72195

e- .

NASA Contractor Report 4430

Computer Code for Preliminary Sizing Analysis of Axial-Flow Turbines

Arthur J. Glassman

GRANT NAG3-1165 FEBRUARY 1992

NASA

(NASA-CR-4430) COMPUTER CODE FOR N92-20196 PRELIMINARY SIZING ANALYSIS OF AXIAL-FLOW TURBINES Final Report (Toledo Univ.) 17 p CSCL 21E Unclas H1/07 0072195

NASA Contractor Report 4430

Computer Code for Preliminary Sizing Analysis of Axial-Flow Turbines

· · · · ·

Arthur J. Glassman University of Toledo Toledo, Ohio

Prepared for Lewis Research Center under Grant NAG3-1165

National Aeronautics and Space Administration

Office of Management

Scientific and Technical Information Program

Summary

This report presents a computer program for the preliminary sizing analysis of axial-flow turbines. The computations are based on mean-diameter flow properties and a stage-average velocity diagram. Given as input to the program are power or pressure ratio, mass flow rate, inlet temperature and pressure, rotative speed, inlet and exit diameters (either hub, mean, or tip), exit radius ratio or stator exit angle, turbine loss coefficient, and gas properties. Computations are then performed for any specified number of stages and for any of three types of velocity diagrams (symmetrical, zero exit swirl, or impulse) or for any specified stage swirl split. Exit turning vanes can be included in the design. The program output includes inlet and exit annulus dimensions, exit temperature and pressure, total and static efficiencies, flow angles, and last-stage absolute and relative Mach numbers.

The analysis and code presented herein are modifications of those in reference 1. New features added to improve modeling rigor and extend code applicability include a generalized velocity diagram, a more flexible meanline path, a reheat model, a radial component of velocity, and a computation of free-vortex hub and tip velocity diagrams. Also, a loss-coefficient calibration was performed to provide recommended values for current technology airbreathing engine turbines.

The analysis method and a complete description of input and output are presented in this report. Sample cases are included to illustrate the use of the program.

Introduction

The preliminary analysis of a power or propulsion system involves many repetitive calculations to determine system performance, component performance, and component geometries over a range of conditions. This must be done in order to eventually determine the best system and operating conditions. For this type of screening analysis, complete design accuracy and detail for the components are not necessary. Approximate and rapid generalized procedures, rather than complex and time-consuming detailed design procedures, are sufficient to yield the desired component overall geometry and performance characteristics.

A computer program for the preliminary sizing analysis of axial-flow turbines was presented in reference 1. This meanline analysis uses the efficiency computation procedure of reference 2, which is based on a stage-average velocity diagram, and incorporates assumptions consistent with turbine technology from about 1970, when the program was developed. With turbines for some current and future propulsion systems exhibiting higher pressure ratios and more highly inclined flowpaths than in the past, it became apparent that modifications were required to improve modeling rigor and extend code applicability. New features added to accomplish this include a generalized velocity diagram, a more flexible meanline flowpath, a radial component of velocity, and the computation of free-vortex hub and tip velocity diagrams. Also, a losscoefficient calibration was performed to provide recommended values for current technology airbreathing engine turbines.

The analysis method and a complete description of input and output are presented in this report. Sample cases are included to illustrate use of the program. Because reference 1 is no longer readily available, this report describes the entire analysis, not only the modifications.

Symbols

- A stage loss parameter
- A_{an} annulus area, m²; ft²
- C blade loss parameter
- C_A dimensional constant, 2π rad/rev; 60 sec/min
- C_B dimensional constant, 1; 550 ft · lb/sec · hp
- c_x axial chord, m; ft
- c_p heat capacity, joules/kg·K; Btu/lb·°R
- D diameter, m; ft
- *E* squared ratio of stage-exit axial velocity to stageaverage axial velocity
- F blade loss weighting factor
- g dimensional constant, 1; 32.2 ft \cdot lbm/sec² \cdot lbf
- Δh specific work, J/kg; Btu/lb
- *i* stage number, $i = 1, 2, \ldots, n$
- J dimensional constant, 1; 778 ft \cdot lb/Btu
- j stage number for change in meanline slope

- *K* turbine loss coefficient
- k coefficients for axial chord correlation
- M Mach number

N rotative speed, rad/sec; rpm

n number of stages

- *P* shaft power, W; hp
- *p* pressure, N/m^2 ; lb/ft^2
- R gas constant, J/kg K; ft · lbf/lbm °R
- Re Reynolds number
- r radius, m; ft
- T temperature, K; °R
- U blade speed, m/sec; ft/sec
- V absolute gas velocity, m/sec; ft/sec
- W relative gas velocity, m/sec; ft/sec
- w mass flow rate, kg/sec; lb/sec
- α absolute-flow angle from axial direction, deg
- β relative-flow angle from axial direction, deg
- γ specific heat ratio
- η static efficiency
- η' total efficiency
- θ meanline angle from horizontal, deg
- μ viscosity, N · sec/m²; lb/sec · ft
- ρ density, kg/m³; lb/ft³
- ψ work factor

Subscripts:

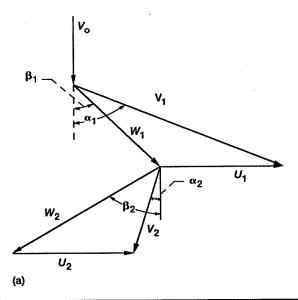
2

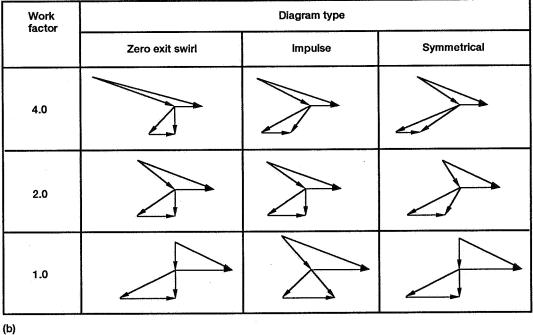
a	first stage
abs	absolute
cr	critical
ev	exit vane
ex	turbine exit
h	hub
i	stage <i>i</i> , $i = 1, 2,, n$
id	ideal
in	turbine inlet
is	value at turbine inlet entropy
m	mean section
тe	meridional component
n	last stage
rel	relative
ro	rotor
st	stator
t	tip
и	tangential component
x	axial component

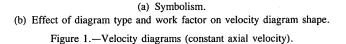
- 0 stator inlet 1 stator exit 2 rotor exit

Superscripts:

- turbine overall
- absolute total condition
- " relative total condition


Method of Analysis


The method is based upon an analysis of the flow at the turbine mean diameter. Radial gradients of the flow properties are not included in the flow and efficiency analyses. However, free-vortex hub and tip velocity-diagram parameters are computed in order to indicate the possible severity of flow conditions at the endwalls. The specific heat ratio is assumed constant throughout the turbine. For any given turbine, all stages, except the first, are specified to have the same shape velocity diagram. The first stage differs only in that the inlet flow can be at any specified flow angle. The velocity diagram shape depends upon the stage work factor value and the specified velocity diagram. Three specific types of velocity diagram (symmetrical, zero exit swirl, and impulse) or a diagram with a specified swirl split (i.e., distribution of swirl velocity between rotor inlet and rotor exit) can be used. Figure 1 illustrates the velocity diagram symbolism and presents the three specific types of velocity diagram for three values of stage work factor. The fundamentals of velocity diagrams and of the flow and loss modeling used herein can be found in reference 3.


Various input options dictate the exact nature of the calculation procedure. There is, however, one basic procedure that is direct and without iteration. This basic procedure will be presented, and then the alternative procedures required for the various input options will be discussed.

Basic Calculation Procedure

The required inputs for the basic procedure are shaft power P, mass flow rate w, inlet total temperature T'_{in} , inlet total pressure p'_{in} , rotative speed N, inlet mean diameter $D_{m,in}$, exit mean diameter $D_{m,ex}$, stator exit angle α_1 , gas constant R, specific heat ratio γ , viscosity μ , loss coefficient K, and the squared ratio of stage-exit to stage-average (i.e., $(V_{me,0} + V_{me,1} + V_{me,2})/3$) meridional velocities E. Also specified for each calculation are the number of stages n and the type of velocity diagram. For a multistage turbine, the input variable specified as inlet diameter is used to calculate first rotor blade speed and annulus dimensions at the first rotor exit. Therefore, it is truly an inlet diameter only if the hub and tip diameters

are assumed constant across the first stage. For a one-stage turbine, the specified exit diameter is used for the calculations, and the inlet diameter is of no significance.

The first- and last-stage blade speeds are

$$U_a = \frac{\pi N D_{m,in}}{C_A} \tag{1}$$

$$U_n = \frac{\pi N D_{m,ex}}{C_A} \tag{2}$$

For more than two stages, there are three options for stage blade-speed variation (i.e., mean flowpath):

(1) Linear variation between first and last stages

$$U_{i} = \frac{U_{n} - U_{a}}{n - 1} (i - 1) + U_{a}$$
(3a)

(2) Constant from first stage to j^{th} stage (i = 1 to j)

$$U_i = U_a \tag{3b-1}$$

and then linear to last stage (i = j to n)

$$U_{i} = \frac{U_{n} - U_{a}}{n - j} (i - j) + U_{a}$$
(3b-2)

(3) Linear from first stage to j^{th} stage (i = 1 to j)

$$U_i = \frac{U_n - U_a}{j - 1} (i - 1) + U_a$$
(3c-1)

and then constant to last stage (i = j to n)

$$U_i = U_n \tag{3c-2}$$

Turbine specific work is

$$\overline{\Delta h'} = \frac{C_B}{J} \frac{P}{w} \tag{4}$$

and is equal to the sum of the specific work of the stages:

$$\overline{\Delta h'} = \sum_{i=1}^{n} \Delta h_i' \tag{5}$$

Expressing stage specific work in terms of stage work factor as

$$\Delta h_i' = \frac{U_i^2}{gJ}\psi \tag{6}$$

and substituting equation (6) into equation (5) yield

$$\overline{\Delta h'} = \sum_{i=1}^{n} \frac{U_i^2}{gJ} \psi \tag{7}$$

Since the velocity diagram shape is specified to be the same for all stages, the stage work factor is the same for all stages and is computed by rearranging equation (7) as

$$\psi = \frac{g\overline{J\Delta h'}}{\sum_{i=1}^{n} U_i^2}$$
(8)

The value of ψ is the primary factor determining turbine efficiency.

