variant fluid solution was considered.
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This involved placing the object to be cleaned in an enclosed fluid

bath and ultrasonically vibrating the bath. The vibrations would loosen the
dust from the object and suspend them in the fluid. This is a proven

technology on earth and is used in jewelry cleaning equipment. However,

there are several problems with this alternate. First, it requires

disassembly of any object to be cleaned. This is not a practical idea for

many of the NASA cameras or observatory windows. Second, it would be

difficult to clean large surface areas with such a device. Also, the fluid
bath would need to be pressurized to reduce evaporation. Finally, once the

object is cleaned, it would have to be reassembled without putting dust back
on it, a difficult task in the lunar environment. If this alternate were

implemented, it would be a relatively complex system that would be

awkward to transport and difficult to automate.

3.2.2.3 Gas Solutions

Considering the problems involved with a liquid alternative, some

gas solutions were considered. The cleaning method consists of blowing a

compressed gas over the optical surface. This is similar to the liquid rinse

in that the thrust of the gas will overcome the adhesive forces of the dust

on the optical surface. The suspended dust will then be pulled to the lunar

surface by the moon's gravity. There are also problems with this method.

As gas exits into a zero pressure environment, it expands in all directions.

Thus, not all of the gas will reach the optical surface. Also, once the dust

particles are removed from the surface, they could land on the cleaned
surface.

Another problem with the gas method involves thermal effects. As

the gas leaves the nozzle, it rapidly expands into the zero pressure

environment causing extreme temperature decreases in the gas. These

decreases can cause gas condensation and icing.

A final disadvantage of any gas cleaning solution is that of

environmental effects on the moon. If large quantities of gas were

discharged over a long period of time, the moon's gravity could possibly

contain the gas. This could resuk in the development of a harmful lunar

atmosphere. This possibility should be considered when designing anything
for the lunar base.
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3,3 Alternative Design Conclusions

From the inspected alternatives, a fluid solution was chosen for

detailed investigation. Although prevention must be an integral part of the

design of lunar equipment, it does not remove the requirement for a lunar

dust removal system. Further, mechanical cleaning alternatives such as the

dust brush are inadequate due to the probable damage of the optical surface

during cleaning. Electrostatics appear to be feasible yet are not practical

due to the large amount of power required, large system mass, and possible

safety problems. Of the alternatives utilizing a fluid for removal, the

compressed gas solution was chosen due to its apparent feasibility for

portability and dust removal without damage to the optical surface. As a

result, section four of the report is dedicated to detailed investigation into

this design altemative.

4,0 DESIGN SOLUTION

The design solution developed in this report consists of a gas

cleaning method introduced in the alternative design section. Either carbon

dioxide or nitrogen can be used as the cleaning medium with this design

because both of these gases contain heavier molecules; as a result, their

translational and rotational temperatures behave similarly in freejet

expansions [25]. The calculations in this report were performed using

carbon dioxide as the working gas.

The design (Figure 4.0-1) consists of two major parts: a removable

pressurized gas storage tank and a handle with the gas exit nozzles. The

handle is designed to be used by either an astronaut or the end-effector of a

manipulator arm. In order to operate the device, it must be aimed at the

surface to be cleaned within a two centimeter distance. The trigger and

handle of the device are designed for the gloved hand of an astronaut. Once

positioned, the trigger is pulled to allow gas to flow from the tank to the

gas exit nozzles. Operation of the device by a teleoperated or autonomous

system is identical to the operation by astronaut with the exception of the

activation mechanism. For a machine end-effector gripping the handle,
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Design concept for gas dust removal.

rotation of the hex drive delivers gas to the exit nozzles. On the front of

the handle, there are three nozzles in a triangular configuration with a

common focal point. The gauge on the handle indicates the remaining tank

pressure. When the gas storage tank is empty, it can be detached and

recharged. The regulator in the handle regulates the 600 psi tank pressure

to 1/2 psi. It can be adjusted by disassembling the handle. This is a safety

feature so that the astronaut can not accidentally increase the nozzle

pressure.
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The tank has two hemispherical ends. The top end meshes with the
curvature of the bottom of the handle. The bottom hemisphere will not

allow the tank to set on a flat surface, so a tank holder was designed

(Figure 4.0-2). This holder can be mounted to any convenient surface in

the lunar habitat. In addition, this holder may serve as a location for the
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Figure 4.0-2:

S Device Holder

Design concept for a device holder.
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tank during recharge, and a fixture for the tank during launch and

transport to the moon. As shown in the figure, the holder consists of a

cradle for the lower hemisphere of the tank and a clip for the front portion

of the handle. For removal, the clip must be pulled back from the handle;

for insertion, the clip automatically grips the handle as it is inserted into
the holder.

