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ABSTRACT

Approximate solutions of static and dynamic beam problems by the p-version
of the finite element method are investigated. Within a hierarchy of engineer-
ing beam idealizations, rigorous formulations of the strain and kinetic energies
for straight and circular beam elements are presented. These formulations in-
clude rotating coordinate system effects and geometric nonlinearities to allow
for the evaluation of vertical-axis wind turbines, the motivating problem for this
research. Hierarchic finite element spaces, based on extensions of the polynomial
orders used to approximate the displacement variables, are constructed. The
developed models are implemented into a general-purpose computer program for
evaluation.

Quality control procedures are examined for a diverse set of sample problems.
These procedures include:
1) estimating discretization errors in energy norm and natural frequencies,
2) performing static and dynamic equilibrium checks,
3) observing convergence for quantities of interest, and
4) comparing with more exacting theories and experimental data.

It will be demonstrated that p-extensions produce exponential rates of conver-
gence in the approximation of strain energy and natural frequencies for the class
of problems investigated.

Sequential eigensolutions of problems utilizing hierarchic extensions allow for
algorithmic enhancements of some iterative eigensolver techniques. This study
will detail the theoretical basis for these improvements and document the result-
ing computational benefits.
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HIERARCHIC EXTENSIONS IN THE

STATIC AND DYNAMIC ANALYSIS OF ELASTIC BEAMS

1. INTRODUCTION

Finite element modeling of complex structures has become standard practice

in today's engineering environment. Analytical capabilities within the field con-

tinue to expand to the limits of current and future computer resources. Further

efforts are being expended to integrate analysis with other branches of computer-

aided design and manufacturing.

Though different in content and methodology, the engineering design process

remains literally unchanged. A problem statement is defined with respect to

goals and restrictions of the product. Design variables are identified to provide

flexibility as well as constraints for the design optimization. Models are developed

and analyzed to quantify the effects of the design parameters. Feedback from

nonengineering functions such as manufacturing and marketing may be required

during the iterative design optimization. Eventually, the design is finalized and

documented in a manner suitable for production.

From an analytical perspective, the modeling process involves interaction

between the engineer and an analysis tool. The tool provides the system response
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to any given set of design parameters specified by the engineer. The engineer is

not only responsible for specifying the iterations leading to the optimal solution

but also for ensuring that the analytical results are appropriate and correct.

Efficiency and accuracy are the two key requirements for the analysis tool.

Efficiency is necessary to allow for enough iterations to define the optimal design

within the specified time frame. Accuracy and reliability are important in ensur-

ing that the design constraints have been satisfied within some allowable margin

of error. These two requirements oppose one another. Typically, accuracy is

sacrificed in the early stages of analysis for efficient evaluation of the design op-

tions. As the final design is approached, the need for accuracy dominates that

of efficiency.

Efforts in finite element development focus on reducing the conflict between

these two requirements. Efficiency has been greatly improved with the intro-

duction of pre- and post-processing capabilities. Graphics has reduced the once

burdensome collection of printed output to a manageable level. Interactive com-

puting allows the engineer better quality control and faster access to the signifi-

cant analytical results.

Though more abstract, the reliability requirement is also being addressed.

A relatively recent analytical improvement involves the formulation of p-version
4

finite elements [lj.* Simply stated, p-version finite elements employ a sequence of

polynomials, or other functions, in generating the basis functions for a sequence

of hierarchic finite element spaces. Hierarchic spaces have the property that the

approximation of polynomial order, p, is a subset of the approximation of order,

p +1. The polynomials are typically "higher-order," implying an order exceeding

the mininmiTn required for finite strain energy.

The numbers in brackets in the text indicate references in the Bibliography.
The numbers in parentheses in the text indicate equations.
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The p-version and (conventional) h-version are special classes of the finite

element method. Errors of discretization may be reduced through systematic

refinements of the mesh (h-extensions), increases in the polynomial order (p-

extensions), or a combination of both (hp-extensions). In practice, the hp-

version of the finite element method involves the application of p-extensions

in conjunction with properly designed finite element meshes. By all measures of

performance with respect to discretization error, the p- and hp-versions provide

improved analytical accuracy over their h-version counterpart for the class of

problems considered in this research.

The p-version of the finite element method also addresses the requirement

of analyzer efficiency. The procedure for p-extension is quite automated and

can even be made to be adaptive. For problems devoid of singularities [2], the

engineer needs only to discretize the model with the minimum number of ele-

ments necessary to capture the model geometry. Extension of polynomial order

then controls the accuracy of the solution and may continue until the desired

convergence is reached. Furthermore, the generation of a hierarchic sequence of

solutions based on extensions allows for the estimation of discretization error [3].

Implementation of p-version finite elements is substantially different from

that of conventional elements. A major difference exists in the interrelationship

between the shape functions used to approximate displacements (or other depen-

dent variables) and the mapping functions used to transform any finite element

into a standard element. Conventional methods typically employ isoparametric

mapping, where the mapping functions are identical to the shape functions [4].

Thus, the true geometry of the problem may not be modeled exactly. Refinement

of the mesh concurrently improves the mapping and solution accuracy.



Mapping for p-version finite elements is essentially independent of the shape

functions. Ideally, the model must be described in geometric terms such that the

true geometry is represented even at the lowest p-levels. Mapping into standard

elements may then be achieved using techniques such as blending functions [5].

In this context, implementation of the p-version finite element method involves:

1) refinement of established pre- and post-processors to explicitly provide the

geometric representation of a problem,

2) reeducation of the engineer away from the connect-the-dots mentality of h-

version mesh generation, and

3) increase of computational costs associated with exact mapping.

In beam problems, the transition to p-version finite elements takes on a

slightly different emphasis. The engineer still desires a minimum number of

elements to capture the model geometry. Features such as taper and curvature

must be explicitly incorporated into the elements rather than be approximated

by a large number of straight, untapered elements. Thus, the formulation of new

element types is critical for p-version analyses of beam problems.

Errors of idealization must also factor into the engineer's assessment of accu-

racy. Sources of idealization errors include assumptions in formulation [6], ge-

ometry [7], and loading [8]. This concept is fundamentally different from errors

in discretization, is much more difficult to quantify, and is far too often over-

looked by the unsuspecting engineer. Yet, errors in idealization may indeed be

the major source of inaccuracy in even the simplest of analyses. Therefore, the

concept of "finite element modeling" must be replaced by an understanding of the

estimation and control of discretization errors and of the errors of idealization.
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1.1 FORMULATION OVERVIEW

Application of numerical methods to the dynamic analysis of continuous sys-

tems was borne out of mathematical necessity. Exact eigensolutions to boundary

value problems exist for a large class of relatively simple systems. Often these

solutions involve a priori simplifications of a more general formulation. Com-

plexities in geometry, loading, and/or constraints typically preclude an exact

solution, however. One is left with the realization that an approximate solution

is the only recourse for most practical engineering problems.

Various techniques have been developed throughout the history of structural

analysis for the approximate solution of dynamic problems. Two major categories

may be used to distinguish these techniques. Lumped modeling involves concen-

trating the system mass at discrete points (stations) and connecting them with

massless springs. Holzer's method for torsional vibration [9] and Myklestad's

method for beam bending vibration [10] fall within this general category. The

second category assumes a solution in the form of a finite series of known func-

tions with unknown coefficients. The latter category is by far the most common

and encompasses a wide variety of analytical perspectives. Hybrid formulations

between the two major categories also exist. The common trait among all approx-

imate techniques is that continuous eigenproblems are transformed into discrete

eigenproblems characterized by a finite number of degrees-of-freedom (dof's).

Functions used in the second category of approximate solution techniques

must satisfy certain conditions which depend on the analytical approach. For

example, comparison functions are those which are differentiable to the order of

the governing differential equation, r, over the entire domain, T, and its boundary.

Also, they must satisfy all of the prescribed geometric (kinematic) and natural

boundary conditions. The order, r, has been defined from a one-dimensional



perspective but may be generalized easily to higher dimensions. The Galerkin,

or weighting function, method as described by Meirovitch [11] requires the use

of comparison functions.

Functions which possess a square integrable derivative of order ~ over the

entire closed domain constitute the infinite E(T) space. The subset of this space,

J?(T), which satisfies only the specified geometric boundary conditions is com-

prised of all admissible functions. Comparison functions form a more restrictive

subset of the J?(T) space and, thus, are used less frequently. Energy-based tech-

niques only require the use of admissible functions; the restriction on the £(T)

space ensures finite strain energy. An energy-based formulation is used in this

research and merits further discussion.

Rayleigh's principle [12] provides the basis for many energy-based approxi-

mate solutions to dynamic problems. Simply stated:

The estimated frequency of vibration of a conservative system oscillating

about the equilibrium position has a stationary value in the neighborhood

of a natural mode. Furthermore, this stationary value is a minimum in

the neighborhood of the fundamental mode.

The simplest application of this principle, Rayleigh's energy method, results in

an estimate of the fundamental natural frequency by:

1) estimating the fundamental mode shape, ui(z), from the set of admissible

functions and assuming harmonic response,

2) computing the potential energy, V, and the kinetic energy, T, for the assumed

shape, and

3) forming the Rayleigh quotient from the maximum potential and kinetic en-

ergies, with the maxima being taken independently and with respect to time.
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Generalizing to more than one dimension poses no serious problem. In a generic

sense, the resulting computation takes the form:

1 \ 11 ~ y, — V i)EXi \A"V

where R(UI) is the Rayleigh quotient for uit wj and (UI)EX are the approximate

and exact fundamental natural frequencies, respectively, and:

Tmax s w?T*. (1.2)

based on the assumption of harmonic response. The equal condition in (1.1),

u>2 _ (ul)BX, is true if and only if u! = (UI)EX-

The Rayleigh-Ritz method [13] is a natural extension to Rayleigh's energy

method used to improve the estimate of the fundamental frequency as well as

provide estimates for higher frequencies. Rather than using a single function, a

set of linearly independent admissible basis functions, 0;(z) e E, is constructed.

The subspace, 5(n), is defined as the set of all functions which can be written in

the form:
n

• i' i '^ «w*

where Uk < i >Uk < 2 ..... Uk,n are arbitrary finite numbers. The k subscript merely

denotes the approximation of any individual mode shape with natural frequency,

wfe. Therefore, for any ufc e 5<rt):

= § {Uk}
T [K] {Uk} , and (1.4a)

, (1.46)

where [K] and \M\ are referred to as the stiffness and mass matrices, respectively,

and depend on both the problem and the 0/s. Both matrices will be symmetric



for the formulations developed in this research. Efficient storage and solution

techniques exploit this property.

The Rayleigh quotient is formed as before:

«2 = RK) - * - . where (1.5.)* I W . r ' I '

= mm R(U») >(«•»?)**. (1-56)

Approximations for the higher frequencies are obtained by imposing the (neces-

sary and sufficient) stationary conditions on the quotient:

_ n ,• - 1 2 « l i f t= 0, j — 1,2, ...,n, (1.6)
k,j

resulting in:

[[K\-u2[M\]{U} = {0}, (1.7)

where the k subscript has been dropped for simplicity. This defines the n-dof dis-

cretized approximation for the continuous eigenproblem. There are n eigenvalues

which satisfy (1.7), each with a unique corresponding eigenvector. Thus:

wjj = Afc = eigenvalues, (l-&a)

w/k = natural frequencies, (1.8i)

{Uk} = eigenvectors, and (l-8c)

Ufc = {{/k} {^} = eigenfunctions or mode shapes, for (1.8<i)

k= 1,2,. ...n. (1.8e)

Note that the eigenvectors resulting from the homogeneous eigenproblem may

only be determined to within an arbitrary multiplicative constant.



The natural frequencies computed from the discretized linear eigenproblem

provide an upper bound for the first n exact natural frequencies [11], namely:

w*>(wfe)sx. A=l,2, . . . ,n, (1.9)

provided that the natural frequencies are arranged in ascending order. If the

basis functions form a complete set such that any admissible function can be

represented by an infinite linear combination of the 0/s, then:

SW(T)-»£(T), as (l.lOa)

n -» oo; thus (1.106)

Wfc -» (wk)Ex, and (l.lOc)

«fe -» (wfc)sx- (l.KW)

In other words, the 0/s form the basis for the space of admissible functions. The

complete infinite-dimensional space contains the exact solution while the finite-

dimensional space results in an approximate solution. Again, the equal condition

in (1.9) signifies (ufc)Bx €S<n ) .

A more important result occurs during hierarchic extensions of linear systems,

when additional 0y terms are included in the approximation of ufc such that S(n) c

$(n+i) c 5(n+2) .... if wj>) and w£n+1) represent the natural frequencies from (n)-

and (n+l)-dof linear approximations, respectively, and are arranged in ascending

order, then the natural frequencies form a Sturm sequence [14]:

u,j"+1> < w[n) < «4"»> < • - - < WW < wi"*1'. (1.11)

Therefore, as n increases, the computed natural frequencies approach the exact

natural frequencies monotonically from above. The strain energy for hierarchic

linear static problems also exhibits monotonic convergence.
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Basis functions for Rayleigh-Ritz formulations are defined over the entire do-

main. For complex structures, the definition of suitable basis functions by this

method is impractical. One is led to the idea of defining such functions over a

small region within the domain and enforcing suitable displacement compatibil-

ities across the boundaries of the sub domains. This is the fundamental principle

behind the finite element approach. Basis functions for the space of admissible

functions are constructed such that they are nonzero over a small number of

subdomains. Such functions are said to have local support. The finite element

method is nothing more than a systematic procedure for constructing basis func-

tions with local support. When viewed in this fashion, the finite element method

can be formulated within the framework of the Rayleigh-Ritz method.

The assumed-modes method as described by Meirovitch [11] is . equivalent

to the Rayleigh-Ritz method in that the resulting approximate eigenproblems

are identical. However, use of the assumed-modes method provides an intelli-

gible process for including rotating coordinate system effects. The fundamen-

tal displacement assumption initially includes time as an independent variable,

namely:

. (1-12)

where the Jfc subscript as defined in (1.3) has been omitted for simplicity. The

potential and kinetic energies thus assume a time-dependent form:

, and (1.13a)

(1.136)

where ' = d/dt. In this form, the approximate differential equations may be

obtained via application of Lagrange's equation [11]:

. + ,. _!., ..... „,
dt \dq,-J dqj dq,
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where the generalized forces, R3, are derived from the principle of virtual work

but are assumed zero for the free-response solution. The resulting free-response

system of differential equations obtained by substituting (1.13) into (1.14) is:

[M]{q} + (K\{q} = {0}. (1.15)

Finally, a complex harmonic response is assumed such that:

qj(t) = Uj^, y = l,2,...,n, (1.16)

where i = >/-"!• It is implicitly understood that q}-(t) must be a real quantity

(i.e., gy(t) = &{Ujeiut}), but the substitution as specified in (1.16) will be used

throughout this text for simplicity. The resulting matrix equation is:

[[K}-u*[M\]{U} = {0}, (1.17)

which, for the same 0/s, is identical to the formal Rayleigh-Ritz result (1.7).

Note that the approximate static (<?,- = 0) problem:

[K]{US} = {R}, (1.18)

where:

{Us} = static solution vector, and (1.19a)

us(z) = {US}
T {6} = approximate static solution, (1.196)

may be obtained from the same formulation.

Using assumed- modes, a simple system subject to rotation may have energies

of the form:

, and (1.20a)

(1.206)
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where 0 is the magnitude of the rotation vector and [Ci], [Jfj], and [R^ merely

represent generic forms. Applying Lagrange's equation (1.14) and substituting

the general harmonic response (1.16) result in the free-response, complex eigen-

problem:

[[K + Ks] + w[C\ - u*[M\] {U} = {0} , (1.21)

where:

[Ks] = -na[JriJ, and (l.22a)

[C] = n[[C1]
T-[C1]]. (1.226)

Thus, rotation introduces a symmetric (as formulated) centrifugal softening ma-

trix to the system stiffness as well as a skew-symmetric Coriolis, or gyroscopic,

matrix. The Coriolis terms involve velocities, but it is inappropriate to refer to

them as "damping" terms since there is no energy dissipation. The resulting

eigenvalues are real, but the eigenvectors will be complex due to the Coriolis

coupling [15]. The corresponding static problem is:

(1.23)

where:

{Ro} = n2 {/U . (1.24)

Therefore, rotation also introduces centrifugal terms to the load vector.

Geometric nonlinearities form the basis for a large number of fundamental

stability analyses. In a generic sense, many first-order bifurcation analyses using

assumed-modes result in the eigenproblem [16]:

[[K]-X[Ka}]{UB} = {0}, (1.25)

where A is some load-dependent scale factor that must be applicable to all loads in

a multiple-load problem, [KG\ is the symmetric (as formulated in this research)
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geometric nonlinearity matrix, and {UB} is the bifurcation vector. Assuming

the basis functions are complete and n -» oo, the smallest A from the above

eigenproblem defines the critical load for the structure. That is:

AI -» (\i)Bx = A**. (1.26)

From a dynamic perspective, stability may be inferred from an eigenproblem of

the form:

[[K\ - JL[KG] - u*[M\] {U} = {0} , (1.27)

where A is a specified value of the scale factor, A. Thus, for:

A < Acrtt : (U^EX > 0, and (1.28a)

= 0. (1.286)

Geometric nonlinearities which can be characterized by a A-f actor result from

(or lead to) linear, load-related terms in the governing differential equations.

However, this often is not the case; deformations within the structure frequently

change the internal loads used to compute the nonlinear terms. Solving for the

critical load then involves a combination of incremental loading coupled with

updates to the geometric nonlinearity matrix [17].

For a large class of dynamic problems, static preloads on the structure pro-

duce significant softening or stiffening effects on the natural frequencies ([18] for

example) . These effects may be approximated by the inclusion of static geomet-

ric nonlinearities in the dynamic eigenproblem. Starting with the linear static

solution:

(1.29)
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the initial estimate of the geometric nonlinearity matrix may be computed as a

function of the linear static solution vector:

The initial nonlinear static solution may then be computed as:

(1.31)

Note that the system is unstable if the inverse in (1.31) does not exist. Further

iterations may be performed:

, and (1.32*)

fcr (1.324)

1>1, (1.32c)

until convergence is reached to some acceptable tolerance. A useful check for

convergence is defined using the strain energy:

"] [UP] , (1.33)

such that:

defines the error condition. Noting [K^] = [0] = null matrix, a zero error for t = 1

implies the system is capable of an eigensolution of the form in (1.25). Finally,

the resulting free-response for a system subject to static preload is represented

by:

{0}. (1.35)
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The geometric nonlinearity matrix no longer carries an iteration superscript.

This signifies that it is assumed constant for small vibrations about the nonlinear,

statically deformed position.

For problems involving rotation, the destabilizing effects of centrifugal soft-

ening may be canceled exactly by tensile geometric nonlinearities [19]. To allow

for this possibility, the centrifugal softening and initial geometric nonlinearity

matrices must be introduced concurrently into the nonlinear static iteration.

Therefore:

= Iff]-1 {R + Rn} , then (1.36o)

E#+1) } = [K + Ks + K^Y* {R + Rn}, for (1.38e)

t> 1, where (1.364)

The resulting dynamic eigenproblem with combined geometric nonlinearities and

rotating coordinate system effects is:

[[K + KS + KG] + iu[C\ - u2[M}] {U} = {0} . (1.37)

Observe that [Ka] is not necessarily hierarchic in the sense that the matrix

associated with the n-dof system may change when additional 0/s are included.

Thus, the Sturm sequence property for the natural frequencies (1.11) does not

apply. As n increases, the approximate natural frequencies (and strain energy)

will still approach the exact values asymptotically, but not necessarily mono-

tonically or from above. This condition is detrimental to the estimation of the

discretization error for nonlinear systems.
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1.2 SCOPE OF RESEARCH

Within the context of the previous discussion, the goal of this research is:

Establish a general-purpose, p-version, finite element capability for the

static and dynamic analysis of a large class of elastic beam problems.

The major focus of the research is to explore the ramifications of the p-version

on eigenproblems. Particular objectives pertaining to the fundamental goal are

discussed in the following paragraphs. The brief list of references included in this

introduction will be expanded as the topics are developed.

Objective 1: Develop elemental formulations for untapered, straight and cir-

cular beams in three-dimensional space with provisions for hierarchic extensions

of the polynomial shape functions. Chapters 3 and 4 detail the elemental for-

mulations. Chapter 7 addresses the construction of the hierarchic finite element

spaces for the developed formulations. Hierarchic extensions have been applied

previously to straight Bernoulli-Euler beam elements which are both untapered

[20,21] and tapered [22]. Some aspects of the hierarchic approach have also been

incorporated in straight, untapered Timoshenko beam elements [23]. Tapered

beam elements are excluded from this research but may be developed based on

the formulations presented.

Circular p-version beam elements are a new development and reflect the

desire to minimize the number of elements necessary to capture the problem

geometry. Higher-order functions have been used previously for shape functions

in static [24,25] and dynamic [26] arch problems, but not in the context of p-

extensions. An "arch" is defined for the purposes of this text as a circular beam

with displacements confined to the plane of the arc.

Objective 2: Formulate beam elements using Bernoulli-Euler, Rayleigh, and

Timoshenko idealizations. This objective addresses the need to quantify the
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errors in idealization by providing the complete hierarchy of theories for "engi-

neering" beam elements. Chapter 2 expands on the characterization of beams

and fully discusses the assumptions and limitations. The rigorous set of assump-

tions leading to the various idealizations are presented in Chapters 3 and 4.

Objective 3: Incorporate first-order geometric nonlinearities and rotating co-

ordinate system effects. The primary motivation for including static analyses

was to be able to incorporate geometric nonlinearities into the dynamic eigen-

problem. However, the static capability soon proved invaluable in verifying the

strain energy formulations and extracted engineering quantities. Complete for-

mulation of the geometric nonlinearities for three-dimensional circular beams is

a new development. Chapter 6 provides details of these formulations.

The vibrational behavior of rotating beams plays an important role in the

design of shafts, turbine blades, propellers, satellite booms, and so on. Again,

previous developments of rotating coordinate effects have been limited to straight

h-version elements [27,28] and often have restrictions on the spin axis. The ro-

tating coordinate system effects are incorporated directly into the kinetic energy

formulations of Chapter 4.

Objective 4: Develop a rational hierarchy of curvature approximations for

the definition of circular beam properties. This objective results from the desire

to compare and correlate the developed formulations with those found in the

literature. This research presents the effect of these approximations for the first

time and helps to explain some previously confusing results. Chapter 5 is devoted

exclusively to this objective.

Objective 5: Apply error estimation and quality control techniques for p-

version finite elements to eigenproblems. Error estimation based on energy norm

is well established for displacement formulations. The error in energy norm is
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closely related to the root-mean-square measure of error in stresses [29], and

eigenvalues are quite easily related to strain energy. This forms the basis for

evaluating the errors of discretization for eigenproblems. Refer to Chapter 8 for

the theoretical discussion.

Objective 6: Explore algorithmic enhancements for sequential eigensolutions

of problems utilizing hierarchic extensions. Eigensolvers require iteration to ex-

tract the desired information to some prescribed level of accuracy. For methods

such as subspace iteration [30], the number of iterations depends significantly

on the initial estimate of the solution. This research documents the benefits of

utilizing the previous eigensolution to reduce the number of iterations required

to solve the next eigenproblem in a hierarchic sequence. Chapter 8 provides the

necessary information for implementation.

The theoretical formulations developed in this research are implemented

into the "p -Version Analysis of Elastic Beams" (PVAEB) computer program.

PVAEB is a fully self-contained code written in VAX-11 FORTRAN (V5.1-10).

The NASTRAN-like model input is described in Appendix 14.1. Chapters 8-10

document sample problems which illustrate and verify the program performance.

The primary motivation for this research is the evaluation of vertical-axis

wind turbines. Chapter 11 provides a complete analysis for this type of structure.
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2. CHARACTERIZATION OF BEAMS

The study of beams encompasses a formidable assortment of perspectives and

approaches. Perusal of the nearly boundless collection of literature only serves to

cloud the simple perception enjoyed by most engineers. By necessity, any research

related to beams must be focused on a small portion of this ever-expanding field.

A fundamental step in pursuing beam research is the explicit definition of the

beam characteristics to be used in the analysis. More accurately, it is the choosing

of a collection of assumptions and limitations which serve as a framework for

the formulations. For this research, the chosen limitations are identified and

discussed below. They have been collectively designated as the assumptions

leading to an "engineering" beam formulation due to their reliance on the classical

strength of materials approach. A large number of formulations are based, at

least implicitly, on these assumptions.

Application of a priori simplifications to a more general formulation presents

a serious dilemma. Historically, this approach has been adopted to render a

problem analytically manageable while maintaining sufficient accuracy of the

desired results. Classical beam, plate, and shell theories may all be derived

(with difficulty) by imposing simplifying assumptions on the equations of three-

dimensional elasticity, which is itself formulated with implicit assumptions on

the strain/displacement and stress/strain relationships. The shortcoming of this

approach is that the errors of idealization associated with these simplifications

are impractical, if not impossible, to quantify.

The computer era has spawned a reevaluation of the classical theories. In

particular, the concept of hierarchic formulations is beginning to emerge [6,29].
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Simply stated, this concept proposes to delay the application of simplifying as-

sumptions until after the problem has been posed in a more general formulation.

The classical theories may be viewed as lower-order approximations of the gen-

eral formulation. Extensions within the hierarchy of formulations then allow the

errors of idealization to be addressed and the applicability of the classical theories

to be ascertained.

A more restrictive hierarchy already exists within the formulations for en-

gineering beams. Some assumptions are imposed immediately to produce the

Timoshenko beam idealization from the three-dimensional theory of elasticity.

Further simplifications are then introduced for the Rayleigh and Bernoulli-Euler

idealizations. The initial assumptions allow conventional beam cross-sectional

properties to be used in the definition of ensuing models; this was a precondition

imposed on the formulations in this study. However, these same simplifications

preclude the extension of formulations to the underlying three-dimensional the-

ory. This compromise was deemed acceptable for the class of problems and

analytical objectives addressed in this research.

The engineering beam is characterized by a line which defines the beam axis.

This axis may be straight or circular for the formulations presented. The cross-

sectional properties are defined in the plane normal to the beam axis and with

respect to the beam axis. All material points within such a plane are rigidly

linked to the point of the beam axis that intersects the plane. Thus, the cross

sections remain plane though not necessarily normal to the beam axis. This

assumption was first postulated by Jacob Bernoulli (1654-1705) even prior to a

thorough understanding of the neutral axis and moments of inertia [31].

The rigid planes imply that all cross-sectional movements can be related to

the displacements and rotations of the intersecting point on the beam axis. For
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Physical Model Beam Idealization

Figure 2.1 Idealization of a reentrant corner using engineering beams.

two-dimensional problems, two displacements and one rotation may exist. Three

displacements and three rotations are possible for problems in three-dimensional

space. Furthermore, it is assumed that the rotations are "small." The ramifica-

tions of this limitation will be expanded on in Section 2.2.

The cross-sectional dimensions are assumed small in comparison to the length

of the beam axis. Thus, engineering beams utilize a linear, one-dimensional

stress/strain law in the direction of the beam axis, based on the assumption

that Poisson ratio effects are negligible (see Chapter 3). This is the significant

limitation, when coupled with the previously defined displacement assumptions,

that prohibits the hierarchic extension of beam formulations to the general three-

dimensional theory.

The assumptions for engineering beams may be better visualized by the sam-

ple problem in Figure 2.1. Engineering beams allow nontangential intersections

of the beam axes for adjoining elements. Discontinuous changes in the cross-

sectional properties between elements (and possibly within elements) is also al-

lowed. The beam axis displacements and rotations and the system strain energy



-22-

and natural frequencies are assumed to be minimally affected by the beam ide-

alization. Force and moment transfer between such elements poses no problem

but details, such as the stress concentration within the reentrant corner in Fig-

ure 2.1, cannot be quantified. Thus, the benefits of modeling ease and flexibility

are offset by limitations on the types of information which can be accurately

extracted from the solution. The engineer must recognize whether the desired

objectives of the analysis are affected by these limitations.

Obviously, there is a variety of idealizations which do not prescribe to all or

some of the assumptions for engineering beams. Characteristics of "extended"

engineering beams may include, for example:

1) adoption of nonlinear material laws,

2) generalization to moderate or large rotations,

3) inclusion of additional "warping" degrees-of-freedom defined over the cross

section, and

4) utilization of two- or three-dimensional linear stress/strain laws.

As will be seen in Section 2.2, large deformation analyses are fundamentally

nonlinear and, thus, not able to be formulated as a linear eigenproblem. Yet, large

deformations are necessary in accurately evaluating such problems as modern

helicopter rotors. References 32 and 33 provide an excellent introduction into

this class of problem.

Warping terms have been used extensively to improve the accuracy of beam

analyses. Correction factors which are incorporated into the engineering beam

formulations may be quantified with the aid of warping-type analyses. These

correction factors will be identified and discussed as they appear in the beam

formulations. Both Krishna Murty [34] and Levinson [35} have included warping

terms in evaluating straight, rectangular beam vibrations. Gardner and Bert [36]
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applied the same principle to the in-plane, dynamic analysis of rings with rectan-

gular cross sections. Lincoln and Volterra [37] coupled hierarchic displacement

assumptions (including warping) with three-dimensional stress/strain relation-

ships in an eigenanalysis of toroids.

Warping degrees-of-freedom cannot be included without an associated sacri-

fice in generality. Analyses are practically, if not theoretically, restricted to the

most elementary of cross-sectional shapes. Interelement tangency is typically

required, as are continuous changes in cross-sectional properties. Such limita-

tions were deemed too restrictive for inclusion in this research, the focus being

on the class of problems and types of information for which warping effects are

insignificant.

2.1 DEFINITION OF BEAM PROPERTIES

The cross-sectional properties of beams have been briefly mentioned in the

previous discussion. This section is devoted to their definition. Explicit assump-

tions and limitations of the beams considered in this research are identified.

Figures 2.2 and 2.3 illustrate generic straight and circular beam elements and

the conventions used throughout these formulations. The i-axis serves as the

beam axis as previously defined and coincides with the center of area (centroid)

of each cross-sectional slice for both the straight and circular beams. The y- and

z-axes represent the in-plane and out-of-plane directions, respectively. The arc

of a circular element, defined by the constant radius, J2, is contained within the

xy-plane. Note that the orientation of the local x- and y-axes varies along the

length of the circular beam such that:

y = r -R, (2.1)
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y.v

Figure 2.2 Generic straight beam element.

Figure 2.3 Generic circular beam element.

as depicted in Figure 2.3. The length of the beam element is defined by:

F"h = dx,
J X JL

(2.2)

where A and B refer to the ends of the beam element. For circular beams, this

equates to:

h = RO. (2-3)
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The cross-sectional axea of the elements is defined as:

A = jj dydz. (2.4)

The material density, p, is assumed constant such that the mass per unit length

may be represented by:

m = pA. (2.5)

A constant material density implies that the center of mass coincides with the

centroid for straight, but not circular, beams. The curvature-induced shift in

the center of mass for circular beams will be addressed shortly. For now, the

centroidal position of the beam axis implies:

y = ydydz = 0, and (2.6a)

= 0. (2.66)

Area moments of inertia are defined by:

I»v = jf y2dydz, (2.7o)

/„ = [f z2dydz, and (2.76)

/„, = JJ yzdydz = 0. (2.7c)

Therefore, the y- and z -axes are assumed to coincide with the principal axes of

the cross section. The torsional stiffness is specified separately:

/o * !„ + I.,, (2.8)

in keeping with the Saint- Venant theory of torsion for noncircular cross sections

[38]. Mass moments of inertia per unit length are defined by:

Jyy = Plyy, (2-9o)
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J*z = pi**, and (2.96)

Jo = Jyy + J**- (2.9c)

For circular beams, additional terms arise in the energy formulations as a

result of curvature. The center of mass in terms of radius may be computed

from:
_pfffr(rda)(dr)(dz)m~ ( }

Substituting in the local beam coordinates and eliminating common factors from

the numerator and denominator result in:

Substituting in the previously defined cross-sectional properties produces:

_ / (A*m ~
f(AR)d

such that:

( '

f m = R + A R ' ° r (2'13a)

There is no corresponding shift of the center of mass in the ^-direction since the

cross-sectional axes and principal axes coincide.

Additional pseudo-moments of area result from the circular-beam curvature.

Using the convention of Bickford and Maganty [39], they are defined by:

These terms will be discussed in detail in Chapter 5. Also, the mass moments:

PJyyy (2.15o)
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(G)

Figure 2.4 Vector relative to a frame.

Jyy* — P 11 y zdydz = />/„„,, and

= P yz*dydz = ply*xi

(2.156)

(2.15c)

will enter into the kinetic energy formulation for circular beams.

2.2 SMALL ROTATION APPROXIMATION

The kinematics of engineering beams is rarely discussed in the literature.

The assumption of small rotations, especially in three-dimensional space, receives

little more than a token mention. However, the inclusion of circular beams and

rotating coordinate system effects in this research mandates a more rigorous

understanding of beam kinematics. This section focuses on the application and

significance of the small rotation approximation. Also, it provides the necessary

framework for incorporating rotating coordinate system effects.

Displacements are nothing more than changes in position, and velocities are

the time derivatives of displacements. Assuming that a global coordinate system

has been established, any spatial point can be located by a three-coordinate

position vector. Figure 2.4 illustrates the position of a point, P, in an orthogonal,
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Figure 2.5 Orthogonal displacement sequence.

right-handed frame, (G). Its position is defined as:

{GP} = [SX, PY (2.16)

where px , PY > a-nxl p% are the position coordinates and £x, «r , ez are unit vectors

in the direction of their respective global axes. The leading superscript denotes

the frame in which the position is defined.

Now, consider the following displacement sequence illustrated in Figure 2.5:

Start with a point, D, located at the origin of a known frame, (G). First,

displace D along X by a distance, UQ, then displace D along Y by a dis-

tance, v0, and finally displace D along Z by a distance, w0.

The final position is defined by:

{*D}- 0
0

*>o
0

o 1 fuo
0 \ = I u0

W0 I I U/o

(2.17)

The important feature to note is that displacements are governed by the commu-

tative law of vector addition; the displacements may be performed in any order
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•-Y

Figure 2.6 Frames with different orientations.

and the final position will be the same. The velocity of the point relative to the

global frame and defined in the global frame is:

1 w (2.18)

This is the absolute velocity of the point only if the global frame is stationary.

Absolute velocities are represented without a relative superscript, such as {GvD}

for the case of (2.18) when the global frame is stationary.

In a similar fashion, rotations are nothing more than changes in orientation,

and angular velocities are the time derivatives of rotations. Orientation describes

the relationship between two frames as seen in Figure 2.6:

, or (2.19a)

{SL} = [%T]{eG}t (2.196)

where «„ Sy, and «, are unit vectors in the direction of their respective local axes

and [£T] is referred to as the rotation matrix or transformation matrix from the

global frame, (G), to the local frame, (L). The leading subscript and superscript

define the direction of the transformation.
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The transformation matrix as defined in (2.19) is made up of the cosines of

the angles between the local and global unit vectors, namely:

[aT] = [G*.V] = ii • 8j, » = *,»,*, J = X, Y,Z. (2.20)

Thus, the individual columns (or rows) within the rotation matrix are orthonor-

mal and the transpose of the matrix is also its inverse [40]:

[£r][£r] = [/], (2.216)

where [/] is the identity matrix. Adding the restriction that all frames are right-

handed [41]:

det [f T] = 1, (2.22)

the necessary and sufficient conditions for [f T] to be a rotation matrix are given

by (2.21) and (2.22). Therefore, only three of the nine equations in (2.20) are

independent.

