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ABSTRACT

The development of systems such as acoustic levitation chambers will allow for the

positioning and manipulation of material samples (drops) in a microgravity environment. This

provides the capability for fundamental studies in droplet dynamics as well as containerless

processing work. Such systems utilize acoustic radiation pressure forces to position or to further

manipulate (e.g., oscillate) the sample. The primary objective of this report was to determine

the effect of a viscous acoustic field/tangential radiation pressure forcing on drop oscillations.

To this end, the viscous acoustic field is determined. Modified (forced) hydrodynamic field

equations which result from a consistent perturbation expansion scheme are solved. This is done

in the separate cases of an unmodulated and a modulated acoustic field. The effect of the

tangential radiation stress on the hydrodynamic field (drop oscillations) is found to manifest as

a correction to the velocity field in a sublayer region near the drop/host interface. Moreover,

the forcing due to the radiation pressure vector at the interface is modified by inclusion of

tangential stresses.



CONTENTS

TITLE PAGE

ABSTRACT 1

CONTENTS 2

I. INTRODUCTION 4
I A. BACKGROUND 4
IB. OBJECTIVES 7

II. ACOUSTIC FORCING MECHANISMS AND GOVERNING
EQUATIONS 8
II A. ACOUSTIC FORCING MECHANISM 8
II B. CASE OF NON-AXISYMMETRIC FORCING 11
HC. GOVERNING EQUATIONS 14

III. VISCOUS ACOUSTIC FIELD 16
III A. DISCUSSION OF APPROACH:

VELOCITY DECOMPOSITION METHOD VS.
METHOD OF COMPOSITE EXPANSIONS 16

III B. SOLUTION OF THE VISCOUS ACOUSTIC FIELD VIA
METHOD OF COMPOSITE EXPANSIONS 18

inc. BOUNDARY/INTERFACE CONDITIONS 37
IE D. COMMENTS ON THE ROLE OF BULK VISCOSITY 41

IV. TANGENTIAL RADIATION PRESSURE VECTOR 43
IV A. TANGENTIAL RADIATION PRESSURE VECTOR 43
IV B. SPHERICAL HARMONICS/COMPUTATIONAL CONCERNS 47
IV C. EXAMPLE CALCULATION 49

V. HYDRODYNAMIC FIELD: FORCED BY AN UNMODULATED
ACOUSTIC STANDING WAVE FIELD 59
V A. HYDRODYNAMIC FIELD EXTERIOR TO THE DROP:

EQUATIONS AND SOLUTIONS 59
V B. HYDRODYNAMIC FIELD INTERIOR TO THE DROP:

EQUATIONS AND SOLUTIONS 76
VC. BOUNDARY/INTERFACE CONDITIONS 90

VI. HYDRODYNAMIC FIELD: FORCED BY A MODULATED
ACOUSTIC STANDING WAVE FIELD 111
VI A. HYDRODYNAMIC FIELD EXTERIOR TO THE DROP:

EQUATIONS AND SOLUTIONS 112



VI B. HYDRODYNAMIC FIELD INTERIOR TO THE DROP:
EQUATIONS AND SOLUTIONS 135

VIC. BOUNDARY/INTERFACE CONDITIONS 158

VII. CONCLUSIONS 185

REFERENCES 192

PUBLICATIONS 194

APPENDIX I: DETAILS ON VELOCITY DECOMPOSITION APPROACH 195

APPENDIX II: ACOUSTIC FORCING (UNMODULATED) OF COMPOUND
FLUID DROP: SUBCASE OF CORE/SHELL
VISCOSITIES DIFFERENT 204



I. INTRODUCTION

IA. BACKGROUND

The development of acoustic levitation systems has provided a technology which will

enable containerless processing in a microgravity environment. Such systems also provide the

capability to undertake fundamental studies of droplet dynamics. Acoustic levitation devices

utilize radiation pressure forces to position the sample away from the chamber walls. Specific

types of systems are the single axis system (Barmatz, 1981) as well as a three-axes design (Wang

et. al., 1984). In the case of a three-axes system, acoustic drivers (speakers) centered in the

three orthogonal sides of a parallel piped chamber are driven at its resonant frequency. Liquid

drops can then be positioned in the region in which the pressure is at a minimum (i.e., the wave

pressure nodes). The acoustic levitation system provides for more capabilities than merely that

of drop positioning. In addition, the drop can be made to rotate via phase lagging two of the

acoustic waves. Also, drop oscillations can be induced via frequency modulation of an acoustic

wave.

The quadrupole resonance of simple drops was investigated by Marston and Apfel (1980)

in an experimental study. Modulated acoustic radiation pressure provided the driving force.

The experimental work of Trinh, Zwern, and Wang (1982) studied the small amplitude

oscillation and decay of a free (non-driven) drop. Furthermore, large-amplitude drop shape

oscillations have been experimentally investigated for the free and forced cases (Trinh et. al.,

1982). Both drop oscillations and break-up were studied in a visualization experiment by

Marston and Goosby (1985). All these experiments were performed in a Ig gravity field. The

drop itself was surrounded by an immiscible host fluid, with positioning accomplished using



acoustic radiation forces.

Analytical and numerical investigations have focused primarily on free drop oscillations

and decay. Miller and Scriven (1968) addressed the problem of normal mode oscillations of a

viscous liquid drop immersed in a viscous host medium, and derived analytical expressions for

limit cases. More recently, Prosperetti (1980) completed a numerical study of free viscous drop

oscillations and decay for a range of values of host medium viscosities. Both these

investigations involved a linear analysis. Also, there has been some recent work concerning the

nonlinear oscillation of inviscid drops (Tsamapoulos & Brown, 1983, Natarajan & Brown,

1987).

The work of Marston (1980) was an analytical investigation into the acoustically forced

fluid drop problem. It is the projection of the radiation stress tensor onto the surface of a drop

in order to form the radiation pressure vector which actually accounts for the forcing terms.