The method used for computing turbine efficiency is basically similar to that presented in reference 2, but has the following

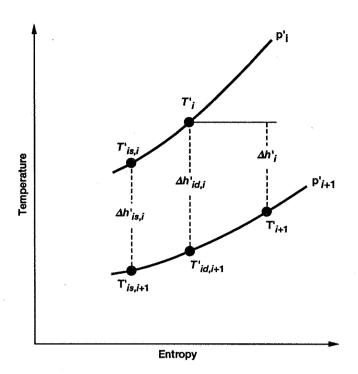


Figure 2.-Temperature-entropy diagram for ith stage.

additional features: (1) the turbines considered in this report are not restricted to a constant mean-section diameter, (2) exit vanes to provide axial flow leaving the turbine can be included in the design, (3) the velocity diagrams also can be specified as symmetrical or by an input swirl split, and (4) the effect of turbine reheat is included.

Referring to figure 2, turbine overall total efficiency is defined as

$$\overline{\eta}' = \frac{\overline{\Delta h'}}{\overline{\Delta h'_{id}}} = \frac{\overline{\Delta h'}}{\sum_{1}^{n} \Delta h'_{is,i}} = \frac{\overline{\Delta h'}}{\sum_{1}^{n} \left(\frac{T'_{is,i}}{T'_{i}}\right) \Delta h'_{id,i}}$$
(9a)

or alternately expressed as

$$\overline{\eta}' = \frac{1}{\sum_{i=1}^{n} \left(\frac{T'_{is,i}}{T'_{i}}\right) \left(\frac{\Delta h'_{id,i}}{\Delta h'_{i}}\right) \left(\frac{\Delta h_{i}}{\overline{\Delta h}'}\right)}$$
(9b)

Combining equations (6) and (7) yields

$$\frac{\Delta h_i'}{\Delta h'} = \frac{U_i^2}{\sum_{i=1}^n U_i^2} \tag{10}$$

and, by definition

$$\eta_i' = \frac{\Delta h_i'}{\Delta h_{id,i}'} \tag{11}$$

Substituting equations (10) and (11) into equation (9b) yields

$$\overline{\eta}' = \frac{1}{\sum_{i=1}^{n} \left(\frac{T'_{is,i}}{T'_{i}}\right) \left(\frac{1}{\eta'_{i}}\right) \left(\frac{U_{i}^{2}}{\sum_{i=1}^{n} U_{i}^{2}}\right)}$$
(12)

The terms T'_i and $T'_{is,i}$, using equation (6), can be written as

$$T'_{i} = T_{i-1} - \frac{\Delta h'_{i-1}}{c_{p}} = T_{i-1} - \frac{U^{2}_{i-1}}{gJc_{p}}\psi$$
(13)

$$T'_{is,i} = T'_{is,i-1} - \frac{\Delta h'_{is,i-1}}{c_p} = T'_{is,i-1} - \left(\frac{T'_{is,i-1}}{T'_{i-1}}\right) \left(\frac{1}{\eta'_{i-1}}\right) \frac{U^2_{i-1}}{gJc_p}\psi$$
(14)

where

$$c_p = \frac{\gamma}{\gamma - 1} \frac{R}{J} \tag{15}$$

Since both T'_i and $T'_{i_{sp}}$ are equal to T'_{in} at the turbine inlet (i.e., at i = 1), equations (13) and (14) can be evaluated by recursion once the η'_i are known.

The stage efficiency computation method is explained fully in reference 2, and only the key equations are presented here. Stage total efficiency can be expressed as

$$\eta' = \frac{1}{1 + \frac{A}{2}\psi} \tag{16}$$

where the stage loss parameter A is

$$A = \frac{K \text{Re}^{-0.2}}{\cot \alpha_1} (F_{st} C_{st} + F_{ro} C_{ro} + C_{ev})$$
(17)

The constant of proportionality K, called the turbine loss coefficient in this report, must be determined empirically, and recommended values based on experimental efficiencies are presented later in this report. The Reynolds number used in this calculation is defined as

$$\operatorname{Re} = \frac{2w}{\mu D_{m,in}} \tag{18}$$

Some of the terms within the parentheses in equation (17) are the same for all cases, while others depend on stage location, velocity diagram type, and use of exit vanes. The rotor weighting factor F_{ro} and rotor loss parameter C_{ro} are the same for all cases:

$$F_{ro} = 2 \tag{19}$$

$$C_{ro} = 2 \cot^2 \alpha_1 \left(\frac{V_{u,1}}{\Delta V_u}\right)^2 + \left(\frac{V_{u,1}}{\Delta V_u} - \frac{1}{\psi}\right)^2 + \left(\frac{V_{u,2}}{\Delta V_u} - \frac{1}{\psi}\right)^2$$
(20)

For last stages of turbines having exit vanes,

$$C_{ev} = 2 \cot^2 \alpha_1 \left(\frac{V_{u,1}}{\Delta V_u}\right)^2 + \left(\frac{V_{u,2}}{\Delta V_u}\right)^2$$
(21)

For all other stages

$$C_{ev} = 0 \tag{22}$$

For first-stage stators having a specified inlet angle α_0 , the stator loss parameter is expressed

$$C_{st} = \left[1 + \cot^2 \alpha_1 \left(2 + \tan^2 \alpha_0\right)\right] \left(\frac{V_{u,1}}{\Delta V_u}\right)^2$$
(23)

For all other stators

$$C_{st} = (1 + 2 \cot^2 \alpha_1) \left(\frac{V_{u,1}}{\Delta V_u}\right)^2 + \left(\frac{V_{u,2}}{\Delta V_u}\right)^2$$
(24)

The stator weighting factor F_{st} also depends on whether or not the stator is a first-stage stator. For a first-stage stator having a specified inlet angle α_0 ,

$$F_{st} = \frac{1 - \frac{3 \tan \alpha_0}{\tan \alpha_1}}{1 - \frac{\tan \alpha_0}{\tan \alpha_1}}$$
(25)

For all other stators

$$F_{st} = \frac{1 - \frac{3(V_{u,2}/\Delta V_u)}{V_{u,1}/\Delta V_u}}{1 - \frac{V_{u,2}/\Delta V_u}{V_{u,1}/\Delta V_u}}$$
(26)

The rotor inlet and exit swirl parameters $V_{u,1}/\Delta V_u$ and $V_{u,2}/\Delta V_u$ of equations (19) to (26) depend on the specific type of velocity diagram or are input for the general diagram. The following table presents the relations for evaluating the swirl parameters:

Velocity	Inlet swirl parameter, $V_{u,1}/\Delta V_u$	Exit swirl parameter, $V_{u,2}/\Delta V_u$
Symmetrical	$\frac{1+\psi}{2\psi}$	$\frac{1-\psi}{2\psi}$
Zero exit swirl	1	0
Impulse	$\frac{2+\psi}{2\psi}$	$\frac{2-\psi}{2\psi}$
General	Input	$\frac{V_{u,1}}{\Delta V_u} - 1$

With turbine total efficiency obtained from the foregoing equations, the turbine exit velocities and state conditions are computed as follows:

$$\Delta V_{u,n} = \psi U_n \tag{27}$$

$$V_{u,1,n} = \frac{V_{u,1}}{\Delta V_u} \,\Delta V_{u,n} \tag{28}$$

$$V_{u,2,n} = \frac{V_{u,2}}{\Delta V_u} \,\Delta V_{u,n} \tag{29}$$

$$V_{me,n} = V_{u,1,n} \cot \alpha_1 \tag{30}$$

$$V_{me,ex} = \sqrt{E} \ V_{me,n} \tag{31}$$

$$V_{u,ex} = \begin{cases} V_{u,2,n} & \text{no exit vanes} \\ 0 & \text{exit vanes} \end{cases}$$
(32)

$$V_{ex} = \sqrt{V_{me,ex}^2 + V_{u,ex}^2}$$
(33)

$$p'_{ex} = p'_{in} \left(1 - \frac{\overline{\Delta h'}}{c_p T'_{in} \overline{\eta'}} \right)^{\gamma/(\gamma-1)}$$
(34)

$$T'_{ex} = T'_{in} - \frac{\overline{\Delta h'}}{c_p} \tag{35}$$

$$T_{ex} = T'_{ex} - \frac{V^2_{ex}}{2gJc_p}$$
(36)

$$p_{ex} = p'_{ex} \left(\frac{T_{ex}}{T'_{ex}}\right)^{\gamma/(\gamma-1)}$$
(37)

In order that the turbine total and static efficiencies be consistent with the computed exit velocity, the static efficiency is computed as

$$\overline{\eta} = \frac{\overline{\Delta h'}}{c_p T'_{in} \left[1 - \left(\frac{p_{ex}}{p'_{in}}\right)^{(\gamma-1)/\gamma} \right]}$$
(38)

In order to calculate continuity for a flowpath having significant inclination, it is necessary to determine a flowpath slope. Consistent with the preliminary nature of this analysis, a correlation relating axial chord to mean diameter was used to determine axial length. The correlation, based on the geometry of existing turbines, is of the form

$$c_x = k_1 D_m + k_2 D_m^2 + k_3 + k_4 D_m^{-1}$$
(39)

and was established over a range of mean diameters from 0.10 to 1.25 m (0.33 to 4.17 ft). Because of the scatter in the available data, correlations were determined for low, mean, and high aspect ratios. The correlation coefficients are presented in table I. The three correlation curves for ratio of axial chord to mean diameter are plotted in figure 3. Using one-third of axial chord length for spacing between blade rows, the slope for a linear meanline between stage 1 exit and stage n exit is

$$\tan \theta = \frac{0.5(D_{m,ex} - D_{m,in})}{2(4/3)\sum_{2}^{n} c_{x,i}} = \frac{3(D_{m,ex} - D_{m,in})}{16\sum_{2}^{n} c_{x,i}}$$
(40)

For two-segment meanlines, the lower or upper limit for the summation is changed as appropriate for the linear section, and the slope for the constant section is set equal to zero.

