Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

. Y
]] 323
EARLY EXPERIENCES N92- 194‘2 7

BUILDING A SOFTWARE QUALITY PREDICTION MODEL

W. W. Agresti, W. M. Evanco, M. C. Smith o

The MITRE Corporation r AL 2

Abstract

Early experiences building a software quality prediction model are
discussed. The overall research objective is to establish a capability to project
a software system's quality from an analysis of its design. The technical
approach is to build multivariate models for estimating reliability and
maintainability. Data from twenty-one Ada subsystems have been analyzed
thus far to test hypotheses about various design structures leading to failure-
prone or unmaintainable systems. Current design variables highlight the
interconnectivity and visibility cf compilation units. Other model variables
provide for the effects of reusability and software changes. Reported results
J are preliminary because acditional project data is being obtained and new
g hypotheses are being developed and tested. Current multivariate regression
models are encouraging, explaining 60-80% of the variation in error density
of the subsystems.

Introduction

A typical shortcoming of large-scale software development is the
- uncertainty concerning the consequences of design decisions until much later
! " in the development process. Greater capability is needed during the design
) activity to assess the design itself for indications that, when implemented, the
[resulting system will have particular quality characteristics. This paper
! discusses the early experiences in a research project to evaluate the quality of
Ada designs.

¥ e
.

The research objective is to test the hypothesis that Ada software
quality factors can be predicted during design. ’l'he }e:ihmcal approach is build

) ! *
- This research was sponsored by The <4]TRE Corporatﬁon under the Mission
Oriented Investigation and Experimentation (MOIE) program
- Authors' Address: The MITRE Corporation, 7525 Colshire Drive, McLean,
Virginia 22102

[~

[
.

Proceedings of the Fifteenth Annual Software Engineering Workshop,
National Asronautics and Space Acministration, Goddard Space Flight Center,
Greenbelt, Maryland, November 1930

<
vy

W. Agrestt
MITRE
Pagelof 23

e &

https://core.ac.uk/display/42814014?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

multivariate models to estimate reliability and maintainability using
characteristics of the design. The orientation to Ada is due to its prevalence
in mission-critical systems under development and its ability to serve as a
notation for software design. This role for Ada as a design language has been
recognized as American National Standards Institute (ANSI)/Institute of
Electrical and Electronics Engineers (IEEE) Standard 990-1987.

Previous research has established relationships between design or code
characteristics and quality factors {1, 2]. A recent system-level design
measure, incorporating both control flow and data flow in FORTRAN
systems, shows a strong correlation with reliability [3]. The COnstructive
QUALity MOdel (COQUAMO) is being developed to estimate software quality,
basing its estimate on the observed quality of previous projects [4].

Quality Estimation Models

Building the estimation models depends on having access to three
classes of project data:

- Design, expressed in Ada, from which design characteristics can be
extracted

- Environmental factors that influence the quality of the software but
cannot be deduced from the design artifact itself — for example, level of reuse
or volatility of changes to the software

- Data characterizing what resultad when the design was implemented,
tested, and fielded — for example, reported errors and effort to maintain the
software

The basic form of the estimation models is shown in Figure 3.
Independent, explanatory variables in the models represent architectural
design characteristics. Additional explanatory variables account for the effects
of the organization and its development process. By the error term in the
model, we will learn if we have been successful in explaining the variation in
quality factors by using design characteristics and environmental factors.

