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Abstract

In a previous paper [i] a time domain transformation useful

for extrapolating three dimensional near zone finite difference

time domain (FDTD) results to the far zone was presented. In

this paper the corresponding two dimensional transform is

outlined. While the three dimensional transformation produced a

physically observable far zone time domain field, this is not

convenient to do directly in two dimensions, since a convolution

would be required. However, a representative two dimensional far

zone time domain result can be obtained directly. This result

can then be transformed to the frequency domain using a Fast

Fourier Transform, corrected with a simple multiplicative factor,

and used, for example, to calculate the complex wideband

scattering width of a target. If an actual time domain far zone

result is required it can be obtained by inverse Fourier

transform of the final frequency domain result.
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Introduction

A previous paper Ill described a method for transforming

near zone Finite Difference Time Domain (FDTD) results directly

to the far zone without first transforming to the frequency

domain. This far zone field could then be used to compute the

scattering cross section of an illuminated target or an antenna

radiation pattern over the entire frequency band of the FDTD

calculations. A similar result was published in [2]. In this

paper the corresponding two dimensional transform is presented,

and validated by comparison with calculated results for a

perfectly conducting circular cylinder.

Approach

In [i] the frequency domain far zone transformation

equations were Fourier transformed to the time domain and used in

that form to derive an approach to transform near zone FDTD

fields to the far zone directly in the time domain. Our approach

here will be to present the fundamental frequency domain

equations for both two and three dimensions, and by comparing

them obtain the factor needed to convert the three dimensional

far zone transform to function in two dimensions.

We again surround the scatterer with a closed surface S',

and consider that equivalent tangential electric and magnetic

time harmonic surface currents may exist on this surface.

Referring to [3], we obtain the vector potentials for the three

dimensional case as



I

F -
e -j.%z

4_r f _" eJk_'" dS!
S _

(2)

with j=-_i, k = _ (the wave number), the unit vector

to the far zone field point,
--/
r the vector to the source point

of integration, r the distance to the far zone field point, and

S' the closed surface surrounding the scatterer.

The far zone frequency domain electric fields of the

scatterer are then obtained from

E 8 = -j_ A 8 - j_ F_
(3)

E, : - j_ A_ + j_ F 8
(4)

One can then easily convert to radar cross section (RCS), if

desired, by applying

S

lira (4_r 2 I E3DI 2

a30 = r_ jEll2 )

(5)

where
s

E30 is either E 0 or E_ of (2) or (3), and E i is the

incident plane wave electric field.



In [i] the equations corresponding to (1,2) were easily
transformed to the time domain since the exponential phase term

inside the integrals corresponds to a time shift relative to an

arbitrary time reference point. Equations corresponding to (2,3)

were also readily transformed to the time domain since the j_

factor in these equations corresponds to a time derivative. Thus

the resulting time domain fields can be obtained conveniently

directly in the time domain, as shown in [i].

Now consider the corresponding equations in two dimensions.

The vector potentials are given by

-jkp

= e ! Js eJkP'C°s(_') ds! (6)
_8jk_p

-jkp

-- e I eJ kp'c°s(O-_')
F - Ms ds/ (7)

where p' and _' are the coordinates of the source point of

integration, and p and _ the coordinates of the far zone field

point. The corresponding far zone radiated fields are obtained

from

E z = -j_ A z + j_ F_
(B)

(9)
E_ = - j_ _ A_ - j_ F z

Also, the two dimensional scattering width is defined as

s 2
lira I E2DI

°2D = p--_o (2n'p_)
(i0)



where
$

E2D is either E z or E¢ of (8,9).

The approach applied in [i] cannot be conveniently applied

in the two dimensional case due to the factor of I/_

(actually I/j_-_-_ ) in (6,7). In order to evaluate the

Fourier transform of (6,7) directly in the time domain a

convolution operation would be required. To avoid this

complication our approach will be to modify the results in [i] to

provide representative two dimensional time domain far zone

fields which can then be converted to the actual frequency domain

fields by a multiplication in the frequency domain rather than

the time domain convolution. Should the actual time domain far

zone fields be required, they can then be obtained by an

additional Fourier transform of these results back to the time

domain.

In order to convert our previous three dimensional results

to two dimensions, we compare the two sets of equations. First,

comparing (3,4) with (8,9), since the spherical unit @ vector is

equal to the negative of the cylindrical unit z vector, (3,4) and

(8,9) correspond exactly, and no adjustment between two and three

dimensional transforms is needed.

Next, comparing (1,2) with (6,7) the r 2 and p factors are

compensated by the definitions in (5) and (I0) respectively, as

expected, and no compensation is needed here either.

Finally, consider equations (1,2) vs (6,7). The additional

dimension of integration in (1,2) is compensated for by defining

a scattering width per unit length (in z) in (i0). This



corresponds in (1,2) to having no z variation and integrating the

z' variable over a unit distance. The exponents provide

equivalent phase (time) delays and need not be compensated for.

Considering the remaining factors, it is easily determined that

in the frequency domain, the relationship between far zone
electric fields obtained from a three dimensional far zone

transformation with no z variation and the two dimensional far

zone fields is

!
s | 2_C s

E2D = _ _ E3D

(Ii)

where c = i/_

With these results the time domain far zone transform given

in [i] can be easily adapted to two dimensions as follows:

i) Consider only the field components and corresponding surface

currents excited in the two dimensional problem. For example,

for a TE z computation only Hz, Ex, Ey, and the corresponding

surface currents are included.

