
Effect Of Formal Specifications
On Program Complexity And Reliability:

An Experimental Study *

Amrit L. Goelt
Department of Electrical and Computer Engineering

Syracuse University
Spacuse, NY 13244

(3 15) 443-4350
goelQsuvm.acs.syr.edu

Swarupa N. Sahoor
School of Computer and Information Science

October 16, 1990

Abstract

In this paper we p-t the r d b of an crperimatal study da-
t a k a ti asscu the improvement in program quality by uaing fonnd cpec-
ificationa. Specifications in the ooktion mrr derdopcd for a simple
but &tic wti-missile system. llae spedficltiona w a e then usai to
develop 2 versions in C by 2 p r o p u m a . h t h a set of 3 venioa in
Ada were independently developed from ; P t o d spaificltioas in English-
A compuison of the reliab'ity and complexity of the r d t i n g propans
suggests the advautaga of e g fed spdiat i~m in terrru of nnmba
of errors detected and fault avoid-

'- - the amme of thu ptoject n a provided via US Aaay -atmu no- DAXF
--il- rPd NASA-Crr~tnol NAGl-80B. / -

tPmf-, ECE d CIS - - . . . - . .
~~&Antt.o(. CIS

https://ntrs.nasa.gov/search.jsp?R=19920010192 2020-03-17T12:43:54+00:00Z

EXTENDED ABSTRACT

Specification languaga are widely accepted as a stepping stone for daign
and development of a complexsoftware system [I, 2,3,4,5]. The advantages of a
specification lauguage are often not immediately dear in tenns of program qual-
ity and reliability. Pnving an executable program correct for complex systems
is computationidly an intractable task [6]. Also "an etfective ksting strakgy
which is reliable for all programs cannot be -.onstructed" [7]. In such a setting,
formal specification languages coupled with structured design methodologies [8J
provide t streamlined appro& for software design and development.

In this experimental investigation, we study the effect of the specification
language Z (111 on program reliability and complexity. For our experiment we
hose the NASA Launch Interceptor Problcm(LIP) since it has been used ex-
kmively for several other studies in software reliability and fault tolerance. It
is a simple but realistic representation of an anti-missile system. Tne original
specifications were taken from Knight and L e v a n [12]. The LIP is a constrant
satisfaction problem, a solution to which is a decision procedure which takes a
set of input points and launch characteristics to evaluate a set of initial launch
conditions, called the preliminary unlocking matrix The procedure then e d -
uates a logical combination(the combination is decided by an input matrix) of
the initial conditions called the final unlocking vector the components of which
collectively decide if the launch signal should be true or otherwise.

The q e r i m e n t consisted of usual phases of software design and develop
ment with minor differen-. In the specification phase a set of specifica:~ons of
the requirements w a develope! in the Z notation acd was validated by other
specifiers. Several versions were developed blrgd-pp informal and formal requirc-
ments spedficaLions separately, by independent groups of programmers. For
testing, a hybrid approach [13] was developed based on functional and struc-
tu rd information about the LIP. For generating st casa, the hypothetical
launch conditions were divided into 7 relatively independent groups. The truth
vduea of one of the groups was fixed a priori, ard'an input data set was con-
structed to satisfy the ?refixed truth value, of t;..s group and the truth vdncr
of the rest wP- wmpukd against the icput set. Such manually designed test
e a ~ s were usd to kst each program. Ai: -r debugging, when the computations
of launch conditions for all the versions match, the cydomatic complexity me*
sure [9] is applid to r3mpute internal conplucity of each individual module.

Also computed are the external complexity due to the intetconneetions betweui
various modules based on "idonnotion flow" concepts [lo], and fintally the tota
system complexity as a weighted sum of internal and external complexities.