Marston calculated the radial component of the radiation pressure vector for a specific limit case;

that in which the acoustic field is taken to be irrotational and the correct tangential acoustic

boundary conditions at the drop/host medium interface were not enforced. Thus, no tangential

radiation stresses could contribute. The drop was forced at the boundary/interface only. There

was no forcing of the Navier-Stokes equations which govern the behavior of the hydrodynamic

field which itself results from the action of the acoustic forcing. The only coupling between the

hydrodynamics and acoustic fields is through the boundary/interface conditions.

The incorporation of viscous effects into the acoustic field has ramifications for the full

hydrodynamic problem in two ways. First, the modification of the acoustic field to include

viscous effects will allow for the enforcement of the tangential boundary condition on the



acoustic field. This will result in the existence of tangential radiation pressure forces. These

forces then enter into the boundary/interface conditions on the hydrodynamic field. Secondly,

the full hydrodynamic equations themselves are forced by nonlinear terms relating to the acoustic

field. The solution of the hydrodynamic field itself is then altered from that given by, say,

Miller and Scriven (1968).



IB. OBJECTIVES

The primary goal of this work is to determine the effect that incorporation of the

tangential radiation pressure forces has on the drop oscillations.

Additional related considerations include: (a) possible effects of a non-axisymmetric

acoustic field, (b) efficient evaluation of the tangential radiation pressure vector, (c) the role of

bulk viscosity in the tangential radiation stresses, and (d) extensions to compound drop forcing.

In order to meet the primary objective, it is necessary to include the effects of viscosity

in the acoustic field representation. This is done in Section III of the report. Since the viscous

acoustic field will affect the hydrodynamic field both through the boundary/interface conditions

and via a modification of the hydrodynamic field equations themselves, these topics must be

addressed. The determination of the tangential radiation pressure vector which contributes to

the boundary/interface conditions is done in Section IV. The modified hydrodynamic field is

investigated in Section V for the case of forcing by an unmodulated acoustic standing wave field

and in Section VI for the case in which the acoustic standing wave field is modulated.

The secondary objectives are addressed in the appropriate sections (see Table of

Contents). Moreover, supporting material in the Appendices serves to further elucidate these

topics.

Conclusions are presented in Section VII.



IL ACOUSTIC FORCING MECHANISM AND GOVERNING EQUATIONS

HA. ACOUSTIC FORCING MECHANISM

Certain definitions and an associated discussion will be useful, as they pertain to concepts

and quantities which will be calculated/manipulated in subsequent sections.

The acoustic radiation stress tensor is given by

with

v * /

Adiabatic compressibility is given by P . The brackets indicate averaging over an acoustic

period. The projection of the radiation stress onto the drop surface is given by

( Air " TTrr ) ^r

- IT;) e6 +
Superscripts indicate the regions interior and exterior to the drop's surface. The tangential

component of the radiation pressure vector is given by the €0 and e^ components of equation

(HA. 3). Note the velocity and pressure fields indicate acoustic quantities.

The drop oscillation is induced through frequency modulation of the acoustic wave.

8



Given an acoustic frequency, o^ , a second wave with frequency w2 is required, such that

the drop frequency of oscillation is given by the difference of those of the acoustic waves. That

is> w(DROP)' Qi~ °2 • The carrier frequency is given by the average of the two acoustic

frequencies. Note that the wavelength of the acoustic carrier wave should be such that it couples

reasonably to the drop diameter. The representation of the acoustic radiation pressure vector

is best done through the use of spherical harmonics. That is,

=
(HA.4a)

(
\
J
A-

5 STBTtC

The projection is

' * —

(HA.4b)

and similarly

(u* <^-
J J*m

^

(HA.4c)

Note that dQ-sin6d6d<j> . The static part of the radiation stress vector as well as the

oscillating contribution (which oscillates at the drop frequency) are given. If the acoustic wave



is not modulated, there will NOT be an oscillating forcing term. Note that the tangential

radiation pressure appears in an odd operator form. This is due to the fact that the unforced

drop oscillations were originally determined (Miller and Scriven, 1968) using this form.

For further discussion of the radiation stress as related to drops, see Marston et. al.,

(1982).

10



IIB. CASE OF NON-AXISYMMETRIC FORGING

This section pertains to a qualitative investigation into the possible forcing of shear waves

(in the hydrodynamic field) due to the acoustic field. As such, the acoustic field will be

assumed to be viscous, and to generate non-zero tangential radiation stresses at the interface.

As effects can be seen even if the coupling between the acoustic and hydrodynamic fields is

restricted to the boundary conditions, this will be the taken to be the case. That is, no forcing

of the governing equations themselves will be taken into account. Again, this is making the

inviscid acoustic approximation in the governing equations of the hydrodynamic field, but not

in the boundary conditions. This introduces the simplification that the general solutions to the

unforced hydrodynamic equations are those given be Miller and Scriven (1968).

The task of this section is to investigate the result of boundary/interface forcing on the

behavior of these solutions. The boundary conditions which must hold at the drop/host interface

are (1) the kinematic condition, (2) the stresses are balanced, and (3) the velocity components

are continuous. Both the second and third conditions generate three equations. Moreover, all

the boundary conditions can be expressed using only the radial component of the velocity and

vorticity fields. This can be done via operations of taking the surface divergence of the

tangential balances in conditions (2) and (3), and of taking the radial component of the surface

curl of these same conditions. A spherical coordinate system is used.

For clarity, the radial velocity (Qr) and vorticity (6r) components are listed below

*i \ •**! I.•• - e U/"1 + a3^;a(r,r^^[*.«n emua)JX l

11



(IIB.lb)

A 1

(HB.IC)

The functions are spherical Bessel and Hankel functions of the first kind. The caret indicates

the hydrodynamic velocity field. The Y l m (Q f$) are spherical harmonics.