Transformation matrices allow the position of a point, P, specified hi one

frame, (L), to be related to the position with respect to a second frame, (G), with

the same origin. Transposing (2.19) with the help of (2.21):

VL}T = {2c}T \ST] , (2.23)

then:

frf {LP} - {̂ }T [f T] {*/»} = {icf {GP} , (2.24)

or (see Figure 2.6):

(2.25)
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Figure 2.7 General transform of a vector.

Figure 2.8 Roll, pitch, yaw rotation sequence.

When the origins of the two frames are not coincident, the position transforma-

tion may be represented as:

{0p} =

= [Lj.] {0p} = [L

{Lp} > (2.26o)

(Lp}

The latter equation defines the position of the point in the global frame but in

terms of local coordinates. This situation is depicted in Figure 2.7.

Now, consider the following rotation sequence illustrated in Figure 2.8:

Start with a frame, (L), coincident with a known frame, (G). First, rotate

(L) about X by an angle, 7, then rotate (L) about Y by an angle, 0, and

then rotate (L) about Z by an angle, a.
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Craig [42] has shown that these three rotation operators may be combined such

that the overall transformation matrix is:

cat —sa 0
so cot 0
0 0 1

eft 0 aft '
0 1 0

-aft 0 eft

'l 0 0
0 07 ~si
0 37 07

or

caaftai — sacf casftci + saai'l
sacft 3013031 + cac7 aasftci — caa~i ,

[-30 cftai cftci \

(2.27a)

(2.276)

where the shorthand notation:

ca = cos at,

act = sin a, etc.,

(2.28a)

(2.286)

is used. This rotation sequence is known as the "roll, pitch, yaw convention,"

where 7, ft, and o are the roll, pitch and yaw angles, respectively, with respect

to a fixed coordinate system. Other conventions [32,42] have been formulated to

meet specific analytical needs.

Comparison of (2.17) with (2.27) illustrates the fundamental differences be-

tween displacements and rotations. Matrix multiplication is not commutative;

thus, the rotations for (2.27) must be performed in the specified order. Fur-

thermore, the presence of trigonometric functions indicates the fundamentally

nonlinear nature of nominal rotations.

The assumption of small rotations may now be applied with a better under-

standing of its implications. If the roll, pitch, and yaw angles are small, they

may be represented by the first terms of their series expansions, namely:

cosa = l + O(a2), (2.29a)

sin a = a + O (a3), etc., (2.296)
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where O (an) is the order notation, used to represent an expression which ap-

proaches zero at least as fast as a fixed multiple of a" as a —» 0. Inserting the

small angle approximation into (2.27) produces:

("l -a ol I" i o 0] . _
[f T] e* a 1 0 010 0 1 -7 , or (2.30a)

(2.306)

Thus, small rotations allow for linearization of the transformation matrix and

make the order in which the rotations are applied insignificant.

It is interesting to note that, for the roll, pitch, yaw rotation sequence, the

angular velocity of the local frame relative to the global frame and expressed in

global variables is:

'l -a 0'
a 1 0
0 0 1

1 0 / 9 '
0 1 0

-/9 0 1

'10 0 "
0 1 - 7
0 7 1

[ 1 -a ft'
[?T] « « 1 -1

L-P 7 1 .
•

- \ p
a

(2.31)

would represent the absolute velocity of the local frame defined in global

coordinates, and {°nL/G} = {0flL} only if the global frame is stationary. Note

that no small rotation assumptions are necessary for the relation in (2.31); an-

gular velocities are much easier to characterize than orientations.

2.3 DEFINITION OF BEAM DISPLACEMENTS AND ROTATIONS

For engineering beams, all cross-sectional movements are related to the dis-

placements and small rotations of the corresponding point on the beam axis.

These movements may be defined relative to the beam coordinate system and

will be related to the global system at a later time. The beam axes as defined

allow for the same displacements and rotations to be used for both straight and

circular beams. These may now be defined with reference to Figures 2.2 and 2.3.
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For planar problems, the displacements of all material points may be defined

to be parallel to the global .XT -plane and the local xy -plane. The beam axis

is limited to axial and transverse displacements, UQ and u0> respectively, and a

rotation coincident with the local z-axis, «,. A positive uy rotation is assumed

to provide a positive u displacement for all material points above the z-axis such

that the complete, planar, material point displacement may be defined as:

u(x, y, t) = uo (x, t) + yuy (x, t) , and (2.32a)

v(x,t) = vo(x,t). (2.326)

Note that time is defined as an independent variable, consistent with an assumed-

modes formulation. A simple example of warping terms in a planar problem

would be:

u(x, y, 0 = S^'uyf*. *). n > 1, and (2.33o)
y=o

v(x,t) = v0(x,t). (2.336)

For general problems in three dimensions, out-of-plane displacement, u>0, axial

rotation, fa, and a rotation coincident with the local y-axis, u,, are added to the

planar terms. No distinction will be made between the planar variables and their

identical three-dimensional counterparts. Thus:

u(x,y,z, t) = u 0 (x , t )+yu y (x , t ) + zu z(x,t) , (2-34a)

v(x,x,t) = vo(x t t)-*4i(x,t], and (2.346)

w(x,y,t) =wQ(x, t ) + y<t> l(x,t). (2.34c)

Note that the axial rotation is assumed to occur about the beam axis. This

implies that the center of twist (or shear via reciprocity) coincides with the
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centroid, which is strictly true only for straight beams with doubly-symmetric

cross sections. However, no such restrictions were enforced in this research.

It is worthy to note the three-dimensional displacements (2.34) with the

planar variables (uo, v0, and uy) omitted:

u(«, *,*) = ««,(*,*), (2.35a)

v(x,z,t) =-z<f>i(x,t), and (2.356)

w(*.y,0 =w0(x,t) + y(j> l(x,t). (2.35c)

Note that rotation-induced planar displacements still exist. However, for a large

class of three-dimensional problems, the planar response characterized by (2.32)

and the "out-of-plane" response characterized by (2.35) uncouple. This can be

very beneficial from the computational point of view. Problems with Coriolis

coupling cannot be treated in this manner.
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3. STRAIN ENERGY FORMULATION FOR BEAMS

This chapter develops the strain energy formulations for straight and circular

engineering beam elements. These formulations are rigorously presented in order

of increasing complexity, from planar straight beams to three-dimensional circu-

lar beams. This allows for a convenient discussion and consistent application of

the underlying assumptions for engineering beams.

3.1 PLANAR FORMULATION FOR STRAIGHT BEAMS

Given that the assumed beam displacements and rotations have been denned

in Chapter 2, the steps leading to the definition of strain energy are:

1) definition of strain/displacement relationships,

2) definition of the stress/strain relationships, and

3) integration of the strain energy in terms of known cross-sectional properties

(2.4, 2.6-8, and 2.14) and additional corrective constants.

The linear strain/displacement relations assume infinitesimal deformations [43].

In a Cartesian coordinate system, they are defined by:

ey = Ty, (3.16)

dw
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Applying the planar displacement assumptions (2.32) results in:

e* = u{, + yu'y, (3.2a)

Ixy = «y + UQ = (lxy)Fy, and (3.26)

€ » = « « = 7y» = 7«* = 0, (3.2c)

where ' = <9/3z and the Fy subscript denotes those terms associated with the shear

force in the y -direction. The stress/strain relationships assume a linearly elastic,

isotropic material. The three-dimensional strains hi terms of the stresses are:

€* = ~E [** ~ "^ + '

~E ry ~ v^°* + "*)]'

~E '

(3.3d)

(3.3,0

where £? is the elastic modulus, v is Poisson's ratio, and G = E/[2(l + i/)\ is the

shear modulus. These material properties are assumed constant within each

beam element.

The assumption of the rigid cross-sectional planes suggests the existence of

normal stresses within the local yz-plane, <ry and <r,, which are assumed to be

zero in the engineering beam theories. Alternatively, defining oy = vt = 0 im-

plies cross-sectional strains which cannot be characterized by differentiation of

the assumed displacements. To allow for this contradiction, a one-dimensional
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stress/strain law must be adopted in conjunction with the assumed beam dis-

placements, namely:

<r* = Eex, (3.4)

which in effect is the axial stress/strain law if Poisson's ratio is zero. Note,

however, that v & 0 is still used in the interrelationship between the elastic and

shear moduli.

The idealized shear stress for the planar beam presents a similar conflict.

Equations 3.26 and 3.3d imply a constant shear stress over the entire cross sec-

tion. However, this violates the requirement that the exact shear stress normal

to the perimeter of the cross section be identically zero (in the absence of shear

tractions). The net result of this idealization is an overestimation of the shear

stiffness, which may be reduced by the introduction of a shear correction co-

efficient, ky < l. This (assumed) constant does not correct the erroneous shear

stress distribution but, for the sake of introducing the factor into the formulation,

merely reduces the stiffness relating the integrated shear force to the (constant)

idealized shear deformation for any given cross section. Therefore:

GA(uy + t/0) '

where the TI subscript denotes the Timoshenko beam idealization and GkyA is

the effective shear stiffness.

Stephen P. Timoshenko is generally credited with identifying the effect of

shear deformations on beam vibrations and introducing the shear correction con-

stant [44] . The shear coefficient is primarily a function of the cross section, and

Timoshenko 's original paper spawned much research into its proper definition
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and quantification. Equation 3.5 is the most common means of introducing the

factor, but it is neither unique nor particularly useful in quantifying the con-

stant. Two typical approaches for estimating the coefficient involve matching

shear wave velocities of beams [45] and applying simplifying assumptions within

the linear theory of elasticity [46,47]. Cowper's approach is often cited due to its

ability to handle complex cross sections, but its formulation is based on slightly

different definitions of the displacements and correction factor [47]. Hutchinson's

comparison between exact and approximate solutions for beams of circular cross

section clearly confirms earlier findings that the shear coefficient is also a function

of Poisson's ratio and diminishes with increasing frequency [48].

The general definition of strain energy is [49]:

V = - jjj (crxex + ffy€y + (T,e, + rxyixv + ry,iy, + rtxitx)dxdydz. (3.6)

Applying (3.2), (3.4), and (3.5) reduces this to:

= <?xdxdydz + 23- ' '(-,xy)*.vdxdydz, or (3.7a)

Vri = f jjj K + yu'tfdxdydz + ̂ - III (utf + vtfdxdydz, (3.76)

where the TI subscript again refers to Timoshenko beams. Substituting the pre-

viously defined cross-sectional properties results in the strain energy for straight,

planar, Timoshenko beams:

VTl = Wdx + * (»'y)*dx + Uy + vtfdx. (3.8)
I JQ * JO <• JO

The individual terms in (3.8) represent extension, bending, and shear energies,

respectively. Again, all cross-sectional and material properties are assumed con-

stant over the length of any beam element.
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Figure 3.1 Relationship between t>0, Uy, and V-

Accounting for variations in nomenclature and sign conventions, this for-

mulation represents the major category of Timoshenko beams with respect to

the displacement variables [50]. An alternate representation replaces the cross-

sectional rotation, Uy, with the shear deformation angle, tf>. The relationship:

= -«» - "o.

is depicted in Figure 3.1. The strain energy in terms of ^ is:

- ^ At*)'* + % /V + «ff)a<fa + 2*± [* Jo 2 JQ 2 J0

(3.9)

(3.10)

However, use of V requires care hi the specification of boundary conditions for

transverse deflections. The pinned condition is enforced hi both representations

by constraining u0. The clamped condition involves constraining both «0 and uv.

Specifying $ = 0 invokes the natural boundary condition of zero shear, which is

an improper constraint for the space of admissible functions. Also, generalized

moments entering Lagrange's equation (1.14) must be defined with respect to

virtual rotations of uy, not ^. Reference 50 provides an excellent summary of the

various Timoshenko beam representations.

Rayleigh and Bernoulli-Euler beams assume that the strain energy of shear

is insignificant hi the quantification of transverse vibrations. Ignoring the shear
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BEAM TYPE

-*— Bernoulli/Euler

—&- Rayleigh

~s~ Timoshenko

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.2 Natural frequency comparison for a pinned-pinned beam.
The Timoshenko beam results are for E/kyG = 3.

strain energy term in (3.8) implies an infinite shear wave velocity. Additionally,

Bernoulli-Euler beams ignore kinetic energy terms involving rotatory inertia (see

Chapter 4). For all three beam types, the exact eigensolution for the transverse

vibration of a straight beam with pinned ends takes the form:

(v0(x,t))n = Cnam-j-coaunt, n = 1,2,. ..,00, (3.11)

where n is the mode number, Cn are arbitrary constants, and t is the beam

length. Figure 3.2 compares the natural frequencies of the three formulations

where [51]:
.. tii r^~

(3.12o)

(3.126)r = \ - £ . = radios of gyration.

Thus, the Timoshenko beam theory is required for the accurate evaluation of

short beams and higher natural frequencies. Note that the natural frequencies
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for Timoshenko beams is a function of both nr/£ and E/kyG. It is more important

to note that all three theories converge to the identical limiting frequency as

nr/L -» o. This is the unifying aspect for all valid beam formulations.

The "no-shear assumption" (commonly termed the Kirchhoff assumption in

the theory of plates and shells) for Rayleigh and Bernoulli-Euler beams involves

more than just exclusion of the shear energy term in (3.8). Zero shear energy

implies:

Uy + v'0 = 0, or (3.13a)

uv = -UQ. (3.136)

Thus, the planar rotation can be equated to the slope of the transverse displace-

ment; cross sections remain plane and normal to the beam axis. Inserting (3.13)

into (3.8) results in:

VBBIRA = ~Q «}2dx + o K)2<k, (3-14)

where the BE and RA subscripts refer to Bernoulli-Euler and Rayleigh beams,

respectively. Note that the Timoshenko shear factor no longer enters into this

equation.

3.2 THREE-DIMENSIONAL FORMULATION FOR STRAIGHT BEAMS

The strain energy derivation for a straight beam in three dimensions follows

the same procedure outlined in Section 3.1. Inserting the displacement assump-

tions (2.34) into the strain/displacement relations (3.1) results in:

ex = o^ + y(u'y) + z(u'J, (3.15a)

7xy = (uy + v'0) - z(4>\) = (ixy)F, + (7,W)T, (3-156)

(3-15c)
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0, (3.15d)

where the Fy, F,, and T subscripts refer to the shear forces in the y- and z-

direction and the torque, respectively. Two additional corrective constants must

be specified. The Thnoshenko shear factor for the out-of-plane direction is denned

by the relation:

ff(r,*)F.dydz _ F, .
~ (Gff(l~)r.dydz)TJ ~ GA(v, + «*)' 13>16)

where k, may be different from ky in (3.5) depending on the cross section. The

torsional stiffness for straight beams is defined as:

/o = kT 11 (y + z2)dydz - kT (Iyy + /„). (3.17)

The resulting strain energy for a straight Timoshenko beam in three dimen-

sions is:
h

= | / [^K)2 + /yvK)2 + '"K)2]
o

(3.18)
h

Uy + VQ) ~t~ kxA\VLf + WQ) + /o(^i) J dx.

Adding the no-shear assumption in the out-of-plane direction:

u, + w'0 = 0, or (3.19o)

u, = -w'0) (3.196)

with its in-plane counterpart in (3.13) results in the three-dimensional strain

energy for straight Bernoulli-Euler and Rayleigh beams, namely:

/»
E (
2 J

(3.20)
h

G
+ —



The constant cross-sectional properties are included within the integrals of (3.18)

and (3.20) for simplicity. Again, no distinction is made between the compara-

ble variables in the planar and three-dimensional formulations. Note that the

assumption of zero shear energy has reduced the number of dependent, three-

dimensional displacement variables from six in TI beams to the four found in

BE/RA beams.

3.3 PLANAR FORMULATION FOR CIRCULAR BEAMS

With the exception of the strain/displacement and strain energy relationships

and constants of integration, the planar formulations for straight and circular

beams are identical. Curvature may be taken into account by specifying the

strain/displacement relationships in cylindrical coordinates, namely [52]:

1 /du \ R /du v\ .
«* = - I -TT + t» = •=--— •=- + -= ), 3.21a

r \dff ) R + y \ d x RJ '

dv dv ,

dw

du u l d v _ d u u R dv
Tr ~ ~r + rdB ~ dy

dv dw dv dw , .
•=- + -r- = ^- + -3-. and 3.21e)dz dr dz dy x

Idw 3u Rdw 3u_ _
'* ~ ~rM dz ~ R + y dx dz'

Substituting the planar displacement assumptions results in:
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(3'226)

«r = C, = Tfr« = 1,6 = 0. (3.22c)

The strain energy in cylindrical coordinates is denned by:

V = - JJjfafe + OT*T + <r,e, + T9r~ter + rr,7r, + Tte-tzg) (rd6)(dr) (dz), or (3.23a)

V = - JJjfaeg + ffrfr + <r,£, + rerier + Tr,ir, + T,ei,g) (^
J£) dxdydz. (3.236)

Again, the one-dimensional axial stress/strain law (v = o) must be used in con-

junction with the assumed beam displacements:

ffg = Ee9, (3-24)

along with the shear assumption:

This definition of the shear correction coefficient implies a dependence upon the

curvature, as well as the previously mentioned parameters, which has not been

quantified in the literature. Thus, ky is assumed to be independent of curvature

for this study; the difference in the fcy's in (3.5) and (3.25) is inferred only from

the element type, for simplicity as well as practicality. Further discussions of

curvature approximations are found in Chapter 5.

Utilizing the Bickford/Maganty convention (2.14) and (3.22-25) results in the

planar strain energy for circular Timoshenko beams, namely:

(3.26)
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Note that the beam displacement variables are coupled in the extensional and

shear energies due to the circular geometry. A benefit of this formulation is that

the zero shear energy assumption may be readily identified, namely:

«» + «o - ^ = 0, or (3.27a)

«y = -«o + ^- (3-274)

Thus, the planar strain energy for a circular Bernoulli-Euler or Rayleigh beam

is:

VBBIRA = f jf* [/oo (u{, + ̂ ) + '20 (-< + ^) ] dx. (3.28)

The following observations are useful to note with respect to similar formu-

lations found in the literature:

1) The strain energies in (3.26) and (3.28) are derived without any assumptions

of global (system) or local (element) shallowness which would allow certain

(l/JZ)-terms to be ignored [53],

2) Inextensional assumptions used to simplify the analysis of thin arches and

rings in bending will not be used. However, the ramifications of such as-

sumptions will be discussed in Chapter 5.

3) Virtual rotations of Uy must be used to define the generalized moments enter-

ing Lagrange's equation (1.14). Equation 3.27 defines the proper rotation for

circular Bernoulli-Euler and Rayleigh beams. The pinned boundary condi-

tion for radial deflections involves fixing u0J the clamped boundary condition

results from constraining «o and either uy for TI beams or (-v'0 + UQ/R) for

BE/RA beams. The use of the shear deformation parameter, ^, instead of

u leads to even more confusion in circular beams.
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4) The strain energies in (3.26) and (3.28) are derived assuming a constant arc

radius, R, but are written in a form which allow generalization to variable

curvature [54].

3.4 THREE-DIMENSIONAL FORMULATION FOR CIRCULAR BEAMS

Formulation of the strain energy for circular beams in three dimensions fol-

lows the now familiar procedure. However, an assumption which effectively iso-

lates the shear strains which are force-induced from those that are torque-induced

must be invoked. This became obvious only through static patch tests of the re-

sulting formulations, and at least one dynamic formulation in the literature has

mistakenly omitted this assumption [39].

Inserting the three-dimensional displacements (2.34) into the cylindrical

strain/displacement relations (3.21) results in:

MF- + h")T' (3'296)

)r' + (7^)T) and (3'29c)

Cr = «r = Irz = 0. (3.29<f)

Coupling now includes that of the two additional rotations, ^ and ur. The

out-of-plane shear correction factor is defined such that:

= U(r,e)r,dydz fm

~ (Gffb*)F.dydz)TI G/00(u, + w'0) '
 ( ' >

and the torsional stiffness may be defined by:

70 = kr (y2 + *2) j dydz = kT(h0 + 702). (3.31)
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Again, no distinction is made between the kz's and /O's of the straight and circular

elements.

The collected assumptions may now be incorporated as follows:

2 J J J L » » •

dxdydz (3.32a)

(3.326)
•* * e

or:

+ 2/ol(ui + ̂ J(u' .-2

G fh\i- T ( -L. ' "oV-L"T / *!'-'001 "» + uo —5" I +2 Jo L \ -S /

i + ^)]<fc- (3-33)

The no shear assumption equates to:

uy = — v'0 + —, and (3.34a)

u, = -W'Q. (3.346)

Therefore:

+ ̂  /oUi-^ U-. (3-35)
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3.5 EXTRACTION OF ENGINEERING QUANTITIES FROM BEAM

FORMULATIONS

The definition of stresses in terms of the beam displacements is an important

step in the formulations of strain energy. Thus:

or (3.36a)

(3.366)

for straight beams and:

(3'37"
for circular beams are useful results coming out of the beam analysis. Note that

the curvature dependence in (3.37) produces a nonlinear variation of axial stress

in the y-direction and a corresponding shift in the neutral axis of bending. The

stresses from (3.36-7) allow the engineer to perform first-order analyses, mindful

of the fact that stress concentrations cannot be quantified. Also recall that the

shear stress distribution for engineering beams is totally erroneous. Thus, the

integrated forces and moments on a cross section become the significant quantities

coining out of an analysis using engineering beam elements. Figure 3.3 illustrates

the desired quantities and the assumed sign conventions with respect to a cross-

sectional face with a positive x outward normal. Their definitions are as follows.

The axial force is defined by:

F* = II <rxdydz, or F, = JJ ffgdydz, (3.38)
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Top View

-»•*•

Side View

Figure 3.3 Sign conventions for resultant beam forces and moments.

depending on the type of element. Inserting the appropriate stress relation from

(3.36) or (3.37) and utilizing the cross-sectional properties (2.4, 2.6-8, and 2.14)

result in:

(F*)BE/RA/TI = EAu'0, (3.39)

for straight beams and:

(F,)ri = E [/oo («o + f ) + Ao («;,) + /oi («', - ^) ] , or (3.40a)

= E /oo «o + + /io -< + + /oi -«£ - (3-406)

for circular beams. The torque is denned by:

T = // (y(T")r -z(rxy)r)<iydz, or (3.41a)
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T = Jj(y(r,e)r ~ z(rer)r)dydz, (3.416)

such that:

TBE/RA/TI = G/o^i, (3-42)

for straight beams and:

TTI = G/o ((f>i + ~ ), or (3.43a)

(3.436)

for circular beams. In a similar fashion:

My = II zvxdydz, or My = // zcredydz, (3.44)

such that:

(Mv)r/ = EItzu'x, or (3.45a)

(MJsB/RA = -^zz^o, (3-456)

for straight beams and:

= E /oi «o + + Ai < + /« ui - - , or (3.46a)

-< + + /oa -< - , (3.466)

for circular beams. Also:

M, = — I I y(7xdydz, or M, — ~ yffgdydz, (3-47)

such that:

(M.)TI = -EImu'y, or (3.48a)

(Mf}BB,RA = EIyyv'^ (3.486)
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for straight beams and:

(3-49a)

(M,)BB/RA = -^/lo «o + + ̂ o -«£ + + /ii -< - - , (3.496)

for circular beams.

The shear forces for Timoshenko beams fall directly out of the definitions of

the shear correction factors, namely:

(FJn = f f (r*,)F,dydzt or (Fy}TI = f f (*ar)F,dydz, (3.50)

such that:

(Fy)Ti = GkyA(uy + v'0), (3.51)

for straight beams and:

(Fy)Ti = GkyI00 uy +
v 'o-J (3-52)

for circular beams. Also:

(Fz)n = Jj(rt,)F.dydz, or (Ft)Ti = / / ' (rz9)F,dydz, (3.53)

such that:

(F,)Ti = Gk, A(u, + w'0), (3.54)

for straight beams and:

,)Ti = GA:,/oo(u, + w'0), (3.55)

for circular beams. However, exclusion of the shear energies in BE/RA beams

precludes a similar integration. The shear forces must be derived from elementary

moment balances on an infinitesimal length of the beam [5oJ. Noting the sign
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conventions in Figure 3.3, the resulting shear force equations for BE/RA beams

are:

\ - *} BE/RA ( .
y)BElRA = |k • (3-56)

such that:

(fy)BE/RA = -£/yyt>o", (3.57)

for straight beams and:

JBE/RA = & | '10 I «o -r -5-; t- /20 ( -V'Q + -§•} + In ( -w'o - -£ ) \, (3.58)

for circular beams. For straight beams:

(F*}BE/RA = ^——' (3.59)

such that:

(F*)BE/RA = -EIzzw'o'. (3.60)

However, the shear force in the z-direction is coupled with the torque for circular

beams, namely:

such that:

<
R
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4. KINETIC ENERGY FORMULATIONS

IN A ROTATING FRAME

The kinetic energy of a structure is a characterization of the system iner-

tia. As discussed in Chapter 1, the kinetic energy formulation with respect to a

rotating frame also introduces centrifugal softening, Coriolis coupling, and cen-

trifugal loading terms to the static and dynamic equations. This chapter presents

the formulation of the kinetic energy terms starting with a generic distributed

mass (with inertia) and leading to circular beams in three-dimensional space.

The effects of an arbitrarily oriented, rotating coordinate system are incorpo-

rated immediately within the context of the small rotation assumption. The

distinction between Bernoulli-Euler and Rayleigh beams will be identified and

the simplification to nonrotating problems will be apparent.

4.1 FORMULATION FOR A DISTRIBUTED MASS

The position of a distributed mass with inertia in a rotating frame is depicted

in Figure 4.1. The various frames in the figure are defined as:

(/) = inertial frame. The inertial frame is defined such that its absolute angular

velocity and the absolute velocity of its origin are zero, namely:

{n7} =0, and (4.1a)

{t»'}=0. (4.1A)

(G) = global frame. The global frame is used as the reference for defining the

model geometry. The angular velocity of the global frame relative to the

inertial frame is assumed constant and defined by:

lGnGf'\ =-{an°} s \ n* 1. (4.2)
I *z J
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)GQI/G{

*-x,

(L)

(G)

•*-X

Figure 4.1 Distributed mass in a rotating frame.

This angular velocity is conveniently defined in the global frame and is ab-

solute since the inertial frame is stationary. Note that (4.2) implies:

n*
n *

(4.3)

In other words, the relative angular velocity of the inertial frame may be

nonzero even though the frame is stationary. Figure 4.1 is depicted from a

global perspective.

(L) = undeformed local frame. This frame is used to define the properties of

the distributed mass. Its orientation is assumed coincident with the global

frame, and its origin, C, is assumed to be at the mass center. The properties

associated with the distributed mass in its undefonned position are:

pdldydz, (4.4)
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and:

Ju = III p ijdxdydz, i, j = x, y, z. (4.5)

X is used to distinguish the integrated mass from the beam mass per unit

length, m. The IJ subscripts (/, J = X, Y, Z) on the distributed inertias help

to distinguish them from similar beam terms and serve as a reminder that

the local and global frames are parallel, that is [£T] = [/].

(L1) = deformed local frame. The deformed local frame represents the position

and orientation of the distributed mass at any instant in time. The deformed

frame is defined relative to the undeformed local frame by three displace-

ments, J/i, E/2, and C/3, and three rotations, Cf4, Us, and U6, with respect to the

undeformed local axes, z, y, and z, respectively. Note that the distributed

mass properties in the deformed position are identical to those in (4.4-5)

relative to the undeformed position.

The kinetic energy of the distributed mass may be conveniently separated

into translational and rotational components. The translational kinetic energy

is [56]:

TTRANs = M (vf )2 + (vf )2 + (.?')» , (4.6)

where:

is the absolute velocity of the deformed center of mass. Given:

= J rn , {Gc} = { Y C \ , (4.8)
Uo J Uc J

and:
f CM

{LC'}= C72L (4.9)
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then taking into account that (L) is parallel to (G) and utilizing the vector cross

product to compute rotation-induced velocity terms result in:

(
- nx(zc - ZQ + u3) + u, . (4.10)

Therefore:

TTRANS = jM{ [tlY(Zc -Zo + U3) - nz(Yc - Yn + U7) + uj

+ [nz(xc -xn + Vi) - nx(zc -zn + u3) + u,
2 (4.11)

Note that the rotations, U4-Ue, do not enter into the translational kinetic energy.

Even though the deformed distributed mass has changed orientation, it is not

necessary to specify the absolute velocity of the mass center in the deformed local

frame.

Two different approaches may be adopted in the formulation of the rotational

kinetic energy. The first involves formulation with respect to the undeformed lo-

cal frame taking into account the deformation-dependent changes in the inertias.

Actually, the inertia changes are often ignored and the kinetic energy is computed

(similar to the strain energy) by simple integrations in the local frame. However,

this simplification produces erroneous rotating coordinate system effects. The

second approach formulates the angular velocity and, thus, the rotational kinetic

energy, in terms of the deformed local frame where the inertias remain constant.

The latter approach is adopted for this research such that [56] :

TROT = (.fry + Jzz] f#2 + (/« + Jxx) tf* + Vxx + .fry) <#

((#) (ftf ) + Jrz (Of) (nj;) + J2X (itf) (ftf )] , (4.12)
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where:

(4.13)

Using the roll, pitch, yaw convention, the absolute angular velocity of the dis-

tributed mass specified in undeformed local coordinates is:

x + 04
Y + u6
z+0e

Invoking the small rotation assumption results in:

06 -Us
1 U4

-U4 1

or:

, ,
\L flL } S { -U

+u
(fl

Thus:

TROT «j [ +

-% (nx -i- u4) + (aY + u5) + u4 (n,

-0i (fix + Oi) - 04 (ny + 0.) + (nz

-JxY [+ (fix + 04) + 06 ("y + 0s) - 0s (<J* + 0«)]

[-06 (fix + 04) + (flr + %) + 04 (n* + 06)]

-Jrx [-06 (fix + 04) + (ny + 0k) + 04 (n* + 0i)]

[+0s (Ox + 04) - 04 (flr + 0i) + (n» + 0«)]

-^zx [+05 (fix + 04) - 04 (rv + 0i) + (n* + 0,)]
[+ (HX + 0;) + 06 (ny + 0s) - 0s (n, + 0«)] .

(4.14)

(4.15)

(4.16)

(4.17)
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The total kinetic energy of a distributed mass subject to a rotating frame is

provided by the sum of (4.11) and (4.17). The small rotation assumption has

been invoked, but the rotational kinetic energy still contains cubic and quartic

terms of the C/i's and their time derivatives. These terms are assumed to be small

in relation to the linear and quadratic terms such that the resulting eigenproblem

is linear. This additional restriction allows the kinetic energy to be placed in the

general form of (1.206).

Substituting the general harmonic response and applying Lagrange's equa-

tion produces the centrifugal softening [Ks], Coriolis coupling [C], mass [M], and

centrifugal loading {Rn} terms associated with the distributed mass. These terms

will be related to the six global degrees-of-freedom of a grid point located at the

mass center and added to the global matrices of the finite element problem (see

Chapter 7). Note that the rotational kinetic energy of the distributed mass (4.17)

is ignored in problems involving Bernoulli-Euler beams.

4.2 FORMULATION FOR STRAIGHT BEAMS

The kinetic energy formulation for beams in a rotating frame follows a similar

procedure to that for a distributed mass. An infinitesimal length of an element

is considered and the resulting terms are integrated over the entire beam length.

Figure 4.2 illustrates the differential length of a straight beam with respect to

the various frames. The frames are identical to those for the distributed mass

with the following exceptions:

1) The orientation of the undeformed local frame, (L), does not coincide with

the global frame, (G). However, the transformation matrix relating the two

frames, [f T], is defined exactly from the problem geometry; no small angle
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*-X

Figure 4.2 Infinitesimal straight beam element in a rotating frame.

approximations are used in relating the local and global frames. [£T] is

constant over the entire length of a straight beam.

2) The origin of the local frame, <7, lies on the beam axis of the straight element

and coincides with the center of mass of the infinitesimal length.

3) The deformed local frame, (£'), is defined relative to the undefonned frame by

three displacements, UQ, «o, and too, and three (Timoshenko) rotations, <£i, u,,

and —Uy, with respect to the undefonned local axes, z, y, and 2, respectively.

These terms are consistent with their use in defining the three-dimensional

beam displacements in (2.34).

The translational kinetic energy for the straight beam element is represented

by:

TTRANS ^ I ' m (.f)% (of)' + (uf )2 «fa, (4.18)
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similar to that of the distributed mass in (4.6). Since the local frame is no longer

parallel to the global frame but still fixed relative to the global frame:

(4.19)

Furthermore:

n* I = I n* 1.
n$ J [ n»J

(4.20)
zc

defines the position of C with respect to the inert ial frame in terms of local

coordinates; this vector varies along the length of the beam axis. The position

of the deformed center of mass with respect to the undeformed local frame is:

-o
(4-21)

Thus:

ny (zc + u>o) — 0* (yc + «o) + «
{

» i — i i --y \— v> • — v/ --» \jf^/ • -u/ ' —v
Lt(C } = { v? } = { n' (*c + «o) - n* (*& + «*) + *>

1 u ' J I n« (Vc + wo) - ny (*c + uo) + tio
(4-22)

defines the absolute velocity of the deformed center of mass in terms of the

undeformed local frame.

The rotational kinetic energy formulation is again similar to that of the dis-

tributed mass in (4.12):

TROT = \[* [(Jyv + J») (*#)3 + J» (f#)2 + Jn (nf-/)3] (fa. (4.23)

The mass moments of inertia per unit length are defined in (2.9) relative to the

local axes. Note that Jxx, Jxyt and Jtx are higher-order terms relative to the
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differential length, rfz, and Jyx = 0 since the local y- and 2 -axes are principal axes

of the cross section. Similar to (4.14) except with the beam variables:

(4.24)

Then, invoking the small rotation assumption results in:

n, + tt.)-u.(n,-a,M
(ny + u,) + ̂  (n, - uy) . (4.25)

The entire kinetic energy for a straight Timoshenko beam is the sum of (4.18)

and (4.23) with the necessary substitutions:

0

. . \ t2
IU» (XG + «o) — "* \?c + fo) + «o| +

[^i (yc + UQ) — fly (ic + "o) 4-1

1 f* r •
2 y 0 ° L * x f f y

-i- «,)

where J0 = J»» + Jz*- The kinetic energy for a straight Rayleigh beam merely

involves substituting the no-shear relations of (3.13) and (3.19), namely:

1 /*'* f

= ~ rn{ [ny (zc + w0) - (I, (yc
^ JQ l

o0]
2

wo)
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I f J° [(n* + *l} +

\j J» [-«&(n, + 4i) + (n, - ti0

3 *B. (4.27)

Bernoulli-Euler beams further simplify the kinetic energy by ignoring the

rotational kinetic energy terms involving the in-plane and out-of-plane displace-

ment variables, VQ and wo, respectively. Recalling (3.11-12) and Figure 3.2, it

is easy to see that given a characteristic system length, £, and a characteristic

cross-sectional dimension, r, the system inertia (~ (r/£)4) represents a higher-

order term in comparison to the system mass (~(r/£)2) for transverse vibrations

in the limit as (ra/L) -» 0. Note that the mode number, n, affects the validity

of the Bernoulli-Euler simplification. As seen in (4.27), this limiting assumption

involves ignoring all Jyy- and 7,,-terms and some Jo-terms such that:

= ^J rn{[(ly (zc + wo) - n, (yc + vo) + uo\2 +

[n, (xc + uo) - fix (zc + tu0) + wo]2 +

[0* (yc + «o) - Oy (XG + "o) + ti0

Jo n, + dx. (4.28)

Again, the beam displacements and rotations and their time derivatives must be

assumed small enough to allow cubic and quadratic terms in those variables to

be ignored in the beam kinetic energies (4.26-28).
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( I )

(G)

(f)

Figure 4.3 Infinitesimal circular beam element in a rotating frame.