The versions based on informal requirements are found to be aftlicted with
usual problems c a d by the inherent ambiguities in the informal requirements.
However, a significant reduction was ob=rved in the number of erron detected
in the testing pbase in case of the venions based on forma reqainmenb. Fur-
ther, complexity meMuru strongly suggest that versions b a d on formal spec-
ifications are :.I complex and more reliable than thca b w d 03 informal rc-
quirements. The study also suggests that the formal specifications developed
through several succcuive stages of oper~tions refinement lend thunrelva to an
automatic modular program development(spuia1 case of a divide and conqua
technique) in an optimal way, and thus reduce the error-proneness of the p m
gram and make it more reliable.

Summary of Experimental Results

L Productivity:

Table 1 - specificatio:, development time

Version number (Totd Specification Development Time(bours)
Spec I I 47

Table 2 - pmgnam deuelopment time

IL Rel iabi l i ty (in t e r m of number of errors deieded)

Table 3 - Number of e n v r s detected during development

Verjion oumber I 'Total Program Development Time(houxs)
Cver I
Cver I1

Adaver I
Adaver I1
Adaver 111

18
38
76
73
89

Version number
Cver I
Cver 11

Adaver I
Adaver I1
Adaver I11

Total Number of E m n
3
8
8
7
4

Table 4 - Number of errors detected during testing
- -

References

Version number
Cver I
Cver I1

Adaver I
Adaver I1
Adaver I11

[l] D. L. Parnas, The Use of Precise Specification in the Development of Sofl-
ware, Proceedings of IFIP Congress 77, Toronto, 1977.

Total Number of Errors
0
7
13
11
8

(21 I. IIayes, editor. Specification Case Studies. PrcnticclIall Intcrnational,
London, 1987.

[3] C. Morgaz, B. Sufrin, Specification of the Uniz Filing System, IEEE Trans.
Software Eng., March 1984.

(41 D. Bjorncr, C. B. Jones. Formal Specification and Software Development.
Prentice-Ball International, London, 1982.

[5] C. B. Jones, 3ysten:atic Soflwan Development using VDhf, Prentice-IIall
International, 1986.

[6] D . L. Parnae, LVherr cnn ,CoJliunre be '7hi.~lt11or.llr!j 9, COM PASS-86 Confer-
ence, Wani~i~~yton, 0. C., Jl~ly II)H(I .

[7] W. E. flowden, Reliability of the Path Analysis Testing Slntegy, IEEE
Trans. Software Eng., Sep 1976.

[8] E. Yourdon, L. L. Constantine, Strucfured Design. Prentice-IIall Inc., 1979.

i9] T. J. McCabe, A Complerity Memure, IEEE Trans. Software Eng., Sep
1981.

1101 K. S. Lew, T. S. Dillon, K. E. Forward, Soflware Complerity and its Impact
on Sofiware Reliability, IEEE Trans. on Software Eng., Nov 1988.

[ll] J. M. Spivy, The Z Notation: A Reference Manual, Prentice Hall Interna-
tional, 1989.

[12] J. Knight, N. Leveson, An Erperimental Evaluation Of The Assumpiion
Of Independence In Multi-version Pmgmmming, IEEE Trans. on Software
Eng., Jan 1986.

[13] A. L. Goel, An Erperimental Investigation Into Software Reliability,
RADGTR-88-213,'Oct 1988.

VIEWGRAPH MATERIALS

FOR THE

A. GOEL PRESENTATION

EFFECT OF FORMAL SPECIFICATIONS ON PROGRAM
COMPLEXITY AND RELIABILITY: AN

EXPERIMENTAL STUDY

Amrit L. Gael1
S warupa N. sahoo2

Syracuse University
Syracuse, NY 13244

Presented at the Fifteenth. Annual Software Engineering
Workshop (SEL) held at NASAIG SFC, Greenbelt, MD,
November 28-29,1990.

Professor, Electrical and Computer Engineering and School
of Computer and Information Sdence, (315) 4434350,
goel@suvm.aasy r.edu.
Research Assistant

OUTLINE

Objectives of Study

Experimental Appraoch

Results of Experiment

Comparison with Versions from Informal Specifications

Fault Aviodance by Using Z

Concluding Remarks

A O l
Sy- Cnlv. b . -
M b d 2 a

1 .