The remainder of this report is divided into two major sections.

First, the analytical design of the nozzle and tank will be explained.

Second, the embodiment design of the handle and tank will be presented.

4,1 Anitlytical Design

This section describes the nozzle design. It starts at the interaction

between the gas and the dust on the optical surface. From this evaluation, a

thrust is determined. This thrust is then used to design the nozzle(s) so that

the gas does not condense. Once the nozzle is designed, the tank pressure

and volume are determined. The stagnation temperature is used as a

reference state when studying properties of a flow that is assumed to be

isentropic. The stagnation pressure is taken as the pressure of the gas at

rest before accelerating into the nozzle (ie in tank or regulator).

4.1.1 Gas Dust Interaction

4.1.1.1 Continuum Flow

The main idea behind this design is dust removal by gas force. This

was modeled by a carbon dioxide gas plume impinging upon a flat surface

with a layer of dust adhered to it. In order to model this, the amount of

gas that reached the surface needed to be determined. As gas exits into a

zero pressure environment, it rapidly expands. The vacuum expansion

causes gas molecules to disperse in all directions, not just in the thrust

direction. At some point along any streamline in this flow, there is a

breakdown of the continuum flow model. The deviation from continuum

flow starts to occur when a "breakdown parameter" P reaches

approximately 0.05 [8 pg 681]. At values of P exceeding unity, the flow is

free-molecular. For values between 0.05 and unity, the flow is in a

transition regime between continuum and free molecular. This transition
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zone is described by angles ranging from 30 to 45 degrees (Figure 4.1.1.1-

1), measured from the flow axis [8 pg 682-685]. Thus, at angles less than

30 degrees, continuum flow can be expected. This flow is described by a

fairly constant gas density [35]. The report that this information was taken

from used thrust values ranging from 400 to 40000 newtons. However, the

design solution presented here uses a thrust value of 0.1 newtons (as
described in a later section). For this order of magnitude of thrust,

continuum flow can be expected within 15 degrees of the jet axis [8 pg

686]. Therefore, the gas within a 30 degree cone was assumed to contact

the optical surface. The gas outside of this cone was neglected in the dust
removal calculations.
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Figure 4.1.1.1-1: Continuum flow breakdown [8].
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4.1.1.2 Thrust

The amount of thrust required to liberate dust from a surface was

calculated by using the theoretical adhesion force per area (68.9 pascals
reference) of the dust to the surface and applying an assumed coefficient of

friction of unity. If the tangential force of the carbon dioxide plume

striking the dust is greater than the sum of the adhesion force and the
normal force of the plume, the dust will break free and be carded away

bythe reflected plume lobes. This analysis is similar to one performed in a
rarefied gas dynamics study [30]. The use of a coefficient of friction of

unity is assumed the worst case and calculations were performed to find the

optimum plume-to-surface angle. This angle was calculated to be 22.5

degrees from the surface. It should be noted that this angle is a theoretical

calculation using a coefficient of friction of unity and actual in- use testing

of this device will probably lead to a range of effective angles and a

differing optimum angle from surface to surface.

4.1.1.3 Scattering Lobes

Depending on the gas incident angle, the gas - dust combination

leaves the optical surface at various refraction angles. These angles are

described by scattering lobes (Figure 4.1.1.3-1). This figure shows

scattering lobes for incident angles of 30, 45, 60, and 75 degrees. As the

incident angle increases, the horizontal lobe becomes more prominent.

Therefore, a low incident angle will lift the dust from the surface more

effectively than a large incident angle and reduce the possibility of

scratching the optical surface. This corresponds well with the optimal

angle of 22.5 degrees calculated previously.

4.1.2 Nozzle Design

J

This section introduces the empirical equations used to design a

circular nozzle that will not allow the carbon dioxide to condense. The

nozzle design will be separated into two areas: condensation considerations,

and thrust variations.
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Figure4.1.1.3-1: Scattering lobes [30].