Note that the "a" and "b" coefficient are determined via application of the boundary

conditions. In this case, the boundary conditions will involve forcing due to the radiation

stresses at the interface. The forcing of the shear waves is constructed via performing the

aforementioned operations involving the surface curl. This yields (at r=R)

(IIB.la)

12
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^_\ (f
H* I

i a (siB
13e (IIB.2b)

The exponential term indicates the phase. Without the forcing term on the right hand side of

equation (IIB.2b), this system will reduce to two homogeneous equations in two unknowns. The

resulting dispersion relation describes the behavior of shear waves and is well known.

Physically, it describes waves which are purely rotational and decaying. The presence of the

forcing term is due itself to the components of the tangential radiation stress vector. Note that

if axisymmetry is assumed, and p?4 is zero, then there is no forcing. However, if the

axisymmetry of an acoustic field is not maintained in, say, an experiment, then the forcing of

hydrodynamic shear waves appears possible. Of course, a full investigation would require that

the hydrodynamic field equations themselves be forced in addition to the boundary/interface

forcing described above.

13



EC. GOVERNING EQUATIONS

The governing equations of those of fluid mechanics; the conservation of mass,

momentum, and energy equations. Since the fluid (acoustic field and hydrodynamic field) is

considered to be isothermal, the energy equation will simplify considerably, and result in a

relationship between the pressure and density fields.

The general form of the governing equations will include contributions due to

compressibility. Although the hydrodynamic field is considered incompressible, the acoustic

field clearly cannot be.

The ambient mean pressure and density are constant. The acoustic field (or sound field)

can be viewed as a perturbation of the ambient environment. A consistent perturbation

expansion scheme will be developed whereby the hydrodynamic field will arise naturally (at

second order), forced by terms which are quadratic in the acoustic field quantities.

The governing equations must be satisfied in the regions interior and exterior to the drop.

In dimensional form they are given by:

(Conservation of Mass)

u. - O
(nc.i)

(Conservation of Momentum)

(nc.2)

14



(Conservation of Energy/Equation of State)

IP - «-lp (HC.3)

The variables p, u , and p denote the pressure, velocity and density fields. The material

properties of dynamic viscosity, 11 , and bulk viscosity, \LBOLK , are constants. Of course, the

values will be different according as to which fluids form the drop and host media. The

conservation of momentum equation is the compressible Navier - Stokes equation in which no

body forces are present. In equation (IIC.3), c0 refers to the speed of sound.

15



HI. VISCOUS ACOUSTIC FIELD

HI A. DISCUSSION OF APPROACH: VELOCITY DECOMPOSITION METHOD VS.
METHOD OF COMPOSITE EXPANSIONS

Attention is restricted to the case in which the acoustic field is axisymmetric. In the case

of the velocity decomposition approach, the acoustic velocity field is comprised of a solenoidal

and an irrotational contribution. That is,

x A

Moreover, A is of the form (o,o,i|r) , with \|r a scalar function. Equations can be developed

for 4> and i|r . The details of such a development, and the resulting solutions, are found in

Appendix I. That is, for the axisymmetric case, the problem of determining the acoustic field

which incorporates the effects of viscosity is analytically very tractable.

In particular, note that arguments (of spherical Bessel functions) arise in the form of

, with <•> the acoustic frequency and R the radius of the drop. Specifically,

these arise in the solution for i|r . (Of course, i|r itself contributes to the boundary conditions

at the drop/host interface.) The acoustic frequency is on the order of hundreds of kilohertz, and

the drop radius is, in general, several millimeters. Moreover, it is necessary to allow for

reasonable values of v0 , so it is doubtful that realistic values of the kinematic viscosity would

serve to decrease the magnitude of the argument.

This leads to difficulties in the numerical evaluation of the unknown coefficients (listed

in the boundary/interface conditions given by equations [Al.lla - Al.lld]).

An alternate approach which avoids these difficulties is to utilize a boundary layer

formulation. Moreover, this approach has the capability to elucidate the flow field structure in

the region near the host/drop interface.

16



It is this second approach which will be employed. However, note that the first approach

has been developed, also, and is discussed in detail in Appendix I.

The boundary layer approach which is to be used is termed the method of composite

expansions (see Nayfeh, 1973). The details of this method as they pertain to this problem are

found in succeeding sections.

17



HIS. SOLUTION OF THE VISCOUS ACOUSTIC FIELD VIA THE METHOD OF
COMPOSITE EXPANSIONS

The governing equations are those listed in Section II C. They will be

nondimensionalized with respect to acoustic field variables. Let

(«" u«*

=V ; ' f>'f * f ', £<$?? =

The velocity scale is given by the sound speed in the outer medium. The acoustic frequency is

used to define the time scale. The length scale follows from these two quantities. Density is

nondimensionalized with respect to the ambient density in the outer medium. Tildes indicate

nondimensional quantities. The nondimensionalization scheme is the same in both regions,

interior and exterior to the drop.

The method of composite expansions is a generalization of the method of matched

asymptotic expansions which has been used successfully in boundary layer applications (Nayfeh,

1973). The basis idea is that the viscous effects on the acoustic field are of primary importance

in a region near the drop/host interface. The scale of this region is proportional to SQRT (v/u),

with v the kinematic viscosity and w the frequency of the acoustic wave. In levitation systems,

this quantity is quite small due to the relatively large magnitude of the acoustic frequency. The

choice of the acoustic frequency is driven by the selection of the acoustic wavelength to be on

the order of the drop dimension.

The full nonlinear nondimensional governing equations of compressible isothermal fluid

dynamics are to be expanded in a small parameter, 6 . In this analysis, 6 is a formal

18



parameter. It is interpreted as the ratio of the natural frequency of oscillation of the drop to that

of the acoustic frequency. Another small parameter arises naturally in this "boundary/interface

layer" approach. This second small paramter, e , is equal to SQRT (I/Re) , with Re a

Reynolds type number which is defined later in this section.

It is possible to relate the formal structure of this analysis to work done by Riley (1967)

in his consideration of the flow induced by a solid body that is in oscillatory motion in an

infinite viscous fluid which is otherwise motionless. Of course, the problem being considered

here is very different. The fluid drop has no translatory motion. Oscillations of the drop would

be due strictly to the action of a modulated acoustic field. However, a formal comparison may
be made with Riley's work. He defined three parameters, R, Rs, and M2. These are equivalent

to (8/e2), (6/e)2 , and (l/e2) , respectively. The region of interest in the acoustically forced

drop problem would correspond to the case of M > 1, R, Rs > 1 .