OUTLINE

Objectives of Study

Experimental Appraoch

- LIP Problem - 2-Specifications
- Experiment Description

Results of Experiment

- Development Effort
- Size and Complexity Metrics
- Errors During Development
- Errors During "Operational Testing"

Comparison with Versiotis from I n f o r d SpetSications

Fault Avidance by Using Z

Conciuding Remarks

OBJECTIVES OF SlZTDY

Investigate the effect of using formal specifications on

- productivity
- reliability
- complexity

Compare results with versions developed from i n f o r d
specif~cations

I
I

Curren t
Experiment

i

EXPERIMENTAL APPROACH

Informal Specs -
Random T e s t

T e s t i n g

T e s t Cases

Comparison of
Results

A Gal
s m Cnh.
b 9 d 3

EXPERIMENTAL APPRAOCH

Used NASA - Launch Interceptor Problem (LIP)

Developed 2-specifications from English specifmtions of
LIP (Two independent Z specifications)

Used 2-specs to develop 3 indipendent versions in C

Each version tested for a set of 54 test cases from a previous
experiment involving LIP

Each-version executed for one million random test cases to-
simulate operational testing

LIP

Simple, but realistic anti-missile system.

Studied elsewhere* in connection with fault-tolerant and
FortradAda comparison software research

Program reads inputs which represent radar reflestions,
checks whether some prespecified conditions are met and
determines if the reflections come from an object that is a
threat and if yes, signals a launch decision

* Knight and Leveson, IEEETSE, January 1986.
God, etd, COMPSAC 87 and RADC-TR-88-213.

Global
values:

PARS.

G lo bol
volues :

EXAMPLE

Launch Intercepter Conditions

LIC 1: There exists at least one set cf two consecutive data
points that are a distance greater than LENGTH 1
apart

LIC 11: There exists at least one set of three data points
separated by exactly E and F consecutive
intervening points, respectively, that are the wcrertices
of a triangle with area greater than AREA1

2-SPECIFICATION LANGUAGE

Well known specification language developed by
Programming Research Gmup at Oxford University

Has been applied to develop specifications for several
software systems but we are not aware of experimental
results comparing it with informal approaches

2-specifications were helpful in several aspects.

Some Examples:

SOME COMMENTS ON Z FOR LIP

In resolving certain ambiguous issues

- whether two identical (x, y) pairs can belong to a sequence
of input data points

In expressing invztiant properties

- the LCM matrix is symmetric, can be easily expressed
mathematically

In exploiting the repetitiveness of certain launch conditions
which was helpfui in functional groupings for design and
testing.

- a closer look at LIC 1,s and 13 indicates that they are
reiated. We exploit the similarity by defining a
"prototype" schema, and then uskg it to define each of
these separately

Informal Specificat ion

LIC 1: There exists a t least one set of two consecutive
data points that are a distance greater than LENGTH1 apart.
(LENGTH1 20)

Formal Specification

- L I C ~ (N U M P O ~ N T S , L S I V G T H ~]
P O I N T S : seq R x R

where edist@, q) computes the distance between points p
- and q.

Expressing Requirements in the Z
Notation

Example:LIC?

.Informal Specification

5IC 7: There asists at least one set of N-PTS consecutik~
data points such that at least one of the points lies a dir
tance greater than DIST fiom the line joining the first and
last of these points. I£ the first and last points of these N-PTS
points are identical, then the calculated distance to compare
with DIST will be the distance from the coincident point to all
other points of the NPTS coasecutive points. (DIST 20)

Formal Specification

LIC7[NUMPOINTS, iVpTS, DIST)
POINTS : seq R x R
m u , crnv' : JV -4 tS
m u ' = m u @
(7 w (1 5 #{ (POINTS($ POINTS(j))p i , j : ~. .NUA~POIIYTSO
j = i + N _ F T S - l ~ 3 k : i + l . . j - l e
(~ t m p (P O I N T S (i) , POINTS(j))
A(edist(POINTS(:), POINTS(k)) > DIST))
v (y p t -mp(POINTS(i) , POI,VTS(j))
h(pdist(POINTS(i) , POINTS(j) , POINTS(k)) > D I S T)))
ADIST 2 0))

where edistb, qi computes the distance between points p
and q , pdist@, q, r) computes the perpendicular distance &om
point r to the line through p and q and p t m p (p , q) returns a
boolean value true if p and q are identical, and othexwise false

Expressing Requirements in the Z
Notation(c0ntd.)