Ada Design Representation

One of the first issues we faced was developing an effective
representation from which we could extract design characteristics. Our
interest was in the static architecture of units in subsystems, not in the
arrangement of statements within a unit. We viewed the subsystem as being
composed of design units and relations as illustrated in Figure 4. Our analysis
of Ada identified several candidates to serve as design units in our structure:
program units, compilation units, and library units. All three units have
participated in our model building, but compilation units have been
particularly useful as a structural unit because they also serve as the unit of
observation for reporting errors and changes.

ae e m re e ———— s oe g

. ———— vy — e o

—

——

[[b
[] . ar 3

o ey ey

Our Ada analysis identified fifteen kinds of Ada compilation units
generic package specification, generic package body, and so on as shown in
Figure 5. The compilation units are further divided into library units and
secondary units (see Figure 5) and serve as the design unit nodes in the
graphical Ada design structures in Figure 4. The nodes are related to one
another by the design relations of context coupling, spedfication/body,
parent/subunit, and generic template/instantiation. These design units and
design relations comprise our representation of static Ada architecture. This
Ada design representation is discussed further in [S].

Software Project Data

Project data used in the analysis is summarized in Figure 6. The
twenty-ane subsystems included 2,143 compilation units. Declarations are
listed in Figure 6 because they play a key role in the hypotheses we are
examining. One of our underlying themes is that a developer does not
declare objects, types, subprograms, etc. unless they are needed. Thus, the
number and distribution of these declaraticns is of interest to us in
characterizing designs.

Our models attempt to explain variation in quality, and Figure 6 shows
our project data exhibits significant variation. The data was obtained from
the National Aeronautics and Space Administration (NASA)/Goddard Space
Flight Center (GSFC) Software Engineering Laboratory (SEL). Reliability is
measured as error density and varies in the range 1.4 - 17.0 errors per
thousand source lines of code for the twenty-one-subsystems. Maintainabfity
varied across the subsystems as 26 - 89% error corrections requiring less than
or equal to one hour to complete.

Hypoth About Desi ure

We are pursuing simple hypotheses about design decision making, the
resulting design artifact, and the influences of design on reliability and
maintainability . Figure 7 outlines an example of a general hypothesis that
excessive context coupling contributes to errors. The rationale is that greater
arc density in the directed graph in Figure 7 increases the likelihood of
introducing an error, because a greater number of relationships must be
understood.

Figure 8 expands on library unit B of Figure 7. We have found thata
library unit aggregation — a library unit and its declarative scope — to be a very
effective unit of granularity for our analysis of Ada designs. Figure 8 showsa
second level of design decision making that occurs inside a library unit
aggregation. We are interested in whether the designer has made any effort
to manage the visibility of the 103 declarations that have been imported into

W. Agrest
3 MITRE
Page Jof3

At -

LTNm e T e

S

&

unit B. By having 100 of the declarations brought in (via a "with" clause) to
the specification, they are visible throughout the other units in the library
unit aggregation, cascading through the structure. We don't know which of
these declarations are used by each unit, but we want to record their visibility
to the other units in the library unit aggregation. The measure of cascaded
imports in Figure 8 takes visibility into account: 100 of the imports are visible
to five units (=> 500 cascaded imports) and three of the imports are visible to
two units (=> 6 cascaded imports), for a total of 506 cascaded imports.

Preliminary Results of Statistical Anal

Figure 9 summarizes the variables that have been introduced into our
models thus far. Context coupling and visibility follow the example in Figure
8, while import origin records the fraction of declarations imported from
within the subsystem. Two environmental factors have been analyzed to
date: volatility captures the relative number of changes that have been made
in the subsystem, and custom code is the percentage of new and extensively
modified code used in the subsystem. Custom code is essentially the opposite
of reuse.

The preliminary model explaining variation in total error density
(Figure 10) includes the explanatory variables of context coupling, visibility,
and volatility. In this model and other similar regression analyses we have
conducted, the coefficients have the expected signs: error densities increase as
context coupling, visibility, and volatility increase.

Because of our interest in architectural design dedsions, we conducted
additional regression analyses which concentrated on errors occurring during
system and acceptance testing. Our rationale was that, by eliminating errors
reported during unit testing (and, therefore, more likely to be errors in
implementing a single unit), we were reflecting more strongly the .
architectural (inter-unit) relationships. Figure 11 summarizes a model to
estimate errors reported during system and acceptance testing. Again, context
coupling and visibility are included as explanatory variables. Now, however,
custom code is a significant factor in explaining the variation in error density.
The explanatory power (as indicated by the coefficient of determination) is
stronger for the model in Figure 11.