TABLE IAXIAL	CHORD	CORRELATION	COEFFICIENTS

Aspect	$k_{1} \times 10^{2}$	$k_2 \times$	103	$k_3 \times$	10 ²	$k_{4} \times 10^{3}$		
ratio		m ⁻¹	ft-1	m	ft	m ²	ft²	
High	0.5716	7.8984	2.4074	1.4911	4.8921	-0.7498	-8.0708	
Mid Low	3.0740 6.6559	9.9323 8.7134	3.0274 2.6558	1.4714 1.1949	4.8275 3.9203	7411 5580	-7.9771 -6.0063	

 $\left| c_x = k_1 D_m + k_2 D_m^2 + k_3 + k_4 D_m^{-1} \right|$

Exit annulus area, radius ratio, and hub and tip diameters are obtained as follows:

$$\rho_{ex} = \frac{p_{ex}}{RT_{ex}} \tag{41}$$

$$V_{x,ex} = V_{me,ex} \cos \theta_n \tag{42}$$

$$A_{an,ex} = \frac{w}{\rho_{ex} V_{x,ex}} \tag{43}$$

$$\left(\frac{r_h}{r_t}\right)_{ex} = \frac{1 - \frac{A_{an,ex}}{\pi D_{m,ex}^2}}{1 + \frac{A_{an,ex}}{\pi D_{m,ex}^2}}$$
(44)

$$D_{t,ex} = \frac{2D_{m,ex}}{1 + \left(\frac{r_h}{r_t}\right)_{ex}}$$
(45)

$$D_{h,ex} = D_{t,ex} \left(\frac{r_h}{r_t}\right)_{ex}$$
(46)

Absolute and relative flow angles, which are the same for each stage, are computed from the last-stage velocities:

$$\alpha_2 = \tan^{-1} \frac{V_{u,2,n}}{V_{me,n}} \tag{47}$$

$$W_{u,1,n} = V_{u,1,n} - U_n \tag{48}$$

$$W_{u,2,n} = V_{u,2,n} - U_n \tag{49}$$

$$\beta_1 = \tan^{-1} \frac{W_{u,1,n}}{V_{me,n}}$$
(50)

$$\beta_2 = \tan^{-1} \frac{W_{u,2,n}}{V_{me,n}}$$
(51)

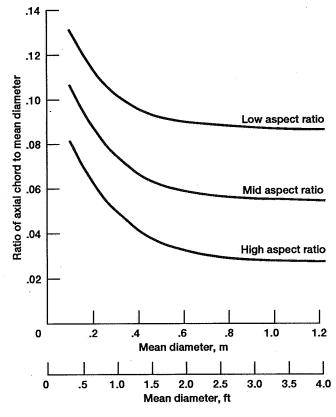


Figure 3.-Axial chord correlation.

Absolute and relative Mach numbers are computed for the last stage, where velocities are highest and temperatures are lowest, thus making the Mach numbers most severe:

$$V_{2,n} = \sqrt{V_{u,2,n}^2 + V_{me,ex}^2}$$
(52)

$$W_{2,n} = \sqrt{W_{u,2,n}^2 + V_{me,ex}^2}$$
(53)

$$W_{1,n} = \sqrt{W_{u,1,n}^2 + V_{me,n}^2}$$
(54)

$$V_{1,n} = \sqrt{V_{u,1,n}^2 + V_{me,n}^2}$$
(55)

$$T'_{1,n} = T'_{2,n} = T'_{ex} - \frac{V^2_{2,n} - W^2_{2,n}}{2gJc_n}$$
(56)

$$T_{1,n} = T_{1,n}^{"} - \frac{W_{1,n}^2}{2gJc_p}$$
(57)

$$M_{\rm abs,2} = \frac{V_{2,n}}{\sqrt{\gamma g R T_{ex}}}$$
(58)

$$M_{\rm rel,2} = \frac{W_{1,n}}{\sqrt{\gamma g R T_{ex}}}$$
(59)

$$M_{\rm rel,i} = \frac{W_{1,n}}{\sqrt{\gamma g R T_{1,n}}} \tag{60}$$

$$M_{\text{abs},1} = \frac{V_{1,n}}{\sqrt{\gamma g R T_{1,n}}} \tag{61}$$

Efficiency and continuity computations are based solely on the meanline flow parameters. Although radial variations of velocity in a turbine need not be of the free-vortex type, the free-vortex hub and tip velocity-diagram parameters can give a qualitative indication of the possible severity of end wall flow conditions. With blade speed directly proportional to diameter

$$U \propto D$$
 (62)

and applying the free-vortex conditions for radial variations of the velocity components

$$V_u \propto \frac{1}{D} \tag{63}$$

and

$$V_{me} = \text{Constant}$$
 (64)

the hub and tip velocity diagrams are determined from equations (47) to (61).

In order to establish the flow annulus geometry near the turbine inlet, a flow analysis is made at the first-stage exit as follows:

$$\Delta h_a' = \frac{U_a^2}{gJ}\psi \tag{65}$$

$$T_{2,a}' = T_{in}' - \frac{\Delta h_a'}{c_n} \tag{66}$$

$$p_{2,a}' = p_{in}' \left(1 - \frac{\Delta h_a'}{c_p T_{in}' \eta_a'} \right)^{\gamma/(\gamma-1)}$$
(67)

$$\Delta V_{u,a} = \psi U_a \tag{68}$$

$$V_{u,2,a} = \frac{V_{u,2}}{\Delta V_u} \,\Delta V_{u,a} \tag{69}$$

$$V_{me,2,a} = \sqrt{E} \frac{V_{u,1}}{\Delta V_u} \Delta V_{u,a} \cot \alpha_1$$
(70)

$$V_{2,a} = \sqrt{V_{u,2,a}^2 + V_{me,2,a}^2}$$
(71)

$$T_{2,a} = T'_{2,a} - \frac{V^2_{2,a}}{2gJc_p}$$
(72)

$$p_{2,a} = p_{2,a}' \left(\frac{T_{2,a}}{T_{2,a}'}\right)^{\gamma/(\gamma-1)}$$
(73)

$$V_{x,2,a} = V_{me,2,a} \cos \theta_a \tag{74}$$

$$\rho_{2,a} = \frac{p_{2,a}}{RT_{2,a}} \tag{75}$$

$$A_{an,2,a} = \frac{w}{\rho_{2,a} V_{x,2,a}}$$
(76)

$$\left(\frac{r_{h}}{r_{t}}\right)_{2,a} = \frac{1 - \frac{A_{an,2,a}}{\pi D_{m,in}^{2}}}{1 + \frac{A_{an,2,a}}{\pi D_{m,in}^{2}}}$$
(77)

$$D_{t,2,a} = \frac{2D_{m,in}}{1 + \left(\frac{r_h}{r_t}\right)_{2,a}}$$
(78)

$$D_{h,2,a} = D_{t,2,a} \left(\frac{r_h}{r_t}\right)_{2,a}$$
(79)

When a constant annulus is assumed for the first stage, the first-stage exit dimensions become the inlet dimensions for that turbine.

Alternative Calculation Procedure

The basic calculation procedure described in the previous section requires as inputs the inlet and exit mean diameters, stator exit angle, and shaft power. Alternatively, the hub or tip diameters could be specified as input, and the mean diameters computed; the exit radius ratio could be specified as input, and the stator exit angle computed; and/or the turbine pressure ratio could be specified as input, and the shaft power computed. These alternative input options require iterative calculation procedures such as described in this section.

With hub or tip diameters rather than mean diameters specified at the inlet and exit, it is necessary to assume initial values for the inlet and exit radius ratios. Initial values for inlet and exit mean diameters are then obtained as

$$D_m = \frac{\left(1 + \frac{r_h}{r_t}\right)D_h}{2\frac{r_h}{r_t}}$$
(80)

when hub diameter is input and

$$D_m = \frac{\left(1 + \frac{r_h}{r_t}\right)D_t}{2} \tag{81}$$

when tip diameter is input. The computation then proceeds from equation (1) to equation (44), and the computed exit radius ratio is compared with the assumed value. If they are not the same (within a given tolerance), then the computed value of exit radius ratio is used to calculate a new value for exit mean diameter (from eq. (80) or (81)), and the computation procedure is repeated until convergence is obtained. Then, computation proceeds through equation (77), and the computed inlet radius ratio is compared with the assumed value. If they are not within tolerance, the computed value of inlet radius ratio is used to calculate a new value for inlet mean diameter, and the computation procedure is repeated from equation (1). This entire procedure is repeated until both inlet and exit radius ratios converge in the same calculation pass. When hub or tip diameter rather than mean diameter is used as input, a two-segment meanline cannot be specified.

With exit radius ratio rather than stator exit angle specified, a value of stator exit angle is assumed for the evaluation of equation (17). The computation proceeds through equation (41). Equation (44) is then used to compute the exit annulus area from the input value of radius ratio, and the exit axial velocity is then obtained from equation (43). The density used in equation (43), however, is not consistent with the exit area, and equations (43), (42), (33), (36), and (41) must be iterated until convergence is obtained. Then, the stator exit angle is computed as

$$\alpha_1 = \tan^{-1} \frac{V_{u,1,n}}{V_{me,n}} \tag{82}$$

and compared with the assumed value. If they are not within tolerance, the computed value of stator exit angle is used for

the evaluation of equation (17), and the computation procedure just given is repeated until stator exit angle converges. The remainder of the computation is then completed.