Consider the fluid region exterior to the drop (host region). The system of governing

equations (Section IIC) is nondimensionalized and then is linearized after a perturbation

expansion in a small parameter, 6 . The base state about which the perturbation occurs is that

of zero mean motion, and constant ambient pressure and density. The lowest order perturbation

is the sound field. The tildes are dropped for convenience. The resulting system (to lowest

order in 6 ) is

v- v° = o (IIB'2a)

19



(nB-2b)

$ (mB.2c)

The superscript "o" denotes the fluid region exterior to the drop. A subscript of "1" indicates

sound field quantities. At this stage, higher order terms have been neglected. The

nondimensional parameters which appear are

In the fluid region interior to the drop, the governing equations (to lowest order in

small expansion parameter 8 ) are

Ji (mB.3a)• v. = o

(raB-3b)

20



(mB.3c)

with a - i$Ho> P - p(/Po , and T' - pLo/^o • The system of equations (IIIB.3a-c) in the

region interior to the drop (and (HIB.2a-c) exterior to the drop) are subjected to a "boundary

layer" type analysis. That is, in the interior of the drop, the fluid will be considered to be

comprised of an "inner" layer and an "outer" region. Note both the "inner" and "outer" regions

lie within the drop. In the "inner" region, the effects of viscosity are important, and in the

"outer" region they are absent. This analysis itself is termed the method of composite

expansions. The same methodology is employed in the (host) fluid exterior to the drop. See

Figure nffi.1.

The subscript "1" which heretofore has referred to sound field quantities is now dropped.

Subscripts will now refer to inner and outer expansion quantities.

Application of Method of Composite Expansions to Linearized System of Equations

In the method of composite expansions, the dependent variables are expressed in terms

of functions having different independent variables (in the et direction). One is a stretched

variable. In the outer region, the variable is given, of course, by r. In the inner region, the

independent variable is given by 5 (if interior to the fluid drop) or C (if exterior to the fluid

drop). The small parameter in the expansion which is part of the method of composite

expansions is e . This small parameter is taken to be larger than the small

parameter 5 (found in the 6 expansion). That is, this method is valid for the case in which

the nonlinear terms arising at next order are smaller than the viscous contribution.

21



Although this approach is valid when the acoustic field is non-axisymmetric, the equation

development will be done for the less algebraically involved case (i.e., axisymmetric).

Consider the fluid region interior to the drop. Let r-R-e£. The constant

R - aw/c° , and "a" is the nondimensional drop radius. The small parameter, e , is taken

to be sqrt(l/Re). Rewriting system (IIIB.3a-c) in terms of the inner layer variable, £ , yields

a t . _
V * 3* <*-& («-£« **• 30

(IITB.4a)

t. t :££! J. 4 J^ _ 1 (Sfc6l_fl Vr )
H* <R-*^ ^ «-a)*s^«a^ *d J V

(THB.4b)

22



1ft

(mB.4c)

The dependent variable q' 6 {v/, v,!, p!, p'} is expanded in the inner layer region as
follows:

(mB.5)
|

M> <l>

R

t H.a T.

The notation "A" indicates the outer region dependent variable. It is expanded in a Taylor series

expansion in terms of the inner region variable. The "«" denotes the inner region dependent

variable. Superscripts "i" indicate that these quantities are defined in the fluid region interior

to the drop. The inner region functions must decay to zero as °°

23



The functions which are dependent upon the outer region variable, r, can be obtained via

solution of outer region system. To lowest order in e , this system is simply that which

represents the inviscid acoustic standing wave field. For completeness, these equations and the
resulting

solution are listed below

• V1 a O

AX / C* \ * A, i

P = (t) f

A solution is obtained in <j>' , which is V - ^ 4 >

06

4 (Sx * CO (a»+ 0 j

24

(HLB.6a)

ir, - (mB.6b)
0t

<mB-6c>

m A •
A • ^ A

(mB.6d)

*ji is a spherical Bessel function. The coefficient 6t is



with h the distance from the acoustic velocity nodal plane to the center of the drop. If this
£ *distance is zero, then o, is zero for odd 1. The coefficient oi should not be confused with

the small expansion parameter 5. P, is a Legendre polynomial. The other dependent variables

in the outer region (still interior to the fluid drop) can be constructed from knowledge of 4>' .

Note that the unknown coefficient (at each value of 1) is given by a, .

Substitution of the expansions (IIIB.5) into the system (EIA.4a-c) yields

.7a)
'»•-»• J I

= O

* <nm.7b)

25



-t*W

t l-v

-
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H> ..„

- - 1 I

MfV l -8. A. 1

* s»?»

+ T*t ft'

(K-il)

« * *n*-) i
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Note that

from the outer region analysis (that is, from the solution of the inviscid acoustic field interior

to the drop, which is then expanded in a Taylor series expansion in terms of £ , the inner

region variable . This equation is embedded in (IHB.lc). Similarly,

* -- ' • « = o

which is embedded in (IIIB.7a). Also,

which is found embedded in (IHB.Tb). From the remaining terms in (HIB.7a-c), it can be seen

that Vj1 = 0(1) => V ;*% = O(c) => vj^ , and p', /'- (Ke2) - p^, ̂  . Then, to lowest

order, the inner region equations (interior to the drop) are

28



(fflB.8a)

n
(mB.8b)

H

H (fflB.Sc)

The solution for can be readily obtained. Following that, it is straightforward to
•o

obtain v^ , and then p^ . The solution for >£ is given as

29



oo

? > /./T CujOtXiS -jii
io 6 (nffi.9)

The determination of the acoustic field quantities in the fluid region exterior to the drop

(ie., host region) may be done in a similar fashion. An inner variable, C is defined. Let

Again, the small parameter e equals sqrt (I/Re). Also, R - flw/c" , with "a"

the dimensional radius of the drop. As was the case in the fluid region interior to the drop, the

dependent variables are to be expanded as

t H.Q.T.

where q° G {vr°, v,°, p°, p°}. The superscript "o" denotes the fluid region exterior to the drop.