§ummar!

Early results in building estimation models for reliability and
maintainability are encouraging. We have developed representations for the
static structure of Ada systems using compilation units and library unit
aggregations, allowing us to test hypotheses about the effects of different
structures on reliability and maintainability . Context coupling measures
consistently figure strongly in the multivariate regression analyses we have

W. Agresd
4 MITRE
Page 4ot 3

R TR T

"—1“1

conducted. Visibility and import origin measures provide further
refinement. The models show strong effects of volatility and custom code om
reliability .

We stress the preliminary nature of the quantitative results, based as
they are on twenty-one Ada subsystems. We look forward to continuing to
explore hypotheses with additional data, leading to the development of more
robust models that can be subjected to validation.

Acknowledgement

We acknowledge the cooperation of Mr. Frank McGarry and Mr. Jon
Valett of the NASA/GSFC SEL in allowing us to use SEL data for this
research.

References

1. T. J. McCabe and C. W. Butler, "Design Complexity Measurement and
Testing," Communications of the ACM, December 1989, pp. 1415-1425.

2. S. M. Henry and C. A Selig, "Predicting Source-Code Complexity at the
Design Stage," IEEE Software, March 1990, pp. 36-44.

3. D. N. Card and W. W. Agresti, "Measuring Software Design Complexity,"
Journal of Systems and Software, March 1988, pp. 185-197.

4. B. Kitchenham, "Measuring Software Quality," Proceedings of the-First
Annual Software Quality Workshop, Rochester, New York, 1989.

5. W. W. Agresti, W. M. Evanco, and M. C. Smith, "An Approach to Software
Quality Prediction from Ada Designs,” Proceedings of the Second Annual
Software Quality Workshop, Rochester, New York, 1990.

W. Agrest
PageSef 3

LT W ™YY

!
b anais == A ot

o hcharit. at L aae b O .

ham *9

Early Experiences
Building a Software
Quality Prediction Model

W. W. Agrestl, W. M. Evanco, M. C. Smith
MITRE Washington Software Engineering Center
28 November 1990

Research Project Overview

e Objective:
- Test the hypothesis that Ada software quality factors can be

predicted during design

e Technical Approach:

Bulid multivariate models to estimate rellability and
maintainabliity

Use characteristics of the software design captured In Ada design
language

MITRE (Figure 2]

W. Agrest
.h"dﬁ

AP W T B

e e

-

-t
i

oy

Bmsanmn &
.

Basic Form of the Estimation Models

Rellablity =i'(D(:‘,Dcz,....EF‘.EFz,...la‘,az....ho‘
Maintalnabliity = fz(Dc‘,Dcz,....B“.EFz....lb‘.bz. ...)+oz
where -

nc‘ : design characteristic variasble

EF, : environmental tactor variable
a,b : model parameters

e : grror term (unexplained variation)

MITRE (Figure 3]

Representing Ada Design Structure

ADA DESIGN
DESIGN DESIGN
UNITS RELATICNS
“PARTS" BN

W. Agresd
Page Tl 3

v ey v

S oawm T

,._,,..,.._..,_-..,
* '

.'..'r:..-.-—'-—v “ee

"Parts” in Ada Static Structure

15 Compilation Unis in Ada
as Library Units (L) or Secondary Units (S)

Specificstion Body Subunit instantiation

Generic
ectege L s s L
Package L s s NA
Subprogram|| b S S L
Subprogram L LS S N/A
Task NA N/A s NA

MITRE [Figures]

Profile of Current Project Data

Twenty-one subsystems from NASA/GSFC SEL:

interactive, ground support software for flight dynamics and
telemetry processing applications
183 K non-commant, non-blank source (ines of Ada (KSLOC)

601 Library Units
2,143 Compilation Units
29,849 Declarations

Variation In dependent variables:

Rellabitity range: 1.4 - 17.0 &rors/KSLOC
Maintalnabliity range: 26 - 39 % “easy” fixes (requiring < 1 hour)

MITRE

————

Exploring Simple Hypotheses
About Design Structure

e Exampie of 2 general hypothesis: Excessive contaxt coupling
contributes to complexity which, In turn, contrutes to sfTors

e Exampie of context coupling 10 access the rascurces of lbrary units:

Notstion:
Livwry wnlt
280 g A ;u—-hm Example.
) fvom B
with B;
packsge A o
A e
D 8 enports
MITRE

Inside a Library Unit Aggregation to Show
imported and Exported Declarations

A Library Unlt Aggregation
N

(e)
Spec 100°*
—

Static Measures:

imports = 103

exports = 20
cascaded Imports = 506

W. Agrestd
i’ag’dﬁ

MR -

Model Variables

® Design Charactaristics:
- Contoxt Coupilng: # Imports/ # axpotts

- Viziility: A cencaded Imports / # imports
- Impont Origin: # Internal imports / # imports
o Envircamaental Fsctors:
- Volatlilty: & changes / # library units
- Custom Code: % hew and extensively modified code
MITRE

Preliminary Model for Reliability:
Total Errors (errtot)

o Cependent variable: TOTERRSL = efrtot / KSLOC

In (TOTERRSL) = 65 +.27In (X1) +.05In (Xz') +.27hIn (Xa)
(:36)" (.11) (-19) {-08)

)(1 = context coupling

X, = visibility adjusted R =.72
Xs = volatllity

* Standard devistion of the parameter estimate

MITRE

W. Agremd
MITRE

Page 100023

Preliminary Model for Reliability:
System and Acceptance Testing Errors (errsa)

@ Dependent variable: SYACERRSL = errsa/ KSLOC

In(SYACERRSL) = .77 +.19In(X) +.07In(X,) +.97In (X)
(.65)* (.18) (21) (24)

)(1 = context coupling
X, = visibility adjusted R’=.78
X, = custom code

* Standard deviation of the parameter estimate

MITRE

Current Research Activity

o Continue to develop process modeis and hypothesses about design
decision-making and design structures - and their retationships to
reilabliity and maintainabliity

@ Explore classification trees and other alternative analytical methods

® "CaRfor Ada Project Data™ - to test hypotheses and calibrate
muitivariate models

W. Agremd
Page l1ef23

Mg e

-y

[el] (.—-—-a
’ v

VIEWGRAPH MATERIALS
FOR THE
W. AGRESTI PRESENTATION

€22 3y

pRABY "M

Early Experiences
Building a Software
Quality Prediction Model

W. W. Agresti, W. M. Evanco, M. C. Smith
MITRE Washington Software Engineering Center
28 November 1990

MITRE

£Z)0 g1 dng

TAUW
PRy M

Research Project Overview

® Objective:

— Test the hypothesis that Ada software quality factors can be
predicted during design

® Technical Approach:

~ Build multivariate models to estimate reliability and
maintainability

— Use characteristics of the software design captured in Ada design
language

MITRE Figure 2

.

Tl a8y

RSBy ‘A

Basic Form of the Estimation Models

Reliability = f1(DC1 , DC2, ey EF1 , EF2 — a1 , a2, -)t+e
Maintainability = f (DC ,DC , ..., EF ,EF ,...|b ,b ,

2 1 2 1 2 1 2
where -

DC : design characteristic variable

EFI : environmental factor variable
a , bl : model parameters
e : error term (unexplained variation)

MITRE Figure 3

...)-i-e2

o

Representing Ada Design Structure

ADA DESIGN

N

//O\

W

7, 51 aleg
JALIN
PRy M

DESIGN DESIGN
UNITS RELATIONS

"PARTS" BIN "CONNECTIONS" BIN

MITRE |Figure 4 |

~

LRI e e B ponny oy Loane B = B VY

.....