4.1.2.1 Condensation Considerations

As the gas exits the nozzle, it expands into the zero pressure

environment. In this freejet expansion, the translational temperatures of

the gas decrease so rapidly that incomplete relaxation of internal energies

occurs [57]. This relaxation is the cause of the continuum flow breakdown

discussed in the previous section [8 pg 682]. It also leads to large

temperature drops as the gas exits the nozzle. If a nozzle is not properly

designed, the gas will condense when it enters the zero pressure

environment. Condensation of the gas would set up large thermal gradients

between the optical surface (368 K) and the solid carbon dioxide (170 K)

which could damage the surface. Thus, the following section introduces a

constraint that limits condensation. However, experiments have been
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performed with condensed carbon dioxide as a cleaning solution [6]. The
condensed carbon dioxide was blown across a mirror from two inches

away and effectively cleaned a three inch diameter surface within ten

seconds. However, the mirror was held at room temperature (250 K), not
360 K.

At first, a rectangular nozzle was considered. This would provide a

larger exit area than a circular nozzle and the flow would have a more
useful shape. However, the studies that were reviewed in the area of

rectangular nozzles did not address the issue of gas condensation [7,51].

Thus, we concentrated on the design of a circular nozzle.

The first step in designing a circular jet was to choose between a

divergent or convergent nozzle. When using a convergent nozzle in a zero

pressure environment, choked flow will occur and the gas approaches sonic

flow [47]. If a divergent nozzle is used, the flow goes supersonic. A study

on freejet expansion of nitrogen stated, "Supersonic gas expansion from a

high-pressure tank into low-pressure space is accompanied by a rapid drop

of density and temperature, which is the cause of deviations from local

thermodynamic equilibrium." [50 pg 755]. This study went on to use
convergent-divergent nozzles in order to avoid gas condensation.

There are two parameters used in converging nozzles to control
condensation: stagnation pressure and nozzle exit diameter. The stagnation

pressure is measured at the nozzle inlet. In experiments using nitrogen and
carbon dioxide, a value of 240 torr mm for the product of the stagnation

pressure and exit diameter was determined as critical [31]. Above this
value, condensation will occur [48]. These studies assumed an

environmental temperature of approximately 300 K. When the lunar

environment is much cooler than this (70 K), gas condensation will occur

directly [35]. Thus, the gas cleaning apparatus can only be used during the

lunar day where the lunar temperature is approximately 378 K.

4.1.2.2 Thrust Variations

Using the empirically determined constraint (on the product of

stagnation pressure and nozzle exit diameter) in conjunction with an

analytical relation derived from the energy equation for compressible gas

flow, the exit diameter of the nozzle and the stagnation pressure were

determined. The assumptions made when using the relation from the
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energy equation are as follows: i.) one dimensional steady flow, ii.)

perfect gas, iii.) constant specific heats, and iv.) isentropic flow. The
analytical relation is, ultimately, a function of the desired thrust and

stagnation temperature. (See Appendix 3.)

4.1.2.3 Nozzle Calculations

Initially, the thrust was calculated as 50 newtons. This value was

based on cleaning a 100 square cm surface area. (See Appendix 4.) With

this value, the nozzle diameter was calculated to be 2.8 meters with a

stagnation pressure of 11.3 pascals. (See Appendix 3.) These results

would obviously lead to an inappropriate nozzle. However, they do show

that large surface areas must be cleaned in small sections in order to arrive

at a reasonable nozzle diameter and stagnation pressure. Thus, the surface

area to be cleaned was reduced to 6 square cm (1 square inch) and a thrust

of 0.32 newtons was determined. (See Appendix 4.) Using this value with

the previously explained equations gave a nozzle diameter of 18 mm and

stagnation pressure of 1777 pascals. These values appeared more

reasonable than the previous ones, but they still had a problem. The 18

mm nozzle is approximately half the width of the area to be cleaned. Since

the gas expands in a 30 degree cone, this nozzle will project gas over a

surface area larger than the 6 square cm. Thus, the thrust per area will

decrease and the surface will not be cleaned effectively. Therefore, the

0.32 newton thrust was broken into three 0.1 newton components. This

gave three separate nozzles with diameters of 6 mm and a stagnation

pressure of 5300 pascals. (See Appendix 3.) The three nozzles have a

common focal length of 2 cm and combined thrust of 0.3 newtons. They

are symmetrically placed at 120 degree angles within a 17 mm diameter

circle. This nozzle configuration will clean the 6 square cm area with an

assumed 1 second burst.

4.1.2.4 Temperature Considerations

For a given thrust, the higher the stagnation temperature, the higher

the exit temperature. Since the flow is choked, the exit velocity is sonic

and only depends on the exit temperature. So, as the exit temperature

rises, the exit velocity increases, thus, reducing the mass flow rate for the

given thrust. The operating time of the device is directly proportional to
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the mass of gas available divided by the mass flow rate. Therefore, the
lower the mass flow rate, the less gas needed for a desired operating time.