4.3 FORMULATION FOR CIRCULAR BEAMS

The kinetic energy formulation for circular beams is complicated by the fol-

lowing two factors:

1) The center of mass Cm, and cross-sectional centroid, C, do not coincide (see

(2.13)). Since the beam axis is chosen to be coincident with the cross-sectional

centroids, the kinetic energy formulations must take the mass eccentricity

into account. This condition is illustrated for the infinitesimal circular beam

element in Figure 4.3.

2) Enforcement of the planar no-shear assumption (3.27) induces further cou-

pling of the axial and transverse displacements, «o and «o, respectively, in

Rayleigh and Bernoulli-Euler beams.

The frames for the circular element are the same as those for the straight element.

Recall that the orientation of the local x- and y-axes change along the length of
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a circular beam. Therefore, [fr] is not constant for a circular element, but this

transformation matrix may still be defined exactly from the problem geometry.

The translational kinetic energy:

(4.29)

must be defined using the absolute velocity of the mass center. Given that:

= ym , (4.30)

the absolute velocity of the deformed center of mass in terms of the undeformed

local frame is:

c'
V, m

(4.31)

where {tuC/} and (LnL'} are defined in (4.22) and (4.24), respectively. Using

the small rotation assumption:

1 Uy U,

(4.32)

produces:

, (xc

<t>\) - n, (yc

- Clx (zc +
- ny (xc +

+ ym)
jm^)
ymuy)

(4.33)

The important fact to note is that the small rotation approximation must be

utilized in the translational kinetic energy formulation due to the mass center

shift. The effect of the approximation is minimized by defining the absolute
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velocity in terms of the undefonned local frame such that the transformation of

|L<C^| is all that is required.

The rotational kinetic energy is also affected by the shift in the mass center.

The formulation of the rotational kinetic energy listed in (4.12) requires that the

mass moments of inertia be defined about the mass center. Using the principal

axis theorem in conjunction with the cross-sectional properties in Section 2.1:

= Jyv l - + tt, (4.34a)

J» = pz2 dydz - mz*m = JM + i, (4.346)

4) = Jgg +

The overbars over the subscripts denote the mass moments on inertia per unit

length with respect to the mass center. Therefore, the rotational kinetic energy

may be specified as:

+ JM (n^;)2 - 2Jg, (nj;) (n^')] dx, (4.35)

where the n- terms are defined in (4.25).

The entire kinetic energy of a circular Timoshenko beam is the sum of (4.29)

and (4.35) with the necessary substitutions:

/ »T»( [fiy (zc + WO + !?m^l) - ft, (yc

[n» (XC + «o + J?mUy) - flz («C + »«0 + ! / m l + «0 ~

(yc + v0+ ym) - ny (xc + u
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- tt«

- y

u.) + (0, - «,) dc. (4.36)

The separation of the translational and rotational kinetic energy terms is explicit

in this equation. However, significant simplifications can be made by utilizing

(4.34), realizing that mgm - JW/R, and delaying application of the small rotation

approximation. Then:

l f h (
2J m{^ (z°

[O« (yc + «o) ~ flv (*c + «o) + ^o]3 r

f** J r

I -j[-\Py (*c + wo) - n» (yc + «o) -(- «ol [

[n, (ac + «o) - n, (zc + »o) 4-

J /" [/o + Jy?yvJH [(0, + ̂ ) - uy (
2 Jo L « J L

1 r f JM + ̂ 1 [uv(n, -H ̂ ) + (ny -H u.2 Jo L K J L

- u,

[«,(n, + io - *i (ny + u,) + (n, - u,)] dx. (4.37)
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The first two integrals in (4.37) relate to the translations! kinetic energy even

though Jyy enters the second integral. The last four integrals are the remaining

rotational kinetic energy terms after cancellation. Invoking the no-shear assump-

tion results in:

[n, (xc + UQ) - n* (zc + too) + wo]2 +

« (XG + «o) - n« (zc + w0) + «0J

[(f -.;)(«- +«-|) -*(".+*

[n* (yc + «o) - n» (ic + «o) + »o]

«& - £) (n, - «i

[(n. + *,) + (»; - ̂ ) (n, - .4) + »i (n, + o; - i

f [J- + ¥] [(? - ";) ("• + *') + (n» - ";) + *' ("' + "s - I)]

" + ^] H5 ("• + *0 ~ *• (°" ~ ™») + (n> + "° ~ ̂  ) •**

-»i (n, + ̂ i) - h (n, - 4) + (n, + % - ^) J <^. (4.33)
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The Bernoulli-Euler simplification for circular beams requires an explicit

understanding of the underlying assumptions. A circular beam element intro-

duces the elemental radius, A, into the kinetic energy formulation without any a

priori assumption regarding its magnitude in relation to the characteristic sys-

tem length, £. Thus, when rotational kinetic energy terms are ignored via the

Bernoulli-Euler assumption with respect to system scaling, certain translational

kinetic energy terms associated with the elemental shift in the center of mass no

longer cancel (as in the case of Timoshenko and Rayleigh formulations). There-

fore, the no-shear assumption must be introduced into the circular Timoshenko

beam equation which explicitly separates the translational and rotational kinetic

energy terms (4.36). Then, the appropriate rotational kinetic energy terms are

omitted based on the Bernoulli-Euler assumption. Finally, after simplification

using (4.34), the resulting kinetic energy for a circular Bernoulli-Euler beam in

a rotating frame is:

^ (
m{[ntf (zc + w0) - fl, (yc + v0) + tio]2 +

[fl* (XG + «o) - fix (zc + «"o) + «o]2 +

[fix (yc + «o) - fly (xc + uo) + tio]2 }dx

J -jjr|[n

n, (xc + uo) - n, (zc + «*>) + wo]

[fix (yc + «o) - fly (xc + "o) + tioj
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(4-39)

Comparing (4.38) with (4.39) reveals translational kinetic energy terms involving

Jvy"AR* which are no longer cancelled by rotational kinetic energy terms as a result

of the Bernoulli-Euler simplification. These terms may indeed be insignificant,

but only if R is of the same order of magnitude or larger than £. This possibility

is addressed by defining curvature approximations for the circular beam proper-

ties, which are derived independently of the assumptions for beam type in the

following chapter.
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5. CURVATURE APPROXIMATIONS FOR CIRCULAR BEAMS

The circular-beam strain and kinetic energy formulations of the previous

chapters are developed with an exact (EX) characterization of the curvature.

The strain energy formulations of (3.33) and (3.35) contain curvature-dependent

moments of area defined via the Bickford-Maganty convention [39], namely:

The kinetic energy formulations account for the curvature-induced shift in the

center of mass defined by:

9m * "A!' and (5>2a)

*m = 0, (5.26)

with respect to the beam axis located at the centroids of the cross sections and

mindful of the coincident orientation of the y- and z-axes with the principal axes

of the cross sections. Additional mass moments of inertia per unit length, Jyy9,

Jyy,, and Jyfx, are introduced as a direct result of the shifted mass center.

For planar problems, the £y's may be defined using the conventional cross-

sectional properties in conjunction with the Winkler-Bach constant, 2, namely

[57]:

Z), (5.3a)

, and

(5.3c)

There is no similar constant relating 70i, /u, and 702. Thus, the burden of com-

puting the /,/s has been relieved somewhat but may still prove too difficult for

complex cross sections in general use. This chapter is devoted to developing
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suitable approximations for the /,/s. These approximations form a natural hier-

archy, and their rigorous derivations provide the means for correlating the various

theories in the literature and understanding some heretofore surprising results.

The straight-beam (St) formulations for this research are characterized en-

tirely by the cross-sectional area, A, and the moments of inertia, Im and /„,

in conjunction with the mass density, p. Thus, developing curvature approxi-

mations (CA's) in terms of these properties would be most convenient. This is

accomplished by utilizing the binomial expansion:

Substituting this into (5.1), ignoring the terms involving y***, (k + t) > 3, and

utilizing the principal-axis simplifications produce:

/io a --f, . (5.56)

/oi 3 0, (5.5c)

/20 a Im, (5.5d)

In S 0, and (5.5e)

/02 S /„. (5.5 f)

This forms the basis for the "truncated series" approximation, designated by

TR. This approximation also assumes that JyyV = Jm, = Jy,* = 0. Note that the

approximation of the Winkler-Bach constant is merely:

t")
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More important is the fact that the mass center shift in (5.2) is represented

exactly using the TR approximation. .

A further simplification may be employed when the arc radius, R, is signifi-

cantly larger than the cross-sectional dimensions such that:

This implies no curvature dependence of the cross-sectional properties, namely:

loo ** A, (5.8a)

/20 3 /w, (5.86)

(5.8c)

lij 3 0, otherwise; (5.8d)

also:

Z a 0. (5.9)

In addition, this "straight" curvature approximation, designated by ST (to dis-

tinguish it from the St designation for straight beams), produces no shift in the

center of mass. Recalling the definition of axial stress (3.37) shows that the ST

approximation eliminates the nonlinear variation of axial stress in the y-direction

and the corresponding shift in the neutral axis of bending. A comparison of the

curvature approximations for rectangular and toroidal beams is provided in Ap-

pendix 14.2.

The implications of the curvature approximations will be discussed in the

context of Bernoulli-Euler beams, noting that similar trends occur for Rayleigh
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and Timoshenko beams. Recall the strain energy of the circular Bernoulli-Euler

beam in terms of the EX variables:

|5'10a)

Inserting the TR approximations of the /</'s produces:

The two different forms shown in (5.10-11) illustrate the coupling of the strain

energies associated with extension and in-plane bending due to the shift in the
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neutral axis. Applying the ST approximation eliminates this coupling and re-

duces the strain energy to:

From (4.39), the kinetic energy for a circular BE beam in a nonrotating frame

(with cubic and quartic terms ignored) is defined by:

l fh

TBB = r / m [«o + <>o + «£] <fc
* Jo

The terms in (5.13) with a double underline are ignored in both TR and ST

approximations; the ST approximation also excludes the (shifted mass center)

terms with a single underline.

The most important feature regarding the curvature approximations is that

they apply only to properties of the cross-sections; the proper coupling of the dis-

placement variables is maintained. Thus, the results for a circular beam modeled

with ST circular elements converge identically to the results of a model using an

infinite number of straight (St) elements.

The torsional constant, 70, appears to be independent of the curvature ap-

proximation. However, the fundamental substitution used in the formulation:

/o = kr (720 + 7oa) , (5-14)
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suggests a possible increase in I0 for EX and TR approximations assuming kr

is not a function of curvature (see Tables 14.2.2-3). However, recall that the

axial rotation, <f>i, is defined assuming that the center of twist is coincident with

the cross-sectional centroid. Curvature produces a shift in the center of twist

(even for doubly-symmetric cross sections) which cannot be characterized by the

displacement assumptions for engineering beams. Thus, the torsional constant

will be assumed independent of curvature for the purposes of this research; (5.14)

merely defines the appropriate substitution for circular beams.

The hierarchy of curvature approximations provides a means of understand-

ing similar formulations in literature, particularly for planar problems. Filipich

and Laura [58] utilized the almost classical formulation for circular BE beams

with ST approximations. BE:ST formulations have also been applied to problems

involving variable curvature [54,59], It is most interesting to note that first-order

analyses of in-plane bending vibrations for arches and rings typically employ an

assumption of zero extension of the centroidal axis [60] , namely:

ui + 2isO, or (5.15a)

«o s -J- (

This relationship explicitly eliminates the extensional energy for ST approxi-

mations and cancels what may be interpreted as the extensional energy for TR

approximations when viewed in the context of (5.116). Applying this assumption

to the planar terms of (5.12) produces:

VBE..ST = %* (-„» - |L) 2
 dx. (5. 16)

However, (5.116) shows this to be what may be considered the bending energy

for BE:TR beams. Thus, assuming inextensibility for ST beams may actually
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produce better approximations of in-plane bending frequencies if the extensional

energy is indeed small. The validity of this assumption will be explored in Chap-

ter 9.

Many planar formulations in the literature are hybrids of the ones derived for

this research. Den Hartog's 1928 formulation [61] coupled BE:TR strain energy

with BE:ST kinetic energy; it is uncertain that this was his intent but it contin-

ues to confuse researchers unfamiliar with higher-order curvature approximations

[58]. Seidel and Erdelyi [62] formulated a Timoshenko ring with EX extensional

and bending energies and ST shear and kinetic energies; they also applied the

inextensibility assumption. Kirkhope developed two Timoshenko ring formula-

tions, one with ST and inextensional approximations [63] and the other with

what appears to be TR extensional and bending energies (he formulated these

energies in terms of the Winkler-Bach constant but noted the truncated-series

approximation in (5.6)), ST shear energy, and TR kinetic energy [64]. Compar-

isons of the two theories with experimental data [65] showed similar trends, with

the ST ring being more accurate in some cases; this is not surprising based on

the above discussion. Kirkhope's out-of-plane formulation for circular TI rings

relied exclusively on ST approximations [66]. No formulation, for any beam type,

has been found in the literature which fully utilizes the exact characterization of

curvature.
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6. INTRODUCTION OF GEOMETRIC NONLINEARITIES

The words of Harold Martin [67] serve as an appropriate introduction to this

section:

Engineers by training and tradition are prone to think of nature as

being essentially linear in action and behavior. This, however, is seldom

the ease. For the most part, it is merely good fortune when a linear theory

will predict actual behavior with satisfactory accuracy over a useful range

of parameters. It is therefore not surprising that there are important areas

for which linear theory is totally inadequate. The geometrically nonlinear

problem of structural mechanics is such an area.

The hope of successfully grappling with nonlinear problems has long

been the goal of the engineering analyst... Nonlinear theory is inevitably

more complex than the corresponding linear theory. Consequently, the

application of nonlinear theory to physical problems leads to mathemati-

cal problems which are usually intractable... At the present time, finite

elements offer the greatest hope for solving complex nonlinear problems.

The displacement-based energy formulations provide an excellent foundation

for the inclusion of geometric nonlinearities. The terms deemed relevant for

this research of engineering beams may be obtained merely by retaining the

quadratic terms in the strain/displacement relationships [68,69]. This approach

is often and inappropriately termed a "moderate rotation" formulation; the small

rotation assumptions used to define the beam kinematics are still used in the

nonlinear strain/displacement relations. Also, problems requiring the inclusion

of geometric nonlinearities need not have deflections any larger than those of a
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comparable linear analysis. Thus, "large displacement" is another misnomer for

this type of analysis.

6.1 NONLINEAR FORMULATION FOR STRAIGHT BEAMS

The nonlinear Green's strains in a Cartesian space are defined as follows

[70]:

7*y =
du dv

!• +

dy dx

du dv
a-+a-

fdy oi_

dw du.
dx dz
dw du
dx dz

+

+

+

+

du du
dx dy
dv dv

_dx dy

du du
Jz~dx

dv dv
dz dx

dv dvI ^__ __ i
dx dy

dw dw~\
dx dy \

dv dv
+ a-a~ +dz dx

dw dw"\
dz dx\

dw dw
dx dy

, and

dw dw
dz dx

•

(6.16)

The exclusion of quadratic terms involving du/dx is based on the assumption

of small axial strains. Substituting the three-dimensional Timoshenko displace-

ments (2.34) results in:

yuy zu4] (w'0

"o -

[(v'0 - z<t>\) (-

(6.2a)

(6.26)

(6.2c)

The one-dimensional stress/strain law is again applied to the axial strain. Rear-

ranging the shear strain terms as in (3.15):

= (uy + v'0 + w'0fa) -(z- yfa) (ft) = (7,,)-, + (7,V)T , and (6.3o)

£ - v'0fa) zfa) (4>\) = (7««)r. + (7«)T , (6.36)



-80-

allows for a similar application of the Timoshenko shear correction factors and

Saint- Venant torsional constant in computing the strain energy.

The resulting integration of the strain energy will possess the linear terms

from before (3.18) plus cubic and quart ic terms involving the displacement vari-

ables and their x -derivatives. The quartic terms are assumed negligible; this not

only eliminates strain energy terms from the three strains in (6.2-3) but allows

sy, «„, and 7y> to be ignored even though they are no longer identically zero. The

strain energy is thus computed to be:

= f Q{ [A K)2 + /„ K)2 + /„ K

|, [K)2 + K)2]

| j { [Aky K + vtf + Ak, (u. + wtf + Jo (^)

(6.4)

Recognizing the linear terms from (3.18) and utilizing the definitions of the inte-

grated forces and moments from Section 3.5, the strain energy may be rewritten



-81-

as:
V = (V)LINBAR

2(Fuw'0-F,v'0)<i>1}dx. (6.5)

The first nonlinear term in (6.5) characterizes Euler buckling of beam-columns.

The second term relates to the torsional buckling potential of a column. Warp-

ing rigidity, necessary for an accurate evaluation of torsional buckling for open,

thin- walled sections, does not enter this formulation but its exclusion is a con-

servative assumption. Recall that the centroid and center of twist are assumed

coincident, thus uncoupling the Euler and torsional buckling terms. The third

term is associated with lateral buckling, representing the potential for moment-

induced twisting in a beam. The final term represents another form of lateral

buckling. All of these nonlinearities are discussed in great detail in elementary

stability texts [16,71].

Equation 6.5 is purposely written without any specification of beam type.

While this formulation is based on Timoshenko beams, uy and uz do not enter

into the nonlinear terms after the integrated forces and moments are introduced.

Thus, (6.5) is equally applicable to Timoshenko, Rayleigh, or Bernoulli-Euler

straight beams by substituting their respective force and moment equations.

Note, however, that the BE/RA shear-induced lateral buckling terms must be

derived from Newtonian principles since the no-shear assumption eliminates these

terms from the energy formulation. Their existence is confirmed by a comparable



-82-

NASTRAN beam formulation [72], Recalling (1.36), the deformation-induced

changes in the forces and moments may be included via the outlined iteration

procedure.

6.2 NONLINEAR FORMULATION FOR CIRCULAR BEAMS

Nowhere in these theoretical formulations does the progression of complexity

benefit overall understanding more than in the development of geometric non-

linearities for circular beams. The straight-beam formulation provides insight

into the underlying assumptions necessary to extract the geometric nonlineari-

ties from the strain energy computed using quadratic strains. While the stability

of arches and rings has been the subject of extensive research ([73] provides an

excellent compendium), this general formulation in three-dimensional space is a

new development. The result of this section is an equation similar to (6.5) for

circular beams.

The formulation begins with the inclusion of the quadratic terms in the

strain/displacement relationships for cylindrical coordinates, namely [52]:

J3LJ\ [2« + ±
R + yJ[dx R

R / f l f l .{6-6a)

+ y \ R J d y R d x

R ._ ...(6-66)
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rdO dz d z \ d 6 r d z \ r d f f te \ r36

R

. e .
(6'6c)

The small axial strain assumption takes on a greater significance for circular

beams. Not only does it allow for the exclusion of quadratic terms involving

(du/dz+v/A), but also implies that the beam is not "short." This in turn suggests

that the ST curvature approximation is sufficient to quantify the cross-sectional

properties.

Note that the axial strain energy computed from (6.6a) will contain terms

invplving curvature-dependent moments of area defined by:

It will be assumed for the purposes of computing the geometric nonlinearities

that the ST curvature approximation may be extended such that:

^So a A, (6.8a)

£o 3 /„, (6.86)

£3 S /„, and (6.8e)

lif S 0, otherwise. (6.8d)

Therefore, the approximate strains in terms of the Timoshenko displacement

variables are:
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(6-96)

Note that the quadratic terms containing (y/A) in (6.9) are also assumed to

be eliminated by the ST approximation, but the (s/R) terms are chosen to be

maintained.

Applying the appropriate correction factors and performing the strain energy

integration result hi:

«+ 3) («+*)'

+ —

(6.10)
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Substituting the integrated force and moment relations consistent with the ST

approximation results in:

= (VTI)LINEAR

3l

, (6.11)

where (VTI)LJNBAR is provided by (3.33). Note that the Timoshenko rotations

are present in (6.11), but with the appropriate substitution of the no-shear as-

sumptions (3.34):
VBE/RA = (VBE/RA)LINEAR

w'0 - F, v'0 - ^ +) dx, (6.12)

where (VBB/RA}LINEAR is provided by (3.35).

The planar terms in the formulation of circular-beam nonlinearities are iden-

tical to those of Langhaar, Boresi, and Carver [74], Furthermore, their analysis

compared favorably with experimental results when ST-approximated geometric

nonlinearities were added to the EX linear strain energy. This concept is often
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used implicitly in the analysis of preloaded arches and rings [75]. Equations 6.11-

12 are expressed in terms which allow for the inclusion of geometric nonlinearities

regardless of which curvature approximation is used.

The buckling of arches and rings is further complicated by the assumptions

made regarding post-deformation load orientation. Three approaches may be

taken [76]:

1) Hydrostatic: the load maintains a normal orientation to the deformed surface.

2) Constant direction: the load is assumed to maintain the undefonned orien-

tation. This most simple and common approach is adopted for this research

due to its applicability to gravitational and centrifugal loading.

3) Centrally directed: the (pressure) load is assumed to remain directed toward

the center of the arc [77].

Wempner and Kesti [78] have shown that the critical pressure for a circular

ring possesses a 3/4/4.5 relationship with respect to hydrostatic/constant direc-

tion/centrally directed loading assumptions.
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7. FINITE ELEMENT DISCRETIZATION

FOR BEAM PROBLEMS

The previous chapters have focused on the formulation of the potential and

kinetic energies for beam elements. Rotating coordinate system effects have been

included explicitly and the derivation of geometric nonlinearities has been pre-

sented. So far, the derivations have centered on an individual element and have

been denned in terms of the beam properties, the beam displacement variables

relative to the local frame, and the position and orientation of the element rela-

tive to the inertial frame.

This chapter is devoted to the definition of the polynomial-based finite ele-

ment space, namely:

(7.1)

where the following definitions elaborate on this description:

T = domain.

« = beam type. The beam type is assumed to be identical for all elements

in a given analysis.

nD (if) = number of three-dimensional displacement variables for a given beam

type. Thus, nD = 4 for Bernoulli-Euler and Rayleigh beams and relates

to uo» "oj wo and <£i, in that order; nD = 6 for Timoshenko beams with

the inclusion of Uy and u,. The simplification for planar problems will be

made via application of the appropriate constraints (see Section 7.6) .

A = mesh or partition. The mesh defines the division of the entire domain

into subdomains or elements.

n£(A) = number of subdomains or elements.

nc(A) = number of grid points or nodes used to define the mesh.
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T(fc) = domain of the fcth element. This sub domain may be denned in terms

of the local coordinates as:

= {x | «W < x < x£», *W = «j») - ,W } , (7.2)

where A and B refer to the ends of the beam element (see Figures 2.2-3).

Note that the beam displacement variables are only functions of x and

t and will be defined in the context of assumed-modes via separation of

variables.

= standard element defined as:

T(rt) = {£ | -1<£ <+!}. (7.3)

{Q} = HE x 1 vector of mapping functions. Q(fc)(£) maps the fcth element to the

standard domain. Linear mapping is used exclusively in this research,

namely:

for (7.4a)(ill) ^

*
<=T< fc>. (7.46)

[p] = no x rig matrix of polynomial orders. The concept of adaptive p-

refinement may be seen in this context though it is not addressed. Fur-

thermore, the polynomial orders are assumed independent of the element

number for this study, namely:

Pij = Pit 3 = l,2,...,nB. (7.5)

This in no way precludes the process of hierarchic extensions in pit i =

1, 2, . . . , nD. The relationship between the polynomial orders of the various

displacement variables will merit future discussion. PVAEB is currently

limited to p,- < 9.



C4(T) s set of all displacement functions on T with bounded continuous deriva-

tives up to order /.

7.1 DEFINITION OF ELEMENTAL SHAPE FUNCTIONS

The elemental shape functions form the basis for the systematic definition of

the basis functions for the finite element space. The shape functions and basis

functions are not the same, in general. The shape functions are defined in the

local frame for a single element. The basis functions will be defined in either the

local or global frame and may involve a linear combination of the shape functions

in conjunction with local-to-global transformations. They may indeed span more

than one element in the context of local support. The distinction between these

functions will become obvious through the ensuing discussion.

The beam displacement variables for each element are approximated as a

linear combination of the elemental shape functions in conjunction with the el-

ement mapping (7.4) and complex harmonic response (1.16). For example, the

axial displacement is approximated as:

= E "iSwo-""

-t
F (7.6)

where JV,-(£) are the elemental shape functions and uj,fcj are the unknown coef-

ficients. The elemental shape functions are chosen to be polynomials for this

research. Additional objectives regarding their definition include:

1) ensuring finite strain energy,

2) producing basis functions which are complete (1.10),

3) minimizing connectivity between adjoining elements,
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4) producing hierarchic elemental matrices,

5) maximizing sparseness of elemental matrices, and

6) promoting numerical stability.

The latter two desires suggest the use of orthogonal polynomials, but this conflicts

with the desire for minimum connectivity. Thus, appropriate compromises must

be invoked.

The issue of finite strain energy must be addressed in the context of the

formulations in Chapter 3. The strain energy for Timoshenko beams (3.18,33)

involves the first derivatives (in x) of all six displacement variables. Thus, all six

variables must be contained in the C0 space to ensure finite strain energy. The

JV/(£) shape functions will be chosen to be Co-compatible such that for:

3=1

TI Beams: t#' («<*>(€),«) 3 £ «gX'( £)«*", ("a)

$<iut, (7.76)
y=i

P4-H

(k) (Q(k}(t),t) a £ tfjNM)^', (7.7d)
y=i

Ps + l

Note that the z-derivatives of the displacement variables may be related to the

^-derivatives of the shape functions, for example:
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or, in shorthand:

' 4 »(£){«<*>* TO'*". (7.9.)

«S - (f) 3 <«<*>* (*T > «*"> etc"

where * = <f/ci£ and the element designation ((*) superscript) has been dropped

for simplicity.

The compromise between minimum connectivity and maximum sparseness

and stability for C0 functions has been developed previously [29]. The linear

interpolants serve as the first two shape functions, namely:

= 0; and (7.10a)

= l; (7.106)

the relationship between these functions and the Legendre polynomials, Pi(£)>

is noted for future reference. Thus, all of" the interelement connectivities

may be conveniently enforced using the linear interpolants (termed external

modes) in (7.7), noting that p< > 1, t = 1,2,..., 6, is required. Also note that

Pi = 1, t = 1,2,..., 6, represent the lowest-order approximations typically used in

h-version, TI beam elements.

Additional shape functions may be constructed to be zero at the ends (called

internal modes) using Legendre polynomials. They are defined by:

(-l) = N,(+l) = 0, for (7.116)

j > 2 . (T.llc)
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Ni(XI), i-1-6

1.05
-f-N2 --O- N3 •-$• N4 "A- N5 -X- N6

-0.5 -

-1.0 -0.5 0.0

XI
0.5 1.0

Figure 7.1 Co-compatible elemental shape functions.

This choice of functions is certainly not unique even in the space of polynomials

[23,79], but they do satisfy the stated desires for the elemental shape functions.

The specification of the standard element has some effect on function selection.

Figure 7.1 illustrates the first six C0 elemental shape functions. Of particu-

lar interest are two integrals which factor into the elemental formulations. For

t ,y<6:

f.
'2 1
3 3

2
3

^6 3
-1
Ve 3
2
5

1
v/10
— 1
>/10

0

JL
31

0

0

STsT
o\J
3.
46

Symmetric

0

o
0

-1
?V45

o
X
77

(7.12)

where, for i > 3:

-, and (7.13a)
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also:

+ I)

-A 0 0 0 0

§ 0 0 0 0

1 0 0 0

1 0 0

1 0

Symmetric 1.

(7.136)

(7.14)

The connectivity /orthogonality compromise is apparent from the loss of band-

edness in the upper left corners of these matrices. Note that the external and

internal modes are mostly orthogonal to each other (refer to their definitions in

terms of Legendre polynomials in (7.10-11)).

It is useful at this time to relate the coefficients in (7.7) to the displacements

and rotations at the beam ends. Define:

= displacements at end A,

u.A4ifA6i *fA6 = rotations at end A,

«fli,«S2,ufl3 = displacements at end E, and

us4,U£s,use — rotations at end B,

with respect to the local axes, z, y, and z, respectively.

(7.15a)

(7.156)

(7.15c)

Then, for:

TI Beams: uA1 = 0,

j(*=)
=

4J, uA3 = w(
0

k}
it

"fll = "0*2.

,
«B4 = 1,3

(k)
= - « -

(7.16a)

(7.166)

(7.16c)

(7.16d)

These definitions for Timoshenko beams are independent of curvature.
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The strain energy formulations for Bernoulli-Euler and Rayleigh beams are

derived from the Timoshenko formulations via application of the no-shear as-

sumptions. The number of displacement variables is reduced to four with the

elimination of Uy and «,, but the resulting formulations (3.20,35) involve the sec-

ond derivatives in x for v0 and w0. Thus, v0 and WQ must be contained in the Cx

space to ensure finite strain energy. The £,(£) shape functions will be chosen to

be Ci-compatible such that for:

BE/RA Beams: u£fc) (Q(fc)(£),*) * £ «45Jvy(0«fart. (7.17a)
y=i

y=i
Ps-fl

(7.17c)
y=i

P4-H

The desires in defining the Iy(£)'s are identical to those for the C0 functions.

The external modes are defined using the Hermite cubices typical of h-version

codes, namely:

(7.18a)

, ^ ,
8 8 8 8 2 0 1 2 2 0 1 2

1, L3(-l) = -M+l) = L5(+l) = 0; (7.186)

L3(+l) = 1, I3(-l) = L'3(-l] = LZ(+1) = 0; and (7.18c)

_ . _ = _ _
4 U J 8 8 8 8 2 0 1 2 2 0 1 2

K+l) = 1, I4(-l) = £;(-!) = l4(+l) = 0. (7.18d)
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Note that p,- > 3, t = 2,3, is required to ensure d compatibility of v0 and WQ

and that interelement connectivity will involve these two variables and the first

derivatives in i. Thus, the internal modes suitable for p-extensions are defined

using Legendre polynomials as:

C/>

(-l) = i;(-l) = Iy(+l) = i;(+l) = 0, for

y>4.

(7.19a)

(7.196)

(7.19c)

Again, this choice of functions is not unique [79], but it is an improvement over

some that have been suggested in the literature [20,21].

Figures 7.2 and 7.3 illustrate the first eight C\ elemental shape functions.

Two integrals of interest in the formulations are, for i,j < 10:

rWJ-l

JA. £. =13.
106 36 210

_2_ -12. =1
106 210 70

26 -
36 1

-1

90V14

46v^l4

-1
106 14N/10

2
63£ o

210VT8

693^6

6006

Symmetric

630V22

316>/22

-4
585^77

0

4096

0

0

0

0

0

^7
0

8416

0

0

0

0

0

*0
-4

1989>/166

0

6
46189

, (7.20)

where, for t > 5:

(2t--l)(2i-3)(2t--7)(2t-9)'
(7.21a)
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Li(XI), i-1-4

Ll - - L 2 - -L3

-0.2
-1.0 -0.5 0.0

XI
0.5 1.0

Figure 7.2 C\-compatible elemental shape functions (external modes).

Li(XI), i-5-8

-0.1
-1.0 -0.5 0.0

XI
0.5 1.0

Figure 7.3 Ci-compatible elemental shape functions (internal modes).
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-4

» + l)(2t - 3)(2t - 7)^(21 - 1)(2* - 5)
, and

also:

2t+l)(2t-l)(2t-C

'a a _a a
2 4 2 4

I _3 I
2 4 4

3 _3
2 4

1
2

Symmetric

OV(2» + 3)(2t-

0
0

0
0
1

0
0
0
0

0
1

0
0

0
0
0
0

1

0
0

0
0
0
0

0
1

-5)

0
0
0
0
0
0

0
0
1

o"
0

0
0
0

0
0
0
0
1

(7.216)

(7.21c)

(7.22)

Again, the loss of bandedness in the upper left- corners of these matrices reflects

the compromise between connectivity ease and pure orthogonality.

The coefficients in (7.17) involving the external modes may again be related

to the displacments and rotations at the beam ends (7.15). However, curvature

affects these relations for BE/RA beams; their proper definition is essential in

establishing the interelement connectivity between straight and circular beam

elements. Thus, for:

=BE/RA Beams:

-to,
(fc)
0.2

„(*)U0.2

UB4

= «0,2.

_,*(*>

_„(*)
— U0,3i

(fc)
-"

UBS =
0.4

M*)

«U0.4

(7.23a)

(7.236)

(7.23c)

(7.23d)

where RW = oo for straight beam elements.
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7.2 COMPUTATION OF ELEMENTAL MATRICES

The elemental matrices for straight and circular beam elements are computed

after substitution of the displacement variables in terms of the elemental shape

functions. For example, the linear strain energy for 8E/RA beam elements may

be represented by:

< til}'

Symmetric b(*MC44 ] < * >
-c

(7.24)

where:

I*
44

(7.25)

Symmetric

is defined as the elemental stiffness matrix. Similar matrices which result from

this substitution are defined as:

[<?(*) J

= elemental mass matrix,

elemental Coriolis matrix,

[Ks '] = elemental centrifugal softening matrix, and

elemental geometric nonlinearity matrix.

'

' =[Ka ' \ =

The following observations are made regarding the elemental matrices:

1) The dimensions of the elemental submatrices depend on the polynomial or-

ders used to approximate the various beam displacement variables. Referring

to (7.17) and (7.25), for example:

(7.26)
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2) All derivatives of the beam displacement variables with respect to z are

converted to derivatives of the elemental shape functions with respect to £.

Thus, the elemental matrices will involve integrals of the form:

f*C(t){A(t)}{B(t)}Tdt, where (7.27a)

(7.276)

Curvature and rotating coordinate system effects significantly increase the

number of combinations of {X(£)} and {3(0} in these integrals. Curvature

approximations may either change or zero certain values of C(£).