Note that the line must be well defined, i.e, at least the points
on the line must not be identical. Obviously this is a partial
function.

RESULTS OF EXPERlMENT

SOME PROGRAM METRICS

* See Lew et a l , TSE, November 1988.

Ada Code From
Inf o m a l Specs

D E F

691 624 851 1 --

programmer

source Lines

Comment Lines

System complexity*

C-Code From
Z-specs

A n c

373 407 669

8 2 8 0 59

56 53 8 1

59 126 251

334 309 297

L

r System S has a modules, each with complexity Mi

System complexity = dZMi

Mi depends on

- Internal complexity - External complexity (measures module interrelationships)

Internal complexity

- M a e ' s cyclornatic number

External complexity

- Amount of interadion with the environment - Depends on the infomatioa content of input and oatput
parameters

Lew et a& E E ' I S E , November 1988, p p 1645-1655.

PROGRAM DEVELOPMENT EFFORT (hours)

* B used specs. developed by A

Learning 2: A - 20 hrs.
C - 21 krs.

Total

4 5

3 8

5 1

versions

A

B

D ~ v ~ ~ O P
Design Coding Testing 2-specs

6 6 6 2 7

10 10 8 10

8 6 4 C 33

Nlr'MBER OF ERRORS*

'Does not include compilation errors

A

Progranmer

A

B

C

Function
Testing
(54 TC)

0

7

0

Development and
Unit Testing

3

1

3

"Operationaln
Testing

(1 million TC)

0

0

0

Total

3

8

3

COMPARISON OF DATA FROM C AND ADA VERSIONS

We compared the effort and error data from a previous
experiment that used Fortran and Ada languages.

We do not think that our results are biased because
language dependent aspects are not under study here. Also,
the programmers in these studies were reasonably proficient
in the respective languages so that the choice of the language
should not affect o w results

. However, to enhance o w concfusions, we plan to develop C
versions from informal specifications

COMPARISON OF EXPERIMENTAL RESULTS: EFFORT A - . I ERRORS

DCUT - Development and 'Ji?it Testing

FT - Functio.1 Testing

Informal

D E F

76 7 3 8 9

5 4 4

8 7 4

13 11 8

Programmer

Effort

D &UT

Errors FT

Total

Z

A B C

4 5 32 51

3 1 3

0 7 0

3 8 3

FAULT AVOIDANCE BY USING Z

. We believe that certain types of faults can be avoided by
wing formal specifications

. Following are two explicit examples of faults avoided by
using :'or LIP*

- Cduclation of angle between x and 2x rather than betwen
0 and x

- Calculation of distance from point to line when points are
collinear and first point not between other two

" See Brilliant et al, TSE, February 1990, page 242.

FAULT-AVOIDANCE - EXAMPLE LIC 7

Consider 3 collinear points (A, B, C) as shown

Need to compute distance from B to line AC (LIC 7)

computation* from informal specs can lead to

Dist(A, C, B) = min (&st(A, B), dist(B,C))

. However, formal specifications always compute zero, the correct
result

* See Brilliant et al, TSE, February 1990, p. 242.

Use of Z specifications was clearly helpful in reducing errors
(and hence increasing reliability)

Based on a few metrics, it is also evident that the complexity
of code developed from Z was also lower

Total ef'fort involved, including learning Z and development
of Formal specifications, was comparable to the effort
involved in developing versions from informal specifications

Yet -

This experiment does not provide conclusive evidence about
the superiority of formal specification over informal ones

Further investigation necessary to explore the feasibility and
usefulness of Z for large problems

Reusability of such formal specifications also needs to be
investigated

' I .