With the turbine inlet-total- to exit-static-pressure ratio rather than shaft power specified as input, an initial value of turbine static efficiency is assumed. Turbine work is then computed from

$$\overline{\Delta h'} = \overline{\eta} c_p T'_{in} \left[1 - \left(\frac{p_{ex}}{p'_{in}} \right)^{(\gamma-1)/\gamma} \right]$$
(83)

instead of from equation (4). The computation then proceeds through equation (38) to compute a static efficiency. If the computed and the assumed values are not within tolerance, a new value of static efficiency is assumed, and the computation is repeated until convergence. The remainder of the computation is then completed.

Loss-Coefficient Evaluation

Ten turbines that were designed for airbreathing engine applications and performance tested in component facilities were selected to serve as the basis for the loss coefficient evaluation. These turbines represent the output of several different design systems and cover a wide range of design characteristics. Six of the turbines were designed and tested by NASA, two were designed and tested by GE Aircraft Engines Co., and two were designed by Pratt & Whitney, one of which was tested by Pratt & Whitney and the other by NASA. The characteristics of these turbines are presented in table II. The number of stages varies from 1 to 5, stage work factors (ψ) from 1.2 to 4.7, stator angles from 51° to 80°, exit mean diameters, except for one, from 47 to 69 cm (18 to 27 in.), and radius ratios from 0.50 to 0.86. All the listed total efficiencies except for two were as measured. In those two cases, corrections were made to account for the effects of cooling air (ref. 4) and a large discrepancy in flow rate from design intent (ref. 5).

These turbines were modeled as closely as possible for the subject computer program, and design performance was computed over a range of loss coefficients. The variation of efficiency with loss coefficient was a direct proportion between the quantity $(1 - \eta)$ and loss coefficient, K. Calculated efficiencies are plotted against measured efficiencies in figure 4 for a constant loss coefficient of 0.3. As seen, for all cases except one, the calculated efficiency was within one point of the measured efficiency. In view of the simplistic modeling used for this computer program, this agreement is admittedly fortuitous. It does illustrate, however, that this program is capable of predicting reasonable efficiencies over a wide range of airbreathing engine turbine conditions. A loss coefficient value of 0.3 is recommended for use in the absence of additional information.

Number of stages	Average stage work	Average stator angle,	Exit mean diameter		Exit radius ratio	Measured efficiency	Ref- erence
	factor, ψ	deg	cm	in.	:		-
1	1.7	67.0	66.0	26.0	0.73	0.923	6
2	1.7	64.5	66.0	26.0	.63	.932	7
1	1.2	63.4	20.3	8.0	.68	.917	8
1	1.9	73.1	47.0	18.5	.85	.886	9
3.5	4.0	51.4	49.8	19.6	.50	.880	5
4.5	4.7	66.6	49.8	19.6	.57	.855	10
1	1.7	75.0	46.7	18.4	.86	.895	11
1	1.6	79.6	56.4	22.2	.85	.901	12
2	1.3	71.6	69.3	27.3	.82	.898	4
:5	2.6	61.0	63.5	25.0	.62	.920	13

TABLE IL-TURBINES USED FOR EVALUATION

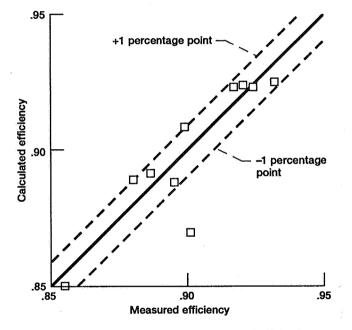


Figure 4.—Comparison of measured and calculated total efficiencies. Loss coefficient, 0.3.

Description of Input and Output

This section presents a detailed description of the program input, normal output, and error messages. Included in the input and output sections are several example cases illustrating the use of the program and the various options.

Input

The program input, a sample of which is presented in table III, consists of a title record and the required physical data and option indicators in NAMELIST form. The title, which is printed as a heading on the output listing, can contain up to 77 characters located anywhere in columns 2 to 78 on the title record. A title, even if it is left blank, must be the first record of the input data. Additional titles can be used to identify different cases being run in the same data file. This is done by placing a title in front of the data for the particular case and using the option indicator ITTT as subsequently described.

The physical data and option indicators are input in data records having the NAMELIST name INPUT. The variables and indicators that compose INPUT and the proper units are as follows. These must be input for all cases except where otherwise indicated. Either the SI units or the U.S. customary units shown below may be used.

- PTIN inlet total pressure, N/cm²; lb/in.²
- TTIN inlet total temperature, K; °R
- MU gas viscosity, $N \cdot \sec/m^2$; $lb/sec \cdot ft$
- R gas constant, $J/kg \cdot K$; ft · lbf/lbm · °R
- GAM specific heat ratio
- DIN inlet diameter—hub or mean or tip value as specified by the indicator IDIAM, cm; in.
- DEX exit diameter—hub or mean or tip value as specified by the indicator IDIAM, cm; in.
- RREX exit radius ratio; RREX may be omitted in the case where both IDIAM = 2 and IALPH = 0; RREX is used as first trial value when IALPH = 0 and IDIAM = 1 or 3
- RPM rotative speed, rad/sec; rpm
- POW shaft power—omit when IPR = 1, kW; hp
 - mass flow rate, kg/sec; lb/sec

TABLE III.-SAMPLE INPUT

w

```
THESE ARE SAMPLE CASES FOR THIS PROGRAM. U.S. CUSTOMARY UNIT ARE USED.

&INPUT PTIN=113.1,TTIN=2660.,MU=.376E-04,R=53.37,GAM=1.302,DIN=22.,DEX=24.,

RPM=11400.,POW=12900.,W=53.5,ALPHA=65.,KLOSS=.35,NMIN=2,NMAX=2,E=1.2,

IALPH=0,IDIAM=2,IVD=1,IEV=0,IPR=0,IU=2 &END

&INPUT IDIAM=1,RREX=.8,DIN=20.,DEX=21., ITIT=1 &END

THIS IS AN ADDITIONAL TITLE CALLED FOR BY ITIT IN PREVIOUS CASE DATA

&INPUT IALPH=1,IEV=1, &END

&INPUT IALPH=0,IEV=0,IVD=2 &END

&INPUT IVD=3 &END

&INPUT IPR=1,IVD=1,PRTS=3.66 &END
```

ALPHA	stator exit angle from axial direction; ALPHA is used as first trial value when $IALPH = 1$, deg
ALPHA0	turbine inlet flow angle; required only when
VUIDVU	KALPH0 = 2, deg ratio of rotor inlet swirl to total change in
	swirl; input only when $IVD = 5$ turbine loss coefficient; a value of 0.3 is
KLOSS	recommended in the absence of additional information
NMIN	minimum number of stages for which the calculations are performed
NMAX	maximum number of stages for which the calculations are performed; results are obtained for all stage numbers between NMIN and NMAX
NMID	stage number at which meanline changes slope; may be omitted when $IMID = 0$
E	squared ratio of stage-exit to stage-average meridional velocities
PRTS	turbine inlet-total to exit-static-pressure ratio; omit when $IPR = 0$
IALPH	indicates whether stator exit angle or turbine exit radius ratio is specified:
	IALPH = 0 —turbine is designed for specified ALPHA
	IALPH = 1 —turbine is designed for specified RREX
IDIAM	indicates whether input diameters are hub, mean, or tip values:
	IDIAM = 1—input diameters are hub values IDIAM = 2—input diameters are mean values IDIAM = 3—input diameters are tip values
IVD	indicates type of velocity diagram used:
	IVD = 1—symmetrical diagrams
	IVD = 2—zero exit swirl diagrams
	IVD = 3—impulse diagrams
	IVD = 4—zero exit swirl diagrams if $\psi \le 2.0$ and impulse diagrams if $\psi \ge 2.0$
	IVD = 5—ratio of rotor inlet swirl to total change in swirl is input as VU1DVU
ITIT	indicates use of titles in addition to that required as first line of data package:
	TTTT = 1—title line precedes next data set; must be input for each additional title because TTTT is automatically restored to zero after each title is read
IEV	indicates use of exit vanes:
	IEV = 0—no exit vanes
	IEV = 1—exit vanes are used to turn turbine exit flow to axial direction

IPR	indicates whether shaft power or pressure ratio is specified:
	IPR = 0—shaft power is input
	IPR = 1 —turbine inlet-total- to exit-static- pressure ratio is input
IU	indicates type of units used for input and output:
	IU = 1 - SI units
	U = 2 - U.S. customary units
KALPH0	indicates turbine-inlet flow angle option:
	KALPH0 = 0—turbine-inlet flow is axial (default)
	KALPH0 = 1—turbine-inlet flow angle equals stage-exit flow angle
	KALPH0 = 2—turbine-inlet flow angle is input as $ALPHA0$
IAR	indicates blading aspect ratio:
	IAR = 1—high aspect-ratio blading
	IAR = 2-mid aspect-ratio blading (default)
	IAR = 3—low aspect-ratio blading
IMID	indicates meanline shape:
	IMID = 0—meanline linear from stage 1 to stage N (default)
	IMID = 1—meanline constant from stage 1 to stage NMID and then linear to stage N
	IMID = 2—meanline linear from stage 1 to stage NMID and then constant to stage N

The first line of the input file shown in table III is the mandatory title card, which can contain any desired message. The next three lines are the first data set, which contains all required inputs. This first case represents computation in accordance with the basic calculation procedure described previously. Data input for subsequent cases need only include those values that differ from previous case data. The fifth line is the second data set and represents the option where hub diameter is input. Also, the second case data specify that a title, which is the sixth data line, precede the third case data. Cards 7 to 10 represent four additional cases illustrating the use of different input options. The output corresponding to this sample input is described in the following section.

Output

The program output consists of title headings, the input variables, and computed results. This section presents normal output. Error message output is described in the next section.