3) The constant beam properties result in constant C(£)'s in the integrals re-

quired for the elemental stiffness and mass matrices. Thus, they may be

computed explicitly using tables for f*i{A(£)}{8(£)}Td£. Variations in posi-

tion and orientation of the beam element with respect to the inertial frame

mandate the use of numerical quadrature for computing [K^k)] and [C(fe)].

4) The elemental geometric nonlinear!ty matrix also requires use of numerical

quadrature. Note that the integrated forces and moments (see Section 3.5)

depend on the approximations of the displacement variables (7.7,17). Thus,

hierarchic extensions of these approximations typically produce nonhierarchic

fK-Wl's\KG I s-

The resulting elemental matrices for BE/RA beams are summarized in Ap-

pendix 14.3. Appendix 14.4 summarizes the elemental matrices for TI beams.

This separation by beam type is mandated by the fundamental differences be-

tween the displacement variables and their approximations in terms of the el-

emental shape functions. The element designation ((Jb) superscript) has been

dropped throughout the Appendices for simplicity. The elemental matrices are

defined in the submatrix form as illustrated in (7.25); the dimensions of the
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submatrices are implicitly defined as in (7.26). The applicability of the individ-

ual submatrix terms are listed for straight beams (St) and circular beams with

straight (ST), truncated series (TR), or exact (EX) curvature approximations.

7.3 ASSEMBLY OF UNCONSTRAINED GLOBAL MATRICES

Once the elemental matrices have been computed, the global matrices are

assembled by enforcing the interelement constraints. This primarily involves

relating the locally defined displacements and rotations of the ends of the beam

elements to the globally defined displacements and rotations of the appropriate

grid points. The basis functions associated with the movements of a particular

grid point will consist of a linear combination of the elemental shape functions

from all elements joined at that grid point.

The global matrix assembly process involves a three-fold operation:

1) converting the external modes of the elemental matrices into displacements

and rotations at the beam element ends,

2) transforming the locally defined elemental end movements to the global

frame, and

3) adding the resulting transformed elemental matrices to the global matrix

structure.

This procedure will be discussed in the context of the stiffness matrix. The

assembly procedure is identical for all other matrices; the skew-symmetry of the

Coriolis matrix poses no problem.
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The elemental stiffness matrix may be arranged with respect to the following

order of coefficients:

uifc)

"0,1

vV0,l

f {«!?>> 1
\ , . / — '

«U0,2

»W0,2

3
13

TI

W,,'0,2

oU0,2

ulfc)
"0,2

"0,3

„(*)
"0,3

u»(fc)
^0,4

U0,4

{4k)}

(7.28)

BE/RA

where {u^} and {u[fc)} represent the coefficients associated with the external and

internal modes, respectively. Therefore:

T

LINEAR (4")
(7.29)

The external modes may be related to the local end displacements and rotations

of the beam element. Defining:

"A3

UB2

US 4

(7.30)
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allows the elemental stiffness matrix to be defined as:

UNBAR
(7.31)

The (£) superscript denotes the "local" description of the elemental matrices,

realizing that (vM)LfIfEAJt = (V^)LINBAR. Also note that {«<*>} = {«<"}; thus

[K$] = [K$\. However, the remaining three local stiffness submatrices must be

derived from the elemental stiffness submatrices using the relations in (7.16) or

(7.23).

The local stiffness matrix for Timoshenko beams is specified quite easily as:

= (*{?)„

TI

. (•&)TI

(»,/)* (6,6), (6,12), (12,6), (12,12);

otherwise.

(7.32)

This relation is valid for both straight and circular TI beams. Equation 7.23

shows two conversions which must be performed on both straight and circular

BE/RA beams. These must be performed sequentially to allow the effects of the

first conversion to be carried through the second conversion, but the order is not

important. Therefore, performing the u;0 conversions first:

BE/RA

(7.33)

k\- } », j = 5,11,
^ * I BE IRA

(«,/)/(5.5), (5,11), (11,5), (11,11);

(*<*>)* (%])BB/RA («', J) = (5,5), (5,11), (11,5), (11,11);

K")BE/RA
otherwise.
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Then, the v0 conversions may be performed on this intermediate matrix such

that:

BE IRA

BEIRA

BE IRA

t,y = 6,i2,
(t,y)^(6,6))(6,12))(12J6),(12,12);

(«,j) = («.«), («, 12), (12,6), (12,12);

otherwise.

Circular BE/RA beams possess an additional coupling term in the local z

rotation (««)• This may be accounted for by noting the inverse relations of

(7.23), namely:

(*)
"0.2 _.. , «A1 __, (?35a)

(7.356)

This allows the curvature effect to be included by applying a second two-stage

transformation to the matrix defined in (7.34). Thus:

(fc)
"0,4 «B1

BB/^ (7.36)

otherwise;

then:

BE/RA-.NonSt

K")
IK")

BE/RA:NonSt

BE/RA:NonSt

BE/RA-MonSt • _ j 7.

' ' (7.37)

otherwise.
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It is important to understand that this transformation is defined in terms of

matrix structure, not content. As seen in Appendices 14.3 and 14.4, the elemental

matrices for straight and circular beams are significantly different. Conversion to

the local description for circular BE/RA beams merely involves the four separate

transformations in (7.33,34) and (7.36,37).

The displacements and rotations at the beam ends defined in (7.16) and (7.23)

are specified in the local coordinate system. Imposing interelement connectivity

using these variables is possible only if the local frames of adjoining elements

coincide. However, the engineering beam elements are formulated to allow for

nontangential intersections of an arbitrary number of elements. To provide for

this flexibility, it is suitable to define the grid point displacements and rotations

in the global frame, namely:

, y = l , 2 , - - - , n G , (7.38)

where U,-i, If/a, and (7/3 are the displacements and (7/4, (7/5, and Uj6 are the rota-

tions of the jth grid point with respect to the global axes, X, F, and Z, respec-

tively; nG is the total number of grid points.

For a particular element, transformation of the external modes requires

]> which is known exactly from the problem geometry. Thus:

fer<*)(-l)l \ U A Z \, (7.39a)
I U I

(7.396)
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UBS

{ U04 1
«** =
«B6 J

This allows for the definition:

such that:

LINEAR

{U(
E

a)}

{««>

, and

UB 4]
UB& }.
UBe]

UBI.

UB*

ull

($}

{U(
E

a)}

(4"}

(7.39c)

(7.39<f)

(7.40)

(7.41)

The (g) superscript denotes the "global" description of the elemental matrices

even though (V^}LINEAR = (V^}LINEAR = (V™)LINBAR . The internal modes will

again be unaffected by the transformation; thus {u^1} = {u^'} = {4*'} = ("/}

[K($\ = \K(^\ = [#}*']. The two-stage transformation to the global description is

defined using:

m,n = 1,2,3, (7.42)
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such that:
*tj

' £ •£

E *{(!+•) (S*!3,-«) (+1)) y = 7, 8, 9;
m^l

otherwise.

Then, recalling (2.21):

= 1,2,3,

allows for the definition of the second stage of the transformation as:
[KM] = *|<>

E fC*l"J f_-
iL ' t rnV '

m=l v

(7.43)

(7.44)

t = 7,8,9; <7-45)

£ (f«i?i.) j+i)) *!iu • - io>".i2;
fc|y' otherwise.

The local-to-global transformation as defined is independent of beam type or

curvature.

The global displacement (and rotation) vector may be defined as:

{GuP}

(7.46)
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Element 1 Element 2

Figure 7.4 Hinge modeling via pin flag.

{GUp} defines the vector of np globally specified degrees-of-freedom introduced

through the use of pin flags [80]. Pin flags allow for the release of interelement

constraints. For example, Figure 7.4 illustrates a hinge to be placed between

the two beam elements to eliminate the transfer of Z-moments through the con-

nection. This may be accomplished by flagging the sixth displacement variable

(i.e., the global Z rotation defined by U*) for end B of Element 1 or end A of

Element 2. For the latter case, all matrix terms involving the Z rotation for end

A of Element 2 would be related to the pin degree-of-freedom instead of U6 of

the connecting grid point.

The collected internal modes are defined in global displacement vector as:

(7.47)

Thus, the number of unconstrained global degrees-of-freedom is:

n* I I no

= (no x 6) + nP

or, noting the restriction in (7.5):

- 12 (7.48)

•y-i y-i

= (na x 6) + nP + I nB * < + 1) I - 12 (7.49)
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Note that the process of p-extension involves increases in the p,-'s with nG and

nB fixed, h-extension involves increases in nE and nG with the p,-'s fixed, and hp-

extension involves increases in all three parameters. From (7.46) and (7.47) , it is

seen that p-extension increases only the number of internal modes. Also, the basis

functions for the finite element space are either the linear combinations of globally

transformed external modes or the individual, locally defined internal modes.

Thus, all linear matrices derived from p-extensions are explicitly hierarchic.

The global stiffness matrix is assembled by summing the contributions from

the elemental stiffness matrices after transformation to the global description.

Note that (7.41) may be defined relative to the global displacement vector as:

(V(o)\
\ / LINEAR

(7.50)

The conversion from (7.41) to (7.50) merely consists of an expansion of matrix

dimension; [K^] and {JCa ] contain the same nonzero terms arranged in differ-.

ent fashions, taking into account any applicable pin flags. In addition, globally

defined linear springs are allowed to connect between any grid point degree-of-

freedom and ground such that:

/=! <=1

'k{SP) 0

0

0

0

0

o
0

0

0

oj I

{Guno}

(7.51)



Therefore, the global stiffness matrix is:

(7.52)
L«=l J

The same assembly procedure is followed for all other matrices. The distributed

mass terms summarized in Appendix 14.5 may be added directly to the global

matrices with respect to the displacements and rotations of the associated grid

point.

7.4 DEFINITION OF NONROTATING LOADS

The formulation of the kinetic energy for beam elements in a rotating frame

introduces centrifugal load terms to the static load vector. Additional static load

capabilities are developed in this section. They are defined hi terms of loss of

potential energy to allow direct substitution into Lagrange's equation (1.14).

7.4.1 Generalized Distributed Forces

Generalized distributed forces are defined in units of force per unit length

and are assumed to be applied along the beam axis. They may be specified in

the local frame:

(7.53)

or in the global frame:

/(*)
Jx

{Gf ( k ]}={fP }, (7-54)
/(*)
Jz

such that:

(7.55)
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The loss of potential energy associated with these loads is merely:

(if >) = - jf h(k> [,(*>4*) + /<*>„<*) + /<*)„(*)] dl. (7.56)

The (Jfc) superscript throughout denotes the fact that distributed loads are applied

on an element-by-element basis. As defined, (7.56) is applicable to both straight

and circular elements of all beam types.

7.4.2 Loading by Gravity

Gravitational loading is applicable to all elements of a model. The gravita-

tional acceleration vector is specified in the global frame:

f t t l
{Gg} = < 9Y \ , (7-57)

such that:
( (fc) 1
I 9x

g(
a
k) \. (7.58)

«H

The gravitational potential energy is defined using the undeformed position of

the center of mass as the datum. For straight beam elements, the gravitational

potential energy is:

Circular beam elements must take into account the shift in the mass center due

to curvature. For circular Timoshenko beams:

TI-.NonSt
f [gW («i

JO



-111-

Applying the no-shear assumption for BE/RA beams produces:

Recall that y^) = 0 for the ST curvature approximation and that

for the TR and EX curvature approximations.

7.4.3 Forces and Moments at Grid Points

Application of forces and moments at the grid points provides a powerful

verification tool for the strain energy formulations by allowing comparisons with

simple known solutions. The forces and moments are applied in the global frame

and include the gravitational forces induced by any applicable distributed masses

(At,-). Define:

+ M,gx '
+ Xyffy
+ M,-gz
M,x

(7.62)

M,-z

where the j subscript denotes the grid point of application. Therefore:

(7.63)

or:
T

{0}

{0}

{°uno}

(7.64)
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defines the loss of potential energy due to the applied grid point forces and

moments.

7.4.4 Assembly of the Global Load Vector

The elemental load vector terms associated with the centrifugal, gravita-

tional, and distributed forces for BE/RA and TI beam elements are listed in

Appendices 14.3 and 14.4, respectively. They are presented in terms of the local

displacement variables after substitution of their approximations as linear com-

binations of the elemental shape functions. From a virtual work perspective, the

elemental load vector is related to the virtual change in the potential energy by:

where the external and internal modes are separated in accordance with (7.28).

Thus, the elemental load vectors must be transformed to a global description

using a process similar to that used for the elemental matrices. Only then may

they be summed to produce the global load vector.

Referring to (7.30), the local description of the virtual change in potential

energy is:

where:

„- (•**)

*1),, ••-*«••/TI (7.67)
ri fc)^ otherwise;
' ITI
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BB/RA

-kW (r<
fc>)

BB/RA
i = 5,11;

t = 6,12;
BB/RA

(rf*M otherwise; andv • / r ~ ' ~ ''BB/RA

(7.68)

BE/RA:NonSt

' I BE IRA

BB/RA

t= l ,7 ;

otherwise.

Then, the global description may be defined using (7.40) as:

where, \ising (7.44):

f 3

m=l

E fm^l

/c(fe) _(<)

(7.69)

(7.70)

(7.71)
t' = 7,8,9;

i = 10,11,12;

otherwise.
»

Finally, (7.70) may be redefined with respect to the global (virtual) displacement

vector such that:

(7.72)
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Therefore, the assembled global load vector is defined by (recall (7.64)):

, (7.73)
t=i

such that:

{6V W} = -{RW}T{6UW}. (7.74)

7.5 COMMENTS REGARDING CIRCULAR BEAM ELEMENTS

The formulation and discretization of circular beam elements have been de-

veloped in explicit detail in this and previous chapters. Coupling of the displace-

ment variables exist in the strain energy formulations and no-shear assumptions

presented in Chapter 3. The global description of the elemental matrices for

circular BE/RA beams is also affected by coupling. Except for some quadratic

strain terms in the formulation of circular-beam geometric nonlinearities, no as-

sumptions regarding the "shallowness" of curvature are made. The curvature

approximations of Chapter 5 simplify the computation of beam properties but

maintain the coupling of displacement variables. Inextensibility assumptions are

discussed but never applied to the formulations.

The preceding paragraph provides the necessary framework for discussing

the literature regarding circular beam elements, particularly arch elements. The

words of Babu and Prathap [81] provide a useful introduction to the discussion:

Early attempts to derive curved beam and shell elements in a curvilin-

ear system were dramatically unsuccessful. This was wrongly attributed to

the failure of these elements to recover strain-free rigid body displacement

modes in a curvilinear coordinate description. Recent evidence points to

a "membrane locking" phenomenon that arises when constrained strain
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fields corresponding to inextensional bending are not "consistently" re-

covered.

The issue of rigid body modes is significant to the present formulation. The

polynomial-based external modes in (7.7) or (7.17) will not represent all of the

rigid body motions for circular beam elements (but will for straight elements)

except in the limit as h -» 0. However, inclusion of internal modes via p-extension

allow the rigid body modes to be recovered within the context of energy mini-

mization.

The locking problem is more abstract. Strictly speaking, "locking" is the

inability of a finite element formulation and discretization to converge to the

exact solution via extension. The shear locking described in [82] provides a

classic example. Often, this terminology is applied to problems that do converge

to the exact solution but at a very slow rate. Exotically-named techniques such as

hybrid and mixed formulations [83], reduced or selective integration [84], penalty

relaxation [85], and field-consistent strain interpolation [86] have been introduced

to compensate for shortcomings in the formulation and/or discretization and to

improve convergence in problems experiencing "pseudo-locking."

In a sense, p-extension may be considered an addition to this list of tech-

niques. However, p-extension will not relieve locking problems introduced by the

formulation. Experience gained from this research suggests that the potential

for locking is, at the very least, enhanced by the use of simplified formulations.

In particular, ignoring the coupling of displacement variables during any stage

leading to the global finite element matrices or applying inextensibility assump-

tions will produce locking-type phenomena. The distinction between errors of

idealization and errors of discretization is significant in understanding the source
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of locking. No locking problems have been encountered utilizing the formulations

presented here in conjunction with p-extensions.

The issue of poor rates of convergence merits further discussion. Previous

arch studies have shown that better accuracy could be obtained with straight

elements as opposed to (ST) circular elements using the minimum polynomial

orders in h-extensions [81]. This observation is made even more significant by the

additional mapping-induced errors in straight-element models. These findings

were confirmed using the formulations of this investigation; thus, some pseudo-

locking phenomena are present. A similar comparison between h-extensions of

straight beams versus p-extensions of circular beams is just as enlightening. In

terms of degrees-of-freedom, the initially better accuracy of the low-dof straight-

beam models is quickly surpassed by the circular-beam models due to the superior

convergence rate of p-extensions. Typically, circular beams require higher p-levels

than straight beams for comparable accuracy, but the rates of convergence have

been found to be quite similar. Separate specification of the polynomial orders

for straight and circular beam elements is an obvious first step in adaptive p-

refinement.

7.6 APPLICATION OF HOMOGENEOUS BOUNDARY CONDITIONS

The unconstrained global matrices are defined in the space of 5(T) c £(T).

In the absence of springs, this implies that the global stiffness matrix in (7.52) is

either explicitly singular or approaches singularity as pi -» oo, t = 1,2,..., n^. Thus,

the application of geometric boundary conditions not only restricts the space to

5(T) c E(T) but also provides for the elimination of rigid body motions which

make the stiffness matrix singular. Springs may serve the same purpose, but the

emphasis in this section is on enforcing the geometric boundary conditions.
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The geometric boundary conditions are assumed homogeneous for this de-

velopment. Furthermore, they are assumed to involve enforcing zero global dis-

placements and/or rotations at grid points. Thus, the global displacement vector

in (7.46) may be partitioned into:

(7J5)

where {C/2> } is the vector of the remaining dependent coefficients. Defining nc

as the number of constrained degrees-of-freedom, {U^} contains n terms where

(see (7.49)):

n = nv - nc. (7.76)

The dimension, n, represents the number of degrees-of-freedom cited for all prob-

lems in this report.

Partitioning the global stiffness matrix and load vector consistent with (7.75)

produces:

\KDD\ \KDC\ i i-£> i i _ i -.--u > \ CT rr\
1 •- - < l-\.- ia\. ._/«!, f« I7'77)

where {F^} are the resultant generalized forces induced by the constraints. The

static solution is obtained from:

and the constraint forces may be obtained after solution for (U^} via:

(7.79)

Inclusion of the centrifugal softening and geometric nonlinearity matrices and

the centrifugal load vector poses no problems for this partitioning scheme.
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Application of geometric boundary conditions to free-response eigenprobiems

follows a similar procedure. Partitioning of the complex eigenproblem may be

represented by:

(G)\

Solution of the constrained eigenproblem:

leads to the solution of the dynamic constraint forces:

or:

.tut

{&}}'
(7.80)

(7.81)

(7.82)

(7.83)

The constraint forces in (7.79) and (7.82,83) may be derived from the in-

tegrated forces and moments of the beam elements as denned in Section 3.5.

However, the constraint forces are derived directly from the energy-based matrix

formulation and, thus, possess superior convergence in comparison to the inte-

grated forces and moments approach [87]. Using the principle of virtual work,

the matrix formulation provides for the computation of "super-convergent" forces

and moments at the ends of any beam element. Defining:

FA,

F?,

(7.84)

A/fly

MB,



and recalling (7.30), (7.31), and (7.66), this computation for a linear static prob-

lem takes the form:

•(«) il J {"B}} I [ pEI\\ \ , m_ t ~ { R

(W }J l
,- n~\I7-85)

and {u} are known via inverse transformation of the appropriate terms

from the global solution vector. Application to linear eigenproblems is appar-

ent; however, nonlinear problems require the inclusion of deformation-dependent

terms which will not be developed as part of this research.

Homogeneous constraints coupled with the fixing of certain p<'s provide a

simple means for performing planar analyses using the three-dimensional formu-

lations. Referring to the discussion in Section 2.3, in-plane responses may be

evaluated by the specification:

Constrain: U}-3,Un,Uj&, j = 1,2,. .. ,nG) and (7.86a)

Fix : ps = P4 = Pe = 1. for TI Beams, or
(7.866)

Ps = 3, p4 = 1, for BE/RA Beams.

Out-of-plane responses characterized by (2.35) result from the specification:

Constrain: 0/i,#y2,#/6i j — 1,2, . .. ,nG, and (7.87a)

Fix : pi = P2 = ?5 = 1, for TI Beams, or
(7.876)

Pl = 1, pa = 3, for BE/RA Beams.

Again, these specifications assume that the entire model lies in the global XY-

plane and does not involve Coriolis coupling.

It is desirable at times to solve eigenproblems possessing rigid body modes.

While this implies a singular (positive semidefinite) global stiffness matrix, the
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global mass matrix (as derived from the quadratic form) is always positive defi-

nite. Thus, the stiffness matrix may be made positive definite by adding to it a

positively scaled mass matrix. This process is known as shifting, and it is also

used to improve the rate of convergence for iterative eigensolvers [14]. Starting

with the singular eigenproblem:

(7.88)

the shifted eigenproblem is defined using:

a(M\, (7.89)

where a is a positive constant. The shifted eigenproblem is:

(7.90)

where the relationship between (7.88) and (7.90) is simply:

(7.91a)

(7.916)

The shifting procedure is limited to linear, nonrotating eigenproblems for this

investigation. Rotating coordinate system effects and/or geometric nonlinear-

ities may be included with the appropriate assumptions and some algorithmic

manipulations [39,75].
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8. THE BENEFITS OF HIERARCHIC p-EXTENSIONS

The benefits of p-version finite elements are best discussed in the context

of a sample problem. The intent here is not to analyze a particularly difficult

system. Rather, a very simple problem is used so that comparisons with the

known exact solution may be made. Therefore, a nonrotating, straight, uniform,

cantilever, Bernoulli-Euler beam will be evaluated for beam flexure. The problem

is illustrated in Figure 8.1. The beam properties are chosen for ease of analysis:

m = El = L = 1. (8.1)

The emphasis of this investigation is dynamics, but a few comments regarding

beam statics are hi order. If static point forces and moments of arbitrary direction

are applied to the free end of the cantilever beam in Figure 8.1, exact results for

BE/RA beams are obtained using pi = p4 = 1 and p2 = p3 = 3, i.e., the minimum

p-levels allowed. Exact results for TI elements require pi = p4 = l, p2 = p3 = 3, and

P5 = P6 = 2 for the formulations used in this research. Thus, additional degrees-of-

freedom are required to characterize the shear energy, and the minimum p-levels

for Timoshenko beams (p.- = 1, » = l, 2,..., 6) are not sufficient for evaluating even

the simplest of problems. Different formulations of h-version TI beam elements

have eliminated the need for the additional degrees-of-freedom [17,50], but they

are not easily extended to higher p-levels and make the inclusion of rotating

coordinate system effects difficult.

8.1 CONVERGENCE RATES FOR EXTENSIONS

The exact eigensolution for the problem in Figure 8.1 using BE beams and

(8.1) is:

wn(x,t) = Wn(X)e
ia^, where (8.2a)
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t- f w(x,t)

m.EI -*-x

Figure 8.1 Cantilever beam sample problem.

\ir I \ I L a a \ fco8^ Pn + COS Pn \ I • T. a -Wn(x) = (cosh0nx - cos0nx) - I ) (sinh 0nx - sin
\3inhpn + SWpn /

(8.24)

(8-2c)

«n = Pi. (8.2d)

The n subscript represents the nth positive value of /? which satisfies (8.2c). It

is obvious that exact finite element solutions are not possible using polynomial

elemental shape functions but may only be approached via extension. In com-

paring the finite element solutions to the exact solution, an error condition may

be defined as:

(*BX - *FE)e =
*EX

(8.3)

where the * represents the various parameters which may be compared. For this

analysis, the compared values are:

un = natural frequency,

Wn(L) = displacement at z = L,

W'n(L) = rotation at x = L,

M(0) = EIW%(0) = moment at x = 0,
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F(0) = EIWZ'(0) s shear force at x = 0,

Mc = moment at z = 0 from constraint equation, and

Fc = shear force at z = 0 from constraint equation.

The eigenvectors are mass-normalized to provide consistent scaling between the

various models.

The strain and kinetic energies for this simplified problem are:

FT t^1
V = ^~ I ("")<**. «wi (8-4a)2 Jo

)2dx. (8.46)
0

Two different extension techniques are utilized for this analysis. The h-extension

method involves increasing the number of uniform elements with p3 = 3. Thus:

t ornm TIB '

= £ = h, for

k= l,2,...,nB|. (8.5)

Therefore (see (7.20,22)):

', and (8.6a)

r(fc)aj{»S5} [T/ {i«>{Mr^]{«'S}«2<wt, where (8.66)

t , y < 4 , (8.6c)

for the h-extension models. Interelement connectivity is enforced by equating

(see (7.23)):

a(k) w(i<+i)
f- = ̂ -,for (8.76)
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l). (8.7c)

The clamped boundary condition at z = 0 implies:

„(!)

The resulting number of degrees-of-freedom for the h-version models is:

n* = nB X 2, (8.9)

where the h subscript denotes the h-extension procedure.

The p-extension models contain a single element (h = I) with increasing poly-

nomial order up to p3 = 15. The strain and potential energies are approximated

as in (8.6a) and (8.66), with »',/ < (p3 +1). The clamped boundary condition is

enforced as in (8.8), but the number of degrees-of-freedom is:

n p=P 3 - l . (8.10)

The p subscript merely denotes the p-extension models for this problem.

Figures 8.2 and 8.3 display the convergence of the various first-mode pa-

rameters as a function of degrees-of-freedom for the h- and p-extension models,

respectively. The superiority of the p-version finite elements is quite easily seen;

the linear nature of the log(e) versus degrees-of-freedom implies exponential rates

of convergence for this class of problems, that is:

e S Cexp(-flnp), (8.11)

where C and fl are constants depending on the problem parameter. The (asymp-

totic) convergence rate for the h-version models is known to be algebraic [29],

namely:

eSCnr*. (8.12)
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Figure 8.2 Convergence of first-mode cantilever parameters for h-extensions.

log(e)

-2

-4

-6

-8

-10

PARAMETER:

— U

-*- W(L)

-I- W(L)

-3- M(0)

F(0)

Me

0 2 4 6 8 10 12 14 16 18 20

Degrees-of-freedom

Figure 8.3 Convergence of first-mode cantilever parameters for p-extensions.
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Figure 8.4 Convergence of the first five cantilever natural frequencies.

The super-convergence of the clamped force and moment from the constraint

equations is clearly seen in Figures 8.2 and 8.3. The higher-order derivatives

required in computing M(0) and F(0) produce less accurate results which are not

necessarily monotonic.

Figure 8.4 exhibits the convergence of the first five natural frequencies versus

the number of degrees-of-freedom for both models. Although accuracy decreases

with increasing natural frequency, exponential rates of convergence still exist for

the higher natural frequencies of the p-version models. The stepped convergence,

particularly in the p-extension results, is due to the symmetric/antisymmetric

bias of the various modes. A summary of the p- versus h-extension comparison

is provided in Table 8.1.

The eigenvalues and eigenvectors in this analysis are obtained using the

threshold Jacobian method as outlined in [14]. This transformation technique
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Table 8.1 Minimum number of degrees-of-freedom for
one percent error in cantilever parameters.

Mode
Extension

Parameter:
w
W(L)
W'(L)
M(0)
F(0)
Me
Fc

1

P

2
2
3
4
6
2
2

h

2
2
4
4
6
2
2

2

P

3
5
5
6
7
3
3

h

4
4
6
8
14
4
4

3

P

6
6
6
7

NA
6
6

h

8
10
10
14

NA
10
10

4

P

7
7
7

NA
NA
7
7

h

12
14
14
20

NA
14
14

NA = not available

Table 8.2 Number of Jacobian rotations versus
degrees-of-freedom for p- and h-extensions.

Number of
DOF's

2
3
4
5
6
7
8
9
10

Number of Rotations
p- Extension

1
7
18
32
49
73
107
139
182

h-Extension

1

22

67

142

266

uses successive rotations to iteratively diagonalize both the stiffness and mass

matrices and solve for all of the eigenvalues and eigenvectors. The computa-

tional effort is a function of the number of degrees-of-freedom and the number of

rotations required to satisfy the convergence criterion. Table 8.2 compares the

number of Jacobian rotations versus the number of degrees-of-freedom for the

cantilever problem with p- and h-extensions. Based on these results, the p-version

finite element method is also superior in terms of computational efficiency.
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It is instructive to note that a similar analysis exists in the literature [21].

The analysis presented here differs from that of the cited reference in the defini-

tion of the standard element and of the elemental shape functions used to define

the internal modes. While this leads to different eigenvectors, the resulting eigen-

values and eigenfunctions are identical for the two formulations (see (1.8)). Thus,

the solution depends on the finite element space but not on the basis functions

which define the space. The resulting matrices in [21] are less sparse than those

presented here. However, there is no appreciable difference between the two

formulations in terms of Jacobian rotations versus degrees-of-freedom since the

Jacobian method destroys the sparse nature of the matrices. This observation

suggests that sparse matrices are not the primary reason for the results in Table

8.2. Other eigensolvers which capitalize on matrix sparseness (in terms of storage

and computational effort) will still benefit from the present formulation.

8.2 SEQUENTIAL EIGENSOLUTIONS FOR HIERARCHIC EXTENSIONS

The hierarchic nature of the matrices resulting from p-extensions lends it-

self to algorithmic enhancements within the eigensolver. With respect to the

Jacobian method, the eigenvectors from a lower p-level can be used to partially

diagonalize the matrices before additional rotations are performed. This proce-

dure begins with the generic eigenproblem:

0, (8.13)

resulting in the eigenvalues:

and corresponding eigenvectors:

(8.15)
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Recall the fundamental orthogonality condition for discrete systems [11]:

[KM] [tfM] = fifty] , and (8.18.)

(8.166)

where Si}- is the Kronecker delta and:

(8.17)

Mass normalization merely implies scaling of the eigenvectors such that:

m- = 1, and (8.18a)

(8.186)

Hierarchic p-extensions allow for the generic partitioning:

[M21] [M22]

(8.19a)

(8.196)

Then, defining the estimated eigenvectors as:

- \IU(P
-[ [o]

}} (8.20)

allows for the partial diagonalization:

, and (8.21a)

(8.216)
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Table 8.3 Comparison of computational effort for nonsequential and
sequential solutions to p-ext ens ions for the cantilever problem.

p-
Level

3
4
5
6
7
8
9

Number of
DOF's

2
3
4
5
6
7
8

Number of Jacobian Rotations
Nonsequential

Incremental

1
7
18
32
49
73
107

Total

1
8
26
58
107
180
287

Sequential
Incremental

1
6
14
22
32
47
58

Total

1
7
21
43
75
122
180

Additional Jacobian rotations may then be performed to complete the diagonal-

ization of the (p + l)-approximation.

Table 8.3 compares this sequential approach to the nonsequential technique of

solving each p-level independently. The number of Jacobian rotations is smaller

for the sequential approach at every p-level except for the p3 = 3 starting case.

However, 68 percent more rotations are required to solve through p3 = 9 sequen-

tially than to solve the pa — 9 case independently. This is not wasted effort;

convergence information provided by the hierarchic solutions allow for the esti-

mation of discretization errors (see Section 8.5). Additionally, convergence at the

lower p-levels may be sufficient to allow the solution sequence to be terminated

at p3 < 9.

8.3 COMMENTS ON SOLUTION TECHNIQUES FOR EIGENPROBLEMS

Variations of the Jacobian eigensolver discussed hi the previous sections are

used extensively for eigenproblems possessing a limited number of degrees-of-

freedom. Barring numerical instabilities, this method is absolutely robust in
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obtaining all of the eigenvalues and eigenvectors for a given system. The pro-

cedure for sequential solutions of hierarchic extensions has been outlined and

generalization to complex eigenproblems is not difficult. However, the number of

operations required for solution is on the order of n3 [14]. Furthermore, the full

matrices (at least the terms along the diagonal and above for matrices possessing

symmetry) must be stored due to the loss of sparseness produced by the succes-

sive Jacobian rotations. Besides, only a small number of the lowest or highest

eigenvalue/vector's may be of practical interest.

Developments in the field of eigensolution techniques focus on eliminating

these shortcomings. The computer age has spawned renewed interest in this

field, and improvements are occurring at a rapid pace. Though it is not the

intent of this research to contribute to these developments, a brief discussion of

the eigensolvers used in this investigation is in order.

The subspace iteration method is incorporated into PVAEB for the evaluation

of large, nonrotating eigenproblems. A thorough discussion of the technique is

provided in [14], and the eigensolver subroutines are adapted from those provided

in the cited reference. Subspace iteration is fundamentally a block (i.e., more

than one vector iterated simultaneously) vector iteration scheme for determining

the lowest r eigenvalue/vector's of an n-dimensional eigenproblem, where r « n.

The constrained, global stiffness and mass matrices may be stored in "skyline"

format [88] to capitalize on their sparse nature.

The iteration procedure begins with an estimate of the lowest r eigenvectors

of [[K] -w2[M]] {U} = {0}, namely:

, {%},..., {C^K. (8-22)
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Then, the block iteration proceeds by solving:

[F]y+1 = {Kr^MftUl; (8.23)

such that:

(8.24a)

(8.246)

where [#]/+! and [M)y+i may be viewed as projections to the r-dimensional space.

Solution of the projected eigenproblem (via the Jacob ian method):

= {0}, (8.25)

results in an improved estimate of eigenvectors:

. (8.26)

As stated in [14], [U}}.+1 theoretically converges to the lowest r eigenvectors

as j -* oo with the corresponding eigenvalues coming from the solution of (8.25),

provided that the starting vectors are not orthogonal to one of the desired eigen-

vectors. In practice, however, this is not the case. "Stiff" systems produce

algorithmic instabilities as all eigenvectors in the block attempt to converge to

the lowest eigenvector. Furthermore, some of the lowest r eigenvectors may

be missed even with acceptable starting vectors. The latter condition may be

checked utilizing the Sturm sequence property [14]. Performing Gauss factoriza-

tion of the form:

[[K\-p(M\} = [L][D\[L}T, (8.27)

where [L\ and [D] are lower triangular and diagonal matrices, respectively, pro-

duces r\ negative elements in \D\ where rj is the number of eigenvalues (A = w2)

less than /*.
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Another significant difference between the subspace iteration and Jacobian

methods involves the determination of convergence. Off-diagonal matrix terms

are checked in the Jacobian procedure for satisfaction of the orthogonality con-

dition in (8.16) to some acceptable tolerance. The subspace iteration method as

implemented simply checks the change in the eigenvalues after each iteration. For

problems with repeated or similar eigenvalues, the convergence rate may be slow

enough to satisfy the tolerance criterion even though the eigenvalue/vector pair

is not accurate. A convenient error check for this condition involves computing:

e -- ii - ii - i (o.to)

for each eigenpair, where || * ||2 represents the Euclidean vector norm [14]. Typ-

ically, an accuracy of 10~" for the eigenvalue produces an accuracy of IQ~1 for

the eigenvector with respect to this error norm. Convergence for the subspace

iteration method may be enhanced by using q iteration vectors where r < q «: n.

In practice:

g = min(2r,r + 8), (8.29)

has been used extensively. Additional refinements to the basic subspace itera-

tion algorithm have been implemented to improve convergence and to make the

procedure more robust [89].