(See Appendix 7.) A plot showing the sensitivity of the operating time to

the stagnation temperature for a given available mass of gas (0.39 kg,

dependent on tank volume, pressure, and temperature - to be discussed in

the following paragraph) and a required thrust per nozzle (0.1 N) is shown

in Figure 4.1.2.4-1.
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e".m

E

.E_.
F--

Figure

6

5

4 . i . i . , . i . i • i . , . i . i • l
200 250 300 350 400 450 500 550 600 650 700

Stagnation Temperature (K)
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4.1.3 Tank Volume, Pressure, and Temperature

The mass of gas available for operation is dependent on the tank

volume, pressure, and temperature. (See Appendix 5.) Initially, a mass

flow rate (65 g/min) was determined from the thrust required and the exit

velocity (calculate with an assumed temperature). A target operating time

of 10 minutes was set, and thus the required mass of gas was determined
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(0.65 kg). This required mass along with a tank volume of .0074 cubic
meters and an assumed tank temperature were used to determine the initial

pressure inside the tank. This pressure was determined to be 6 MPa. The
tank volume was set as a maximum dependent on a maximum tank size (see

section on tank configuration). An increase in temperature will accompany

the compression of the gas, and a further increase in temperature will

occur when filling the tank at this pressure. (See Appendix 6.) Holding

the maximum tank pressure constant, but plugging the new tank

temperature into the initial ideal gas relations (used to determine the

pressure), a new mass was calculated and the corresponding operating time

. was compared to the target operating time of 10 minutes. Because the

initially assumed tank temperature (367K) was lower than that determined

from the compression and filling calculations (625 K), the mass of carbon
dioxide that can be stored in the tank is less than that initially required

(0.39 kg vs. the initial 0.65 kg). Although less mass can now be stored, the

increase in temperature inside the tank allows for a higher stagnation

temperature. The higher stagnation temperature means a higher nozzle

exit velocity and, thus, a lower mass flow rate. Refer again to the plots of

operating time vs. stagnation temperature (Figure 4.1.2.4-1). These plots
are for an initial mass, inside the tank, of 0.39 kg and a tank temperature

of 625 K. Because it has not been determined how the stagnation

temperature will be affected by the pressure drops across the regulator and

the environmental conditions, this plot serves to show the sensitivity of the

operating time to the stagnation temperature.

The energy required to fill the tank is approximately 0.0089 kWohrs.

This is a conservative estimate assuming a 60% efficient two stage positive

displacement compressor with intercooling. (See Appendix 8.)

4,2 Eml_0_liment Design

4.2.1 Pressure Vessel Configuration

The nature of the design solution selected from the available

alternatives requires the use of pressurized carbon dioxide to deliver a

thrust capable of displacing dust particles from optical surfaces. The use of

pressurized gas requires a vessel suitable for containing the working fluid.
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The following discussion is intended to provide a method of selection for a

pressure vessel configuration satisfactory for our application. The stress

analysis given in Appendix 9, which this discussion is based on, makes use

of standard design techniques for thin wailed pressure vessels. However,

this approach provides quite useful results for our immediate purpose of
vessel selection.

4.2.1.1 Assumptions

The following assumptions were used to design the pressure vessel:

• Maximum value of intemal pressure. - 5.8 MPa (841 Psia)

• Maximum value of internal temperature. - 390 K

• Radial component of stress in thin walled vessel is negligible.

• Stress concentration due to hole for valve is neglected.

• Fatigue, Creep, Stress Corrosion Cracking Etc... all neglected

• Wall thickness of material to be uniform throughout vessel.
• Wall thickness must be less than 10% of the vessel radius.

Three material alternatives and three vessel configurations were

investigated to determine the final design. The main section of the pressure

vessel is a standard right circular cylinder. Stress calculations are simple

for this geometry and it is easy to fabricate. Two basic components of

stress may be calculated for this section of the tank and the derivation is

provided in Appendix 9. The first equation relates the tangential

component of stress in a thin wailed cylinder to the internal pressure and

wall thickness. The second equation relates the meridional or longitudinal

stress to the internal pressure and wall thickness. These equations indicate

that the tangential stress developed in a thin walled vessel is twice the

magnitude of the meridional stress. Therefore, the equation for the

tangential component of stress should be used to compute the wall thickness

of a vessel for a given internal pressure.