Table IV presents the output that corresponds to the sample input shown in table III. The top line of output is a program identification title that is automatically printed. The second line is the title card message. The next four lines are the input variables and their associated values for the first data set. The input variable names are spelled out. The units for the input variable values are as described in the "Input" section. The zeros printed under EXIT RADIUS RATIO and T-S PRESSURE RATIO indicate that these are computed for this case and not specified by the input. The fact that the input diameters are mean diameters is indicated by the MN in the variable name. Hub and tip diameters would be indicated by HB and TP, respectively. These four lines of output are printed for each new data set.

The next group of eight lines is the computation results satisfying the input requirements. The output parameters are spelled out and are self-explanatory. These temperatures, pressures, velocities, and angles are meanline values. On the first line are the number of stages, the stage work factor, the Reynolds number, and the diagram type, which is symmetrical for this first case. The remainder of the output includes exit and inlet tip and hub diameters in the first column, exit total and static temperatures and pressures in the second column, total and static efficiencies and velocity diagram angles in the third column, and first- and last-stage blade speeds and laststage absolute velocity components in the last column. The last line of this output group presents the last-stage absolute and relative Mach numbers.

The next group of four lines is the hub and tip free-vortex values of Mach numbers and angles. The four columns present the stator-exit absolute, rotor-inlet relative, rotor-exit relative, and stage-exit absolute values. The last line of output for each case is the meanline slope based on the specified (mid in this case) aspect-ratio blading.

After the computations for each input case are completed, the input data for the next case are printed. The second case presented here is that where the specified diameters are hub values. The third input case in table IV is preceded by an additional title line. This causes the next output to begin at the top of a new page with the program identification and the title message.

The third case is for a specified exit radius ratio rather than for a specified stator exit angle. This is indicated by a zero appearing under STATOR EX ANG in the row of input variables. Exit vanes are included in this case, as indicated by WITH EXIT VANES printed after number of stages on the first line of result output. The fourth and fifth cases, as indicated by the top line of the fourth column of result output, are for zero exit swirl and impulse diagrams, respectively. Turbine pressure ratio rather than shaft power is specified in the sixth case. For this case, the input pressure ratio was chosen to be the same as the computed value obtained for the second case. As should be expected, the program converges to identical solutions for both cases. An extra line of output consisting of shaft power and specific work is printed for the case where pressure ratio is specified as input.

Error Messages

The program contains seven output messages. Five of these indicate the nonexistence of a meanline solution satisfying

TABLE IV.—SAMPLE OUTPUT

TURBINE VELOCITY DIAGRAM ANALYSIS

THESE ARE SAMPLE CASES FOR THIS PROGRAM. U.S. CUSTOMARY UNIT ARE USED.

SHAFT Power 12900.0	MASS FLOW	INLET TEMP	INLET	ROTATIVE SPEED	INLET MN DIA	EXIT MN DIA	EXIT RADIUS RATIO	STATOR Ex ang	GAS Const	CAPAC VISCOSITY LOSS VEL SO P RATIO COEF RATIO R	T-S PRES RATI
12900.0	53.50	2660.00	113.10	11400.00	22.00	24.00	0.0000	65.00	53.37		0.
EXIT EXIT INLET INLET INLET	TIP DIAME HUB DIAME RADIUS RA TIP DIAM HUB DIAM	ETER = 27. ETER = 20. ATIO =0.76 METER≈ 24. METER≈ 19. RATIO=0.82 3S =0.78	18 E> 82 E> 58 E> 16 E> 84 T- 13 T-	AGE WORK F (IT TOTAL T (IT STATIC (IT TOTAL F (IT STATIC T PRESS RA (ST STG M1	EMP =20 TEMP =20 PRESS = PRESS= ATIO = ATIO =	83.64 30.85 34.85 31.20 3.245	STATOR STAGE ROTOR ROTOR TOTAL STATIC	EXIT AN EXIT ANG INLET AN EXIT ANG EFFICIEN EFFICIE	.1552E+07 GLE= 65.0 LE =-27.1 GLE= 27.1 LE =-65.0 CY =0.907 NCY=0.839 L =0.826	0 FIRST STAGE MEAN SPEED= 1094.3 0 LAST STAGE MEAN SPEED= 1193.8 0 LAST STAGE INLET SWIRL= 1567.8 0 LAST STAGE EXIT SWIRL= -374.0 LAST STAGE MERID VELOC= 800.9 EXIT MERID MACH NUMBER= 0.3759	31 37 16 33
HUB: LAST		3S =0.89 NGLE = 67.		ST STG M1	REL = 0	.4862			L =0.768)
TIP: LAST	STG MI AN	IGLE = 67. IGLE = 62.	10 LA	TOR INLET ST STG M1 TOR INLET	REL = 0	.3277	LAST - S	TG M2 RE	LE =-63.5 L =0.859 LE =-66.5	0 LAST STG M2 ABS = 0.3757	
STAGE	1- 2 ME/	NLINE SLO	PE = 14	.85 DEG BA	SED ON M	ID ASPEC	T-RATIO	BLADING			
SHAFT Power 12900.0	MASS Flow	INLET TEMP 2660.00	INLET PRESS	ROTATIVE SPEED 11400.00	INLET HB DIA	EXIT HB DIA 21.00	EXIT RADIUS RATIO 0.0000	STATOR Ex ang	GAS CONST 53.37	CAPAC VISCOSITY LOSS VEL SO P RATIO COEF RATIO R	T-S PRES ATI 0.
EXIT EXIT INLET INLET INLET	TIP DIAME HUB DIAME RADIUS RA TIP DIAM HUB DIAM	TER = 27. TER = 21. TIO =0.76 METER= 24. METER= 20. MATIO=0.82 S =0.77	32 EX 00 EX 85 EX 29 EX 00 T- 33 T-	AGE WORK F IT TOTAL T IT STATIC IT TOTAL F IT STATIC T PRESS RA S PRESS RA ST STG M1	EMP =20 TEMP =20 RESS = PRESS= TIO = TIO =	83.64 31.50 34.87 31.27 3.243 3.617	STATOR STAGE ROTOR ROTOR TOTAL STATIC	EXIT AN EXIT ANG INLET AN EXIT ANG EFFICIEN EFFICIEN	.1542E+07 GLE= 65.01 LE =-26.44 GLE= 26.44 LE =-65.01 CY =0.907 NCY=0.840 L =0.824	 LAST STAGE MEAN SPEED = 1201.8 LAST STAGE INLET SWIRL = 1565.5 LAST STAGE EXIT SWIRL = -363.6 LAST STAGE MERID VELOC = 799.7 EXIT MERID MACH NUMBER = 0.3753 	17 14 13
TIP: LAST STATO	R EXIT AN STG M1 AN R EXIT AN	IGLE = 67. 35 =0.70 IGLE = 62.	94 RO 07 LA 20 RO	ST STG M1 TOR INLET ST STG M1 TOR INLET	ANGLE = 0 REL = 0 ANGLE =	46.03 .3271 1.97	ROTOR LAST S ROTOR	TG M2 RE EXIT ANG	L =0.766 LE =-63.44 L =0.858 LE =-66.5	B STAGE EXIT ANGLE =-29,82 LAST STG M2 ABS = 0.3735	
S. HOL		MAANG SLU	14	.89 DEG BA	เวยบ เท พ	IT APLEC	I-KALTO	DLADING			

TABLE IV.-Concluded.