The selection of the starting eigenvectors in (8.22) has a significant effect on

the number of subspace iterations required for convergence. Hierarchic extensions

again provide a most beneficial approach for sequential eigensolutions. Recalling

(8.19-20) and (8.22), the starting eigenvectors may be defined as:

(8.30)r i r c / / 7 < " H i c/r/<*m r / t 7 ( p ) \ i it f < * + l > = N i l i \ , { \ 2 ;L. . , lr r i \ \ .L Jl [I {0} J 1 {o} /' '1 {0} Jj
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Figure 8.5 Extension-induced crossing of approximate natural frequencies.

Using q iteration vectors as in (8.29) causes no difficulty. A sample of this ap-

proach in Chapter 11 shows that hierarchic extensions can improve robustness

as well as convergence. However, a minor problem exists when the natural fre-

quencies of different modes cross during the p-extensions. This phenomenon is

illustrated in Figure 8.5. Locking onto Mode A at the low p-levels may induce

failure in the Sturm sequence check (8.27) at the higher p-levels. This causes a

problem only if the crossing modes occur near the r-boundary of desired eigen-

pairs and can usually be overcome by either increasing or decreasing r.

A major criticism of subspace iteration is that [Z7]y is overwritten by [U]j+l

at each step. The Lanczos method, stated in the simplest of terms, uses all of

the \U\j-, y = 1,2,... in the estimation of the lowest eigenpairs [90]. Though block

versions do exist, the Lanczos method is typically implemented using a single

iteration vector [91]. Comparisons with subspace iteration have demonstrated the

superiority of the Lanczos procedure [92], and continued algorithmic refinements
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in the past few decades have made this technique sufficiently robust for practical

use.

Mention of the Lanczos method is mandated by its successful application

to gyroscopic systems [93]. A single-vector Lanczos solver is incorporated into

PVAEB for problems involving rotating coordinate system effects based on an

adaptation of software graciously provided by Dr. O. A. Bauchau. A state vari-

able formulation is used, namely:

rr[M] [on . r [o] [Mm (i*{u}\_ {o
[[[0] [*]J IU[-(M] -[C}\\{ {U} J

but the individual (n x n) submatrices are still stored in skyline format and com-

plex arithmetic is avoided entirely. The Sturm sequence check (8.27) and error

condition (8.28) are easily generalized to complex eigenproblems [94], However,

the single-vector implementation precludes enhancement from sequential solu-

tions of hierarchic extensions.

8.4 COMMENTS ON MATRIX REDUCTION VIA STATIC CONDENSATION

From the user's perspective, p-version finite elements allow for the use of

the minimum number of elements necessary to capture the problem geometry.

Improvements to the approximate solution may be obtained by increasing the

order of the polynomial displacement approximations as opposed to increasing

the number of elements in h-version models. This difference is particularly useful

for combined static/dynamic analyses for three reasons:

1) the superior convergence properties of p-version finite elements have already

been demonstrated,

2) the added computational complexity of eigenproblems versus static problems

severely restricts the allowable number of dynamic degrees-of-freedom, and
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3) accurate estimates of the lowest natural frequencies typically do not require

a large number of degrees-of-freedom.

Historically, static condensation procedures [95] have been used to reduce

the number of h-version degrees-of-freedom to an acceptable level for dynamic

analysis. The fundamental assumption of these methods is that the inert ial

loads may be ignored while reducing the number of degrees-of-freedom without

much effect on the accuracy of the lowest natural frequencies and mode shapes.

Significant insight, both general and problem-specific, is required for successful

utilization of static condensation methods, and refinements of these techniques

continue [96] in spite of the dramatic improvements in eigensolvers. Since static-

condensation is still used in engineering practice, it is instructive to discuss p-

extensions from this perspective.

Starting from the homogeneous static matrix equation:

(K\{U} = {0}, (8.32)

partial Gaussian elimination of the first q unknown displacements may be rep-

resented by [97]:

- w ,83S){0}' (8'33)[o]

where {Ur} are the remaining independent displacements. Thus:

-
= (T]{Ur}. (8.346)

In this form, the reduced stiffness matrix may be written as:

[K\ = [T\T[K\[T\. ' (8.35)
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Table 8.4 Effect of static condensation on errors for the
first-mode cantilever parameters of 8-dof models.

Case Number
Number of Elements
Polynomial Order
Condensation?

Parameter:

w
W(L)
W'(L)
M(0)
F(0)
Me
Fa

1
1
9

N

2
4
3
N

3
8
3

E2

4
8
3
D

5
4
9
E

log(e)

<-10
<-10
<-10
-6.95
-5.22
<-10
<-10

-4.49
-4.18
-4.18
-3.51
-2.36
-4.19
-4.19

-4.49
-4.18
-4.18
-3.51
-2.36
-3.54
-2.42

-5.45
-5.16
-3.39
-4.83
-5.31
-4.41
-3.25

-4.49
-4.18
-4.18
-3.51
-2.36
-4.19
-4.19

^Condensation Legend:
N = no condensation,

E= condensed to nodal displacements and rotations (external modes),
E2 = condensed to displacements and rotations at every other node,

and D = condensed to nodal displacements only.

For the nonrotating eigenproblem, the same transformation may be applied to

the mass matrix such that:

[M] = [T\T[M}[T\.

Therefore:

(8.36)

(8.37)

defines the statically condensed eigenproblem.

Table 8.4 presents various analyses of the cantilever sample problem utilizing

static condensation. All five cases result in an 8-dof eigenproblem for consistent

comparisons. Case 1 (single element, p3 = 9) and Case 2 (four elements, p3 = 3)

do not involve static condensation. Case 3 contains eight p3 = 3 elements with

condensed degrees-of-freedom identical to those of Case 2. The Case 3 results

are identical to the Case 2 results except for increased errors in the generalized



-138-

constraint forces. Further increases in the number of elements while maintaining

the same condensed dof 's will result in:

Me -» M(Q), and (8.38o)

Fc -»1^(0), (8.386)

thus imposing poorer convergence characteristics on the generalized constraint

forces (see Figures 8.2-3).

Case 4 utilizes the often-used assumption of ignoring rotational degrees-of-

freedom. While this produces an improved estimate of the natural frequency

when compared to Case 2, errors in the other parameters are both better and

worse without any consistent pattern. The Case 4 results are still inferior to

those obtained by using a higher-order polynomial approximation (Case 1).

Case 5 involves condensing the internal modes out of a four-element, p3 = 9

model. The Case 5 results are identical to those for Case 2. Mathematically, the

process of static p-condensation for this problem results in:

[T] = [0]; (8.39)

that is, the transformation matrix between internal modes and external modes is

null for straight beam elements with uniform properties. However, this condition

is due to the particular structure of the stiffness matrix (see (8.60) and (7.22)) and

does not generalize to problems involving tapered elements, circular elements,

rotating coordinate effects, and/or geometric nonlinearities. This is a moot point

since p-condensation is never used in practice. Rather, analysis begins with the

lowest p-level and extends to higher polynomial orders until suitable convergence

of the natural frequencies and point functionals is attained. Table 8.4 clearly

demonstrates the superiority of the p-extension philosophy when compared to

static condensation.
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8.5 A POSTERIORI ESTIMATION OF DISCRETIZATION ERRORS

The quantification of discretization errors is an important development in

the p-version technology. For static analyses, the strain energy forms the basis

for the estimation of errors. Previous studies, summarized in [29], have used the

assumption of asymptotic algebraic convergence in the error estimation, namely:

VB X-Vp^Cn-B . (8.40)

VBX is the exact strain energy while Vp denotes the computed strain energy for

the generic polynomial order, p, using np degrees-of-freedom, that is:

(8.41)

The generic stiffness matrix in (8.41) may include the effects of geometric non-

linearities and centrifugal softening (recall that centrifugal softening terms are

derived from the kinetic energy formulation). B in (8.40) is typically referred to

as the rate of convergence or convergence exponent.

The exact strain energy is generally unknown, but it can be estimated from

finite element solutions in the asymptotic range as:

m

Given three successive finite element solutions, 5 may be estimated by solving

for it from the relation:

v — v . v , — v n_p
fl
 V»-*B = ra i~ • <8-43)

np-l ~ "P np-2 ~ np-l

The error is defined in terms of the energy norm:

II«(T) = V^, (8-44)



-140-

such that the relative error in energy norm is defined by:

_infcx-v«n, (T)ev = • (8'45)

A similar estimation procedure is used for eigenproblems. Recalling (8.16-

18), the relationship between the strain energy and the square of the natural

frequencies is quite apparent. Estimation of the exact natural frequencies may

be obtained by substituting the squared natural frequencies for the strain energy

in (8.42-43). The relative error in natural frequencies is defined as:

(8.46)
UEX

for the purposes of this study.

Estimation of discretization errors by the above relations is not always well-

behaved for the problems in this investigation. The symmetric /antisymmetric

biasing seen in Figure 8.4 may occur in the strain energy as'well as in the natural

frequencies. Better error estimates for problems with biasing are easily obtained

by increasing the polynomial order by two for each extension. Based on this

approach, (abridged) error estimates for the first five cantilever frequencies are

displayed in Table 8.5. Convergence rates and error estimates are presented with

respect to each p-level (running) and the highest p-level (cumulative), which is

p3 = 15 for the sample problem. The running estimates are typically, though not

necessarily, conservative compared to the cumulative estimates.

Two other difficulties regarding error estimates exist in the problems stud-

ied. Since frequency tracking is used, crossing modes as illustrated in Figure 8.5

will produce erroneous estimates about the crossover point. Crossover typically

occurs at the lower p-levels, and verification of convergence may involve at least

three extensions beyond the crossover point. A more significant problem is the
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possible loss of monotonic convergence brought about by geometric nonlineari-

ties. When this is sensed, the convergence rate is assumed quadratic (S = 2) so

that a two-point estimate may be generated from (8.42). Table 8.5 shows that

the quadratic estimator is also used to produce error estimates after a single ex-

tension. The single-extension quadratic estimate for the fourth mode is not listed

since the estimated exact natural frequency is negative. The quadratic estimator

is also used when the general algebraic estimation logic fails, thus making the en-

tire estimation procedure quite robust. Problems with biasing and/or crossovers

will usually invoke the quadratic estimator.
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9. SOLUTIONS FOR CIRCULAR BEAMS AND RINGS

The formulation of circular beam elements with the provision for variable-

order polynomial approximation of the displacement variables provides a new and

valuable analytical capability. This chapter is devoted to demonstrating the use

of these elements and to compare the finite element solutions with theoretical

and experimental results from the literature. The significance of the various

beam types and curvature approximations will be explored in detail. Refer to

Appendix 14.1 for interpretation of the PVAEB inputs for the various models.

9.1 EXTENSION GUIDELINES FOR CIRCULAR ELEMENTS

As mentioned in Chapter 8, exact static solutions for straight beams with

point loading may be obtained using pt = p4 = l and p? = p3 = 3 for BE/RA

elements, and in addition, ps = pe = 2 for TI elements. The implementation of

p-version circular beam elements is complicated by two factors:

1) the circular geometry induces coupling of the displacement variables within

the elemental formulations, and

2) the polynomial-based shape functions do not identically characterize all of

the (strain-free) rigid body motions for circular elements.

Therefore, investigation into the appropriate interrelationships between the poly-

nomial orders used to approximate the various displacement variables for circular

beam elements is warranted.

It is easy to understand that no definitive set of guidelines for these interre-

lationships may be established. Indeed, the optimal choice of polynomial orders

which minimize, for example, the error in strain energy for a particular number

of degrees-of-freedom, is different for every problem. The relative contributions

of extension, bending, torsion, and shear to the total strain energy will affect
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the optimal path of p-extensions, as will the introduction of rotating coordi-

nate system effects and/or geometric nonlinearities. The concept of adaptive

p-refinement will merit considerable research and development in the future.

In the most general sense, rotations may be viewed as derivatives of the

displacements. Thus, one simple hypothesis is to assume the polynomials used to

approximate the displacement variables (uo, t>0, and u>0) to be the same order and

one order greater than those used to approximate the rotation variables (#1, and

uy and u, for TI beams). Similar arguments have been applied to straight and

circular h-version Timoshenko beam elements to circumvent locking problems

[23,81].

This section documents benchmark studies into polynomial order optimiza-

tion for circular beam elements. In-plane and out-of-plane (uncoupled) linear

static analyses will be performed using both Bernoulli-Euler and Timoshenko

beam idealizations and primarily using the ST curvature approximation (to fa-

cilitate comparisons with analytic solutions). The optimal path of p-extensions

will be compared to that proposed by the simple hypothesis.

9.1.1 In-Plane Static Analysis of a Pinched Circular Ring

A three-inch thick (t) by three-inch deep (£) steel ring with a ten-inch mean

radius (R) subjected to a one hundred pound pinching load [w] is evaluated for its

planar response. The single-element half-ring model is illustrated in Figure 9.1.

Note that an appropriately constrained quarter-ring model could be used to

analyze the pinched-ring problem, but the half ring has been chosen as a more

exacting test of the PVAEB program. This problem is particularly beneficial

for verifying the proper coupling of displacement variables for deeply curved
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Figure 9.1 Pinched ring sample problem.

Table 9.1 PVAEB sample input for the pinched ring.

TITLE = 3" X 3" RECTANGULAR STEEL PINCHED RING. RADIUS = 10"
SUBTITLE = SINGLE-ELEMENT (HALF-RING) MODEL
S
BEAM = BE $ NOTE: PROVISIONS FOR «TI' BEAM ARE INCLUDED.
CIRC - ST $ NOTE: PROVISIONS FOR 'TR' OR 'EX' APPROXIMATIONS ARE INCLUDED.
ANALYSIS = ST
LOAD = 100
SPC = 100
S
SEGLODISP - LO
SEFORCE = LO
ECHO = AL
REPORT
S
SUBCASE
BRP - 9,9,3,1
TIP = 9,9,1,1,8,1
$
BEGINBULK
$
GRID, 1, 0., 0., 0., 123456
GRID, 2, 0., 20., 0.
$
CBARC, 1, 1, 2, 1, 1., 0., 0., 10.
CBARI, 1, 1, 10
S
PBARC, 1, 2, 9., 6.75, 6.75, 11.390625, .8333333333333, .8333333333333, +P1
+P1, 0., 0., 0., 10., 9.0684261562, 6.8426156188, , , +P2
+P2, 6.8013196171, -.68426156188, 0., 0., , , , , +P3
+P3, -1.5, 0., 1.5, 0., 0., -1.5, 0., 1.5
$
MAT, 2, 30000000., 12000000., , 7.35E-4
S
$ IN-PLANE LOADS AND CONSTRAINTS
LOAD, 100, 1., 0.5, 2
FORCE, 2, 2, -100., 0., 1., 0.
SPCADD, 100, 100
SPC, 100, 13456, 2
5
ENDDATA
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problems regardless of the curvature approximation. Table 9.1 provides a sample

of the PVAEB input for this problem.

For the ST curvature approximation, the exact force and moment distribu-

tions are known to be [98]:

Fs = ~smi, (9.1a)

W
Fy = — cos 7, and (9.16)

with respect to the local beam axes (see Figure 3.3 and Section 3.5). The bending,

extensional, and shear strain energies for the half ring are defined by:

, (9-2a)

respectively. Therefore:

"***\ ' = ( *3 2Eim \a *

= 0.00183677 in-lbf , (9.3a)

.
IQEA

= 0.00007272 in-lbf, and (9.36)

= 0.00021817 in-lbf, (9.3c)

for the particular problem parameters, where:

VBB-.ST = V B + V B

(9-4a)
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and:

EA «£ + + GA* A «, + «&- <fa. (9.46)

Invoking the TR or EX curvature approximation significantly complicates the

strain energy equations. Terms containing coupled products of the forces and

moments result primarily from the curvature-induced shift in the neutral axis of

bending. Furthermore, this neutral axis shift produces changes in the bending

moment distribution itself.

The Bernoulli-Euler beam idealization is defined completely in terms of the

displacement variables, uo and «o, and their respective orders of polynomial ap-

proximation, pi and ps. The number of degrees-of-freedom for the single-element

PVAEB model is:

nBE = Pi + P2 - 3, (9.5)

where the BE subscript merely denotes the Bernoulli-Euler idealization. Table

9.2 displays the log of the error in energy norm (8.45) for the complete range

of polynomial orders for pi and pa. The underlined values correspond to the

minimum error for TIBE = 1 through nBE = 15. The proposed hypothesis that

Pi = p2 = P produces the minimum error is correct for p > 4. Also note that no

change in strain energy occurs for pj > p2 + 1 (using pi = p2 + 1 = P has proven

beneficial for h-version circular elements [99J).

The Timoshenko beam idealization possesses an additional displacement vari-

able, it,,, approximated by the polynomial order ps. The number of dof's for the

TI model is:

= Pi + Pi + Ps - 2. (9.6)
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Table 9.2 Log(ev) for BE:ST analyses of the pinched ring.

Pi

1

2

3

4

5

6

7

8

9

P2

3

-0.06751

-0.08365

-0.08365

-0.08391

-0.08391

-0.08391

-0.08391

-0.08391

-0.08391

4

-0.09396

-0.15801

-0.59259

-0.66870

-2.08584

-2.08584

-2.08584

-2.08584

-2.08584

5

-0.11157

-0.15898

-0.63416

-0.66929

-2.11807

-2.12351

-2.12351

-2.12351

-2.12351

6

-0.11862

-0.18029

-0.71977

-0.77101

-3.24350

-3.32438

-5.07120

-5.07120

-5.07120

7

-0.11991

-0.18030

-0.72020

-0.77103

-3.25653

-3.32514

-5.11538

-5.11686

-5.11686

8

-0.11996

-0.18049

-0.72565

-0.77767

-3.28729

-3.36140

-6.80015

-6.87845

-8.72616

9

-0.11996

-0.18049

-0.72578

-0.77767

-3.28829

-3.36140

-6.80459

-6.87911

-8.77511

Note: underlined values represent the minimum error for a given

Since the pinched-ring strain energy is dominated by bending (9.3), one might be

led to believe that increasing the polynomial order for Uy is most effective in reduc-

ing the error in energy norm (see (9.46)); in fact, the opposite is true. Table 9.3

compares the optimal extension path to the proposed path of p± = p2 = p5 + i = p.

Except for nn = 6, the minimum error is produced by ps < min(pi,p2). Thus, the

coupling of the displacement variables in the extensional and shear strain ener-

gies has a significant effect on the optimal path of p-extensions even for problems

dominated by bending.
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Table 9.3 Log(ev) for TLST analyses of the pinched ring.

Tin

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Optimal Extension Path

Pi

2

3

3

3

3

3

4

5

5

5

6

5

6

7

7

7

8

7

8

9

9

-

Pa

2

2

3

2

3

4

4

4

5

6

6

6

6

6

7

8

8

8

8

8

9

-

P6

1

1

1

3

3

3

3

3

3

3

3

5

5

5

5

5

5

7

7

7

7

-

log(e-y)

-0. 13272

-0. 18097

-0.19002

•0.25286

-0.27750

-0.63996

-0.72301

-2.24801

-2.37079

-2.78956

-2.82174

-3.27432

-3.36592

-5.45383

-5.55564

-6.14746

-6.16554

-6.82335

-6.91357

-9.28994

-9.38162

-

Proposed Extension Path

Pi

2

3

4

5

6

7

8

9

P2

2

3

4

5

6

7

8

9

P6

1

2

3

4

5

6

7

8

log(ev)

-0.13272

-0.19003

-0.72301

-2.37233

-3.36592

-5.55578

-6.91357

-9.38165
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Figure 9.2 Optimal and proposed extension paths for the pinched ring.
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Figure 9.3 Convergence of log(ev) for the pinched ring.
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Figure 9.2 compares the p-levels producing the minimum error in energy

norm to the hypothesized extension path for the BE and TI beam idealizations.

The proposed path for BE extensions is most acceptable for the pinched ring.

Choosing PI = P2 = PS + 2 = p would correlate better with the optimal path for the

TI idealization of this particular problem, but the selection of pi = p? = p5 + 1 = p

provides an acceptable rule-of-thumb. Figure 9.3 displays the convergence of the

error in energy norm for the various beam types and extension paths. In all

cases, (asymptotic) exponential rates of convergence (8.11) are seen to exist for

p-extensions of circular beam elements.

A collection of PVAEB results for the pinched-ring problem is presented

in Table 9.4. The values at p = oo for the ST curvature approximations are

computed from (9.1-4). In addition, the vertical deflection at the top of the

ring (Ayr) and the horizontal deflection at the mid-span of the ring (AXw) are

analytically defined by [98]:

±4 - f ) , (9.7-)

(9,7*)

1 (1 + a-lH
~ -- 4 - J •

where:

WR* lno >
(9-8a)

a = , and (9.86)
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The displacements in (9.7) are written such that the contributions due to the ex-

tensional and shear energies are represented by the factors, a and £, respectively.

As seen in the table, the strain energy and top deflection have converged

to six significant digits at p = 8 for both BE:ST and TLST idealizations. The

mid-span displacement is slightly less accurate at any particular p-level. The

forces and moments computed using the integral method of Section 3.5 are least

accurate, but convergence to the analytic solution is still most apparent. Grid

point forces and moments computed using the principle of virtual work (7.84-85)

produce accuracies on the same order as the strain energy. However, mid-span

values for the single-element model cannot be computed in this manner.

Table 9.4 also displays results using the TR and EX curvature approxima-

tions. Note the decrease in strain energy and deflections as the accuracy of the

curvature-dependent moments of area (/,-y's) increases. The axial and shear force

distributions are seen to remain unchanged, but the listed bending moments do

show the effects of the shift in the neutral axis of bending.

9.1.2 Out-of-Plane Static Analysis of a Semicircular Beam

The model used to evaluate out-of-plane response is illustrated in Figure

9.4. The physical properties of the semicircular beam are identical to those of

the pinched ring. The differences between the two models involve changes in

the constraints and force (P) applied at the top grid point. These changes are

easily seen by comparing the PVAEB input for the semicircular beam in Table

9.5 to that of the pinched ring in Table 9.1 (these two models may be combined

into a single PVAEB input deck, with the LOAD and SPG cards in the case

control dictating the analysis to be performed). Note that the force is oriented

to isolate the out-of-plane response such that u>0, ^i, and u, (TI beams only)
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Figure 9.4 Semicircular beam sample problem.

Table 9.5 PVAEB sample input for the semicircular beam.

TITLE =• 3" X 3" RECTANGULAR STEEL SEMICIRCULAR BEAM, RADIUS = 10"
SUBTITLE = SINGLE-ELEMENT MODEL WITH OUT-OF-PLANE LOADING
$
BEAM = BE S NOTE: PROVISIONS FOR 'TI' BEAM ARE INCLUDED.
CIRC = ST S NOTE: PROVISIONS FOR %TR' OR 'EX' APPROXIMATIONS ARE INCLUDED.
ANALYSIS = ST
LOAD = 200
SPC = 200
$
SEGLODISP - LO
SEFORCE = LO
ECHO = AL
REPORT
$
SUBCASE
BRP » 1,3,9,8
TIP = 1,1,9,8,1,8
S
BEGINBULK
$
GRID, 1, 0., 0., 0., 123456
GRID, 2, 0., 20., 0.
$
CBARC, 1, 1, 2, 1. 1., 0., 0., 10.
CBARI, 1, 1, 10
$
PBARC, 1. 2, 9., 6.75. 6.75, 11.390625, .8333333333333, .8333333333333, +P1
+P1, 0., 0., 0., 10., 9.0684261562, 6.8426156188, , , +P2
+P2, 6.8013196171, -.68426156188, 0., 0., , , , , +P3
+P3, -1.5, 0., 1.5, 0.. 0., -1.5, 0., 1.5
$
MAT, 2, 30000000., 12000000., , 7.35E-4
S
$ OUT-OF-PLANE LOADS AND CONSTRAINTS
LOAD, 200, 1., 1., 3
FORCE, 3, 2, 100., 0., 0., 1.
SPCADD, 200, 200
SPC, 200, 126, 2
S
ENDDATA
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are the displacement variables of concern (see (2.35)). These three variables are

approximated in PVAEB by the polynomial orders, p3, p4, and pe, respectively.

The ST curvature approximation again provides a known analytic solution

to the problem; thus [98]:

F, = -P, (9.9a)

Mv = -P_Rsin7, and (9.96)

T = PR(l-coai), (9.9c)

with respect to the local beam axes (see Figure 3.3 and Section 3.5). Strain

energy results from bending, torsion, and shear, namely:

respectively. Therefore:

VB =B

= 0.038785 in-lbf, (9.11a)

= 0.172378 in-lbf, and (9.116)

2Gk,A

= 0.001745 in-lbf, (9. lie)

for the particular problem parameters, where:

VBE-.ST = VB + VT

n -< - + <770 ^ - (fa,
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Table 9.6 Log(ev) for BE:ST analyses of the semicircular beam.

P4

1

2

3

4

5

6

7

8

9

P3

3

-0.38731

-0.71608

-0.76485

-0.77607

-0.77649

-0.77651

-0.77651

-0.77651

-0.77651

4

-0.38909

-1.33939

-1.54632

-2.24710

-2.25853

-2.26291

-2.26292

-2.26292

-2.26292

5

-0.38949

-1.34608

-1.59769

-2.59942

-2.61939

-2.62948

-2.62950

-2.62951

-2.62951

6

-0.38949

-1.34900

-1.60275

-3.73196

-4.13882

-5.15656

-5.16352

-5.16554

-5.16554

7

-0.38949

-1.34900

-1.60278

-3.73632

-4.16756

-5.63436

-5.64542

-5.65158

-5.65159

8

-0.38949

-1.34900

-1.60278

-3.73754

-4.17086

-7.06259

-7.54950

-8.79127

-8.79552

9

-0.38949

-1.34900

-1.60278

-3.73754

-4.17087

-7.06508

-7.56742

-9.32191

-9.32898

Note: underlined values represent the minimum error for a given

and:

(9.126)

The number of degrees-of-freedom for the one-element Bernoulli-Euler ideal-

ization is:

nB B=p3 + p4-l . (9-13)

Table 9.6 displays the log of the error in energy norm as a function of p3 and p4.

Again, the underlined values represent the minimum error for nBE — 3 through

nBB = 16. Note that the proposed path of p3 = p4 + l = p minimizes the error
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Table 9.7 Log(ev) for TLST analyses of the semicircular beam.

MTJ

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Optimal Extension Path

P3

2

2

2

3

3

4

4

4

4

5

5

6

6

6

6

7

7

8

8

8

8

9

9

P4

1

2

2

2

2

2

3

4

4

4

4

4

5

6

6

6

6

6

7

8

8

8

8

P6

1

1

2

2

3

3

3

3

4

4

5

5

5

5

6

6

7

7

7

7

8

8

9

log(ev)

-0.33859

-0.60927

-0.61766

-0.72008

-0.77599

-1.34305

-1.54995

-2.25069

-2.32909

-2.60300

-2.83021

-3.73554

-4.14239

-5.16014

-5.35686

-5.63793

-6.04041

-7.06616

-7.55307

-8.79469

-9.08481

-9.32499

-9.88446

Proposed Extension Path

P3

2

3

4

5

6

7

8

9

P4

1

2

3

4

5

6

7

8

Pe

1

2

3

4

5

6

7

8

log(ev)

-0.33859

-0.72008

-1.54995

-2.60300

-4.14239

-5.63793

-7.55307

-9.32499
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for all allowable p. Unlike pi and p2 for the pinched-ring problem, p3 and p4 are

independent in that the strain energy will continue to change indefinitely from

extensions of either polynomial order. Table 9.7 compares the optimal extension

path to the hypothesized path for the Timoshenko semicircular beam, where:

nri =P3+P4 + Pe- (9.14)

The proposed path of pa = p4 + l = p6 + 1 = p coincides exactly with the optimal

path for this particular problem.

The optimal and proposed extension paths for both BE and TI analyses are

illustrated in Figure 9.5. Figure 9.6 displays the convergence of the error in

energy norm for the semicircular beam problem. Again, exponential convergence

in the asymptotic region is evident.

Selected PVAEB output for the semicircular beam is presented in Table 9.8.

For the ST approximation, the displacement and rotations at the top of the

semicircular beam with respect to the global frame are [98]:

oc), (9.15a)

(*Xr)BB/TI:ST = f ft1 + <*). «"1 (9'15c)

(9YT)BE/TI:ST = 2f. (

where:

PR2

(9.16*)
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Figure 9.5 Optimal and proposed extension paths for the semicircular beam.
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-Q- BE: Optimal Path
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Figure 9.6 Convergence of log(ev) for the semicircular beam.
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The displacement ajid rotations are defined from a torsion-dominant perspective,

with a and 0 serving as corrections for bending and shear, respectively.

The strain energies for both BE and TI idealizations have converged to six

significant digits by p = 8. Recall that this same observation was made for the

pinched-ring problem. Thus, the similar convergence characteristics for the in-

plane and out-of-plane responses confirm:

Pi = p? = Pa = p< + 1 = p for BE/RA beams, and (9.17a)

P i = p 2 = p 3 = p 4 + l = p5 + l=pe + l = p for TI beams, (9.176)

as useful guidelines for the p-extension process for general three-dimensional

problems. Generic references to p hi the remainder of this text will be based on

these guidelines. The optimal relationship between the in-plane and out-of-plane

polynomial orders is understood to be problem specific.

The displacement and rotations at the top of the beam converge on the same

order as the strain energy. The forces and moments are again slowest to converge,

but note that the bottom shear force (FZo} is exact for the TI idealization when

Pa = Pe +1 > 2 (actually, the constant shear force is exactly characterized over the

entire beam span). This result occurs since the derivative of u;0 only enters the

shear energy relation for TI beams (see (9.126)).

The out-of-plane response is less affected by curvature approximation. This

is primarily due to the assumption that 70 is independent of curvature. Forces

and moments are seen to converge to the distributions in (9.9) regardless of the

curvature approximation used. Minor changes in the displacements and rotations

occur as the effects of:

Uoo)sx * (A + W*2)™ s U)sr • and (9.18a)

(/02)B*S(/»)r/z/sr> (9.186)

are introduced.
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Figure 9.7 Rotating ring sample problem and PVAEB quarter-ring model.

9.2 EFFECT OF CURVATURE APPROXIMATION ON A ROTATING RING

A new and rational hierarchy of curvature approximations for the cross-

sectional properties of circular beam elements has been presented in Chapter 5.

This section focuses on a classical static problem which allows the effect of these

approximations to be quantified. Figure 9.7 illustrates a thin ring rotating in the

plane of the ring about its center. The quarter-ring finite element model is also

displayed in the figure. This problem is advantageous due to its uniform radial

(local y) displacement. Therefore:

1) zero static shear strain isolates the curvature effect from any shear energy

assumption,

2) centrifugal load vector terms are entirely translational, thus eliminating the

effect of Bernoulli-Euler assumptions, and

3) exact (no discretization error) finite element solutions may be obtained using

the two degree-of-freedom PVAEB model detailed in Table 9.9 (adjusted for

various t/R).
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Table 9.9 PVAEB sample input for the rotating ring.

TITLE = ROTATING RING PROBLEM
SUBTITLE - t/R =0.25
S
BEAM - BE
CIRC = ST $ NOTE: PROVISIONS FOR 'TR' OR 'EX' APPROXIMATIONS ARE INCLUDED.
ANALYSIS « ST
LOAD = 100
NOSOFT $ NOTE: CENTRIFUGAL SOFTENING IS EXCLUDED FOR CLASSICAL SOLUTION COMPARISON.
S
SEFORCE = AL
SESTRESS <• AL
$
SUBCASE
BRP = 1,3,3,1
$
BEGINBULK
$
GRID, 1, 1., 0., 0., 23456
GRID, 2, 0., 1., 0., 13456
GRID, 3, 0., 0., 0., 123456 $ NOTE: ORIGIN IS DEFINED FOR RFORCE APPLICATION.
$
CBARC, 1, 1, 1, 2, 1.. 0., 0., 1. .
CBARI, 1, 2, 4
S
PBARC, 1, 2, .25, .0013020833333, .020833333333, .0043882878621, , , +P1
-(•PI, 0., 0., 0., 1., .25131442828, .0013144282809, , , +P2
+P2, .020942869023, -.0013144282809, 0., 0., , , , , +P3
+P3, -.125, 0., .125, 0., 0., 0.
$
MAT, 2, 30000000., , .3, 7.35E-4
$
LOAD, 100, 1., 1., 7
RFORCE, 7, 3, 1., 0., 0., 1.
$
ENDDATA

Thus, the planar effects of the curvature approximations may be evaluated in

terms of the tangential stress, <r9, and the integrated axial force, Fx.

The classical two-dimensional plane-stress solution for the rotating ring is:

where Ri and R<, are the inner and outer radii, respectively, and R^ < r < R0. In

terms of the finite element variables:

y = r -R, - l < y < l . (9.20)

The tangential stress may be nondimensionalized such that:

(77 \ -("'ho -
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Comparisons with the finite element solutions are made at the inner, outer, and

mean radii, thus:

The normalized axial force for the classical solution is merely:

Note that the classical solution does not include centrifugal softening effects and

that the radial stress:

(«*)„ = PO* (^) (*? + *o* - ̂  - r2) , (9.24)

is entirely ignored by the circular beam formulations.

The normalized tangential stress derived from the circular beam formulations

for the exact (EX) characterization of curvature is defined by:

where ym = lyy/AR is the curvature-induced shift in the mass center (2.13) and

2 is the Winkler-Bach constant (5.3) . The rectangular cross section of the ring

results hi:

(9'26)

The truncated series (TR) approximation produces Z = lyy/AR2 = ym/R; thus:
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0.0 2.0

CA A Location;

EX, Outer Radius

EX. Mean Radius

EX, Inner Radius

•Q- TR. Outer Radius

• —• TR, Mean Radius

•O- TR, Inner Radius

X ST. All Locations

2-D Elasticity

Figure 9.8 Comparison of tangential stresses for the rotating ring.

The straight (ST) curvature approximation assumes R/(R+y) s i and Z = gm/R ̂

0, or:

(*')sT,Nc{Ka} = I- (9-28)

Figure 9.8 compares the normalized tangential stresses from the various cur-

vature approximations to those from the classical solution (i/ = 0.3) as a function

of t/R. The insensitivity to radial variation for the ST approximation severely

limits its usefulness in characterizing the stresses. The TR and EX curvature

approximations generate quite similar results. Both produce less than twelve

percent error for all stresses and less than six percent error in the peak stress for

t/R < l. Breakdown of the assumptions inherent to the formulation of engineer-

ing beams occurs before differences between the TR and EX characterizations

become significant. This observation is most useful in light of the relative ease

by which the TR approximation is generated.
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Comparisons of the normalized axial forces are just as enlightening. The ST

approximation produces:

while the TR and EX idealizations both produce:

uj (R) \

= (7,)^. (9.30)

Therefore, the integrated axial force emanating from the circular beam formula-

tion agrees exactly with the classical solution as long as the curvature approxima-

tion properly accounts for the shift in the center of mass. The ST approximation

induces less than five percent error in axial force for t/R < 0.8 although errors in

the tangential stress may be over fifty percent.