Design of the end closures is more complicated than the design

of the tank body. Discontinuity stresses occur at the junction between the

cylindrical portion of pressure vessels and the end closures or heads.
Discontinuity stresses arise from the fact that the cylindrical portion of the

pressure vessel does not deform in the same manner as the head when the
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vessel is pressurized. Therefore, at the juncture of these components local

bending and shear stresses occur to preserve the geometry of the wall.
These secondary stresses are generally much smaller in magnitude than the

membrane stresses which occur in the main portion of the vessel. However,

they are significant and must not be neglected in the stress analysis.
Consideration of the discontinuity stress is used to determine the location

and magnitude of the maximum stress for each individual head

configuration. T_ree configurations were considered based on the
following criteria. First, the configuration should provide a large internal

volume for a given diameter and overall length. Additionally, the

configuration should produce a uniform stress distribution when

pressurized so that the wall thickness will be constant. This reduces the cost

and complexity of manufacturing the vessel.

4.2.1.2 Head Configuration

Three common geometries for end closures of cylindrical pressure
vessels are discussed below. According to the first requirement, we wish to

configure the head in such a way that the volume of the vessel is maximized
for a given diameter and overall length. Based solely on this criterion, the

vessel with flat heads is clearly the best selection. However, in order to

satisfy the second requirement, a stress analysis of the three configurations

must be performed to determine the stress distribution and efficiency of

each vessel design. The following information is purely qualitative. The

equations this information is based on is given in Appendix 9. [28]

First, consider the fiat head vessel configuration. As mentioned

previously, this configuration produces a tank with maximum volume for a

given overall length and diameter. However, the flat heads behave as

circular plates in bending when the vessel is pressurized [12]. Bending in

mechanical elements produces an unfavorable stress distribution and is
therefore used for low-pressure applications only [12]. Low pressure here

is assumed to be any pressure less than or equal to 690 KPa (100 Psia).

Since our particular application involves internal working pressures up to
5.8 MPa (841 Psia), this vessel configuration was eliminated from further
consideration.

Next, consider the cylindrical vessel with ellipsoidal heads.

Ellipsoidal heads are generally regarded as a compromise between flat and
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spherical heads. The volume of a vessel with this head configuration is not

as great as the volume of a flat headed vessel for a fixed overall length and

diameter. However, it is more favorably stressed than the flat head vessel at

all locations. The equations in Appendix 9. indicate the difference in

deformation of an element at the juncture of the head and cylinder [28].

This differential deformation is what produces the discontinuity

stress in the vessel. This deformation will be used for comparative

purposes to the hemispherical head design presented in the following

section.

The cylindrical vessel with hemispherical heads subjected to an

intemal pressure sustains the following stresses. In the cylindrical portion

of the vessel, the tangential and meridional stresses are given by equations

(1) and (2) previously derived and given in Appendix 9. The stresses in the

hemispherical heads are only 50% of the maximum tangential stress

developed in the cylindrical portion of the vessel. The difference in the

deflection of an element in the radial direction of the cylindrical portion of

the vessle and the deflection of the hemispherical head is the strain at the

juncture between the head and the cylinder. (See equations 6. & 7. -

Appendix 9.) This strain gives rise to the discontinuity stress present at the

juncture. A hemispherically shaped head experiences less strain and

consequently less stress than the ellipsoidal shaped head [28]. (See equations

8. & 5. - Appendix 9.)

4.2.1.3 Configuration Summary

The results obtained from the previous discussion may be used to

determine the configuration of the vessel. Initially, the cylindrical vessel

with flat heads was considered and deemed impractical because of the high

internal working pressure necessary for our application.

Next, several equations were referred to which provided information

regarding the strains and stresses in a cylindrical pressure vessel with

ellipsoidal heads.

Finally, identical equations were provided for a pressure vessel with

hemispherical heads. A comparison between these equations indicated that

the hemispherical heads are more favorably stressed than the ellipsoidal

heads.
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The cylindrical vessel with hemispherical heads was selected as the

best configuration for this application as a result of these findings. The

equations for computation of the maximum stress the vessel will experience

are given in Appendix 9. [12]. These equations may be rearranged to

provide information on wall thickness for a given internal pressure. An

allowable working stress is first computed as shown in Appendix 9. This

value is then used in the determination of vessel wall thickness.

The next section addresses the material selection for the fabrication

of the pressure vessel.

4.2.1.4 Material Selection

The final step in the design of the pressure vessel involves the

determination of a material which will survive in the harsh lunar

environment. Three materials were considered as candidates for this

application based on the following criteria:

• Material must possess high strength-to-weight ratio.

• Material should have good low temperature mechanical properties.

• Coefficient of thermal expansion should be minimal.

• Fatigue strength should be high over broad temperature range.

• Must be weldable for ease of fabrication.