The outer region dependent variables are indicated by "A", and the inner region dependent

variables are known by the " «". Functions in f must decay to zero as C •* °° • Note the

Taylor series expansion form of the outer region dependent variables are expressed in terms of

C , the inner variable.

The functions which are dependent upon (r,6,f) can be obtained by solving the outer

region system. To lowest order in e , this is the inviscid (scattered) acoustic standing wave

field. For completeness, the equations and resulting solution are listed

A O

= O

(niB.lla)
H

30



(nB.iib)
n

*°f (mB.iic)

with v ° = V 4° . A solution is obtained for <£ , which is^ •**! ^CT

(TUB.lld)

. f , j are as given previously in this section. The

unknown coefficient (for each 1) is given by a^ . The other dependent variables (in the outer

region and exterior to the drop) may be generated from knowledge of 4£,.

The system of governing equations exterior to the drop (mB.2a-c) rewritten in C (inner

variable), yields, to lowest order in e ,

- (HIB.12a)
?(B
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UP; -
H

U2b)

V$ f

>0 - £_yee (mB.i2c)
n

The solution for VL can be readily obtained. Following that, it is straightforward to obtain

, S*D r.^i « - * .
vrr and the p 2 • The solution of v4 is

oO

^L

»

(fflB.13)

The solutions for vr^ , vr i, p^ , and /j are ^ste(1 ^ tne following. For

completeness, ^ and v^, are included. Note that to lowest order, only the e6 component
Vi ft>O

of velocity has a contribution in the inner variable (f for ̂  , f for v^ ). It is at higher orders

that the other components will contribute terms which are strictly functions of the inner variable.
ftf *

In order to determine the total contribution at order e , it would be necessary to find v/ and
f̂ 0*

^ . In a similar fashion, in order to determine the total contribution at order e2 , it would

32



be necessary to calculate vrx , v^ , \6 , v . Moreover, the "outer" region solution must be

modified at this order.

These complete sets of higher order contributions are not needed. However, if there

were to be interest in, say, the function v^J (at order e ), it is noted that simply solving for

them via the order e equations which derive from (IIB.7a-7c) would not yield a uniformly valid

expression for >£ . That is, secular terms arise. These can be eliminated via introduction of,

say, a slow time scale. Such calculations are not required in the execution of this project, and

so are not presented here.

It is found that

<o

X * ° o ' '4
& ^Big exp ("0+a S ) i& e (nnu4a)

(lHB.14b)
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- II
.-i't

(fflB.14c)

/•*JL

(IDB.14d)

34



"4

(BIB.14€)

IV e,
* A *

H

It is stressed that, to lowest
order, the velocity field and pressure fields are given by

oCO
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and

To reiterate, the "A" indicate the solutions in the outer regions, which correspond to inviscid

acoustic field solutions.
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BOUNDARY/INTERFACE CONDITIONS

Solutions have been obtained for the inner and outer regions, both interior and exterior

to the drop. All solutions are finite in their respective regions of validity. The unknowns (for

each value of 1) are a), a,°d, A^ B^ .

There are four boundary/interface conditions which must be imposed. Use of these

conditions will generate a set of algebraic equations (at each 1) which can be solved for the

unknowns. Since the equations are nonhomogeneous, that is, they are forced by (functions of)

the inciden^ acoustic wave, this is not an eigenvalue problem. Once the coefficients are known

the viscous acoustic field, both interior and exterior to the drop, is known.

The four boundary/interface conditions at r-R

V* =r r (SCATTERED t rUUDEMT^ (IHC.la)

(HlC.lb)

SCATTERED + xwubeKT) (mc.lc)

(IHC.ld)
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The boundary/interface conditions must be applied at r-R , which corresponds to £ = 0 and

f = 0. Note that in this context r refers to the stresses. Physically, these boundary conditions

represent the velocity and stress balance in the normal and tangential directions to the interface.

If the solution of interest had been restricted to just the inviscid acoustic field, only

conditions (IIIC. la-b) would be applicable. Moreover, Tn would be replaced by pressure.

To lowest order in e the conditions are

(mc.2a)

- AX*.

<mc-2b)

= Aiwe •}{
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onc.2d)

In (niC.2a-b),Jt > 1. If the acoustic field were inviscid only, then the acoustic field variables

would be known once a{ and a.°sl were known (at each 1 value). That is, a system of two

algebraic nonhomogeneous equations in two unknowns would have to be solved. The forcing

term is due to the presence of the incident acoustic standing wave field, without which there is

no levitation system or flow field.

In the first boundary/interface condition, it is the radial components of the acoustic

velocity which must balance at the interface (r-R, C-£-0) . Note that this condition involves

only the contributions from the outer regions (i.e., inviscid solutions), as the viscous correction

occurs at a higher order. This is also the case for the second boundary/interface condition in

which the viscous contribution to the normal stresses occur at higher order.

It is in the tangential acoustic velocity balance at the interface that contributions from the

"inner" region enter, along with those which represent the inviscid solution. Finally, in the

tangential stress balance, only the inner region solutions contribute. Therefore, it is tangential

velocity balance which provides the coupling between the inviscid "outer" system and the

"inner" region corrections.

Since viscous effects are to be taken into account, conditions (niC.2c-d) also contribute;

resulting in four equations in four unknowns which must be determined.

This solution is done numerically using parameters of interest. Such quantities include

those of viscosity and density inside and outside the drop, as well as the drop radius. Note that
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the bulk viscosity does not appear (at lowest order) in either the outer or inner region equations.

Knowledge of the viscous acoustic field is necessary in order to determine the tangential

stress component of the radiation pressure vector. This is done in the next section.