2) Calculate the far zone time domain fields using the method

described in [i], but for a two dimensional integration surface

which encloses the scatterer. Let 6z, the z coordinate unit cell

dimension used in [I], equal 1 (meter). (This field is not a

physically observable field. It represents the radiation from a

unit length of the scatterer in the time domain.)

3) Fourier transform the result of step 2) and multiply the

result by the factor in (ii). This result is the frequency

domain two dimensional far zone field, which can then be used in



_i0) to calculate the scattering width as a function of

frequency.

4) If the actual time domain two dimensional far zone field is

desired, it can be obtained by an additional Fourier

transformation of the result obtained in 3) back to the time
domain.

Demonstration

In order to demonstrate the capabilities of the above

approach a pair (TE z and TMz) of FDTD codes were developed from

the three dimensional FDTD code described in [i]. These codes

utilize second order Mur absorbing boundary conditions acting on

the electric fields. The test geometry was a circular perfectly

conducting cylinder of radius 0.25 meters.

Both TE and TM polarization was considered, and two sets of

calculations were made for each polarization. For the first set

the FDTD cells were 1 cm squares, with a problem space 200x200

cells. For the second set the cells were 0.5 cm squares in a

500x500 cell problem space. On a 25 MHz 486 PC (approximately 1

MFLOP) each of the first set required about 20 minutes to

compute, with each of the second set requiring a few minutes less

than 2 hours.

For all cases the incident plane wave traveled in the x

direction, backscatter was calculated, and 2048 time steps were

evaluated. In order to clearly show the response, not all time

steps are included in the Figures.

Figure i shows the relative far zone fields computed

directly in the time domain as outlined above for the TM

polarization. The small ripple at approximately 15 ns on Figure

1 is due to reflections from the Mur outer boundary. Figures 2

and 3 show comparison with the exact solution for the scattering



width amplitude and phase. The upper frequency limit of 3.0 GHz

corresponds to i0 cells per wavelength. The agreement is quite

good.

A similar set of data for TE polarization is shown in

Figures 4-6. The time domain far zone results in Figure 4 has

ripples in the 6-8 ns range due to the staircasing of the round

cylinder with square FDTD cells. The small negative pulse at I0

ns is the creeping wave which has traveled around the cylinder.

Again, there is a small ripple at 14 ns due to the Mur boundary

reflection. This is the difficult polarization for approximating

a smooth surface with a "staircased" FDTD code, yet the agreement

in Figures 5 and 6 is reasonably good, reproducing the first 6

1/2 ripples in the scattering width.

The above calculations are repeated in Figures 7-13 with a

greater expenditure of computer resources. For these results the

cell size of 0.5 cm changes the 3.0 GHz upper frequency limit of

the plots to correspond to 20 cells per wavelength. The

improvement in the agreement with the exact solution is clear,

indicating the accuracy that can be obtained from this approach.

Note especially Figure 12, which shows on a expanded dB scale

agreement with the exact solution within a fraction of a dB for

the first 9 lobes of the response.

Conclusions

A simple approach to calculating a wide bandwidth time

domain transformation of near zone FDTD fields to the far zone

has been presented. It is based on simple modifications to the

previous three dimensional method presented in [i]. Results

obtained using this transformation show good agreement with the

exact solution for a circular cylinder for both polarizations.
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Fiqure Titles

Fig i. Far Zone relative electric field vs time for TM z

polarized incident Gaussian pulsed plane wave

illuminating a perfectly conducting circular cylinder.

FDTD cells are i cm squares.

Fig 2. Scattering width amplitude obtained from far zone time

domain results and compared with exact solution. FDTD

cells are 1 cm squares.

Fig 3. Scattering width phase obtained from far zone time

domain results and compared with exact solution. FDTD

cells are 1 cm squares.

Fig 4. Far Zone relative electric field vs time for TE z

polarized incident Gaussian pulsed plane wave

illuminating a perfectly conducting circular cylinder.

FDTD cells are 1 cm squares.

Fig 5. Scattering width amplitude obtained from far zone time

domain results and compared with exact solution. FDTD

cells are 1 cm squares.

Fig 6. Scattering width phase obtained from far zone time

domain results and compared with exact solution. FDTD

cells are 1 cm squares.

Fig 7. Far Zone relative electric field vs time for TM z

polarized incident Gaussian pulsed plane wave

illuminating a perfectly conducting circular cylinder.

FDTD cells are 0.5 cm squares.

Fig 8. Scattering width amplitude obtained from far zone time

domain results and compared with exact solution. FDTD

cells are 0.5 cm squares.



Fig 9. Scattering width phase obtained from far zone time

domain results and compared with exact solution. FDTD

cells are 0.5 cm squares.

Fig i0. Far Zone relative electric field vs time for TEz

polarized incident Gaussian pulsed plane wave

illuminating a perfectly conducting circular cylinder.

FDTD cells are 0.5 cm squares.

Fig Ii. Scattering width amplitude obtained from far zone time

domain results and compared with exact solution. FDTD

cells are 0.5 cm squares.

Fig 12. Scattering width amplitude obtained from far zone time

domain results and compared with exact solution on an

expanded dB scale. FDTD cells are 0.5 cm squares.

Fig 13. Scattering width phase obtained from far zone time

domain results and compared with exact solution. FDTD

cells are 0.5 cm squares.
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