PVAEB includes centrifugal softening effects unless the NOSOFT option is

explicitly invoked (see Table 9.9). Thus, the validity of ignoring centrifugal

softening may be tested. For the rotating-ring problem, softening effects result

in:

(9.31a)

where:
1-1

Wfrj] ' <9'32'
is the centrifugal softening correction factor. Therefore, centrifugal softening

may be ignored in the rotating-ring problem only if (pfl2.R2)/[£(l + Z)] <c l, with

Z depending on the chosen approximation for curvature.
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9.3 EIGENSOLUTIONS FOR RINGS

The previous sections of this chapter explore the significance of beam type

and curvature approximation for a collection of static circular-beam problems.

The interrelationship between beam type and curvature approximation merits

additional investigation, as does their applicability to dynamic problems. As

seen in the previous section, the underlying assumptions of the engineering beam

formulation must be considered in this study.

These issues may be addressed collectively in the eigenanalysis of circular

rings. Numerous theoretical formulations may be gleaned from the literature for

comparison, and they are complemented by an impressive assemblage of exper-

imental data. The experimental results of Kuhl [65] are commonly cited and

provide a nearly complete characterization of natural frequencies for nonrotating

steel circular rings with rectangular (t x £) cross-sections. These data will serve

as the basis for comparison in this investigation.

Figure 9.9 illustrates a sampling of the ring modes experimentally deter-

mined in the Kuhl study. Figure 9.9a depicts the zeroth extensional mode, or

"breathing" mode. Figures 9.96 and 9.9c portray the first and second exten-

sional modes, respectively. For thin rings, the extensional natural frequencies

may be computed using [100]:

(&n)B = Vn2 + 1 ij. n-0,1,2,..., (9.33)

where the * denotes the use of thin-ring assumptions and the E subscript des-

ignates extensional frequencies. Naturally, formulations utilizing inextensibility

assumptions cannot predict the extensional modes. Figure 9.9<f represents the
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Figure 9.9 Sampling of ring vibrational modes.

second in-plane bending mode. Thin-ring (inextensibility) assumptions result in

the in-plane bending frequencies [100]:

I IB
n(n'-l)

(9.34)

Without rotating coordinate system effects, the extensional and in-plane bend-

ing frequencies may be extracted from planar PVAEB analyses as discussed in

Sections 2.3 and 7.6 (see (7.86)).

Out-of-plane modes include the zeroth and first torsional modes illustrated

in Figures 9.9e and 9.9/, respectively, and the second out-of-plane bending mode
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depicted in Figure 9.90. The analytic thin-ring natural frequencies for these

modes are [100]:

/ El
^ " V na + of

and:

El I OI

V"

The out-of-plane response may be isolated in PVAEB analyses by invoking the

conditions in (7.87). Unlike the in-plane motions, where the extensional and

bending relations are explicitly independent in the thin-ring limit, the out-of-

plane frequencies (except (w0)r) involve coupling of the bending stiffness, /„,

and torsional stiffness, 70.

Comparisons for all frequencies of interest will be presented in nondimen-

sional form with respect to the thin-ring values; that is:

S7» = £. (9.37)
wn

In addition, comparisons with the Kuhl data will be stated in terms of frequency

error, defined by:

_ (<*>») Analyais -e = / — :

Excluding the use of absolute values in this relation allows the sign as well as the

magnitude of the frequency error to be quantified.

9.3.1 In-Plane Ring Frequencies

Kuhl's experimental determination of the in-plane frequencies involved two

primary sets of rings. The first seven in-plane bending frequencies were extracted

for a set of 17 rings of variable thickness (t) while maintaining constant outer
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radius (Ro = 45.00 mm) , depth (l = 4.0 mm) and material properties (c =

5145 m/sec, v s 0.29). The zeroth extensional frequency was also experimentally

determined for this set of rings. The five lowest extensional frequencies were

obtained for a second set of 13 rings of variable thickness with RO = 57.50 mm,

I — 3.0 mm, c = 5180 m/sec, and v Si 0.29.

The Kuhl data for the extensional frequencies of the second set of rings may

be nondimensionalized in terms of the zeroth extensional frequency, namely:

Thus, variations in c = \/E/p may be isolated from those induced by t/R. Fur-

thermore, a sufficiently accurate estimation of the actual extensional frequencies

for the first set of rings may be obtained using the zeroth extensional frequencies

from the first ring set and t/.R-interpolations of the (9.39) ratios from the second

ring set.

PVAEB models with provisions for the various idealizations in beam type and

curvature approximation are thus established to match properties of the first set

of Kuhl rings above. Table 9.10 provides a sample of the four-element PVAEB

input. Note the use of the planar restrictions of (7.86). Also note the shift in

the stiffness matrix to allow for rigid body motions (i.e., RBM = 100. in the case

control, see (7.88-91) and Table 14.1.1). The mean radius (R) and cross-sectional

properties must be adjusted for the various thicknesses of the Kuhl rings.

Figure 9.10 illustrates the PVAEB planar frequencies of the various modes as

a function of t/R. A TI:EX idealization is used for the frequencies in this figure

with p = 9. The in-plane bending frequencies all emanate from the origin while

the extensional frequencies approach nonzero thin-ring values as t/R -* 0. Note

the crossing of the zeroth and first extensional frequencies at t/R = 1.25. Also
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Table 9.10 PVAEB sample input for in-plane analyses of the KuhJ rings.

TITLE =• Kuhl Ring: Ro=45mm, t/Ro-.6667: t/R-1.0; l-4mm, nu=.29, c=5145m/s.
SUBTITLE » In-plane analysis
$
BEAM - BE $ Note: Provisions for *RA' and 'TI' beams are included.
CIRC <* ST $ Note: Provisions for 'TR' and 'EX' approximations are included.
ANALYSIS - RE
NUMEIG = 40
RBM - 100.
SEQ
JACOBI
5
ECHO - CC
ERREST
REPORT
$
SUBCASE
BRP - 3,3,3,1
TIP = 3,3,1,1,2,1
SUBCASE
BRP = 4,4,3,1
TIP = 4,4,1,1,3,1
SUBCASE
BRP =5,5,3,1
TIP = 5,5,1,1,4,1
SUBCASE
BRP = 6,6,3,1
TIP = 6,6,1,1,5,1
SUBCASE
BRP = 7,7,3,1
TIP = 7,7,1,1,6,1
SUBCASE
BRP = 8,8,3,1
TIP = 8,8,1,1,7,1
SUBCASE
BRP = 9,9,3,1
TIP = 9,9,1,1,8,1
DELOCDISP
S
BEGINBULK
$
$ R = Ro*(l-(t/Ro)/2) (meters).
GRID,
GRID,
GRID,
GRID,
$
CBARC,
CBARC,
CBARC,
CBARC,
CBARI,
$
$ t/R - (t/Ro)/(l-(t/Ro)/2).
PBARC, 1, 2, .00012, 9.E-9, 1.6E-10, 5.8624141590E-10, .83333333333, .83333333333,
+P1, 0., 0., 0., .03, .00013183347464, 1.0650127176E-8, , , +P2
+P2, 1.7577796619E-10. -3.5500423921E-7, 0., 0., , , , , +P3
+P3, -.015, 0., .015, 0., 0., -.002, 0., .002
S
$ E(steel) = 2.0E11 N/m**2; rho (Jcg/m**3) adjusted to match c=sqrt (E/rho) .
MAT, 2, 2.0E11, . .29, 7.555430891E3
$
ENDDATA

t

t

t

t

t

1.
2,
3, •
4,

1,
2,
3,
4,
1,

.030, 0.,
0., .030,

-.030, 0.,
0., -.030,

1.
1,
1,
1,
4,

1,
2,
3,
4,
10

2,
3,
4,
1,

0.,
0.,
0.,
0.,

1.,
-1.,
-1.,
1.,

345
345
345
345

0.,
0.,
0.,
0.,

0..
0..
0.,
0. ,

.030

.030

.030

.030
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note that shear modes are present only in analyses utilizing TI beams. Shear

frequencies are infinite in the thin-ring limit and were not quantified in the Kuhl

study. Their presence is noted but not explored beyond this point.

Figure 9.11 plots the convergence of the PVAEB planar frequencies as a

function of p-level for a TLEX ring with t/R = 0.261. By p = 9, the maximum

discretization error in the first five extensional and first seven bending frequencies

is less than 0.1 percent. This accuracy is only slightly affected by t/R, beam type,

or curvature approximation. Except for the zeroth extensional (and shear) mode,

all modes shown possess dual eigenvalues. The repeated natural frequencies for

n = 1,3,5,... are identical for all p-levels, while those for n = 2,4,6,... exhibit

symmetric/antisymmetric biasing but converge to the same value via extension.

Recalling the discussion in Section 8.5, it is obvious from this figure that the logic

necessary to perform mode tracking for error estimates would be most difficult

to develop (see Figure 8.5).

Planar PVAEB analyses produce three rigid body modes which are not rep-

resented in the figure. The zero frequency for global Z-rotation is identically

characterized by the polynomial-based finite element ring model situated in the

global .XT-plane. The rigid body motions corresponding to global X- and Y-

displacements are only approximately represented. However, the computed nat-

ural frequencies for these motions are already reduced to 0.1 Hertz by p = 6 for

the four-element model.

Comparisons of the second and third in-plane bending frequencies are pre-

sented in Figures 9.12 and 9.13, respectively. Coupling of bending, extension,

and shear produces departures from the thin-ring values for all idealizations. In

particular, note the BE:ST results; the only difference between this characteri-

zation and the thin-ring theory is the inclusion of extensional strain energy, and
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Figure 9.12 Second ring in-plane bending frequency comparison.
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Figure 9.13 Third ring in-plane bending frequency comparison.
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• TI:EX Results

0 TI.-TR Results

Kuhl Data
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0.0

Figure 9.14 Ring in-plane bending frequency comparison.

this improves the analytical accuracy when compared to the Kuhl data. Thus,

inextensibility assumptions as discussed in Chapter 5 merely place further re-

strictions on the applicable range of t/R.

The effect of curvature approximation varies significantly with beam type.

Curvature approximation produces the most dramatic and surprising effect on

Bernoulli-Euler beams. One might assume that improvements in the character-

ization of beam properties (/,/s) would naturally reduce the frequency error.

However, the BE beam results prove that this is not necessarily true, and

Rayleigh beams exhibit the same trend. TR and EX curvature approximations

reduce the in-plane bending frequency error only for Timoshenko beams.

Figure 9.14 compares TLTR and TI:EX results with the Kuhl data for the

first seven (n = 2-8) in-plane bending frequencies. Differences between the TR and

EX curvature approximations are seen to diminish with increasing mode number.
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Breakdown of the engineering beam assumptions occurs as t/R increases and

actually makes the TR approximation the more accurate assumption for large

t/R.

Tables 9.11 and 9.12 present comparisons of in-plane bending frequency errors

for a variety of analyses in the literature and PVAEB. Recall that Gardner and

Bert incorporated warping terms into their cross-sectional displacements; their

"simplified theory" excludes rotatory inertia effects [36]. Kirkhope's formulations

were discussed relative to the present hierarchy of curvature approximations in

Chapter 5, with the "inextensible theory" being a simplified version of his "full

theory" in [64]. Except for the use of ST shear energy, Kirkhope's full theory is

believed to coincide with the TI:TR formulation in PVAEB. Ambati, Bell, and

Sharp provide a useful collection of tabulated values based on two-dimensional

(plane-stress) elasticity theory [101]. The TI:EX idealization produces the most

consistent accuracy for the PVAEB results, particularly in the range where the

engineering beam formulation is applicable.

The previously cited investigation by Seidel and Erdelyi [77] merits further

discussion. Their comparisons with the Kuhl data suggested a much smaller

range of t/R for which engineering beam assumptions are acceptable. However,

this conclusion was due to an erroneous nondimensionalization of the Kuhl data,

which were originally presented in terms of t/R0. This same error has propagated

to at least one other study [102]; Kirkhope recognized a problem in their com-

parisons but did not elaborate [64]. The analytical results of Seidel and Erdelyi

are consistent with the present findings.

Comparisons for the zeroth extensional frequency in Figure 9.15 exhibit an

independence to beam type. This "breathing" motion involves neither shear

nor rotational energy terms, much like the rotating ring problem in Section 9.2.
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Figure 9.15 Zeroth ring extensional frequency comparison.

Changes in the predicted frequency depend entirely on the characterization of

/oo, with gm having no effect. The ST curvature approximation is seen to coin-

cide exactly with the thin-ring theory. The TR and EX approximations improve

the frequency prediction, produce similar results for low t/R, and differ signif-

icantly only in the region (t/R > l) where breakdown of the engineering beam

assumptions occurs for the rotating ring in Section 9.2.

Figures 9.16 and 9.17 display frequency comparisons for the first and second

extensional modes, respectively. Again, beam type induces changes in the pre-

dicted values due to the coupling of extension, bending, and shear. These changes

are dominated by the inclusion of rotational kinetic energy (compare RA:ST and

BE:ST results) rather than the inclusion of shear strain energy (compare TLST

and RA:ST results). Note from Figures 9.12-13 that the effect of the no-shear

assumption is more significant for the predicted in-plane bending frequencies.
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Figure 9.16 First ring extensional frequency comparison.
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Figure 9.17 Second ring extensional frequency comparison.
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The effects of curvature approximation on the extensional modes also differ

from those exhibited by the bending modes. The BE:ST idealization is seen

to produce even less accurate frequency predictions than the thin-ring theory

(w = l). TR and EX approximations reduce the frequency error for all beam

types. The TR curvature approximation is typically more accurate for the high

range of tjR. Table 9.13 provides additional comparisons of frequency error for

the extensional frequencies (these were not reported by either Gardner and Bert

or Kirkhope).

9.3.2 Out-of-Plane Ring Frequencies

A third set of 11 rings was used by Kuhl to experimentally determine the

out-of-plane ring response. Again, the thickness was varied while maintaining

RO = 45.00 mm constant. The ring cross sections were square (£ = t) and the ring

material properties were c = 5170 m/sec and v s 0.29. Experimental data exist

for the first seven out-of-plane bending frequencies and the first six torsional

frequencies, but are limited to t/R < 1.130.

A significant concern in the PVAEB formulations was the relative benefit of

curvature approximation on the out-of-plane response. Recall from Chapter 5

that the torsional constant is assumed independent of curvature (that is, the ST

approximation is always used in defining 70) to be consistent with the assump-

tions for the axial rotation, <£i. However, the curvature-dependent moments of

area, /,/, and the curvature-induced shift in the center of mass, gm, are retained.

A sample of the four-element PVAEB models used in this out-of-plane study is

detailed in Table 9.14.
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Table 9.14 PVAEB sample input for out-of-plane analyses of the Kuhl rings.

TITLE - Kuhl Ring: Ro - 45mm, t/Ro-.6667: t/R-1.0; 1-t, nu=.29, c-5170m/s.
SUBTITLE - Out-of-plane analysis
S
BEAM = BE $ Note: Provisions for 'RA' and «TI' beams are included.
CIRC = ST $ Note: Provisions for *TR' and 'EX' approximations are included.
ANALYSIS - RE
NUMEIG - 40
RBM - 100.
SEQ
JACOBI
$
ECHO = CC
ERREST
REPORT
$
SUBCASE
BRP = 1.3,3,2
TIP = 1,1,3,2,1.2
SUBCASE
BRP = 1,3,4,3
TIP = 1,1,4,3,1,3
SUBCASE
BRP = 1,3,5,4
TIP = 1,1,5,4,1,4
SUBCASE
BRP = 1,3,6,5
TIP = 1,1,6,5,1,5
SUBCASE
BRP = 1,3,7,6
TIP = 1,1,7,6,1,6
SUBCASE
BRP = 1,3,8,7
TIP = 1,1,8,7,1,7
SUBCASE
BRP = 1,3,9,8
TIP = 1,1,9,8,1,8
DELOCDISP
S
BEGINBULK
$
$ R = Ro*(l-(t/Ro)/2) (meters).
GRID, 1, .030, 0., 0., 126
GRID, 2, 0., .030, 0., 126
GRID, 3, -.030, 0., 0., 126
GRID, 4, 0., -.030, 0., 126
S
CBARC, 1, 1, 1, 2, 1., 0., 0., .030
CBARC, 2, 1, 2, 3, -1., 0., 0., .030
CBARC, 3, 1, 3, 4, -1., 0., 0., .030
CBARC, 4, 1, 4, 1, 1., 0., 0., .030
CBARI, 1, 4, 10
S
S t/R = (t/Ro)/(l-(t/Ro)/2).
PBARC, 1, 2, .0009, 6.75E-8, 6.75E-08, 1.139E-7, .83333333333, .83333333333, +P1
+P1, 0., 0., 0., .03, .00098875105980, 7.9875953821E-8, , , +P2
+P2, 7.4156329485E-8, -2.6625317940E-06 , 0., 0., , , , , +P3
+P3, -.015, 0., .015, 0., 0., -.015, 0., .015
$
$ E(steel) = 2.0E11 N/m**2; rho (kg/m**3) adjusted to match c=sqrt(E/rho).
MAT, 2, 2.0E11, , .29, 7.482537628E3
$
ENDDATA
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Figure 9.18 Ring out-of-plane frequencies versus t/R (TLEX idealization).

Figure 9.18 illustrates the out-of-plane frequencies for the TI:EX idealization

as a function of t/R. Note the similarities with the in-plane response:

1) bending frequencies emanate from the origin while torsional frequencies ap-

proach nonzero thin-ring values as t/R -» 0 (however, the zeroth and first

torsional frequencies do not cross as do their extensional counterparts);

2) the presence of Timoshenko shear modes is again noted though not explored;

3) all modes with mode number, n, greater than zero have repeated roots, with

even modes (n = 2,4,6,...) possessing symmetric/antisymmetric biasing; and

4) rigid body motion corresponding to global Z-displacement is identically char-

acterized at any p-level, while rigid body rotations about the global X- and

F-axes are only satisfied as p —» oo (but by p = 6, the computed frequencies

are 0.8 Hertz).

-3
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Along with improvements in computational efficiency, another benefit of separat-

ing the in-plane and out-of-plane responses (when possible) is the simplification

in data management. Visualizing Figures 9.10 and 9.18 combined into a single

plot illustrates this point.

Figures 9.19 and 9.20 display frequency comparisons for the first and second

out-of-plane bending modes, respectively. Inclusion of rotational kinetic energy

and shear strain energy improves the frequency prediction by roughly the same

amount (compare BE:ST, RA:ST, and TI:ST results). The effect of utilizing

non-ST curvature approximations is vastly different for the two modes when

Bernoulli-Euler (and Rayleigh) beams are used, further reducing the credibility

of these combinations. As seen in Figure 9.21, the difference between the TR

and EX approximations again diminishes with 'increasing mode number for TI
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Figure 9.22 Zeroth ring torsional frequency comparison.

beams. The TR simplification generally correlates better with the Kuhl data

over the full range of t/R, however.

Table 9.15 presents frequency error comparisons for the out-of-plane bending

frequencies of two Kuhl rings. Kirkhope's values were generated from his TI:ST

formulation and agree well with the equivalent PVAEB results. It is doubtful

that he used c = 5141 m/sec as stated in his report [65]; this value differs from

Kuhl's by -0.6 percent. Also, Kirkhope erroneously labeled his results with higher

values of t/R, thus overstating the applicability of his theory to "thick" rings.

The zeroth torsional mode is similar to the zeroth extensional mode in its in-

dependence to beam type. Figure 9.22 compares the predicted and experimental

frequencies for the mode. This is the only mode where the utilization of exact

Ay's produces a significant improvement over the truncated series approximation.

The TR approximation still improves the accuracy of the frequency prediction in
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comparison with (thin-ring) ST values in spite of the ST-approximated torsional

constant.

Figures 9.23 and 9.24 display frequency comparisons for the first and second

torsional modes, respectively. The BE:ST predictions are quite good for these

modes and much more accurate than the TLST values. Use of the TR and

EX approximations are again seen to be detrimental in conjunction with BE

beams but are necessary for reasonable TI beam predictions. Figure 9.24 shows

an apparent discrepancy in the Kuhl data for the second torsional frequency at

t/R = 0.181. This may also be seen in the frequency error summary in Table 9.16.

Again, the (mislabeled) Kirkhope results in this table are virtually identical to

the TLST values from PVAEB.

9.3.3 Appraisal of Engineering Beam Formulations for Ring Eigenproblems

The collection of PVAEB analyses in this section and their comparison with

the Kuhl experimental data allow a definitive assessment of their applicability.

Bernoulli-Euler and Rayleigh beam idealizations are appropriate for only the

lowest frequencies of thin rings (t/R -»o). The use of TR and EX curvature ap-

proximations with BE/RA beams is discouraged. TLTR and TI:EX idealizations

nearly always reduce the frequency error for t/R < 1 in comparison with TLST

results.

Frequency errors (9.38) for TLTR and TLEX formulations are plotted for

the in-plane bending, extensional, out-of-plane bending, and torsional modes in

Figures 9.25-32. The TR and EX results for each mode type are grouped for

ease of comparison. The general trend is that the TLEX idealization is slightly

more accurate for low t/R but becomes more erroneous when coupled with the

breakdown of engineering beam assumptions. For all practical purposes, TLTR
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Figure 9.30 TI:EX ring out-of-plane bending frequency errors.
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beams provide comparable accuracy while eliminating the difficult determina-

tion of exact /,/s. The fact that the TR curvature approximation is based on

conventional beam cross-sectional properties makes this option most appealing.

Figures 9.25-32 illustrate that 25 of the lowest ring frequencies may be pre-

dicted to an accuracy, |e|, of five percent or less for t/R < 0.45. This number does

not include the six rigid body modes for combined in-plane and out-of-plane re-

sponses, nor does it include the shear modes which are least important in the

low range of t/R. The number of modes 'accurately predicted at even higher t/R's

clearly demonstrates the versatility of the engineering beam formulation.

The in-plane frequencies are seen to be more accurate than their out-of-plane

counterparts. Also, the torsional frequencies are almost always under-predicted;

this differs from the typical pattern for all other modes, especially for high t/R.

One might be led to believe that the ST-approximated torsional constant is re-

sponsible, since increasing 70 would reduce the errors for the torsional frequencies.

However, note from (9.36) that a larger 70 would also produce higher out-of-

plane bending frequencies, thus increasing their frequency errors for t/R > 0.25

(see Figures 9.29-30). This contradiction suggests that the reduced accuracy of

the out-of-plane frequencies is primarily due to the diminished suitability of the

underlying beam assumptions.

One other observation deserves mention. The PVAEB results were obtained

from two sets of models to characterize the in-plane and out-of-plane responses

for various t//Z's. The maximum number of degrees-of-freedom (p = 9) used in

the four-element models is:

n-BE/RA = 68, and (9.40a)

nr/ = 104, (9.406)
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for the in-plane analyses and:

"BE/RA = 64. and (9.41a)

nri = 100, (9.416)

for the out-of-plane models. For the modes investigated by Kuhl, the discretiza-

tion error for the PVAEB frequencies is, at most, 0.25 percent and has been

included in the frequency error computations in this section. The benefit of

developing p-version finite elements for circular engineering beams is thus con-

firmed.



-198-

10. PROBLEMS INVOLVING GEOMETRIC NONLINEARITIES

The inclusion of geometric nonlinearities in PVAEB provides for the evalua-

tion of structural stability from a primarily dynamic perspective. The problems

evaluated in this chapter illustrate the key features in the PVAEB implemen-

tation. All problems in this chapter address a one-inch square steel bar with a

length, L, of 100 inches. The slenderness of the bar allows for the application of

Bernoulli-Euler beam theory and comparison with known solutions. Again, refer

to Appendix 14.1 for interpretation of the PVAEB model inputs.

10.1 CANTILEVER BEAM WITH A DISTRIBUTED AXIAL LOAD

Figure 10.1 illustrates the cantilever beam subjected to a distributed axial

load, Q. The corresponding single-element PVAEB model is displayed in Ta-

ble 10.1. Note the beam properties as they are defined in the table, namely:

A = 1 in3, (10. la)

\\\\\\\\\\\\\\\\

Figure 10.1 Cantilever beam with a distributed axial load sample problem.
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Table 10.1 PVAEB sample input for the loaded cantilever problem.

TITLE - CANTILEVER BEAM WITH A DISTRIBUTED AXIAL LOAD
SUBTITLE - Q/Qc - 0.50
$
LOAD = 100
BEAM = BE
ANALYSIS = RE
JACOBI
SEQ
NUMEIG = 1
NONLIN - 1
S
ECHO = AL
ERREST
$
SUBCASE
BRP - 2,3,3,1
$
SUBCASE
BRP = 2,5,3,1
$
SUBCASE
BRP = 2,7,3,1
S
SUBCASE
BRP - 2,9,3,1
SEGLODISP = HL
SEFORCE = HL
DEGLODISP
DEFORCE
$
BEGINBULK
$
GRID, 1, 0., 0., 0., 123456
GRID, 2, 0., 100., 0., .345
$
CBAR, 1, 1, 1, 2, 1., 0.., 0.
C8ARI, 1, 1, 2
S
PBAR, 1, 2, 1., .0833333333333333333, .0833333333333333333, .140625
$
MAT, 2, 30000000., , .25, 7.35E-4
$
LOAD, 100, 1., 0.50, 1
PLOAD, 1, 1, FY, -19.593368597358709504, -19.593368597358709504
S
ENDDATA

lyy = /„ = /= 1/12 in4, (10.16)

70 = 0.140625 in4, (lO.lc)

£ = 30xlO a Ibf/in2, (10. Id)

v = 0.25, and (lO.le)

p = 7.35 X 10~4 (lbf sec2/in)/in3. (10.1/)
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Note that G = E/[2(l + 1/)] = 12 x 106 Ibf/in2 is computed internally by PVAEB.

Permanent single point constraints are applied to the grid points to enforce the

clamped condition and, in conjunction with fixing p3 = 3 and p4 = 1, to make the

problem planar.

The distributed axial load, Q, has units of ( Ibf/in) and is defined as positive

for compressive loading in the beam. The PLOAD card defines the distributed

load in the model input (though a GRAY card could produce the same result) .

The resulting axial load on the beam is simply:

Fx = EAu'0 = -Q(L-x). (10.2)

Thus, the exact axial force distribution may be extracted from the single-element

model by specifying pi = 2. Typical h-version elements using PI = l produce an

exact characterization of the axial load only in the limit as h -> o.

The no-load fundamental natural frequency for the cantilever Bernoulli-Euler

beam is [51]:

WI|Q=O = (PiL) \-T72, where (10.3a)
y pAL

(faL) = 1.875104, (10.36)

or:

">i|«=o = 20.50582 rad/sec, (10.4)

for the given problem parameters. The critical distributed axial force is known

to be [16]:

2 , where (10.5a)

_1/3(*) = 0). (10.56)
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That is, z is the smallest positive (real) zero for the Bessel function of the first

kind of order -\. Therefore (see [103], Equations 9.1.10 and 6.1.13):

z = 1.866351, (10.6)

and:

Qc = 19.59337 Ibf /in, (10.7)

for this particular problem. Note that the no-load fundamental eigenvector as-

sociated with (10.3-4) is different from the bifurcation vector corresponding to

(10.5-7).

As discussed in Chapter 1, stability may be inferred from a dynamic eigen-

problem of the form:

[[K] - A [Ka] - a,2 [M]] {U} = {0} , (10.8)

where, for the cantilever problem:

Since the axial load in (10.2) does not change with structural deformation, [Ka\

may be computed from the linear static solution without iteration (specified in

the PVAEB input by NONLIN=1). Defining:

u7 . - - , (10.10)
"i |(3=o

allows for the comparison of the finite element eigensolution with the known

values, namely:

o7= 1 when A = 0, and (lO.lla)

u 7 = O w h e n A = l . (10.116)
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Figure 10.2 Cantilever frequency dependence on distributed axial load.

r

Figure 10.2 illustrates w versus A obtained from the p2 = 9 finite element

solutions. Not only are the two known values in (10.11) predicted, but the de-

pendence of 57 to arbitrary A may be characterized. Note that A < 0 implies

tensile axial forces in the beam which stiffen the fundamental frequency. Ta-

ble 10.2 displays typical results produced by the PVAEB program. Note the

following observations:

1) with nc = 2, np = 0, ns = l, no — 4, PI = 2, p3 = 3, p4 = 1, and nc = 9, then (see

(7.49) and (7.76)):

n = pa + 1; (10.12)

2) the linear and nonlinear static results are identical since the geometric non-

linearities are independent of deformation;

3) the static strain energy is independent of pa and is exact for pi = 2 (note the

error estimate);
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Figure 10.3 Convergence of w for the cantilever beam
subjected to critical distributed axial loading.

4) the fundamental eigenvector for arbitrary A does not correspond to either

the no-load fundamental eigenvector (except when A = o) or the bifurcation

vector (except when A = l);

5) dynamic displacements and forces are extracted from the fundamental eigen-

vector and do not include the static contributions; and

6) the error estimate for the fundamental frequency suggests convergence to at

least nine significant digits for A = 0.5 and p? = 9.

Accuracy of the fundamental natural frequency diminishes slightly with in-

creasing A. Figure 10.3 illustrates the worst-case convergence for A = i. As

expected, log(ST) -» -oo (i.e., 57 -» o) as pa -» oo for the case of critical loading.

Exponential convergence (8.11) still exists for problems involving geometric non-

linearities.
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Figure 10.4 Axially loaded, axially rotating shaft sample problem.

10.2 AXIALLY LOADED, AXIALLY ROTATING SHAFT

A slightly different problem is used to illustrate the interaction between geo-

metric nonlinearities and rotating coordinate system effects. The pinned-pinned

straight beam subjected to an axial point load and axial rotation is illustrated in

Figure 10.4. The analytical advantage of the pinned-pinned configuration is that

the eigenvectors are sinusoid for all loading conditions. Thus, the interaction

between the various loading parameters is known exactly.

For a nonrotating shaft, the exact natural frequencies for Bernoulli-Euler

beam flexure are [27]:

n***EI PL*
(10.13a)

(10.136)
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Table 10.3 PVAEB sample input for the shaft problem.

TITLE = AXIALLY LOADED, AXIALLY ROTATING SHAFT
SUBTITLE = P/Pc = 0.50, W/Wc - 0.00
$
LOAD = 100
BEAM - BE
ANALYSIS - RE S NOTE: USE 'IM' FOR PROBLEMS WITH CORIOLIS COHPLING.
SEQ $ NOTE: ONLY AVAILABLE FOR 'RE' ANALYSES.
NUMEIG o 2
NONLIN - 1
ERREST
$
SUBCASE
BRP = 1,3,3,1
$
SUBCASE
BRP = 1,5,5,1
$
SUBCASE
BRP = 1,7,7,1
$
SUBCASE
BRP = 1,9,9,1
SELOCDISP =• HL
SEFORCE - HL
DELOCDISP
$
BEGINBULK
$
GRID, 1, 0., 0., 0., 1235
GRID, 2, 0., 100., 0., 135
$
CBAR, 1, 1, 1, 2, 1., 0., 0.
CBARI, 1, 1, 4
$
PBAR, 1, 2, 1., .0833333333333333333, .0833333333333333333, .140625
$
MAT, 2. 30000000., , .25, 7.35E-4
$
LOAD, 100, 1., 0.50, 1, 0.00, 2
FORCE, 1, 2, 2467.40110027233959, 0., -1., 0.
RFORCE, 2, 1, 57.5607017757049890, 0., 1., 0.
$
ENDDATA

where wn|p=n=o are the no-load natural frequencies and PC is the critical Euler

buckling load. For the particular problem parameters:

wi|/»=n=o = 57.56070 rad/sec, and (10.14o)

PC = 2467.401 Ibf. (10.146)

Note that positive P is taken to impart a compressive axial force in the

beam. The corresponding in-plane and out-of-plane eigenvectors in terms of
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0.0
-1.0 -0.5 0.5 1.00.0

P/Pc
Figure 10.5 Frequency dependence on axial load for the nonrotating shaft.

local coordinates are:

. (nxx\ (
*"*(—){,

0

0

")}, (10.15a)

(10.156)

The same natural frequencies correspond to both in-plane and out-of-plane re-

sponses since Iyy = !,,= I for the sample problem.

The single-element PVAEB model for this problem is provided in Table 10.3.

Note the change in the permanent single point constraints and the reporting of

elemental displacements in the local frame. The effect of the axial point load is

exactly characterized by px = 1. Defining:

_i _
w\p,n=o = (10.16)

provides for a dimensionless quantification of the effect of axial load on the funda-

mental frequency. Figure 10.5 compares the exact solution to the results obtained
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from PVAEB at various p-levels (i.e., pa = pa s p = 3,5,7). Accurate results may

be obtained using p = 5 except near the critical loading. Table 10.4 presents

typical results from the PVAEB analyses.

With the addition of shaft rotation, the exact (Bernoulli-Euler) natural fre-

quencies relative to the rotating frame are [27]:

wnrkn = I wnkn=o T n . (10.17)

Thus, the nonsp inning natural frequencies split into two frequencies, one decreas-

ing and one increasing with rotational velocity. Furthermore, the eigenvectors

are now coupled, namely (for positive fl):

= sin (22) ( -«(<«~l™) «) \ .
\ L J \ co8(KJp,n)i)J

{10.186)V )

The eigenvectors associated with the decreasing and increasing natural frequen-

cies rotate against and in the direction of fl, respectively. These results are

accurately predicted by PVAEB, as seen in the sample output of Table 10.5.

The dimensionless fundamental frequency for the combined loading case may

be denned as:

<3\P n s "i-l*0 = vT^I - In! , where (10.19a)
ui\p=n=o

As-£-, and (10.196)
PC

T T = — r-2 - . (10.19c)wi|p=n=o

Figure 10.6 displays the relationship between A and n for the first critical shaft

speed (w = 0). Note that this curve is identical in shape to the exact curve in

Figure 10.5. Generalizing in words, the critical shaft speeds are equal to the
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Figure 10.6 First critical shaft speed for the axially loaded shaft.

nonrotating shaft natural frequencies regardless of the magnitude of the applied

axial load. This relationship is readily apparent from (10.19).

Equations 10.17 and 10.18 for the spinning shaft include the effects of both

centrifugal softening and Coriolis coupling. It is interesting to note that ignoring

Coriolis coupling produces nonsplitting fundamental frequencies of the form:

= V ! ~ A - n • (10.20)

with uncoupled eigenvectors similar to (10.15). While (10.20) generally over-

estimates the true 57, it will accurately predict the critical speeds of an axially

loaded shaft. On the other hand, ignoring centrifugal softening produces splitting

frequencies with:

,1 = Y 1 - A + 2fl2 - 2 |n| V 1 - A + n2, (10.21)
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0
Figure 10.7 Rotating coordinate system effects on shaft frequency.

and coupled eigenvectors as in (10.18). While this relation does produce rotation-

induced reductions of the fundamental frequency, 57 = 0 only when A = 1 or n = oo.

Defining:

r, and (I0.22a)u = a-A '
n

(10.226)

allows (10.19-21) to be reduced to the single curves in Figure 10.7. Note that

Coriolis coupling is primarily responsible for the reduction of the fundamental

frequency for small |0|, while the centrifugal softening dominates for near-critical

|fl|. PVAEB may be used to verify these relations by including NOCOR or

NOSOFT cards in the case control.