These requirements must be satisfied in order to ensure the device

achieves its intended function.

4.2.1.5 Materials

The first material considered for pressure vessel construction was

titanium. The general characteristics of titanium are as follows.

• High strength-to-weight ratio

• Low coefficient of thermal expansion relative to other high

strength metals

• Good low temperature strength and toughness characteristics

• Good fatigue strength

• Excellent corrosion resistance
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Ti-6AL-4V titanium alloy is a high strength, low density metal used

for constructing tanks, pressure vessels, cryogenic storage vessels, airframe

forgings and jet engine components [10,36]. It has good resistance to high

temperature oxidation and good low temperature toughness. It can be easily

welded by conventional inert gas techniques. Appendix 9 shows the stress

analysis used to determine the necessary vessel thickness for an intemal

pressure of 5.8 MPa (841 Psia) [12]. The vessel thickness obtained from the

stress analysis is .27 centimeters (.107 in.). The volume and weight

calculations are also provided in Appendix 9. These values will be used for

comparison purposes in the summary of this section.

The next material considered for pressure vessel construction was
aluminum. The general characteristics of aluminum are as follows.

• High strength-to-weight ratio

• Can be surface hardened by anodization
• Excellent corrosion resistance

• Easily machined

• Good formability

• Nonmagnetic

The particular alloy considered for use in constructing the pressure

vessel is type 6061 in the T6 temper condition. This is a wrought, heat-

treatable alloy that combines the qualities of excellent corrosion resistance,

ease of fabrication and good mechanical properties [10,36 ]. The T6 temper

designation indicates that it is solution treated and furnace aged. This

increases the strength without sacrificing ductility. Appendix 9. shows the

stress calculation for a vessel fabricated from this alloy and subjected to an

internal pressure of 5.8 MPa (841 Psia) [12]. The thickness of the vessel

necessary to sustain the imposed stress is .92 centimeters (.362 in.).
Because this value of wall thickness exceeds 10% of the internal vessel

radius, thin walled pressure vessel equations are not applicable [28]. As

mentioned previously, thin walled pressure vessel theory is based on the

assumption that the wall thickness is always less than 10% of the internal

radius. Thick walled theory is necessary to compute the stresses in the
vessel. However, a thick walled vessel obviously has more mass than a thin

42



walled vessel Since the mass of the vessel is to be minimized, this material

was eliminated from further consideration.

The final material considered for pressure vessel fabrication was

corrosion resisting steel. The particular alloy was 17-7 PH, which is a

precipitation-hardening stainless steel with the following characteristics

[10,36]:

• High strength and hardness

• Excellent fatigue strength
• Good corrosion resistance

• Readily weldable using normal procedures for stainless steels
/,"

The wall thickness of a vessel for an internal working pressure of

5.8 MPa (841 Psia) is given in Appendix 9. Volume and weight calculations

are also shown and will be compared to the values obtained for the titanium

vessel to determine which material should be selected for fabrication.

4.2.1.6 Pressure Vessel Summary

The results obtained from the previous discussion may now be used

to determine which of the three materials is best suited for manufacturing

the vessel.

Initially, aluminum was eliminated as a candidate because the

strength of the particular alloy selected was relatively small. Thick walls

were necessary to sustain the internal working pressure as a result of the

low yield strength. The vessel was too heavy because of the thick walls and

so was not considered as a viable candidate.

The results for both titanium and stainless steel are shown in

Appendix 9. The wall thickness for the 17-7 PH stainless steel turns out to

be the smaller of the two values. However, because it is nearly twice as

dense as titanium, a vessel constructed of 17-7 PH stainless steel is 32.5%

heavier than a vessel made of titanium. Additionally, Ti-6A1-4V titanium

alloy has a lower coefficient of thermal expansion than 17-7 PH. This will

result in smaller thermal strains when the vessel is used during the lunar

day. Furthermore, titanium has better low temperature mechanical

properties than stainless steel.
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As a result of the aforementioned discussion, titanium is selected as

the material for fabrication of the pressure vessel. In addition to the

previous remarks concerning materials it should be mentioned that cost was
a factor in the selection process. The titanium vessel will be more

expensive to fabricate because the raw material cost more. However, the
cost to launch one pound of payload to the moon is approximately $50,000.

The extra cost of building the vessel out of titanium is easily justified under
these circumstances.