"Parts"” in Ada Static Structure

15 Compilation Units in Ada
as Library Units (L) or Secondary Units (S)

Specification Body Subunit Instantiation

Generic
L
Package L S S
Package L S S N/A
Generic
Subprogram L S | S L
Subprogram L L/S S N/A
i‘ 4
géi Task N/A N/A S N/A

MITRE [Figures |

) L]

TALIN
a3y m

v FAE 5]

Profile of Current Project Data

Twenty-one subsystems from NASA/GSFC SEL.:

— Interactive, ground support software for flight dynamics and

telemetry processing applications

- 183 K non-comment, non-blank source lines of Ada (KSLOC)

— 601 Library Units

- 2,143 Compilation Units

- 29,849 Declarations

Variation in dependent variables:

— Reliability range: 1.4 - 17.0 errors/KSLOC

- Maintainability range: 26 - 89 % "easy" fixes (requiring < 1 hour)

MITRE

Figure 6

a4
Y1 4

—— 0

(””MMW"“’:"‘""‘?”*I”""?“I':W"‘ﬁ‘"o17"""‘1

Exploring Simple Hypotheses
About Design Structure

® Example of a general hypothesis: Excessive context coupling
contributes to complexity which, in turn, contributes to errors

@ Example of context coupling to access the resources of library units:

\ 1A | Notation:
’ Library unit
B C A | Aimports —
20 5 | 2f?°c'l'e‘calaratlons xample:
with B;
package A is
.a 7] :
gé; D E B B exporis °
B d 3 100 20 210 %aclaratlons end A;
/ o

MITRE Figure 7

-~
-

T—— NPTy -y v \aue et LR TR N LM Gt L 2 S end b M) Lo A 1ie den bt i e g

Inside a Library Unit Aggregation to Show
Imported and Exported Declarations

A Library Unit Aggregation

. ' Static Measures:
N I
Spec

| 100" # imports = 103

- # exports = 20
cascaded imports = 506

Body

Eubunltx Subunit Y}—_] 3"
T
k ISubunitZ j

k-
ég * number of declarations

061 3%y

MITRE Figure 8

N o L T T - e “ ave e = wyrgg- L
[v dhiearnati AEAR O . oo R et ath e

gy, ———y & pm— O) DR T > ——— » — —
. .

Model Variables

® Design Characteristics:
~ Context Coupling: # imports / # exports

~ Vislbllity: # cascaded imports / # Imports
-~ Import Origin: # Internal imports / # imports
® Environmental Factors:
- Volatility: # changes / # library units
-~ Custom Code: % new and extensively modified code

T 9T 3Buyg
AL
muly M

MITRE Figure 9

-

20 173%yg

E.

Preliminary Model for Reliability:
Total Errors (errtot)

® Dependent variable: TOTERRSL = errtot / KSLOC

i

In (TOTERRSL) = .65 +.27In(X) +.05In (X) +.27In (X)

X X X
N

3

(.36)*

context coupling
visibility
volatility

* Standard deviation of the parameter estimate

(.11)

MITRE

(.16)

(.08)

adjusted R’= .72

Figure 10

Preliminary Model for Reliability:
Cystem and Acceptance Testing Errors (errsa)

® Dependent variable: SYACERRSL = errsa/ KSLOC

In (SYACERRSL) = .77 +.191n (X) +.07In (X) +.97In (X)

(.65)* (.18) (.21) (.24)
X 4= context coupling
X, = visibility adjusted R’=.78
X 5 = custom code

* Standard deviation of the parameter estimate

MITRE Figure 11

<P T aly
TALW
M"M

Current Research Activity

@ Continue to develop process models and hypotheses about design
decision-making and design structures -- and their relationships to
reliability and maintainability

® Explore classification trees and other alternative analytical methods

@ "Call for Ada Project Data" -- to test hypotheses and calibrate
multivariate models

MITRE Flﬂure 12