Moreover, if the acoustic field is viscous, the acoustic field will couple to the second

order hydrodynamic field not only through the boundary/interface conditions, but also act as a

forcing term in the hydrodynamic equations themselves. This is presented in upcoming sections

for both the unmodulated acoustic standing wave field case and the modulated acoustic standing

wave field case.
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HID. COMMENTS ON THE ROLE OF BULK VISCOSITY

In the previous section, it was shown that part of the contribution to the attenuation of

the acoustic field is due to the presence of bulk (expansive) viscosity which enters into the

governing equations. The equations governing the acoustic pressure and velocity fields are

solved retaining this physical contribution, in general.

However, in the determination of the viscous correction to the acoustic field via the

method of composite expansions, it is found that those terms involving the bulk viscosity only

contribute at higher orders. Thus, in this approach, the bulk viscosity is not relevant.

If the vector decomposition approach had been utilized, the bulk viscosity would enter

into the analytical solution. This can be seen in Appendix I (see for example, AI.6B). It acts

to attenuate the acoustic wave.

However, in order to determine actual numerical values, it is necessary to know physical

property data. This necessity is not restricted to the value of the bulk viscosity, but also applies

to ambient medium density, shear viscosity, speed of sound in the medium, etc.

Of course, for a monatomic gas, the bulk viscosity is zero. Among the empirical

formulas which give values for /t is the classical work of Greenspan (1959) concerning

attenuation in diatomic gases. He found (using a polynomial fit to the data)

where n (the shear viscosity) is taken to be constant, a is the empirically determined constant,

7 the ratio of specific heats, and Pr the Prandtl number. For air, a = 0.8903, and for nitrogen,

a = 0.9104.
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When a specific physical system is under consideration, it is necessary to have at hand

the relevant physical property data in order to determine numerical values. However, the effect

of the physical phenomenon of bulk viscosity (among other contributing factors) is retained in

the analytical formulation which involves the exact solution (rather than the approximate

expansion method).
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IV. TANGENTIAL RADIATION PRESSURE VECTOR

The calculation of the radial component of the radiation pressure vector was done by

Marston (1980) for the case in which the acoustic field was considered to be strictly inviscid.

This topic will not be readdressed in the report. That is because the additional complexity due

to the viscous contribution will be evident from the full discussion of the tangential contribution

to the radiation pressure vector. Also, the recalculated radial radiation pressure would be, in

some sense, a correction to that done for the inviscid case. Moreover, in the case in which the

acoustic field is considered to be fully inviscid, as was done by Marston, there is no contribution

whatsoever to the tangential radiation stresses. Thus, no counterpart to the following work

exists.

IV.A. CALCULATION OF THE TANGENTIAL RADIATION PRESSURE VECTOR

The calculation of the tangential radiation pressure vector, denoted by prTANO, involves

the computation of (nj,,.- I&) and (nj,r- njr) , with

(IVA.la)

1C s °<v r 'v{> ; TT*r= p'<vr°v <IVA-lb>&r • ~ ~

This obviously means that vr'-
0, v/0, and v0

i>0 must be calculated in regions interior and exterior

43



to the drop interface. This has been done in the previous section. The time averages are done

in the same manner as Marston (1980), and are taken over an interval of 2*7ojc. The acoustic

carrier wave frequency is denoted by wc. It can be shown that, in the case in which the acoustic

wave was modulated, the resulting oscillation will be at the drop frequency (with a phase factor

also present). In the case of the unmodulated standing acoustic wave, the averaging eliminates

any time dependence.

From the results of the previous section it is clear that the acoustic velocity components

are expressed as a series in "1". The r dependence is seen to involve spherical Bessel and

Hankel functions. Also, the "inner" region stretched variables appear in exponential functions.

The 8 dependence occurs through the expressions involving Legendre and associated Legendre

polynomials. These functional dependencies involve infinite series.

In particular, in nondimensional form

(IVA.2a)

Note that the velocity components are also nondimensional quantities. To lowest order (in e)

this can be written as

"*
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"" \V°I- V« ^ \L VA^ rolu 9o\n "oU 0<>i5,0 / (TVA.2c)

Recall that <vf£ > = <v^ > at the interface, and thus

A* , A( i *«Vr«ie(/> V.|jTv'MR

(TVA.2d)

However, /3^ - v^ = 0 at the interface (based upon periodicity and continuity of pressure,
see Marston, 1980). Therefore,

(IVA.3)

In a similar fashion, it is possible to calculate (pTTANO)0. However, the calculation of the

tangential radiation pressure vector will only involve the eQ component, as axisymmetry has

been assumed. Even so, the manipulations will involve multiplication of the aforementioned

velocities, each represented by an infinite series. Moreover, an integration over 6 must be

performed.

If the arguments of the Bessel functions are small, simplifications will result. Only a few

terms of each series then need be retained. Of course, the arguments are composed of factors

which involve physical property data. Enough terms must be retained so as to insure that the

solution is adequately represented.

From inspection of equation (IIA.4c), it is clear that for any projection in which
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the y£, does not have m = 0 the integral will be zero. An evaluation of such integrals will

involve products of expressions comprised of Legendre polynomials, with Y^ ultimately to be

rewritten in terms of Legendre polynomials.
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IV.B. SPHERICAL HARMONICS/COMPUTATIONAL CONCERNS

In order to calculate (prTANO)e, it is necessary to calculate integrals such as

* { <"<*•:'>} s*»
(IVB.l)

where vro
i>0, Veo''0 are evaluated at r=R (f =£ =0), the drop radius, and the remaining functional

dependence is that of 0.

The primary interest will be in the lowest order shape oscillation, and I will be taken

to be equal to two. The resulting integrals which must be evaluated will have ^-dependence of

the form

- c,

(IVB.2)

c. is a constant.

As many / and /' values must be used as those used to represent the Bessel functions.

Moreover, it is possible that some of the resulting integrals will be zero.

Another form in which the tangential radiation pressure forcing could appear is in that

given in equation (IIA.4c). This occurs if the stress balance equations are manipulated through

such operations as taking the surface divergence. In this case, the tangential derivatives of the

product of, say, <vj *s*> with respect to 6 must be taken. This will be reflected in that the
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type of terms in the integrands of the resulting integrals will become more complicated than that

in (IVB.2).