4.2.2 Handle Configuration

The aluminum handle shown in cross-section in Figure 4.2.2-1 is

based on conceptual and existing tool designs for astronaut and machine

end-effector compatibility. For the astronaut, the handle grip was

patterned after standard EVA handles which have been specifically

developed for gripping with an EMU glove. The dimensions of the

handling interface were determined from an example handle shown in the

Man-Systems Integration Standards [33]. Activation of the nozzles is

accomplished by pulling the trigger mounted in a pistol grip fashion on the

handling interface. Trigger activation was chosen due to existing tools in

the EVA Catalog which utilize this mechanism [53]. However, a safety

lock switch is provided on the surface of the handle to prevent inadvertent

activation of the trigger. The simple two position switch displays a red

color when the trigger is armed, and a green color when the trigger is

disabled.

Compatibility with the end-effector of automated systems is attained

by the incorporation of a hex drive into the lower portion of the EVA

handle. Current designs for end-effector interfaces as shown in the

Robotic System Integration Standards include the use of a parallel jaw

gripper with a central socket drive [23]. This robot gripper developed for

use on Space Station has the designed capability for gripping standard EVA

handles. The hex drive is utilized because activation of the trigger

mechanism may otherwise require development of a special end-effector.

As a result, the end-effector activates the nozzles by a rotation of the hex

drive. Consequently, the hex drive is independent of the EVA safety lock

switch provided for the trigger mechanism.
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Other features of the handle include the charge indicator, nozzle

array, recharge connector, and tank interface. The charge indicator

presents direct viewing of tank pressure at steady-state and during

discharge and recharge of tank pressure. The indicator is mounted on the

top face of the handle to allow direct viewing by crewmembers and

machine vision systems. The nozzle array is mounted to a standoff on the

upper front face of the handle. The location of the array provides a direct

view of the alignment and location of the array relative to a targeted

cleaning area. In addition, the standoff for the array is used as a recharge

connector. The connector shown is the male portion of the standard EVA

Wing Tab connector from the EVA Catalog [53]. When connected to an

active charging source, filling of the tank commences when the trigger is

pulled. The bottom of the handle is contoured to fit the radius of the tank,
and includes a threaded tank interface.

4.2.2.1 Operation

For operation by an astronaut during an EVA, the safety lock switch

located on the upper surface of the handle must be moved to the "ON"

position. This switch prevents inadvertent actuation of the gas cleaning

device. Next, the nozzle array is aimed directly at the surface to be

cleaned. The nozzles must be within two centimeters of the targeted

surface in order to get the full benefit of the gas burst. Once positioned,

the trigger is pulled to allow gas to flow from the tank to the nozzle array.

Maximum efficiency is obtained by the use of short and well positioned gas

bursts.

Operation of the device by an teleoperated or autonomous system is

identical to the operation by astronaut with the exception of the activation

mechanism. For a machine end-effector, rotation of the hex drive delivers

the gas to the nozzle array. The hex drive which is mounted central to the

robot grip point does not require the safety lock switch because rotation of

the hex drive is accomplished by a teleoperated or autonomous end-effector

with safety lock systems of its own.
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5.0 OVERALL CONCLUSIONS AND RECOMMENDATIONS

This device was designed to clean delicate optical surfaces.

However, upon design completion, it appears that the gas apparatus can be

used to clean other objects. The three nozzle design delivers 0.3 newtons

of thrust at 5120 pascals (3/4 psi) with a mass flow rate of 48 g/min. If the

nozzles were changed to a single smaller diameter nozzle, the thrust per

area would increase and the device could clean a spacesuit or painted

surfaces. However, for scratch resistant surfaces or for those surfaces

whose integrity is not critical, a brush can be used. NASA currently has a

brush for this purpose in their EVA Catalog [53]. Studies need to be

performed to determine which of these cleaning methods is more effective.

The gas cleaning device also has other possible uses. Since carbon

dioxide is an inert gas and the device operates at a relatively low thrust, it

could be used as a fire extinguisher. Another possibility involves the

storage tank. It could be disconnected from the handle and used to

transport gases from the lunar habitat to remote sites.

A final consideration is areas of further study. The nozzle

configuration is constrained by condensation effects. As technology

progresses, slit orifices need to be considered because they might deliver a

larger thrust per area than a circular orifice.

Also, two analyses conceming the tank need to be considered: fatigue

and thermal. When the tank is in the lunar habitat, it is at approximately

atmospheric pressure. As it is brought into the lunar environment, the low

pressure induces a stress in the tank. Over time, this cyclic stress might

cause fatigue damage to the tank. Additionally, there are stresses in the

tank due to adverse thermal effects. The temperature difference between

the shadow side and the light side of the tank can be as high as 250K. This

causes thermal cycling of the gas in the tank and thermal stresses in the

tank walls. A thermal insulation is suggested to overcome this problem on

a temporary basis. However, further research might suggest that a

heating/cooling system is needed for the tank.