It is important to note that longitudinal and torsional vibrations for straight

beams are unaffected by axial loading or axial rotation. This observation is
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Figure 10.8 Beams with initial imperfections.

particularly useful in verifying the proper formulation of rotating coordinate

effects. Though not presented here, PVAEB accurately predicts this behavior.

10.3 BEAMS WITH INITIAL IMPERFECTIONS

The preceding examples in this chapter Involve geometric nonlinearities which

are unaffected by the structural deformations. Therefore, the basic nonlinear iter-

ation scheme outlined in Chapter 1 has not been utilized. This section addresses

two problems which require iteration in order to converge to the nonlinear static

solution. Both problems involve pinned-ended beams with small initial imperfec-

tions subjected to axial loading, as illustrated in Figure 10.8. The initial bows are

defined using shallow circular arcs to allow for the use of circular beam elements.

The classical formulation for initially bowed beams is presented in [71] and

contains some simplifying assumptions in comparison with the ensuing finite
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element model. The overall beam length is taken to be the span between the

pinned ends (as opposed to the slightly larger sum of the circular arc lengths),

and the beam cross-sectional properties are defined in the planes normal to the

centerline (as if the beam is actually straight). The unloaded and loaded shapes

of the beam are represented by the Fourier series:
oo

S0(Y) = ^2 an sin (s^-) , and (10.23a)
n=l

(10-236)

respectively. Solving the governing differential equation results in:

(10-24>
where PC is again the critical Euler buckling load (see (10.13-14)). It follows

that if 3! ^ 0 and as P — » Pc, the amplitude of the first mode becomes large in

comparison with the others, namely:

(IO-25)

Table 10.6 displays the PVAEB input for a beam with a one-percent initial

circular bow, that is:

S0 (f ) = 0.01Z, = 1.0 in, (10.26)

such that (see Figure 10.8):

R = 1250.5 in, and (10.27a)

00 = 0.0399947 radians, (10.276)

where 90 is the unloaded angle between the beam and the centerline at Y = L.

Provisions are made for the evaluation of this problem using all beam types
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Table 10.6 PVAEB sample input for the beam with an initial circular bow.

TITLE = BEAM WITH AN INITIAL CIRCULAR BOW
SUBTITLE = So(L/2) - 0.01L, P/Pc - 0.5
5
BEAM - BE S NOTE: PROVISIONS FOR 'TI' BEAM ARE INCLUDED.
CIRC = ST S NOTE: PROVISIONS FOR %TR' OR 'EX' APPROXIMATIONS ARE INCLUDED.
ANALYSIS = ST
NONLIN = -12
LOAD - 100
$
ECHO=AL
SEGLODISP =• AL
SEFORCE = AL
ERREST
S
SUBCASE
BRP - 3,3,3,1
TIP = 3,3,1,1,2,1
S
SUBCASE
BRP = 5,5,3,1
TIP = 5,5,1,1,4,1
$
SUBCASE
BRP = 7,7,3,1
TIP = 7,7,1,1,6,1
$
SUBCASE
BRP =9,9,3,1
TIP = 9,9,1,1,8,1
$
BEGINBULK
$
GRID, 1, 0., 0., 0., 12345
GRID, 2, 0., 100., 0., 1345
S
CBARC, 1, 1, 1, 2, 1., 0., 0., 1250.5
CBARI, 1, 2, 4
$
PBARC 121. .08333333333333 .08333333333333 .140625 .8333333333333 .8333333333333 +P1
+P1, 0., 0., 0., 1250.5, 1.000000053291, .08333334132694, , , +P2
+P2, .08333333777422, -6.664001705473D-05, 0., 0.
$
MAT, 2, 30000000, . .25, 1.
$
LOAD, 100, 1., 0.5, 1
FORCE, 1, 2, 2467.40110027233959, 0., -1., 0.
$
ENDDATA

(ky = &„ = §) and curvature approximations. Recall that PVAEB defines the

beam properties and displacement variable relative to the beam axis. As the

beam deforms, the integrated forces and moments used to compute the geo-

metric nonlinearities will change. Therefore, NONLIN=-12 is specified so that

nonlinear iterations will continue until the error in nonlinear strain energy is at

most 10~12 for each subcase (see (1.34)). Also, comparisons with the classical
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solutions will be made at Y = L/2 since that is the only place where the local

beam axes are parallel to the global axes.

Two solutions from the classical formulation are used for comparison with

the PVEAB results. The first solution assumes a sinusoidal bow, namely:

in; (10.28)

thus:
sin (^) »• (l0-29)

One might be led to believe that the shape of the small initial bow is insignificant.

However, the Fourier series for the circular bow is:

+0.0383 sin

+0.0083 sin

+0.0030 sin

+ ...)in. (10.30)

Based on (10.25), the circular imperfection will produce slightly larger deforma-

tions than the sinusoid.

Figure 10.9 displays the loaded midspan position as a function of the applied

load normalized using the classical sinusoid solution. The PVAEB results axe for

a BE beam with ST curvature approximation and pi = p2 = p = 9. As can be

seen, the nonlinear PVAEB and classical arc solutions compare quite well, with

the minor formulation differences having minimal effect. The difference caused

by the shape of the initial bow is more significant than one might expect. The

substantial effect of nonlinearities is better illustrated in Figure 10.10.
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Figure 10.9 Midspan deflection versus axial load for the circular-bowed beam.
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Figure 10.10 Axial load versus midspan deflection for the circular-bowed beam.
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A collection of PVAEB results is provided in Table 10.7. Fx, Fy, and Mz

are the local axial force, shear force, and bending moment, respectively, for the

planar problem. The displacements (A** = S(L/2)-SQ(L/2) and Ayr) and rotation

(eZr =9 — 60) listed are specified in the global frame. For the linear analyses, the

axial and shear forces at the top of the beam are seen to converge via extension

to:

(F*r)LlNBAR = -Pco*90> *** (10'31a)

(*W ) LINEAR = -P 3iD *°. (10'31i)

The linear bending moment (with ST curvature approximation) at the midspan

converges to:

(M^LINEAR = -PS0 (|) . (10.32)

MIT -> 0 for all cases since the beam is pinned, and FXu -» -P for all cases since

the local beam axes are parallel to the global axes at the midspan. Note that

these values are independent of beam type.

The nonlinear results may only be confirmed once the small rotation (Section

2.2) and small axial strain (Section 6.2) assumptions are invoked. For example:

(**»•) NONLINEAR ~ --P«»*

= -Pcos(60 + 8z)

= -P (cos 00 cos Oz - s m d o s ' m f f z ) - (10.33)

The small rotation assumption implies:

= -

while the small axial strain assumption further simplifies this to:

] NONLINEAR ~ ~
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î

0
5
 

0
5

O
 
O

O
 
0

05
 

O
S

EH
 OS

CQ 
EH

Ed 
Ed

CQ 
CQ

«
•

oo
 

us
05 

r-
C

N
 

O
S

0
 0

0
fl^

 
w

4
IO

 
^
H

oO
 

O
)

C
M

 
C

M

i
 
i

s s
C

M
 

C
M

C
M

 
C

M
l
 
i

O
» 

CO

O
) 

O
)

CM
 

CM
O

 
O

i-l C
O

0
 C

M
-H

 
C

M
O

O
 

O
O

9
 9

l 
i

Ed Ed
S

u
sao

C
N

 
C

N

C
N

 
C

O
O

O
 

O
)

O
S

 
O

S

l
 
l

O
O

 
O

O

0
0
 

0
0

CM 
e*i

C
M

 
C

M
1

 
1

CO
 

-̂
i

t-
 C

O
o
 ^

O
S

 
05

O
) 

O
)

o
 o

05
 

O
S

X
 E

H
Ed CQ

CQ 
EH

O
) 

O
)

C
O

 
C

O

^
^
 

f^

a> o>
cN

 
C

N

c
f 

S

ss1 
1

IIO
 
O

00
 

00

C
M

 
C

M
0
0
 

0
0

9
 9

i 
i

Ed Ed
£

3
C

M
 

frj

0
) 

O
)

1-1
 
**

G
) 

0
)

O
S 

os
i 

i

00
 

00
0
0
 

0
0

C
N

 
C

M
C

N
 

C
N

1 
i

t
-
 
t
-

t
-
 
t
-

O
S

 
08

O
S

 
O

S

O
) 

O
>

O
 
0

O
S

 
08

OS 
X

EH
 

Ed

H
 S

0
0

eo

V
I

0
0

OS 
O



-220-

Similarly:

NONLINEAR

— P(sin 0o cos 6z + cos 80 sin Oz)

$z cos 0o)

+ ** (F**) UNBAR ' (10-36)

The nonlinear midspan bending moment (with ST curvature approximation) is

simply:

~ps (7)

). (10.37)

The discretization error for the nonlinear forces and moments is more than that

for comparable linear results at the same p-level, but still quite acceptable for the

single element model with p = 9. Errors of idealization will dominate as P -» Pc

but cannot be discerned by p-extension.

Table 10.7 also displays results obtained by utilizing the various beam types

and curvature approximations. All listed values are identical to at least three

significant digits. The minute changes in the displacements and rotations are

also reflected in the nonlinear forces and moments. The TI strain energies are

slightly larger than their BE counterparts due to the inclusion of the shear strain

energy. The TR and EX curvature approximations produce virtually identical

results. All of these results are to be expected for the long, shallow geometry of

the problem, but they help confirm the proper formulation and execution within

PVAEB.

The nonlinear iteration error (1.34) versus nonlinear iteration number is plot-

ted in Figure 10.11 for various p-levels and load amplitudes. As expected, more
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Figure 10.11 Convergence of nonlinear strain energy
for the circular-bowed beam.

iterations are required to achieve the 10~12 threshold tolerance as the load in-

creases. However, the figure also shows faster convergence for increasing p-levels.

This trend has been seen in a variety of PVAEB analyses. Computational effi-

ciency for nonlinear problems is typically enhanced by p-extensions in comparison

with h-version models having the same number of degrees-of-freedom.

The PVAEB model for the circular bowed beam in Table 10.6 increases the

polynomial order (PI = pa = p) by two for each extension. At times there is strong

justification for this approach. Table 10.8 displays the error estimates generated

from two separate analyses of the same problem, one using only the odd polyno-

mial orders while the other uses all polynomial orders. Note that the nonlinear

strain energy for the all p-level analysis is not monotonic, thus invoking the less
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accurate quadratic error estimator. Also note that the number of nonlinear itera-

tions required for convergence is larger for the even polynomial subcases (though

the number still decreases as p increases). Therefore, skipping polynomial orders

is beneficial for some nonlinear problems even when symmetric/antisymmetric

biasing is not present.

The second problem illustrated in Figure 10.8 possesses an initial shape that

is predominantly third-harmonic with:

Li = 34.0 in, (I0.38a)

Ri = 145.00 in, and (10.386)

R2 = 134.47 in. (10.38c)

The geometry is specified such that the adjoining circular arcs are tangent, al-

though this is not required. The Fourier series for the initial shape is:

S0(Y)= (o.0570sin(^)

+1.0118 sin

-0.0152 sin

+0.0063sin

+ ...) in. (10.39)

Thus, the midspan deflection (Axw = S (f) - S0 (f)) will start out negative as the

load is applied. However, amplification of the first harmonic as P -* Pc will

cause the midspan deflection to go positive. The classical solution is illustrated

in Figure 10.12 along with PVAEB results using BE beams with the ST curva-

ture approximation. Again, the classical and nonlinear PVAEB solutions are in

excellent agreement while the linear PVAEB results are completely erroneous.
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11. THE DARRIEUS VERTICAL-AXIS WIND TURBINE

The Darrieus vertical-axis wind turbine (VAWT) is the primary motivation

behind this research. All of the capabilities incorporated into the PVAEB formu-

lations have a direct and significant effect on this class of structure. Furthermore,

the history of the development of VAWT structural analysis provides enlightening

examples of errors in idealization and discretization.

The vertical-axis wind turbine addressed in this study is named for the French

mathematician, G. J. M. Darrieus. United States Patent Number 1,835,018 was

issued to him in 1931 for a "turbine having its rotating shaft transverse to the flow

of current" [104].* Figure 11.1 illustrates the typical configuration for a modern

Darrieus VAWT. This particular machine is over 100 feet tall with a 63-foot (IO-

meter) equatorial diameter. The rotor is supported by two bearing assemblies,

one located in the base structure and the other mounted on top of the rotor

and anchored to the ground via guy cables. The airfoil-shaped blades on this

particular VAWT are extruded aluminum, although wood, steel, and composite

blades have been used on other machines. The mast is fabricated from thin-

walled steel pipe and must provide lateral and vertical support for the blades,

transfer torque from the blades to the drivetrain, and resist the axial thrust load

induced by the guy cables. Horizontal struts are attached between the blades

and mast to improve the lateral support and torque transfer.

VAWT's are as technically different from conventional horizontal-axis wind

turbines (HAWT's) as they are visually. The vertical spin axis allows extraction

of wind power from any direction without yawing. Peak power is aerodynami-

cally regulated without the use of pitch controls. The ground-based drivetrain

The first windmills, believed to have been used by the Persians over 2000
years ago to grind grain, utilized a vertical spin axis.
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Figure 11.1 The FloWind-19 vertical-axis wind turbine.

components significantly reduce design and installation costs and simplify main-

tenance. Also, vertical-axis wind turbines are theoretically more efficient than

their horizontal-axis counterparts since the blades pass through the wind twice

(upwind and downwind relative to the mast) for each revolution of the rotor. All

of these attributes make VAWT's cost competitive with horizontal-axis machines

in spite of the relatively small investment in research.

Wind energy in the United States was primarily used for pumping water

and generating direct-current, battery-stored electricity in rural environments

prior to the proliferation of utility grids. The notion of generating electricity for

utility applications via the wind progressed slowly during the era of cheap fossil
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fuels. The oil crisis of the 1970's produced renewed interest in alternative energy

sources. The United States federal wind energy program commenced in 1973

under the direction of the National Science Foundation. This program was later

transferred to the Energy Research and Development Agency and eventually

to the Department of Energy (DOE). The program's goal was to accelerate all

aspects of wind energy technology leading to cost-effective production of electric

power.

VAWT development was initiated in 1974 at Sandia National Laboratories,

Albuquerque, New Mexico and still continues. Canada instituted VAWT re-

search in 1972 through their National Research Council. Early research focused

on proof-of-concept issues since the Darrieus configuration remained relatively

undeveloped after issuance of the initial patent. Several wind tunnel and small

full-scale turbines were built, culminating in 1977 with the construction of a

17-meter (equatorial diameter) test machine in Albuquerque. This was the first

VAWT to undergo major structural testing.

A troposkien (turning rope) blade geometry produces purely tensile stresses

in a rotating blade [105]. This ideal shape is often approximated by a series

of straight and/or circular segments for manufacturing ease. Geometric nonlin-

earities were recognized early in the development as having a significant effect

on the bending stresses in nontroposkien blades as well as on the in-plane (flat-

wise) blade bending frequencies [106]. Both MARC [107] and NASTRAN [108]

finite element analyses proved quite effective in predicting the nonlinear static

blade stresses. A single-blade model was used in these two analyses, with ap-

propriate rigid constraints imposed to represent the mast and strut connections.

Centrifugal softening was recognized but not incorporated into the formulations.
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Test data from the DOE/Sandia 17-meter VAWT also identified rotation-

induced changes in the natural frequencies and mode shapes. Coriolis coupling

of in-plane and out-of-plane modes was readily apparent. Without the inclusion

of rotating coordinate system effects, the errors in idealization would render

eigensolutions for rotating VAWT's completely erroneous. Recall that extensions

of finite element models provide no insight into this type of error.

The first attempt at VAWT dynamic analysis with rotation was VAWTDYN

[109]. The VAWTDYN model consisted of a limited degree-of-freedom, rigid-

linked, spring-connected representation with provisions for Coriolis coupling and

centrifugal softening. The spring and link variables were adjusted to match fre-

quencies from a real finite element eigenanalysis with geometric nonlinearities.

• Uncertainties were not quantifiable, but they proved to be unacceptable in the

evaluation of the DOE 100-kW VAWT [110]. Numerous structural modifications

were necessary to correct a severe resonance condition in the original configura-

tion of this machine.

The FEVD (Finite Element VAWT Dynamics) analytical capability and

the experimental verification outlined in [27] was borne out of the VAWTDYN

experience. FEVD demonstrated that the VAWTDYN formulation was theo-

retically correct but that the number of degrees-of-freedom was insufficient to

accurately predict the interaction of geometric nonlinearities, centrifugal soften-

ing, and Coriolis coupling. That is, errors in discretization caused VAWTDYN

to fail.

FEVD is a modified NASTRAN-based capability specifically tailored for

VAWT analyses. In comparison with PVAED, FEVD is limited by the following

attributes:

1) the FEVD spin axis is assumed to coincide with the global Z-axis;
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2) FEVD elements are straight, h-version, Bernoulli-Euler beams;

3) centrifugal softening is not included during the iterative solution of the non-

linear static problem (1.36) but only incorporated into the dynamic eigen-

problem (1.37);

4) the number of nonlinear iterations in FEVD must be explicitly specified by

the user without knowledge of strain energy convergence (1.34);

5) the number of degrees-of-freedom must be statically condensed to sixty or less

for complex eigensolutions within FEVD with no measure of the condensation

error (which may be easily performed using a variation of (8.28)); and

6) no provision for discretization error estimation is provided in FEVD.

Thus, PVAEB eliminates numerous uncertainties associated with the FEVD ca-

pability. These shortcomings will be addressed via analyses of the turbine illus-

trated hi Figure 11.1

The finite element model for the FloWind-19 VAWT is displayed in Figure

11.2. All of the physical properties are extracted from a comparable FEVD

analysis for direct comparison. Note that only the rotor is modeled: the guy

cables are replaced by a set of equal, orthogonal, linear springs in the horizontal

plane coupled with an axial thrust load, while the base structure is assumed

infinitely rigid. Insufficient information is available to quantify the idealization

error associated with the rigid-base assumption. The drivetrain flexibility is

modeled with a torsional spring attached to the bottom of the mast. Note that

the stationary constraints are symmetric such that the rotor natural frequencies

are independent of position regardless of the rotational speed.

Each blade of the FloWind-19 is fabricated from three lengths of raw,

straight, extruded aluminum blade material. The circular segments are produced

by an incremental bending operation which introduces plastic deformations and
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residual stresses into the blade. The center blade section is completely circu-

lar except for short straight segments at each end for the blade-to-blade joints.

The upper and lower segments are straight except for segments adjacent to the

blade-to-blade joints. Thus, connection-induced stress concentrations never in-

teract with the residual stresses in the circular segments. The blade-to-blade

joints are flagged in Figure 11.2 by the added beam mass (and stiffness) used in

their idealization. The connections between the blades and mast, termed blade

roots, include the added mass and stiffness of mounting hardware.

The mast is modeled in PVAEB using six elements, with distributed masses

used to characterize the flanges and bearings. Note that eight pseudo-rigid out-

rigger elements are used at the blade-to-mast and strut-to-mast interfaces to

accurately model the mast diameter. If implemented into PVAEB, rigid links

could accurately represent these outrigger elements and reduce the number of

degrees-of-freedom (because they would be independent of p-extension). The

struts are connected to the mast and blade with global Z pins to model the

flexible steel plates used hi their attachment.

The resulting PVAEB model requires 35 grid points and 40 elements (34

straight and 6 circular) to exactly capture the model geometry. With nP = 8,

nc = 3, and specifying P = pi = p2=p3 = p4 + l = ps + l = p6 + l > 2 , the resulting

number of degrees-of-freedom is (7.49,76):

"BE/RA = (35 x 6) + 8 + (40 x (4p - 9)) - 3

= 160p-145, (11.1)

or:

= (35 x 6) + 8 + (40 x (6p - 9)) - 3

= 240p-145, (11.2)
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where the subscripts denote the type of beam idealization. In comparison, the

FEVD model contains 115 grid points and 120 straight BE elements (P! = p4 = i,

Pa = Ps = 3) such that:

npsvD = (H5 x 6) + 8 - 3

= 695. (11.3)

Therefore, the number of degrees-of-freedom is smaller for the PVAEB model

in comparison with the FEVD model only when p = 5 for BE/RA idealizations

and p = 3 for TI idealizations. Still, the significant decrease in the number

of grid points and elements for the PVAEB model greatly simplifies the mesh

generation procedure. Separate specification of the polynomial orders for straight

and circular elements would be beneficial in this instance.

One of the first concerns in the analysis of VAWT's is the rotation-induced

static blade stresses. Since the spin axis lies in the plane of the blades, these

stresses are generated entirely from tension and in-plane bending. Figure 11.3

plots the linear and nonlinear PVAEB flatwise stresses at operating speed for

the innermost and outermost fibers of the blade. The stresses are plotted as a

function of blade span from top to bottom. The effects of gravity and centrifugal

softening are included in the BE:ST beam idealization with p = 9. The added

stiffness of the blade roots and blade-to-blade joints induce the discontinuities

seen in the stresses. The locations of the blade-to-strut connections are identified

by the darkened symbols. These results are obtained from a full-rotor model such

that the minor effects of mast and strut deformation are included.

The most apparent observation from this figure is the significant reduction of

bending stresses due to tensile stiffening. Peak stresses are analytically reduced

by nearly 18 percent with the inclusion of geometric nonlinearities. The peak
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Figure 11.3 FloWind-19 static blade stresses at 52 rpm.

stresses occur in regions devoid of stress concentration; connections at the roots,

struts, and joints all experience the same approximate stress levels. This is not

mere coincidence. Numerous iterations of the blade geometry were performed

to achieve this desired state. Though not apparent, the blade geometry is not

symmetric about the equator. A slight droop is incorporated to account for the

effects of gravity and to balance the stresses experienced in the upper and lower

blade sections. Note that the maximum blade rotation from the undeformed to

the deformed position is only 0.021 radians, thus validating the use of small-

rotation theory.

Table 11.1 compares the blade stresses at strategic joint locations along the

blade (flagged in Figure 11.2) for a variety of analytical assumptions. As ex-

pected, beam type and curvature approximation are seen to have little effect

on these long, gently curving blades. In fact, the ST curvature approximation
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might indeed be considered the more accurate assumption in light of the method

used to fabricate the circular segments. The effect of geometric nonlinearities

produces the most significant differences. Ignoring centrifugal softening causes

only minor changes in the blade stresses for this turbine due to its relatively stiff

design. This is the first known time that the effect of centrifugal softening on

blade stresses has been quantified.

Comparison of equivalent PVAEB and NASTRAN analyses deserves further

scrutiny. The PVAEB model uses 11 elements per blade, excluding outriggers

and struts, to capture the exact geometry. By (at most) p = 9, all stresses have

converged to the values listed in the table. Six nonlinear iterations are required

at p = 9 for automatic convergence of the strain energy to one part in 1013 (i.e.,

NONLIN=-12 is specified in the PVAEB input). The FEVD/NASTRAN anal-

ysis uses rule-of-thumb assumptions developed from previous sensitivity stud-

ies: 40 (straight) elements per blade and four nonlinear iterations. Granted,

nBB\P=9 = 1295 is nearly double npEvo and the accuracy of the FEVD stresses

may be viewed as acceptable now that accurate PVAEB results are available for

comparison. However, the quantification of error via p-extension without the

arduous, user-intensive process of mesh refinement easily justifies the additional

computational costs.

Figure 11.4 illustrates the front, top, and side views of the mode shapes for

the six lowest natural frequencies of the nonrotating FloWind-19. The modal

nomenclature, defined in terms of these nonrotating shapes, diminishes in physi-

cal significance as the modes become rotationally coupled. The natural frequen-

cies listed are for the TLTR beam idealization with the inclusion of the nonlinear

effects from gravity and guy cable thrust. The first propeller mode, P 1, involves

pseudo-rigid rotation of the rotor inertia on the drivetrain spring. The butterfly
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First Propeller
(PI) f ' 0.694 Hz

First Butterfly
(B 1) f • 2.443 Hz

First Antisymmetric Flatwise
(FA 1) f • 2.477 III

First Symmetric Flatwise
(FS 1) f = 2.499 III

First Tower
(T 1) f » 3.070 III

Second But te r f ly
(B 2} f * 4.296 Hz

Figure 11.4 FloWind-19 mode shapes and natural frequencies at zero rpm.
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modes, B 1 and B 2, are out-of-plane motions dominated by the tower height

and stiffness/mass and the guy cable stiffness; they are also affected by the out-

of-plane (lead-lag) blade stiffness/mass and the strut stiffness and location. The

first tower mode, T 1, is the in-plane equivalent to the first butterfly mode, with

similar rotor features governing the natural frequency. The first pair of flatwise

blade modes, FA 1 and FS 1, are dominated by the in-plane (flatwise) blade

stiffness/mass and the strut location.

Figure 11.5 displays the same six modes for the FloWind-19 at its nominal

operating speed. Three-views of both the real and imaginary (90° phase) com-

ponents of the complex eigenvector are displayed, as seen in the global frame.

Recall that the global frame rotates with the rotor relative to the stationary in-

ertial frame. However, the 90° phase is defined in terms of the natural frequency

for each mode and not the rotational speed. The 90° phase for the nonrotat-

ing modes in Figure 11.4 is merely the undefonned shape since the eigenvectors

are entirely real and the static deformations axe not included in the dynamic

eigenvectors. The most noticable change from the nonrotating to rotating mode

shapes is the coupling of the "butterfly" and "tower" motions.

The rotation-induced changes in natural frequencies are best viewed via the

Campbell diagram, or "fan plot," in Figure 11.6. The first propeller frequency

changes very little with rotational speed. The first butterfly and tower frequencies

split hi a manner similar to the axially rotating shaft of Section 10.2; this concurs

with the mode shape observations. The flatwise modes exhibit higher natural

frequencies as the rotational speed increases; this is primarily the result of tension

stiffening.
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Real Component Imaginary Component

First Propeller
(F 1) f = 0.696 Hz

Real Component Imaginary Component

First Butterfly
(B 1) f = 2.026 Hz

Figure 11.5 FloWind-19 mode shapes and natural frequencies at 52 rpm.
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Real Component

Real Component

Imaginary Component

First Antisymmetric Flatwise
(FA 1) f = 3.034 Hz

Imaginary Component

First Symmetric Flatwise
(FS 1) f = 3.059 Hz

Figure 11.5 FloWind-19 mode shapes and natural frequencies at 52 rpm
(continued).
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Real Component Imaginary Component

First Tower
(T 1) f = 3.276 Hz

Real Component Imaginary Component

Second Butterfly
(B 2) f = 4.617 Hz

Figure 11.5 FloWind-19 mode shapes and natural frequencies at 52 rpm
(continued).
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Modes & Excitations

-*- P 1

B 1
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Odd Harmonics
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0"^
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Rotor RPM

Figure 11.6 Natural frequency versus rotor rpm for the FloWind-19 VAWT.

Figure 11.6 also contains dashed and solid lines emanating from the origin.

These lines represent odd and even harmonics, respectively, of the rotor rota-

tional speed. For steady-state conditions (i.e., constant rotor rpm and constant

windspeed and wind direction), these lines also represent the aerodynamic ex-

citation frequencies. In general, resonance problems are likely to occur where

symmetric modes (P 1, FS 1, etc.) cross even excitation frequencies and where

antisymmetric modes (B 1, FA 1, T 1, B 2, etc.) cross odd excitation frequencies.

The three-per-rev crossing of the first tower mode produced the serious resonance

problem experienced by the DOE 100-kW VAWT. Note that the natural frequen-

cies and excitation frequencies are well separated at the nominal operating speed

for this turbine. Again, this is the product of numerous design iterations, where

various rotor parameters are adjusted to "tune" the rotor to this dynamically

inert state.
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The effects of various idealization parameters are detailed for the first known

time in Table 11.2. The TLTR beam idealization is used for all cases. Case

1 represents the most accurate results with the inclusion of geometric nonlin-

earities, centrifugal softening, and Coriolis coupling. Cases 2-4 each exclude a

different one of these three factors, while all three parameters are removed for

Case 5. Again, strain energy and flatwise frequencies are seen to be most sig-

nificantly affected by geometric nonlinearities. Butterfly and tower frequencies

are affected by all three factors: Coriolis coupling, centrifugal softening, and

geometric nonlinearities, in that order of significance.

The most interesting effects are exhibited by the first propeller mode. Its

frequency is the only one accurately predicted when all three factors are ignored.

Coriolis coupling is insignificant for this mode, but the effects of geometric non-

linearities and centrifugal softening cancel each other almost exactly, as discussed

in [19]. In fact, the results are listed for a rotor speed of 35 rpm because the

Case 4 assumptions are unstable at the nominal 52 rpm operating speed.

Table 11.3 provides a sensitivity assessment for the VAWT results to beam

type and curvature approximation. All values are within one-half percent of each

other. Again, this is as expected but helps to confirm the proper formulation and

execution of PVAEB. FEVD/NASTRAN results are also included in this table.

No doubt these results should be viewed as acceptable now that comparisons

with accurate solutions can be made. The error induced by static condensation

has obviously been minimized by a judicious selection of the condensed degrees-

of-freedom, though it is never quantified or isolated from the discretization error

in FEVD. Modern eigensolvers eliminate the condensation error; error estimates

as presented in Table 11.4 confirm the elimination of discretization error. The
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ô

2
 z

Cd 
Cd

ZJ
 r
H<J2EHU) in0CdinI-H

I-H
O
O
CMonCMCM
orooon

m
 v
n

o
 o

Cd 
Cd

on csj
CO
 
00

ro in
in en
in in
p- m
m
 m

r* tn
ro «r
<r vo
vo en
p- r-
en en

moCdonrHOor-op-V
O
r
H
CMO
COen

tnoCdOinp-«̂orHenroroo00<r\

m
 i
n

o
 o

Cd 
Cd

CO
 
CM

CM in
CO
 
CO

*r co
vo o
P-
 00

r
H
 
r
H

on en
CO
 
CO

ro co
o
 o

00
 CO

o> en

OS<cdZrH,JZoz

tnoCd
>-• in
tj in
O
S
 
r
H

Cd 
^
>

Z
 C
M

Cd 
00p*

z
 m

r
H
 
p
-

<
 C
M

ce. vo
E
H
 
P
-

U
l
 
V
D

inoCdoVOinmop*VO
V
OOrH
COCOp-

m
 i
n

o
 o

Cd 
Cd

en co
en ro
in *r
co *r
r
H
 
0
0

en rH
CM in
CM
 
rH

O
 C
O

r
H
 
Ĉ
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Figure 11.7 Convergence of relative errors for the FloWind-19 at 52 rpm.

engineer must still resolve errors in idealization, but may now do so without the

distraction of other analytical uncertainties.

Figure 11.7 displays the estimated errors in energy norm (8.45) and natu-

ral frequency (8.46) relative to the extrapolated values at p = 9 for the BE:ST

idealization of the FloWind-19 at 52 rpm (i.e., the "cumulative" error estimates

in Table ll.4). All of the listed natural frequencies are seen to converge faster

than the (linear and nonlinear) strain energies. The different vibrational modes

exhibit slightly different rates of convergence, and the order of increasing error

does not coincide with the order of increasing natural frequency. Note that expo-

nential convergence is indicated even with the inclusion of centrifugal softening,

Coriolis coupling, and geometric nonlinearities.

Table 11.5 presents some comparative information on eigensolvers and ex-

tensions. Skyline efficiency reflects the success in reducing storage requirements
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and computational costs. PVAEB does not contain a skyline optimizer, yet p-

extension generally improves the skyline efficiency. The benefits of sequential

eigensolutions as discussed in Section 8.2 are demonstrated for the subspace it-

eration method. Not only are the number of subspace iterations reduced as

the solution becomes more exact, but the sequential solution algorithm aids in

tracking the lowest modes to prevent Sturm sequence failure.

The complex Lanczos solver compares favorably with nonsequential subspace

iteration even though the analyzed problem is entirely real. Sturm sequence

failure is avoided and solution time is significantly less than that for subspace

iteration at the low p-levels. Solution time becomes relatively greater at the

high p-levels, but this is primarily due to the added complexities of assuming

a gyroscopic eigensystem and utilizing a state variable formulation (8.31). This

comparison is merely intended to be enlightening rather than definitive.
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12. SUMMARY AND CONCLUSIONS

The subject of this research has been the application of the p-version of the

finite element method to static and dynamic analyses of the class of problems

which can be accurately modeled by (a hierarchy of) engineering beam formu-

lations. The objectives of this investigation included identifying the underlying

assumptions of classical beam theory, rigorously deriving the strain and kinetic

beam energies, and constructing hierarchic finite element spaces based on p-

extensions. These formulations are capable of accounting for rotating coordinate

system effects and geometric nonlinearities. They have been implemented into

a computer program named PVAEB (p -Version Analysis of Elastic Beams) for

evaluation of a diverse set of demonstrative problems.

Beam elements possessing either a straight or circular beam axis have been

developed. The circular beam elements assist in minimizing the number of el-

ements necessary to capture the problem geometry. However, curvature of the

beam axis affects the definition of the cross-sectional properties. These curvature-

dependent properties may be related to conventional cross-sectional properties

through a hierarchy of curvature approximations, whose applicability depends on

the relative magnitude between the radius of the beam axis and the characteristic

cross-sectional dimension.

Quality control and error estimation procedures based on p-extensions were

implemented and their numerical performance was studied. These procedures

address the quantification of the error of discretization and consist of:

1) the estimation of the error in energy norm and/or natural frequencies,

2) the performance of equilibrium checks for the entire model and for individual

elements, and
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3) the observation of convergence for all quantities of interest.

Errors of idealization may be quantified to a lesser extent through the hierarchies

of beam formulations and curvature approximations and by inclusion of rotating

coordinate system effects and geometric nonlinearities, as applicable. The suit-

ability of the underlying beam assumptions, and of the other limitations imposed

in the formulations, may only be assessed by comparison with results from less

restrictive theories and/or experimentation.

The implementation of hierarchic finite element spaces allows for algorithmic

enhancements of established eigensolution techniques. This study documents the

procedure by which the computational effort for an eigensolution may be reduced

by utilizing the results of a previous eigensolution in a hierarchic sequence. This

procedure was implemented for real (nonrotating) eigensolvers using threshold

Jacobian and subspace iteration techniques. Application to block Lanczos and/or

complex eigensolvers merits further investigation, as does refinement of the in-

trinsic eigensolver logic to fully capitalize on the hierarchic solution sequence.

The principal conclusions of this work are as follows:

1) A hierarchy of straight and circular beam element formulations can be suc-

cessfully implemented in the p-version of the finite element method for static

and dynamic analyses.

2) Rigorous derivation of the circular beam formulations and implementation of

extendable polynomial-based approximations for the displacement variables

eliminate all locking-type phenomena and characterize all (strain-free) rigid

body motions as p -»oo.

3) A distinct relationship exists between beam type and curvature approxima-

tion for circular beam elements. The straight (ST) approximation is most ap-

propriate for Bernoulli-Euler and Rayleigh beam idealizations. Timoshenko
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beazns, coupled with the truncated-series (TR) approximation, significantly

extend the range of applicability. The exact (EX) characterization of cur-

vature is most difficult to quantify and is rarely beneficial; the engineering

beam assumptions become invalid before significant differences between the

TR and EX idealizations occur.