It is clear that this is a manipulation involving intensive calculation which is best done

using computational resources. To that end, software development was done; the strategy is to

make use of representations of Legendre polynomials and efficient computational schemes which

have appeared in the literature (Press et. al., 1986).

In particular, the integrands may be represented by Chebyshev polynomials. Also, the

integration of a Chebyshev series can be done without quadrature per se, as relationships

between the coefficients of the integrand and of the would be integral are known. This is

discussed in more detail in the MSAE thesis of Ferguson.

Of course, the Bessel functions themselves have to have been evaluated at whatever the

constant value of the argument is. It is important to include enough terms in the series to satisfy

that the solution is adequately represented; that is, the truncation of the terms will have to be

done in order to obtain numerical results.
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IV.C. EXAMPLE CALCULATION

This section will consider the forcing in the boundary/interface conditions which will

occur if the description of the acoustic standing wave field includes viscous terms.

Note carefully that this section will not determine the forced hydrodynamic field. That

is to be done in Section V and VI for the cases in which the acoustic standing wave field (with

viscous effects included) is unmodulated and modulated, respectively.

In a sense, this is an intermediate approach to the problem of acoustic forcing of a liquid

drop. The work of Marston considered the acoustic field to be inviscid and the hydrodynamic

field to be strictly represented by the natural oscillating drop field determined by Miller and

Scriven (1968).

The primary work of this project is to determine the viscous acoustic field and

hydrodynamic field which is a solution to the forced governing equations. This hydrodynamic

field will be a modification of that known to Miller and Scriven. [These are given in Sections

III, V, and VI].

In this section, the acoustic field will include viscous terms. Therefore, the

boundary/interface conditions will include tangential stresses. However, the hydrodynamic field

will remain that of the naturally oscillating (unforced') drop.

The focus will be on the determination of the deformation to the drop due to the

(modulated) acoustic field; referred to as the "static part" by Marston (1980). The problem will

be done in dimensional form as to most easily compare with Marston (1980).

It is emphasized that very few experimental measurements on a variety of drop/host

systems have made. Therefore, calculations will be done for the case of a 1 mm drop of p-
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xylene in water. This was the system consider by Marston (1980) and Marston and Apfel

(1980), so some comparisons between calculations will be possible. Also, the physical property

data is taken from the aforementioned sources.

The other physical system with extent experimental results is a silicone oil drop in water

(Marston and Goosby, 1985).

The effect of parameter variation has been considered numerically (Ferguson, see MSAE

thesis).

The radial component of the hydrodynamic velocity field for this "static" problem is

given (in dimensional form) by

and

u° =
(IVC.lb)

The Yta(0,0) represent spherical harmonics. However, since the problem is axisymmetric,

— = 0 , and the value of m is strictly zero. The superscripts "i" and "o" indicate the
d<f>

regions interior and exterior to the drop.

Boundary/interface conditions are applied at r = R, with R the undisturbed drop radius.

Note that only the radial component of the hydrodynamic field is given. In the original work

of Miller and Scriven (1968) essentially a poloidal/toroidal field decomposition method was used
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in the theoretical investigation. Use of surface divergence and surface curl operators on the

boundary/interface conditions resulted in a set of relationships which involved on u/, u/5, and

the radial vorticity component. (They allowed for a <£ variation.) Moreover, the conditions

involving the vorticity decouple form those involving the velocity. (The resulting conditions

involving vorticity pertain to the existence of shear waves.)

In this example, only the radial (hydrodynamic) velocity components are necessary. The

boundary/interface conditions of continuity of radial velocity across the interface and the

kinematic condition result in

AI = - Cz R* (IVC.2a)

(IVC.2b)

as well as a consistency check.

The continuity of the tangential component(s) of the hydrodynamic velocity is addressed

using the surface divergence operator, with Vn • a' - Vff • u.° at r = R.

Also, Va - 7,3. e - V - er — . This yields (after making use of relations is (TVC.2a-2b))
dr

= 0 (rvc.3)

The surface divergence of the tangential stress is given by the following equation. Note that it

is forced by the surface divergence of prTANG, discussed in Section IVA. The constituents of
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acoustic field quantities. It is

=1 TAW4, \

(TVC.4a)

Henceforth, abbreviate VSURFACEby V,. The only component of prTANG will be (prTANG)e, as there

is no <f> dependence. Moreover, m = 0. The brackets " < >" indicate time averaging (over

the acoustic period).

It is understood that a summation appears in Equation (IVC.4a). Utilizing the

orthogonility properties of spherical harmonic functions as well as Eqns. (TVC.2a-2b) yields,

after manipulations
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-T (n Sliie

(IVC.4b)

The exponential represents the phase; with TJ^' the imposed phase and ij R' the response. Let

rjpjp1 = ij^ - rjR«. Also, via orthogonality properties, the integral which appears in the numerator

is known to have a value of one. Therefore, Equation (IVC.4b) can be rewritten as

« 4-( r

(rvc.4c)
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The final condition is that of the normal stress balance. It is given by

i U«XM)

(TVC.Sa)

As before, a summation is implied. After substitutions, manipulations and use of orthogonality

properties, this is given by

•V £

_ / r1* [•
N >o J.

(TVC.Sb)

54



The "static" deformation is given by K^.^ . The surface tension/curvature term is third on the

l.h.s., with Vindicating the surface tension. Let rjDW = 77^ - r/R; with 7?^ the phase of the

forcing and IJR the phase of the response.

The system of equations can be written in matrix form:

-1

-V V

(IVC.6)
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This is a forced system in three unknowns. The expression for K^O can be obtained easily via

Cramer's rule. It is

(

4 *

(rvc.7)

Clearly, the tangential radiation stress will contribute to the deformation. Moreover, the

incorporation of viscous effects into the acoustic field will modify the value of < pr™dw >.