Another important area of the design of the dust removal device,

which has not been covered by this project, is a failure modes effect

analysis. It is important to determine the 'weakest link' of the design, and

the effects of failures of each component on the overall system. Such an
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analysis will affect the detailed design/selection of individual components
such as nozzles, switches, valves, seals, connectors, regulator, and linkages.

The failure modes and probabilities of each component are directly related

to the reliability of the device.
A final consideration is the build-up of a gas atmosphere on the

moon (suggested earlier). The gas cleaning device disperse only small

amounts of gas during each use. Considering the size of the moon in

relation to this, it does not appear to present a problem. However, this

concept should be remembered when designing anything for use on the
lunar surface.

A possible disadvantage of the device lies in the incident - refraction

angles discussed earlier. At large incident angles, the refraction lobes

approach a horizontal scattering of the gas. This could drag dust along the

optical surface, marring its finish. When cleaning small objects with large
curvatures, the astronaut will not be able to maintain a small incident angle

over the whole surface. Tests need to be performed to determine the

amount of surface degradation due to dust particles travelling across the
surface.

Another disadvantage of the device is related to dust suspension. The

gas lifts the dust from optical surfaces and suspends it in the lunar
environment. Some of this spaceborne dust could land on the cleaned

surface. This problem will be more severe on horizontally mounted
surfaces than on vertical surfaces. A possible solution to this problem
would be to attach a flexible extension to the nozzle end. This extension

would fit around the surface to be cleaned; thus channeling the gas - dust

mixture away from the cleaned surface.
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Design of Equipment for Lunar Dust Removal and Capture

1991

Function

1. Remove accumulated dust from all surfaces, including:

1.1 External Mobility Unit (EMU) - suit
1.2 Optics
1.3 Mechanisms i
1.4 Thermal radiators

2. Remove without damage to polished or delicate surfaces
3. Remove without interference with mechanism function

4. Removal outside pressurized volumes:
4.1 EV Astronaut not required for operations - remote systems

4.2 Compatible for Astronaut or robotic operations
5. Removal inside pressurized volumes:

5.1 Removal of dust from atmosphere as well as surfaces
5.2 Disposal outside the pressurized volume - with other waste

6. Verification of cleaning function or completeness
7. Prevention of dust accumulation:

7.1 Prevent attachment of dust to surfaces
7.2 Protective covers will not interfere with mechanism function

7.3 Contain the dust to prevent reaccumulation

Ooeration
1.
2.

o

4.
5.

X year life-cycle (Long)
Reliability:
2.1 Easily maintained by an Astronaut or robotic system
2.2 Redundancy in any task critical mechanism
2.3 Dual redundancy-in any safety or mission critical mechanism
2.4 Fail safe

Low power - energy source and transmission
Passive thermal system
Low system mass

Conditions

1. Outside pressurized volumes:
1.1 Temperature gradient (-276 to 232 F)
1.2 1/6 G

1.3 No atmosphere
1.4 Dust, rock (Dust: 40-130 microns, 70 average, Large surface/volume)
1.5 Contaminants due to man's presence

1.6 External power sources
1.7 External thermal sources
1.8 Materials
1.9 Radiation

Inside pressurized volumes:
2.1 Internal pressure (10..2psia ?)
2.2 Atmosphere - composition, including other contaminants
2.3 Parts per million of dust acceptable

.



o

2.4 Power sources
2.5 Architecture
2.6 Materials

Equipment to be cleaned:
3.1 Surface temperature gradient

3.2 System dynamics
3.3 Surface properties
3.4 Location: local or remote

3.5 Thermal equipment and optics may be special cases
3.6 Covers, standoffs, or shielding
3.7 Seals and lubricants

F,r.gaa. m 
1. Safe for manned or unmanned systems internal or external to the pressurized

volumes

2. Man systems requirements base - Manned Systems Integration Standards

(MSIS)
3. Robotic system requirements base - Robotic System Integration Standards

(RSIS)

Getting it there
1. Launch mass

2. Launch loads - landing loads, emergency return
3. Packaging for launch and unloading on the surface
4. Assembly by Astronaut or robotic systems
5. Cold soak - journey from the earth to the moon, no power, no thermal

Manufacture
1. One-off items with detailed system to inspect full functionality prior to launch

2. Cost: Insignificant relative to delivery costs
3. Mock-ups and test articles required prior to delivery of the final item
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