4) Exponential convergence for p-extensions has been realized for both strain

energy and natural frequencies for the class of problems investigated. Inclu-

sion of circular beam elements, rotating coordinate system effects, and/or

geometric nonlinearities may affect the solution accuracy and rate of conver-

gence, but not the exponential nature of the convergence.

5) Significant improvement in computational effort has been demonstrated for

sequential eigensolutions of problems utilizing hierarchic extensions. Al-

though the sequential set of eigensolutions does require more effort than

the nonsequential eigensolution of the highest-order approximation, quantifi-

cation of the error of discretization easily justifies the additional cost.

6) The versatility of the formulations has been exhibited by the diversity of

the sample problems investigated, from moderately thick rings less than four

inches in diameter to a vertical-axis wind turbine over one hundred feet tall.

7) Inclusion of centrifugal softening, Coriolis coupling, and geometric nonlinear-

ities have a profound effect on the predicted response of vertical-axis wind

turbines. The interaction of these effects has been documented for the first

time in this report.
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14. APPENDICES
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APPENDDC 14.1

Input Cards for PVAEB Models

General comments regarding model input:

1) NASTRAN similarity:

• Program is designed to interpret an input deck of cards.

• Many of PVAEB's bulk data cards are modeled after similar cards in

NASTRAN. NASTRAN documentation may be used to enhance the de-

scriptions below.

2) Free format:

• Active columns may be separated by spaces, commas, or equal signs.

• Commas or equal signs must be used to separate blank columns.

• All information on an individual card must be contained within the first

120 characters of a single line.

3) Identification numbers (ID's):

• 0 < ID < 10000 (integer).

• No two ED's may be the same for a given type of card.

4) Continuation flags (+(Vs):

• Defined using up to eight characters beginning with a "+".

• Continuation cards are considered individual cards for the purpose of

reading in the free format.

• Continuation cards must follow the card it is continuing immediately, and

the continuation flags must be identical.

5) Packed six-digit format:

• Up to six contiguous digits with values between one and six.
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Represents any or all of the six global degrees-of-freedom at the point of

interest.

Table 14.1.1 Abridged list of allowable case control cards.

Card

$

TITLE =
SUBTITLE =

ANALYSIS =

NUMEIG =

NOSOFT

NOCOR

SEQ

NOSTURM

JACOBI

JACOPTION

Input/Comment

Comment line (also flags comments
appended to the ends of cards).

Title (< 60 characters).
Subtitle (< 60 characters).

ST = static,
RE = real eigenvalue, or
IM = complex eigenvalue.
Note: Static analysis will be
be performed before RE/IM
analyses if load is specified.
# of eigenvalue/vector's desired
(required for RE/IM analyses).
No centrifugal softening flag:
exclude [Ks\ matrix in
ST/RE/IM analyses.
No Coriolis coupling flag:
exclude [C] matrix from IM
analysis.
Sequential solution flag: use
previous RE eigensolution to
start next eigensolution.
No Sturm sequence check flag:
do not check if lowest
eigenvalues were found by
non-Jacobi eigensolver.
Jacobi solution flag: use RE
Jacobi solver exclusively.
Optional Jacobi solution flag:
use RE Jacobi solver if RE
subspace iteration fails.

Location

Main

X

X
X

X

X

X

X

X

X

X

X

Subcase

X

Required

N

N
N

Y

Y/N

N

N

N

N

N

N
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Table 14.1.1 Abridged list of allowable case control cards (continued).

Card

LOAD =
SPC =
BEAM =

cmc =

NONLIN =

RBM =

NOSTOP

SUBCASE
LABEL =
BRP =

TIP =

ENDCASE

BEGINBULK

Input/Comment

LOAD Card ID # for analysis.
SPCADD Card ID # for analysis.
Analysis beam type:
BE = Bernoulli-Euler,
RA = Rayleigh, or
TI = Timoshenko.
Circular beam approximation
(required for circular elements):
EX = exact,
TR = truncated series, or
ST = straight approximation.
Nonlinear analysis value:
0 = linear (default),
+# = number of iterations, or
— # = exponent for automatic

convergence check of
strain energy (e < lO"1*4).

Shift value (a) for rigid body
analysis: [K] = [K] + a[M\.

Don't stop for input data error.

Subcase flag.
Subcase label (< 60 characters).
BE/RA subcase p-levels:
Pli P2i P3i P4-

TI subcase p-levels:
Pi, P2, P3. P4i P5, P6-

End of subcase flag (SUBCASE
or BEGINBULK cards also
end subcase input).
Bulk data flag: signals the
end of case control cards and
the start of bulk data cards.

Location

Main

X
X
X

X

X

X

X

X

X

X

Subcase

X
X
X

X

X

Required
?

N
N
Y

Y/N

N

N

N

Y
N

Y/N°

Y/N*

N

Y

One or the other is required for each subcase depending on the analysis beam type.
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Table 14.1.1 Abridged list of allowable case control cards (continued).

Card

SGDISP =
SELOCDISP =
SEGLODISP =
SEFORCE =
SVFORCE =
SCFORCE =
SESTRESS =

DGDISP
DELOCDISP
DEGLODISP
DEFORCE
DVFORCE
DCFORCE
DESTRESS

ERREST

ECHO =

REPORT

Input/Comment

Static report requests:

SP* : Global grid displacements.
SP': Local element displacements.
SP*: Global element displacements.
SP*: Element forces & moments.
SP' : Virtual work forces & moments.
SP*: Constraint forces & moments.
Spt; Element stresses.

Dynamic report requests* :

Global grid displacements.
Local element displacements.
Global element displacements.
Element forces & moments.
Virtual work forces it moments.
Constraint forces & moments.
Element stresses.

Error estimation flag: perform
error estimates for linear &
nonlinear static and dynamic
solutions as needed.
Echo input model data into
results file:
CC = case control only, or
AL = case control it bulk data.
Activities report echo flag:
write activities report into
results file.

Location

Main

X°
X°
x°
x°
x°
x°
x°

x°
x°
x°
x°
x°
x°
X8

X

X

X

Subcase

X
X
X
X
X
X
X

X
X
X
X
X
X
X

Required
?

N
N
N
N
N*
N
N

N
N
N
N
N*
N
N

N

N

N

0 Triggers report for every subcase.

t SP = Specification: LO = linear case only, HI = highest nonlinear case only,

HL = linear and highest nonlinear cases, or AL = all cases.

? Limited to linear analyses.

* Prints report for each of the desired eigenvalue/vector's.
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Grid point specification (GRID):

• GID = Grid identification number.

• X, y, and Z = Position in global frame.

• PC = Permanent single point constraints.

Beam element specification (GEAR, CBARC, and CBARI):

• EID = Element identification number.

• PID = Property ED for particular element.

• GID A and GID a = Grid points located at ends A and B, respectively, of

the beam element. The local z-axis for straight beams is in the direction of

{Gxs} = {GB}-{GA}.

• V1} V2, and V3 = Components of the vector, {GV}, used to define the ori-

entation of the local frame. The local z-axis is oriented in the direction of

{Gxs} x {°V} for both straight and circular elements. The local y-axis for

straight elements is oriented in the direction of {az} x {Gis}. {GV} also de-

fines the direction of rotation from {axs} at end A of the local x- and y-axes

for circular elements. The angle of rotation, f < 90° (see Figure 2.3), is

determined using {GB}, {GA}, and R.

• R = radius of circular element.

• PFA and PF^ = Pin flags at ends A and B, respectively.

• EEDx,o and EID^/ = Low and high element identification numbers for the

computation of element report information at points other than the beam

ends. Elements whose identification number satisfies EIDLo < EID < EID///

will be affected by the particular CBARI card.

• NU/V = Number of divisions defining the internal points for element report

information, where £, = 2 x (t - l)/N0/v - l, » = l, 2,..., (Nu/v + 1).
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Beam properties specification (PBAR and PBARC):

• PID = Property identification number.

• MID = Material ID for particular set of properties.

• A.* Iyv> f**> hi fc»i fc«» lyvw Aw«> !«**> R> ^>oi ^2o» ^oai Ao» /oil and /n = Cross-

sectional properties. PBAR may be used for circular beams using the TR or

ST curvature approximation.

• Cy, Cs, Dy, D,, Ey, Es, Fv, and F, = Stress recovery coefficients (four points

in the local yz-plane for the computation of element stresses).

Material specification (MAT):

• MID = Material identification number.

• E, <?, and v = Young's modulus, shear modulus, and Poisson's ratio, respec-

tively. Only two of these three properties need to be specified, the missing

property being computed from G = E/[2(l + v)\.

• p = Material density.

Global spring specification (CSPR):

• SPID = Spring identification number.

• K = Spring constant.

• G!DAP = Grid ID where spring is applied.

• DOF = Number of the global degree-of-freedom affected by spring.

Distributed mass specification (CONM):

• CMID = Distributed mass identification number.

• GTDAp = Grid ID where mass is applied.

• M s Mass.

• Jxxt JYYI Jzz, JxYt JYZ, and Jzx = Mass moments of inertia. These terms

are ignored in problems using Bernoulli-Euler beams.
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Single point constraint specification (SPC and SPCADD):

• SID = Single point constraint identification number.

• DOF = Global degrees-of-freedom to be constrained.

• GED, = ID's of constrained grids.

• GIDto and GIDj?/ = Low and high grid point identification numbers used in

conjunction with the THRU option.

• THRU = Special capability such that grid points whose identification number

satisfies GID^o < GID < GIDai are constrained.

• SAID = SPC combination identification number.

• SID,- = ID's of single point constraints to be combined.

Load specification (FORCE, MOMENT, GRAY, RFORCE, PLOAD, and

LOAD):

• LID = Load identification number.

• GIDAp = Grid ID where load is applied.

• A = Amplitude of point force (FORCE), point moment (MOMENT), gravi-

tational acceleration (GRAY), or rotational velocity (RFORCE). The rota-

tional velocity is specified in radians per unit time.

• Vi, V2, and V3 = Components of the vector, {GV}, used to define the orien-

tation of the load terms in the global frame.

• EID^p = Element ID where distributed load is applied.

• Type = Load type. The type specifies the direction and reference frame for

the distributed load. Distributed loads may be defined in the global frame

(Type = FX, FY, or FZ for loads in the direction of the global axes, X, Y,

or Z, respectively) or the local element frame (Type = FXE, FYE, or FZE

for loads in the direction of the local axes, x, y, or z, respectively).
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AA and AB = Amplitudes of distributed force per unit length at ends A and

B, respectively.

LCID = Load combination identification number.

S 5 Combined load scale factor.

St = Scale factor for individual loads to be combined.

= ID's of loads to be combined.
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APPENDIX 14.2

Curvature Approximations for Rectangular and Toroidal Beams

Objective:

Compare the approximations used to compute the curvature-dependent mo-

ments of area denned by:

for beams of rectangular and circular cross sections.

Definition of Approximations:

• Exact Integration (EX):

o Direct integration of 7^'s.

o Additional mass moments (J3in>, Jyy,, and Jyft) included in kinetic energy

formulations.

« Truncated Series Approximation (TR):

o Substitute: ^ = l- £ + (£)* - •• - .

o Ignore all series terms involving ykzl, (£ + /)> 3, within integrals.

o No additional beam properties must be denned beyond those required for

straight beams.

• "Straight" Approximation (ST):

o Substitute: sfc a 1.

o Ignores curvature effects in denning beam properties but maintains cou-

pling of displacement terms.

o Identical results for circular beam modeled with ST elements or an infinite

number of straight elements.
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Resulting Approximations for Moments of Area:

Curvature
Approximation /oo /ao /oa Ao /oi /u

Guide to Ensuing

EX

TR

ST

Tables:

/OO /20

A+ -ffi Im

A !„

/02 /10

'» -*

/„ o

/Ol

0

0

/ll
0

0

Results are nondimensionalized in terms of:

where t is the thickness of the rectangular beam (-t/2 < y < t/2, independent

of z-depth) or the cross-sectional diameter of the toroid (vV + *3 < t/2).

• Curvature-dependent moments axe nondimensionalized as follows:

yy

= S, and

where Z is the Winkler-Bach constant. Note that 70i = /u = Jyyy = Jyy* =

Jj,M = 0 for both rectangular and toroidal beams due to dual-symmetry about

the local y- and z-axes; no comparisons are required for these terms.

• The curvature approximation error is defined as:

= TR,ST.
])EX
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Table 14.2.1 Comparisons of C0o>

n

0.0

0.01

0.02

0.05

0.1

0.2

0.5

1.0

1.5

1.9

RECTANGULAR BEAM

(COO)BX

1.0

1.000008

1.000033

1.000208

1.000835

1.00335

1.02165

1.09861

1.2973

1.9282

(Cbo)r*

(«%)

1.0
(0.0)

1.000008
(0.0000)

1.000033
(0.0000)

1.000208
(0.0000)

1.000833
(0.0001)

1.00333
(0.0020)

1.02083
(0.0803)

1.08333
(1.39)

1.1875
(8.46)

1.3008
(32.5)

(Cbo)sr

(*%)

1.0
(0.0)

1.0
(0.0008)

1.0
(0.0033)

1.0
(0.0208)

1.0
(0.0834)

1.0
(0.334)

1.0
(2.12)

1.0
(8.98)

1.0
(22.9)

1.0
(48.1)

TOROID

(COO)BX

1.0

1.000006

1.000025

1.000156

1.000626

1.00251

1.01613

1.07180

1.2038

1.5241

(Cbo)rR

(«%)

1.0
(0.0)

1.000006
(0.0000)

1.000025
(0.0000)

1.000156
(0.0000)

1.000625
(0.0001)

1.00250
(0.0013)

1.01563
(0.0492)

1.06250
(0.868)

1.1406
(5.25)

1.2256
(19.6)

(Cbo)sr

(«%)

1.0
(0.0)

1.0
(0.0006)

1.0
(0.0025)

1.0
(0.0156)

1.0
(0.0625)

1.0
(0.251)

1.0
(1.59)

1.0
(6.70)

1.0
(16.9)

1.0
(34.4)
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Table 14.2.2 Comparisons of

1

0.0

0.01

0.02

0.05

0.1

0.2

0.5

1.0

1.5

1.9

RECTANGULAR

BEAM

(Cm)Bx

1.0

1.000013

1.000060

1.000375

1.00150

1.00604

1.03926

1.1833

1.5855

3.0854

(CM)TR/ST
(e%)

1.0
(0.0)

1.0
(0.0013)

1.0
(0.0060)

1.0
(0.0375)

1.0
(0.150)

1.0
(0.600)

1.0
(3.78)

1.0
(15.5)

1.0
(36.9)

1.0
(67.6)

TOROID

(CM)EX

1.0

1.000013

1.000050

1.000313

1.00125

1.00503

1.03253

1.1487

1.4491

2.3229

(CM)TR/ST

(«%)

1.0
(0.0)

1.0
(0.0013)

1.0
(0.0050)

1.0
(0.0313)

1.0
(0.125)

1.0
(0.501)

1.0
(3.15)

1.0
(12.9)

1.0
(31.0)

1.0
(57.0)
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Table 14.2.3 Comparisons of Cm.

•
0.0

0.01

0.02

0.05

0.1

0.2

0.5

1.0

1.5

1.9

RECTANGULAR

BEAM

(C0,)BX

1.0

1.000008

1.000033

1.000208

1.000835

1.00335

1.02165

1.09861

1.2973

1.9282

(ct;r
1.0

(0.0)

1.0
(0.0008)

1.0
(0.0033)

1.0
(0.0208)

1.0
(0.0834)

1.0
(0.334)

1.0
(2.12)

1.0
(8.98)

1.0
(22.9)

1.0
(48.1)

TOROID

«^
1.0

1.000004

1.000017

1.000104

1.000417

1.00167

1.01067

1.04615

1.1220

1.2578

(ct«r
1.0

(0.0)

1.0
(0.0004)

1.0
(0.0017)

1.0
(0.0104)

1.0
(0.0417)

1.0
(0.167)

1.0
(1.06)
1.07

(4.41)

1.0
(10.9)

1.0
(20.5)
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Table 14.2.4 Comparisons of C10.

ri

0.0

0.01

0.02

0.05

0.1

0.2

0.5

1.0

1.5

1.9

RECTANGULAR BEAM

(Cio)Bx

0.0

-0.010000

-0.020001

-0.050017

-0.10015

-0.20121

-0.51963

-1.1833

-2.3782

-5.8623

(Cio)r*

(•*)

0.0
(0.0)

-0.01
(0.0000)

-0.02
(0.0050)

-0.05
(0.0350)

-0.1
(0.150)

-0.2
(0.601)

-0.5
(3.78)

-1.0
(15.5)

-1.5
(36.9)

-1.9
(67.6)

(Cio)sr

(*%)

0.0
(0.0)

0.0
(100.)

0.0
(100.)

0.0
(100.)

0.0
(100.)

0.0
(100.)

0.0
(100.)

0.0
(100.)

0.0
(100.)

0.0
(100.)

TOROID

(Cio)sx

0.0

-0.010000

-0.020001

-0.050016

-0.10013

-0.20101

-.51626

-1.1487

-2.1736

-4.4135

(Cio)r*

(«%)

0.0
(0.0)

-0.01
(0.0000)

-0.02
(0.0050)

-0.05
(0.0313)

-0,1
(0.125)

-0.2
(0.501)

-0.5
(3.15)

1.0
(12.9)

-1.5
(31.0)

-1.9
(57.0)

(Clo)sT

(«%)
0.0

(0.0)

0.0
(100.)

0.0
(100.)

0.0
(100.)

0.0
(100.)

0.0
(100.)

0.0
(100.)

0.0
(100.)

0.0
(100.)

0.0
(100.)
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APPENDIX 14.3

Elemental Matrices for Bernoulli-Euler and Rayleigh Beams

Displacement Assumptions:

Displacement assumptions with respect to the elemental coordinate system:

v(x,z,t) = v0(x,t) -

where R = oo for straight elements.

Mapping with respect to beam axis:

where A and B subscripts refer to the end nodes of the element and h is the

elemental length.

Displacement variables in terms of elemental shape functions:

,«)« E tioj^

«bW(e),*)a E
PS+l

,«)a E u^Lytt)'*", and

P4+1

E
y=i

where » = v^-

Stiffness Matrix:

1) General Form: [K] = [[la,-]} ; «, j = 1, 2, 3, 4; [fc,-.-] = [ki,-}
T.

2) Stiffness matrices for BE and RA beams are identical.
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3) Differences in circular-beam approximations are dictated by the definitions of

the /.-v's:

Elem. Type Approx. '03

Straight

Circular

Circular

Circular

(St)

ST

TR

EX

A

A

A+'f

loo

lyy

Im

lyg

/30

/« o
/„ o

•*** 1RL

Io3 IlO

0

0

0

/Ol

0

0

0

III

4) Individual Stiffness Submatrix Terms and Applicability:

Submatrix Term BE/RA Applicability

™ ZEIoo {AT-} ( N - } d S

I-i -

1*33]

«33

St/ST/TR/EX

ST/TR/EX

ST/TR/EX

ST/TR/EX

EX

EX

St/ST/TR/EX

ST/TR/EX

TR/EX

EX

EX

EX

EX

St/ST/TR/EX

ST/TR/EX
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4) Individual Stiffness Submatrix Terms and Applicability (continued):

Submatrix Term BE/RA Applicability

d£ ST/TR/EX

' d£ ST/TR/EX

(*44) f-i%GIo{N'}{N'}Tdt St/ST/TR/EX

S ST/TR/EX

Centrifugal Softening Matrix:

1) General Form: [Ks\ = [fols]; *,:; = 1,2,3,4; (fcyi]s = fog-

2) The centrifugal softening matrix exists only for problems with rotation.

3) Individual Centrifugal Softening Submatrix Terms and Applicability:

Submatrix Term Applicability

BE/RA: St/ST/TR/EX

BE/RA: TR/EX

£ BE* TRf EX

-a [^n2 + R*n»] W (N}Td* RA: ST/TR/EX

RA:

BE/RA: St/ST/TR/EX

BE/RA: T.R/.EX

BE/RA: TR/EX

BE: TJZ/^X

RA: ST/TR/EX

RA:



-274-

3) Individual Centrifugal Softening Submatrix Terms and Applicability

(continued):

Submatrix Term Applicability

[*1

{N}{N}Td(

BE/RA: St/ST/TR/EX

BE/RA: TR/EX

RA: ST/TR/EX

RA:

BE/RA: TR/EX

BE: ITR/SX

RA: ST/TR/EX

RA:

BE/RA: St/ST/TR/EX

BE/RA:

BE: TR/EX

RA: St/ST/TR/EX

RA:

BE/RA: St/ST/TR/EX

BE/RA: r-R/tfJC

RA: St/ST/TR/EX

RA:



-275-

3) Individual Centrifugal Softening Submatrix Terms and Applicability

(continued):

Submatrix Term Applicability

1*24],

e33|s

«34|S

«44|s

( Vn- +

{L*}{N}Tdt

-f

BE/RA: TR/EX

BE: TR/EX

RA: St/ST/TR/EX

RA:

BE/RA: St/ST/TR/EX

RA: St/ST/TR/EX

RA:

BE/RA: TR/EX

RA: St/ST/TR/EX

RA:

BE: TR/EX

RA: St/ST/TR/EX

RA:
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Geometric Nonlinearity Matrix:

1) General Form: \KG\ = [[ki]]a]; t,j = 1,2,3,4; [*,-<]c = [fciylg.

2) Geometric nonlinearity matrices for BE and RA beams are identical.

3) The ST circular-beam approximation is used in deriving the nonlinear terms

for all circular beams.

4) The geometric nonlinearity matrix exists only for problems with a nonzero

load vector.

5) Individual Geometric Nonlinearity Submatrix Terms and Applicability:

Submatrix Term BE/RA Applicability

ST/TR/EX

ST/TR/EX

ST/TR/EX

ST/TR/EX

ST/TR/EX

St/ST/TR/EX

ST/TR/EX

• St/ST/TR/EX

St/ST/TR/EX

St/ST/TR/EX

' ST/TR/EX

• St/ST/TR/EX

St/ST/TR/EX

d£ ST/TR/EX

'44]G f-i jff '(f™+f") {N'} [N*}T d£ St/ST/TR/EX



-277-

Coriolis Matrix:

1) General Form: (C\ = [[*,-]]; t, j = 1,2,3,4; [cyij = - [c,y]
r.

2) The Coriolis matrix exists only for problems with rotation.

3) Individual Coriolis Submatrix Terms and Applicability:

Submatrix Term Applicability

[c13]

{L} {L}T

BE/RA: St/ST/TR/EX

BE/RA: rJ2/f?X

BE/RA: St/ST/TR/EX

BE/RA: r-R/tfX

BE/RA: TR/EX

BE: TR/EX

RA: ST /TR/EX

RA:

BE/RA:

BE: TR/EX

RA: ST/TR/EX

RA:

. BE/RA: TR/EX

BE/RA: St/ST/TR/EX

BE/RA: TR/EX

BE/RA:

BE:

RA: St/ST/TR/EX

RA:
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3) Individual Coriolis Submatrix Terms and Applicability

(continued):

Submatrix Term Applicability

BE/RA:

BE:

f-i ~ (2./w ~ J») n» {•£"} W^ *t RA; St/ST/TR/EX

RA:

BE/RA: TR/EX

BE: TR/EX

f-i - (2J,, -Jm)fl,{L'} {JV}3 ̂  RA: St/ST/TR/EX

RA:

Mass Matrix:

1) General Form: [Ml = [[>«<,•]]; t, j - l, 2,3,4; [my<] = [m<y]r.

2) Individual Mass Submatrix Terms and Applicability:

Submatrix Term Applicability

BE/RA: St/ST/TR/EX

BE/RA: TR/EX

d£ BE: TR/EX

RA: ST/TR/EX

RA:
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2) Individual Mass Submatrix Terms and Applicability (continued):

Submatrix Term Applicability

ft -fy {N} {L*}T

' T

ft %"*{!>} {L

[m33]

ft % Jo {*}{*}

BE/RA: TR/EX

BE: TR/EX

RA: ST/TR/EX

RA: EX

RA: EX

BE/RA: St/ST/TR/EX

BE: TR/EX

RA: St/ST/TR/EX

RA: £X

RA: £*

BE/RA: St/ST/TR/EX

RA: St/ST/TR/EX

RA:

BE/RA:

BE/RA: St/ST/TR/EX

BE/RA:

Load Vector

1) General Form: {£} = {{»•<}}; t = 1,2,3,4.

2) Contributions to the elemental load vectors are from:

a) distributed loads (f's),

b) gravitational acceleration (g's), and

c) centrifugal acceleration (fl's).
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3) Individual Load Subvector Terms and Applicability:

Subvector Term Applicability

s- BE/RA: St/ST/TR/EX

\ 1
(flyj/c + n,«c) n*) + /» {jv} d$I \

c- BE/RA: TR/EX

BE/RA:

BE:

RA: ST/TR/EX

RA:

BE/RA: St/ST/TR/EX

BE/RA: TR/EX

BE/RA:

BE:

RA: St/ST/TR/EX

RA:
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3) Individual Load Sub vector Terms and Applicability (continued):

Subvector Term Applicability

c- BE/RA: St/ST/TR/EX

n,)+/,]{L}d£

BE/RA: TR/EX

RA: St/ST/TR/EX

BE/RA: TR/EX

BE:

RA: St/ST/TR/EX

RA:
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APPENPIX 14.4

Elemental Matrices for Timoshenko Beams

Displacement Assumptions:

Displacement assumptions with respect to the elemental coordinate system:

«(*, y. *> 0 = «o (*. 0 + y«y (*, t) + zu, (i, t) ,

v(x,z,t) = vo(x,t)-z4i(x,t),

w(x,y,t) = wo(x,t) + y<f>i(x,t).

Mapping with respect to beam axis:

h = IB —

where A and B subscripts refer to the end nodes of the element and h is the

elemental length.

Displacement variables in terms of elemental shape functions:

J=l

Ps+1

, t )= E ^o,y^(

P4 + 1

,*)« E ^.y^

P5+1

,«)» E «.tytfy
y=i

where * = V^I.

Stiffness Matrix:

1) General Form: [K} = [[Jb,-,-]| ; i,y = 1,2,3,4,5,6; [fcyi] = [*%,-]r
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2) Differences in circular-beam approximations are dictated by the definitions

of the 7,-y's:

Elem. Type Approx. '00 '02 '10 '01

Straight

Circular

Circular

Circular

(St)

ST

TR

EX

A

A

A+&

loo

lyv

lyy

Ivy

/30

/«

/„

/„

/03

0

0

-fr
/to

0

0

0

/Ol

0

0

0

In

3) Individual Stiffness Submatrix Terms and Applicability:

Submatrix Term

[A

[*»] ft -iGk.!? {N} {N}

[ku

[fcse

TI Applicability

St/ST/TR/EX

ST/TR/EX

ST/TR/EX

ST/TR/EX

EX

ST/TR/EX

TR/EX

EX

St/ST/TR/EX

ST/TR/EX

EX

St/ST/TR/EX

TR/EX

EX

St/ST/TR/EX

St/ST/TR/EX
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3) Individual Stiffness Submatrix Terms and Applicability (continued):

Submatrix Term TI Applicability

f£ St/ST/TR/EX

l ST/TR/EX

[*4« 1 f-i -Efy {If} {X*}T *t EX

I*4e) f-f -E*£ {N} {N' f d£ ST/TR/EX

f-i G%{N'} {N}T d£ ST/TR/EX

[kss] f-t%EIM{N'}{N'}Tdt St/ST/TR/EX

d$ St/ST/TR/EX

d£ EX

1*66) £{ |̂ /03 {N*} (N*}r d£ St/ST/TR/EX

~d£ St/ST/TR/EX

' ST/TR/EX

Centrifugal Softening Matrix:

1) General Form: [K3] = [[fc*y)5]; t,j = 1,2,3,4,5,6; (*yi]s = (*y£.

2) The centrifugal softening matrix exists only for problems with rotation.

3) Individual Centrifugal Softening Submatrix Terms and Applicability:

Submatrix Term TI Applicability

d$ St/ST/TR/EX

[fciaJs S-i 5"tn*ny {N} {N}T d$ St/ST/TR/EX

[kizls f-i %™n*n* {N} {N}T d£ St/ST/TR/EX

[kuls S-i 2^n«fl* {^} WT <*$ TR/EX

[kisls f-i -a^1 (ny + n») (N} {N}Tdt TR/EX

l*22]s /-,1 ~Jm (n» + n») (N} iNf d* St/ST/TR/EX
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3) Individual Centrifugal Softening Submatrix Terms and Applicability

(continued):

Submatrix Term TI Applicability

Ms

Mis

Ms

M

/-i1 -1

(N}{N}TdS

/-i1 -2 ( Jbnj + JM) {ff} {N}

St/ST/TR/EX

TR/EX

TR/EX

St/ST/TR/EX

TR/EX

TR/EX

St/ST/TR/EX

EX

St/ST/TR/EX

EX

St/ST/TR/EX

EX

St/ST/TR/EX

EX

St/ST/TR/EX

EX
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3) Individual Centrifugal Softening Submatrix Terms and Applicability

(continued):

Submatrix Term TI Applicability

/-i1 - £ [ JoO? + Jwnl] W WT <*t St/ST/TR/EX

,. , n? + fy-nl] EX

{N}{N}Tdt

Geometric Nonlinearity Matrix:

1) General Form: (KG\ = [[*,yJ0]; t ,y= 1,2,3,4,5,6; [fcy,-jG = (feyg.

2) The ST circular-beam approximation is used in deriving the nonlinear terms

for all circular beams.
3) The geometric nonlinearity matrix exists only for problems with a nonzero

load vector.
4) Individual Geometric Nonlinearity Submatrix Terms and Applicability:

Submatrix Term TI Applicability

ST/TR/EX

{ ST/TR/EX

ST/TR/EX

ST/TR/EX

• ST/TR/EX

i£ St/ST/TR/EX

T dt St/ST/TR/EX

t St/ST/TR/EX

it ST/TR/EX

dt St/ST/TR/EX

{N*}{N''}T dt St/ST/TR/EX

St/ST/TR/EX
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4) Individual Geometric Nonlinearity Submatrix Terms and Applicability:

(continued):

Submatrix Term TI Applicability
r^afiJ-i ft

J
St/ST/TR/EX

ST/TR/EX

ST/TR/EX

Coriolis Matrix;

1) General Form: 1C] -(Ml; «,y, = 1,2,3,4,5,6; [cyi] = - [cjy]
r.

3) The Coriolis matrix exists only for problems with rotation.

3) Individual Coriolis Submatrix Terms and Applicability:

Submatrix Term TI Applicability

M

1*24]

1*45]

*46

{AT} {N}

St/ST/TR/EX

St/ST/TR/EX

TR/EX

St/ST/TR/EX

TR/EX

TR/EX

TR/EX

St/ST/TR/EX

EX

St/ST/TR/EX

TR/EX

EX

(N}{N}Tdt
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3) Individual Coriolis Submatrix Terms and Applicability:

(continued):

Submatrix Term TI Applicability

[C66J /i1 5-/on« {N} {N}T # St/ST/TR/EX

~d£ TR/EX

? EX

Mass Matrix:

1) General Form: [M\ = {[**,•]]; t,y-1,2,3,4,5,6; [m,-,-] = [m,-y]
r.

2) Individual Mass Submatrix Terms and Applicability:

Submatrix Term TI Applicability

St/ST/TR/EX

TR/EX

St/ST/TR/EX

St/ST/TR/EX

TR/EX

St/ST/TR/EX

d$ EX

St/ST/TR/EX

EX

EX

St/ST/TR/EX

EX

Load Vector:

1) General Form: {R} = {{rj}; t = i, 2,3,4,5,6.
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2) Contributions to the elemental load vectors are from:

a) distributed loads (f's),

b) gravitational acceleration (g's), and

c) centrifugal acceleration (fl's).

3) Individual Load Subvector Terms and Applicability:

Subvector Term TI Applicability

/-i1 5 [™(fa + (nw + n?) *c- St/ST/TR/EX

(nyyc + n,*c) n.) + /,] {N} <%

f-i -J^R-ft'tov (*} dt TR/EX

/** t K?v + («2 + «x) Vo- St/ST/TR/EX

(fi,zc + n,ic) ny) +

f [m (ff, + (n» + n») Zc- St/ST/TR/EX

-a ^Ln»n- {^> d* TR/EX

f ('.. - Jv») ny«« {^> # St/ST/TR/EX

St/ST/TR/EX

TR/EX

/-I1 -I ^n» + %*°. n- {^} ̂  EX
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3) Individual Load Subvector Terms and Applicability (continued):

Subvector Term TI Applicability

St/ST/TR/EX

f-i - 1 Vn« + Vn» n» {^> # EX
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APPENDIX 14.5

Global Matrix Terms for Distributed Masses

Formulation:

1) The degrees-of-freedom are the three displacements, £/i, Uy, and (73, and the

three rotations, Uit U&, and C/a, about the global axes, X, Y, and Z, respec-

tively, for the grid point coinciding with the center of mass. The row and

column numbers of the matrices and vector below relate to these numbered
degrees-of-freedom.

2) Individual terms flagged by a t are ignored in problems using Bernoulli-Euler

beams.

Centrifugal Softening Matrix: [ Ks } = ki,s ; », 3 = 1, 2, 3, 4, 5, 6; Jfcjys = *,-< s •

MttxflY

= Mflzflx

= - (Jxx + JYY) fly - (Jzz + Jxx) fl| -

= - (JrY + Jzz) n| - (Jxx + JYY) &x ~

= - (Jzz + Jxx) n£ - (JYY + Jzz) n?- -

= (Jxx + JYY) flxflr - JXY&Z + Jrz^zflx +

= (JYY + Jzz) fly flz - JYZ^X + JZX^X^Y +

= (Jzz + Jxx) n*nx -

Coriolis Damping Matrix: [C] = c«,-; t, j = 1, 2, 3, 4, 5, 6; c,-,- = -c/< .

= -2Mflx

= +2M(1Y

5 = + (Jxx + JYY-

6 = + (JYY + Jzz - 2Jxx) «x -

= - (Jzz + ̂ cx ~ 2^r) fly + 3 JXY fix
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Mass Matrix: [Af ] = mi,-; i, j = 1, 2, 3, 4, 5, 6; m,-y = my,-.

mu = M

= M

(JYY + Jzz)

= (Jzz + Jxx)

' mee = (Jxx + JYY)

• m46 = —

' mse —

= — Jzx

Load Vector: {R} = n; i = 1,2,3,4,5,6.

ri = M [ax + (n?- + n|) (*c - xn] - nxnY (Yc - rn) - nznx (zc - zn)}
^ = M [gy + (0| -(- n^) (Fc - Kn) - nynz (^c - Zn) - flxClY (Xc -

r3 = M [gz + (&x + ty) (Zc - Zn) - flzflx (Xc - Xa) - flYflz (Yc -

^4 = (Jzz - Jrr) flYnz + Jrz (fly- - n|)

^r* = (Jxx - Jzz) tozftx + Jzx (0| - n^) +

tra = (Jy-Y - Jxx) VX^Y + JXY (n& - n?.) +
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