TURBINE VELOCITY DIAGRAM ANALYSIS

THIS IS AN ADDITIONAL TITLE CALLED FOR BY ITIT IN PREVIOUS CASE DATA

SHAFT Power	MASS Flow	INLET TEMP	INLET PRESS	ROTATIVE SPEED	HB DIA	EXIT HB DIA	RADIUS RATIO			CAPAC VIS Ratio	COSITY	URBINE LOSS V COEF	EL SQ P RATIO R	T-S RESS ATIO
12900.0	53.50	2660.00	113.10	11400.00	20.00	21.00	0.8000	0.00	53.37	1.302 0.	376E-04	0.350	1.200	0.000
EXIT EXIT EXIT INLET INLET INLET	TIP DIAM HUB DIAM	TER = 26. TER = 21. TIO =0.80 ETER= 23. ETER= 20. ATIO=0.84	25 EXI 00 EXI 00 EXI 54 EXI 00 T-1 97 T-5	AGE WORK F IT TOTAL T IT STATIC IT TOTAL P IT STATIC I PRESS RA S PRESS RA ST STG M1	EMP =20 TEMP =20 RESS = PRESS= TIO = TIO =	083.64 014.59 34.80 30.10 3.250 3.758	STATOR STAGE E ROTOR I ROTOR E TOTAL E STATIC	EXIT ANG XIT ANGL NLET ANG XIT ANGL FFICIENC EFFICIEN	1569E+07 LE= 59.54 E =-23.12 LE= 23.12 E =-59.54 Y =0.906 ICY=0.819 =0.8797	FIRST LAST S LAST S LAST S LAST S EXIT M	MS ARE SY STAGE MEA TAGE MEAN TAGE INLE TAGE EXIT TAGE MERI WERID MACH TG M2 ABS	AN SPEEI N SPEED ET SWIRL T SWIRL ID VELOC H NUMBEF)= 1082.8 = 1175.1 = 1569.2 = -394.1 C= 1011.0	27 12 01
TIP: LAST STATO	R EXIT AN STG M1 AB R EXIT AN	GLE = 62. S =0.76 GLE = 56.	40 RO 03 LAS 84 RO	ST STG MI FOR INLET ST STG MI FOR INLET .98 DEG BA	ANGLE = REL = 0 ANGLE =	37.99 0.4186 6.59	ROTOR I LAST ST Rotor I	EXIT ANGL IG M2 REL EXIT ANGL	=0.8255 E =-58.19 =0.8945 E =-60.93	STAGE	TG M2 AB EXIT ANG TG M2 AB EXIT ANG	LE S	= 0.4827 =-25.66 = 0.4656 =-21.02	
31400		MEINE SLU	15	.70 DEG DA	3CD 04 P	ID ASPEC	1-KA110 1	JEADING						
SHAFT Power 12900.0	MASS Flow 53.50	INLET TEMP 2660.00	INLET PRESS 113.10	ROTATIVE SPEED 11400.00	HB DIA	EXIT HB DIA 21.00	EXIT RADIUS RATIO 0.0000	STATOR EX ANG 65.00	GAS CONST 53.37	CAPAC VIS RATIO	COSITY	COEF		T-S PRESS RATIO 0.000
EXIT INLET INLET INLET	TIP DIAME HUB DIAME RADIUS RA TIP DIAM HUB DIAM	TER = 26. TER = 21. TIO =0.79 METER= 23. METER= 20. ATIO=0.84 S =1.00	34 EX 00 EX 74 EX 56 EX 00 T- 88 T-	AGE WORK F IT TOTAL T IT STATIC IT TOTAL F IT STATIC T PRESS RA S PRESS RA ST STG M1	EMP =20 TEMP =20 RESS = PRESS= TIO = TIO =	083.64 015.77 34.43 29.85 3.285 3.789	STATOR STAGE I ROTOR ROTOR I TOTAL I STATIC	EXIT ANG EXIT ANGL INLET ANG EXIT ANGL EFFICIENC EFFICIENC	1568E+07 SLE≠ 65.00 E = 0.00 SLE= 40.62 SLE= -52.15 Y =0.899 ICY=0.815 . ≠0.7284	FIRST LAST S LAST S LAST S LAST S EXIT M	MS ARE ZI STAGE MEA TAGE MEA TAGE INLI TAGE EXI TAGE MER HERID MAC TG M2 AB	AN SPEED N SPEED ET SWIRI T SWIRL ID VELOG H NUMBEI	D= 1083.4 = 1177.2 = 1962.3 = 0.4 C= 1002.3	12 00 33 2
HUB: LAST STATC TIP: LAST STATC	R EXIT AN	GLE = 67.	52 RO	ST STG M1 TOR INLET ST STG M1 TOR INLET	ANGLE =	0.6998 51.90 0.4681 26.36	ROTOR I	IG M2 RFI	=0.6523 E =-48.78 =0.7507 E =-55.07	STAGE	TG M2 AB EXIT ANG TG M2 AB EXIT ANG	LE	= 0.4298 = 0.00 = 0.4298 = 0.00	
STAGE	E 1- 2 MEA	NLINE SLO	PE = 14	.19 DEG BÅ	SED ON N	MID ASPEC	T-RATIO	BLADING						
CUAET	MACC	THEFT	TNIET	DOTATIVE	TMUET	EVIT	EVIT	STATOP	645			HDBTNE	AYTAL	т-с
SHAFT Power 12900.0	MASS FLOW 53.50	INLET TEMP 2660.00	INLET PRESS 113.10	ROTATIVE SPEED 11400.00	HB DIA		EXIT RADIUS RATID 0.0000	STATOR EX ANG 65.00	GAS CONST 53.37		COSITY	LOSS COEF		T-S PRESS RATIO 0.000
POWER 12900.0 Stage Exit Exit Exit Inle Inle Inle	FLOW 53.50 S≅ 2 TIP DIAME HUB DIAME RADIUS RA TIP DIAME I HUB DIAME	TEMP 2660.00 TER = 26. TER = 21. TIO =0.80 TETER = 23. TETER = 20. ATIO=0.85	PRESS 113.10 11 EX 00 EX 44 EX 35 EX 00 T- 66 T-	SPEED	HB DIA 20.00 ACTOR= EMP =20 TEMP =20 TEMP =10 PRESS= = ATIO =	HB DIA 21.00 1.68 083.64 999.26 33.80	RADIUS RATIO 0.0000 REYNOLI STATOR STAGE ROTOR ROTOR ROTOR TOTAL STATIC	EX ANG 65.00 DS NO.=0 Exit Ang Exit Ang Inlet Ang Fxit Ang Efficient Efficient	CONST	CAPAC VIS RATIO 1.302 0. DIAGRA FIRST LAST S LAST S LAST S EXIT N	COSITY	LOSS COEF 0.350 MPULSE AN SPEED ET SWIRL T SWIRL ID VELO H NUMBE	VEL SQ RATIO 1.200 D= 1078. = 1171. L= 2157. = 185. C= 1102.	PRESS RATIO 0.000 13 57 44 70 11 3
POWER 12900.0 STAGE Exit Exit Exit Inle: Inle: Last HUB: Last Tip: Last	FLOW 53.50 TIP DIAME HUB DIAME RADIUS RA TIP DIAA F HUB DIAH F RADIUS I STG M1 AI STG M1 AI STG M1 AI	TEMP 2660.00 TER = 26. TER = 21. TTIO = 0.80 GETER = 23. METER = 23. METER = 23. METER = 23. METER = 23. METER = 24. METER = 4. METER	PRESS 113.10 ST 11 EX 00 EX 44 EX 55 EX 44 EX 56 T- 22 LA 10 LA 42 RA	SPEED 11400.00 AGE WORK F IT TOTAL 1 IT STATIC IT TOTAL F IT STATIC T PRESS R/ S PRESS R/	HB DIA 20.00 CACTOR= 1 CMP = 22 TEMP = 19 RESS = ATIO = REL = 1 REL = 1 ANGLE = REL = 1 ANGLE =	HB DIA 21.00 1.68 083.64 999.26 33.80 28.28 3.346 3.999 0.6640 0.8199 53.81 0.5561	RADIUS RATIO 0.0000 REYNOLI STATOR STAGE ROTOR TOTAL STATIC LAST S ROTOR	EX ANG 65.00 EXIT ANG EXIT ANG EXIT ANG EXIT ANG EFFICIEN EFFICIEN EFFICIEN EFFICIEN TG M2 RE TG M2 RE TG M2 RE	CONST 53.37 JEE= 65.00 E = 10.46 JEE= 44.42 E =-44.42 E =-44.42 C =-0.887 NCY=0.788	CAPAC VIS RATIO 1.302 0. DIAGRA FIRST LAST S LAST S LAST S LAST S LAST S LAST S LAST S LAST S LAST S LAST S	SCOSITY 376E-04 MAS ARE I STAGE MEA STAGE MEA STAGE INL STAGE EXI STAGE EXI STAGE MAC	LOSS COEF 0.350 MPULSE AN SPEE N SPEED N SPEED ET SWIRL ID VELO H NUMBE S	VEL SQ RATIO 1.200 = 1078. = 1171. L= 2157. = 185. C= 1102. R= 0.521	PRESS RATIO 0.000 13 57 44 70 11 33 7 4 8
POWER 12900.0 STAGE EXIT EXIT EXIT INLE: INLE: INLE: LAST HUB: LAST STATE TIP: LAST STATE	FLOW 53.50 TIP DIAME HUB DIAME HUB DIAME RADIUS R/ TIP DIAA F HUB DIAA F RADIUS I STG MI AI STG MI AI STG MI AI STG MI AI STG MI AI STG MI AI	TEMP 2660.00 TTER = 26. TTER = 21. TTIO = 0.85 35 = 1.12 35 = 1.26 VGLE = 62. VGLE = 62.	PRESS 113.10 ST. 11 EX 00 EX 44 EX 45 EX 46 T- 22 LA 10 LA 42 RO 82 LA 67 RO	SPEED 11400.00 AGE WORK F IT TOTAL 1 IT STATIC IT STATIC IT STATIC ST STA ST STG M1 ST STG M1 TOR INLET ST STG M1	HB DIA 20.00 ACTOR= 1 EMP = 22 TEMP = 19 PRESS = ATIO = REL = 1 REL = 1 ANGLE = ANGLE =	HB DIA 21.00 1.68 083.64 999.26 33.80 28.28 3.346 3.346 3.999 0.6640 0.8199 53.81 0.5561 32.78	RADIUS RATIO 0.0000 REYNOLI STATOR STATOR ROTOR TOTAL STATIC LAST S LAST S ROTOR LAST S ROTOR	EX ANG 65.00 DS NO.=0 EXIT ANG EXIT ANG EXIT ANG EXIT ANG EFFICIEN EFFICIEN TG M2 RE TG M2 RE TG M2 RE EXIT ANG EXIT ANG	CONST 53.37 1576E+07 51E= 65.00 E = 10.46 31E= 44.42 CY =0.887 NCY=0.788 L =0.699 L =0.6168 L = 0.6168	CAPAC VIS RATIO 1.302 0. DIAGRA FIRST LAST S LAST S LAST S LAST S LAST S LAST S LAST S LAST S LAST S LAST S	376E-04 376E-04 AMS ARE II STAGE MEA STAGE INLI STAGE EXI STAGE EXI STAGE MER MERID MAC STG M2 AB STG M2 AB	LOSS COEF 0.350 MPULSE AN SPEE N SPEED N SPEED ET SWIRL ID VELO H NUMBE S	VEL SQ RATIO 1.200 D= 1078. = 1171. L= 2157. C= 1102. C= 1102. C= 0.528 = 0.484 = 11.70 = 0.480	PRESS RATIO 0.000 13 57 44 70 11 33 7 4 8
POWER 12900.0 STAGE EXIT EXIT EXIT INLE: INLE: INLE: LAST HUB: LAST STATE TIP: LAST STATE	FLOW 53.50 TIP DIAME HUB DIAME HUB DIAME RADIUS R/ TIP DIAA F HUB DIAA F RADIUS I STG MI AI STG MI AI STG MI AI STG MI AI STG MI AI STG MI AI	TEMP 2660.00 TTER = 26. TTER = 21. TTO =0.80 METER= 23. ATIO=0.85 35 =1.26 NGLE = 67. 35 =1.01 NGLE = 62. ANLINE SLO INLET TEMP	PRESS 113.10 11 ST 00 EX 00 EX 44 EX 00 T- 22 LA 42 R0 82 LA 42 R0 82 LA 10 LA 10 FE = 14 INLET PRESS	SPEED 11400.00 AGE WORK F IT TOTAL T IT STATIC IT STATIC IT STATIC T PRESS R S PRESS R S PRESS R ST STG M1 ST STG M1 ST STG M1 TOR INLET	HB DIA HB DIA COLOR CACTOR CAC	HB DIA 21.00 1.68 083.64 999.26 3.340 3.346 3.347 3.278 MID ASPEC EXIT HB DIA	RADIUS RATIO 0.0000 REYNOLI STATOR STAGE ROTOR TOTAL STATIC LAST S ROTOR LAST S ROTOR LAST S ROTOR CT-RATIO EXIT	EX ANG 65.00 DS NO.=0 EXIT ANG EXIT ANG EFFICIEN EFFICIEN TG M2 REI EXIT ANG EXIT ANG EXIT ANG BLADING STATOR EX ANG	CONST 53.37 1576E+07 51E= 65.00 E = 10.46 31E= 44.42 CY =0.887 NCY=0.788 L =0.699 L =0.6168 L = 0.6168	CAPAC VIS RATIO 1.302 0. DIAGRA FIRST LAST S LAST S LAST S LAST S LAST S LAST S LAST S LAST S LAST S LAST S STAGE HEAT	SCOSITY 376E-04 MMS ARE II STAGE MEA STAGE MEA STAGE INLI STAGE MER MERID MAC STG M2 AB EXIT ANG STG M2 AB EXIT ANG STG M2 AB EXIT ANG STG M2 AB EXIT ANG	LOSS COEF 0.350 MPULSE AN SPEE N SPEE S WIR T SWIRL ID VELO H NUMBE S S LE S LE URBINE LOSS COEF	VEL SQ RATIO 1.200 D= 1078 = 1171. L= 2157 = 1157 = 1157 = 1157 = 1157 = 1157 = 1157 = 1157 = 0.528 = 0.484 = 0.484 = 0.484 = 0.485 = 0.455	PRESS RATIO 0.000 13 57 44 70 11 33 7 4 8
POWER 12900.0 STAGE EXIT EXIT EXIT INLE INLE INLE INLE INLE INLE STAT STAT STAGE SHAFT POWER 0.0 STAGE EXIT EXIT INLE INLE STAT STAGE STAG	FLOW 53.50 TIP DIAME RADIUS R7 TIP DIAME RADIUS R7 TIP DIAME STG M1 A1 STG M1 A1 STG M1 A1 STG M1 A1 DR EXIT A1 E 1- 2 ME1 MASS FLOW 53.50 ES= 2 TIP DIAME HUB DIAME HUB DIAME TIP TIP DIAME TIP DIAME TIP TIP DIAME TIP TIP DIAME TIP TIP TIP TIP DIAME TIP TIP DIAME TIP	TEMP 2660.00 TTER = 26. TTER = 21. TTIO = 0.80 METER= 20. 835 = 1.12 85 = 1.26 NGLE = 67. 85 = 1.01 NGLE = 62. ANLINE SLO INLET TEMP 2660.00 ETER = 27. ATIO = 0.76 METER= 20. RATIO =	PRESS 113.10 11 EX 00 EX 44 EX 50 T 66 T 66 T 66 T 66 T 66 T 66 T 66 T 10 LA 42 RA 67 RO 113.10 55 EX 113.10 55 EX 113.10	SPEED 11400.00 AGE WORK F IT TOTAL T IT STATIC IT STATIC IT STATIC IT STATIC S PRESS R/ S PRESS R/ ST STG MI TOR INLET ST STG MI TOR INLET .18 DEG B/ ROTATIVE SPEED	HB DIA HB DIA 20.000 CACTOR= 1 IEMP = 22 TEMP = 12 RELSS = REL = REL = ANGLE = REL = ANGLE = ANGLE = ASED ON I INLET HB DIA O 20.00 CACTOR= 2 PRESS= PRESS= ATIO = ATIO =	HB DIA 21.00 1.68 083.64 999.26 3.346 3.346 3.3999 0.6640 0.640 0.8199 5.561 32.78 MID ASPEC EXIT HB DIA 21.00 1.62 079.52 026.66 34.53 30.90	RADIUS RATIO 0.0000 REYNOL STATOR STAGE ROTOR STATIC LAST S ROTOR LAST S ROTOR LAST S ROTOR CT-RATIO EXIT RADIUS RATIO 0.00000 REYNOL STATOR STATOR STATOR ROTOR ROTOR ROTOR ROTOR ROTOR ROTOR ROTOR ROTOR ROTOR ROTOR ROTOR	EX ANG 65.00 DS NO.=0 EXIT ANG EXIT ANG EFFICIEN EFFICIEN EFFICIEN EFFICIEN EFFICIEN BLADING STATOR EXATOR EXATOR EXIT ANG 65.00 DS NO.=0 EXIT ANG EXIT ANG E	CÖNST 53.37 1576E+07 5LE = 65.00 E = 10.46 3LE = 44.42 E = -44.42 V = 0.887 NCY=0.788 L = 0.699 L = 0.699 L = 0.6166 L = -39.72 L = 0.713 L = -48.35 GAS CONST	CAPAC VIS RATIO 1.302 0. DIAGRA FIRST LAST S LAST S LAST S LAST S LAST S LAST S S LAST S S S LAST S S LAST S S S LAST S S LAST S S LAST S S LAST S S LAST S S LAST S S LAST S S LAST S LAST S S LAST S LAST S	SCOSITY 376E-04 MMS ARE II STAGE MEA STAGE MEA STAGE INLI STAGE MER MERID MAC STG M2 AB EXIT ANG STG M2 AB EXIT ANG STG M2 AB EXIT ANG STG M2 AB EXIT ANG	LOSS COEF OI.350 MPULSE AN SPEEI N SPEEI T SWIRL ID VELO H NUMBE S S LE URBINE LOSS COEF 0.350 VMMETRI AN SPEED S SURR LI SVIR LOSS COEF 0.350 VMMETRI AN SPEED SURR LI SVIR LI SVIR LOSS COEF 0.350 VMMETRI AN SPEED SURR LI SVIR LI SVIR LOSS COEF 0.350 VMMETRI AN SPEED SURR LOSS COEF I SVIR LOSS COEF I SVIR LOSS COEF I SVIR LOSS COEF I SVIR LOSS COEF I SVIR COEF I SVIR LOSS COEF I SVIR LOSS SVIR LOSS COEF I SVIR LOSS COEF I SVIR LOSS SVIR LOSS SVIR SVIR LOSS SVIR LOSS SVIR SVIR LOSS SVIR SVIR SVIR SVIR SVIR SVIR SVIR SV	VEL SQ RATIO 1.200 D= 1078. = 1171. L= 2157. = 1157. = 185. C= 1102. R= 0.528 = 0.484 = 11.70 * 0.480 = 9.45 AXIAL VEL SQ = RATIO 1.200 CAL D= 1101. = 1572. = 370. C= 803. C = 8	PRESS RATIO 0.000 13 57 44 70 11 3 7 4 4 8 PRESS RATIO 3.660 5 5 9 70 11 40 5
POWER 12900.0 STAGE EXIT EXIT EXIT EXIT INLET INLET INLET LAST STAGE SHAFT POWER 0.0 STAGE SHAFT POWER 0.0 STAGE EXIT EXIT INLE	FLOW 53.50 TIP DIAME RADIUS RA TIP DIAME RADIUS RA TIP DIAME FHUB DIAME STG MI AI STG MI AI STG MI AI DR EXIT AI E 1- 2 MEJ MASS FLOW 53.50 ES= 2 TIP DIAME HUB DIAME HUB DIAME TIP DIAME TIP DIAME TIP DIAME TIP DIAME TIP DIAME TIP DIAME TIP DIAME STG MI A STG MI A STG MI A STG MI A OR EXIT A	TEMP 2660.00 TTER = 26. TTER = 21. TTER = 21. TTER = 21. TTER = 21. STER = 21. STER = 21. STER = 21. SS = 1.20 SS = 1.20 SS = 1.20 SS = 1.20 SS = 1.20 SS = 1.20 TEMP 2660.00 ETER = 27. TTEMP 2660.00 ETER = 27. TTEN = 2. TTEN = 2. TTEN = 2. STER = 2. TTEN = 2.	PRESS 113.10 11 EX 00 EX 44 EX 35 EX 66 T 67 R0 82 LA 10 LA 67 R0 9PE = 14 INLET PRESS 113.10 35 EX 00 EX 77 EX 23 T 23 ST- 23 ST- 240 LA 375 LA 940 LA 18 R0	SPEED 11400.00 AGE WORK F IT TOTAL T IT STATIC IT STATIC IT STATIC IT STATIC IT STATIC S PRESS R. ST STG M1 TOR INLET .18 DEG BA ROTATIVE SPEED 11400.00 AGE WORK F IT STATIC IT STATIC S PRESS R. S PRESS R. S PRESS R. S CLFIC WO	HB DIA HB DIA 20.000 AACTOR= 1 IEMP =22 TEMP =12 RESS = PRESS = ANGLE = ASED ON I INLET HB DIA D 20.00 CACTOR= PRESS= ATIO = RK = REL = ANGLE =	HB DIA 21.00 1.68 083.64 999.26 3.380 28.28 3.346 0.5561 32.78 MID ASPEC EXIT HB DIA 21.00 1.62 079.52 026.66 34.53 30.90 3.276 3.660 171.68 0.3711 0.4852 46.25 0.3289 2.30	RADIUS RATIO 0.0000 REYNOLI STATOR STAGE ROTOR TOTAL LAST S ROTOR CT-RATIO EXIT RADIUS RATIO CONCOR CT-RATIO CONCOR RATIO RATIO RADIUS RATIO RATIO CONCOR ROTOR ROTOR ROTOR ROTOR ROTOR ROTOR ROTOR ROTOR STATC ST	EX ANG 65.00 DS NO.=0 EXIT ANG EXIT ANG EFFICIEN EFFICIEN TG M2 REI EXIT ANG TG M2 REI EXIT ANG BLADING STATOR EX ANG 65.00 DS NO.=D EXIT ANG EXIT ANG EFFICIEN EFFICIEN TG M2 REI EX ANG CS ANG	CONST 53.37 1576E+07 5LE = 65.00 E = -44.42 E = -44.42 C = 0.887 C = 0.887 L = 0.6168 L = -39.72 L = 0.6168 L = -39.72 L = 0.6168 C = -48.35 C = -48.35 C = -48.35 C = -48.35 C = -48.35 C = -48.35 L = -48.35 C = -48.35 L = -48.35 C	CAPAC VIS RATIO 1.302 0. DIAGRA FIRST LAST S LAST S LAST S LAST S LAST S LAST S LAST S LAST S STAGE HEAT (C CAPAC VIS RATIO 1.302 0 DIAGRA DIAGRA DIAGRA DIAGRA STAGE LAST S LAST S STAGE DIAGRA DIAGRA DIAGRA DIAGRA STAGE LAST S LAST S LAS	COSITY 376E-04 MS ARE II STAGE MEA STAGE MEA STAGE INLI STAGE INLI STAGE MEA STAGE MEA STAGE MEA STG M2 AB EXIT ANG EXIT ANG EXIT ANG STG M2 AB EXIT ANG STG M2 AB STG M2	LOSS COEF O.350 MPULSE AN SPEED T SWIRL ID VELD H NUMBE S S LE URBINE LOSS COEF O.35 COEF O.45 VMMETRI T SWIRL T SWIRL ID VELO COEF O.45 VMMETRI T SWIRL T SWIRL S S S S S S S S S S S S S S S S S S S	VEL SQ RATIO 1 1.200 D= 1078. = 1171. L= 2157. = 1171. L= 2157. = 185. C= 1102. R= 0.528 = 0.484 = 0.528 = 0.484 = 11.70 ± 0.4860 = 9.45 AXIAL VEL SQ = RATIO 1 1.200 CAL D= 1101. = 1572. L= 1572. L= 1572. R= 0.377	PRESS RATIO 0.000 13 57 44 70 11 3 7 4 8 8 T-S PRESS RATIO 3.660 57 70 11 40 5 6 1

the specified input requirements, while the other two indicate the nonexistence of a hub or tip solution satisfying free-vortex conditions. These messages are presented in this section, and their causes are discussed.

(1) INSUFFICIENT ENERGY—This message is caused by the computed turbine exit total temperature being less than zero.

It indicates that the turbine specific work requirement is greater than the energy available in the gas. Therefore, either the specified shaft power must be decreased or the specified flow must be increased.

(2) INSUFFICIENT IDEAL ENERGY—This message is caused by the computed ideal energy being more than that available from an infinite expansion of the gas. It indicates that the computed efficiency is too low to yield a valid solution. Corrective action includes decreasing power, increasing flow, using more stages, or perhaps using a different velocity diagram.

(3) NEGATIVE TEX—This message is caused by the computed turbine exit static temperature being less than zero. It indicates a low value of turbine exit total temperature and/or a high value of turbine exit velocity. Corrective action could be the same as for message (2) or decreasing a too high value of stage exit to average meridional kinetic energy ratio (E).

(4) INSUFFICIENT EXIT AREA—This message is caused by the computed exit area being larger than that available in the turbine. Such a situation can be remedied in many ways, including increasing exit diameter, decreasing stator exit angle, increasing inlet pressure, decreasing mass flow, and increasing stage exit to average meridional kinetic energy ratio.

(5) INSUFFICIENT INLET AREA—This message is caused by the computed inlet area being larger than that available in the turbine. Corrective measures are the same as for message (4).

(6) NEGATIVE T AT STATOR HUB EXIT—This message is caused by the stator-exit hub static temperature being less than zero as a result of a very high absolute velocity. Although a non-free-vortex design (not available from this program) might not result in a similar condition, it is extreme enough to indicate that the mean-section design may require change such as a larger diameter, smaller stator angle, or more stages. This condition does not interrupt the mean section computations.

(7) NEGATIVE T AT ROTOR TIP EXIT—This message is caused by the rotor-exit tip static temperature being less than zero as a result of a very high absolute velocity. Corrective measures are the same as for message (6) above.

National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio 44135 August 12, 1991

References

- Głassman, A.J.: Computer Program for Preliminary Design Analysis of Axial-Flow Turbines. NASA TN D-6702, 1972.
- Stewart, W.L.: A Study of Axial-Flow Turbine Efficiency Characteristics in Terms of Velocity Diagram Parameters. ASME Paper 61–WA-37, 1961.
- Glassman, A.J., ed.: Turbine Design and Application. Vol. One. NASA SP-290, 1972.
- Timko, L.P.: Energy Efficient Engine High Pressure Turbine Component Test Performance Report. (R82AEB406, General Electric Co.; NASA Contract NAS3-20643), NASA CR-168289, 1984.
- Whitney, W.J.: Cold-Air Investigation of a 3^{1/2}-Stage Fan-Drive Turbine with a Stage Loading Factor of 4 Designed for an Integral Lift Engine.
 2: Performance of 2-, 3- and 3^{1/2}-Stage Configurations. NASA TM X-3482, 1977.
- Bider, B., et al.: Cold-Air Investigation of a Turbine for High-Temperature-Engine Application. NASA TN D-4389.
- Whitney, W.J.; Schum, H.J; and Behning, F.P.: Cold-Air Investigation of a Turbine for High-Temperature-Engine Application. 4: Two-Stage Turbine Performance. NASA TN D-6960, 1972.
- Kofskey, M.G.; Nusbaum, W.J.; and Haas, J.E.: Turbine for Ordinance Turbojet Engine. 2. Cold-Air Performance With Opened Stator. NASA TN D-7626.
- Moffitt, T.P., et al.: Design and Cold-Air Test of Single-Stage Uncooled Turbine With High Work Output. NASA TP-1680, 1980.
- Whitney, W.J., et al.: Cold-Air Investigation of 4¹/₂-Stage Turbine With Stage Loading Factor of 4.66 and High Specific Work Output. 1: Overall Performance. NASA TM X-3498, 1977.
- Stabe, R.G.; Whitney, W.J.; and Moffitt, T.P.: Performance of a High-Work Low Aspect Ratio Turbine Tested With a Realistic Inlet Radial Temperature Profile. NASA TM-83655, 1984.
- Gardner, W.B.: Energy Efficient Program: High Pressure Turbine Uncooled Rig Technology Report. (PWA-5594-92, Pratt & Whitney Aircraft; NASA Contract NAS3-20646), NASA CR-165149, 1979.
- Bridgeman, M.J.; Cherry, D.G.; and Pedersen, J.: NASA/GE Energy Efficient Engine Low Pressure Turbine Scaled Test Vehicle Performance Report. (R83AEB143, General Electric Co.; NASA Contract NAS3-20643), NASA CR-168290, 1983.

REPORT D	Form Approved OMB No. 0704-0188									
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.										
1. AGENCY USE ONLY (Leave blank)	ID DATES COVERED									
	Contractor Report									
4. TITLE AND SUBTITLE Computer Code for Prelimin	5. FUNDING NUMBERS									
· · · · · · · · · · · · · · · · · · ·	, <u> </u>	· · · · · · · · · · · · · · · · · · ·	WU-505-69-50							
6. AUTHOR(S)	were and the second	<u> </u>	G NAG3-1165							
Arthur J. Glassman			- · · · · · · · · · · · · · · · · · · ·							
7. PERFORMING ORGANIZATION NA	ME(S) AND ADDRESS(ES)	אמרקה ליון היין הייניי ליוי ליוי איייי	8. PERFORMING ORGANIZATION REPORT NUMBER							
University of Toledo Department of Chemical En Toledo, Ohio 43606	gineering		E-6150							
9. SPONSORING/MONITORING AGEN	NCY NAMES(S) AND ADDRESS(ES)		10. SPONSORING/MONITORING AGENCY REPORT NUMBER							
National Aeronautics and Sp	pace Administration									
Lewis Research Center Cleveland, Ohio 44135-319	1		NASA CR-4430							
11. SUPPLEMENTARY NOTES		en i i enconconjetje dije jite γ	1							
			ewis Research Center. Arthur J.							
Glassman, The University o Research Center.	f Toledo, Toledo, Ohio 43606 a		Associate at NASA Lewis al Report							
12a. DISTRIBUTION/AVAILABILITY S	TATEMENT	r ma	12b. DISTRIBUTION CODE							
Unclassified - Unlimited										
Subject Category 07										
13. ABSTRACT (Maximum 200 words	•									
This mean-diameter flow analysis uses a stage-average velocity diagram as the basis for the computation of efficiency. Input design requirements include power or pressure ratio, flow rate, temperature, pressure, and rotative speed. Turbine designs are generated for any specified number of stages and for any of three types of velocity diagrams (symmetrical, zero exit swirl, or impulse) or for any specified stage swirl split. Exit turning vanes can be included in the design. The program output includes inlet and exit annulus dimensions, exit temperature and pressure, total and static efficiencies, flow angles, and last-stage absolute and relative Mach numbers. This report presents the analysis method and a description of the computer program input and output with sample cases. The analysis and code presented herein are modifications of those described in NASA TN-D-6702. These modifications improve modeling rigor and extend code applicability.										
14. SUBJECT TERMS Turbines; Axial flow			15. NUMBER OF PAGES							
			16. PRICE CODE A03							
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFIC OF ABSTRACT	ATION 20. LIMITATION OF ABSTRACT							
NSN 7540-01-280-5500	Unclassified	Unclassified	Standard Form 298 (Rev. 2-89)							

oranuaru	1 0111	E30 (i	164. 2-03)
Prescribed 298-102	by AN	SI Std.	Z39-18