Marston calculated K^ for a 1 mm p-xylene drop in water, assuming an inviscid

acoustic field. He took the acoustic carrier wave frequency to be 217.5 kHz. The drop's center

was taken to be located at the velocity modal plane of the incident carrier wave. The incident

pressure wave had amplitude of 105 dyn/cm2.

His calculation of pr"""*1 was based on an approximate formula as opposed to expansion

of the Besseifunction series, later improved (Marston et. al., 1981). His improved formula

calculated <prm
aaM> as"42 7 dyn/cm2. Note that 1 = 2. Deformation was found to be on the
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order of 1 micron.

The calculation of < pr"""*1 > in this work utilized the full series solution for the inviscid

functions of y,, p,; the velocity and pressure fields of the acoustic wave [vt', vt°, vt\ vd°, p', p°];

also projected onto the 1 = 2 mode. Of course the series had to be truncated. Four terms were

kept in the series (from j0 to j3, h0
(1) to h3

(1), with j, h(1) representing spherical Bessel functions).

Physical property data was taken from Marston (1980). In this work, the incident wave

field amplitude was expressed in terms of the acoustic velocity potential. Therefore, the value

used by Marston for the acoustic pressure had to be converted to the corresponding value for

the acoustic velocity. This was done.

It was found that <pr2o
rad"11> equaled -. 12 dynes/cm2. No viscous effects were taken into

account in the calculation of the radial pressure forcing in order that its value be compared to

that obtained by Marston.

In the calculation of the tangential forcing effect it was found that

)

.at
f ** tL

<Vr

for 1 = 2 was equal to -0.05 dynes/cm2. This then modifies the amount of deformation - which

still remains quite small relative to the drop size.
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The above number is with rfDIF set to zero. That is, the phase of the hydrodynamic field

response was assumed equal to that of the imposed driver - which is not likely. Thus, the

magnitude of this deformation represents a maximum.

It is in Section V that the static deformation will be re-addressed. In that section, it will

be shown that the newly found form of the hydrodynamic field will result in modifications

(potentially very significant) to the aforementioned result.

Also, in the work of this project, expansions for the hydrodynamic field were done in

terms of Legendre polynomials, as opposed to the spherical harmonics used by Miller and

Scriven (1968) and by Marston (1980).

The work of Marston et. al., (1981) determined <pr20
radial> to be -.127 dynes/cm2 using

an approximate scheme. The calculation of the effect of the tangential acoustic radiation

pressure forcing could not be determined by Marston's fomulation.

Further discussion of details on the calculations of this section can be found in Ferguson

(see Reference section).
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V. HYDRODYNAMIC FIELD; FORCED BY AN UNMODULATED ACOUSTIC WAVE
FIELD

In this section, the hydrodynamic field which exists (at second order in the expansion

parameter 5) as a result of the unmodulated acoustic standing wave field is investigated. In this

case, the steady state hydrodynamic field is simply the streaming field. Moreover, the radiation

pressure vector is comprised of static contributions only. The static radiation pressure results

in drop deformation. This is the situation which would occur if the acoustic levitation system

were to be used solely to position the sample rather than to induce oscillations as well. It is

noted, however, that if the modulated standing acoustic wave field was the acoustic field, static

deformations would exist. That is, in the case of the (induced) oscillating fluid droplet,

deformation of the droplet will exist. Of course, if the deformation is very small relative to the

drop dimension, it need not be taken into account in the interface/boundary conditions.

It is remarked that equations at this order could be constructed for which the time

dependence is exp (T 2 i t). However, they are not of interest.

The hydrodynamic field is considered to be viscous and incompressible. It must be

determined both interior and exterior to the drop. The generation of the second order (in 6)

system of equations will be presented explicitly in regions both interior and exterior to the drop.

VA. HYDRODYNAMIC FIELD EXTERIOR TO THE DROP: EQUATIONS AND
SOLUTIONS

The nonlinear system of governing equations given in Section IIC (by equations IIC. 1 -

IIC.3) is nondimensionalized via relationships given in Section IQB (see HIB.l).

This results in the nondimensional system
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° V - U " = O
(VA.la)

TT

(VA.lb)

and relationship between pressure and density which holds at order 5. Note that the "o"

superscript refers to the region exterior to the drop. The velocity field is given by U°, the

pressure and density by p° and p° respectively. The Reynolds-type number is denoted by ReAC,

with the subscript denoting that quantities relevant to the acoustic field are utilized. (This has

been referred to previously as Re). Thus, Re4C- c°(c°/oxc)/v° . Again, the subscript on the

frequency, WAC, indicates that it is the acoustic frequency.

Let the dependent field variables be expanded in a series in the expansion parameter 5,

(Recall 6 = O>DROP/«AC> with o>DROp the (natural) frequency of drop oscillation). That is,

U° (VA.2a)
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(VA.2b)

f - I- * Y + s f, (VA.2c)

Subscripts of "1" indicate acoustic field variables, "2" indicates a hydrodynamic field

variable. At order 5, the governing equations of the acoustic field are recovered. These can

be found in Section HIB; see Equations (mB.2a-IIIB.2c).

The hydrodynamic field equations occur at order S2. Recall that the hydrodyanmic field

is incompressible.

Thus,

(VA-3a)

(VA.3b)

It is clear that the term I—+T°| V /V • «°\ which occurs in the conservation of momentum

equation must be zero. The quantities v,0 and p,° are known at this order, and act as forcing

(or source) terms in the conservation of momentum equation (VA.3b).

Interest is in the steady state streaming field. The time average of equations (VA.3a-3b)
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over a period (2rc/ooXe) must be taken. Before doing this, it is noted (using Equation IIIB.2a)

that

n

(VA.4)

Therefore

t O-Z. O-V ~ L \J u,z

(VA.5)

Taking the time average yields

(VA.6a)
ui ' = 0
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(v. v,') + y.
4- COMPLEX

(VA.6b)

The overbar indicates complex conjugation. At this step, it is now understood that u°, p% , and

v,° are expressions that are independent of time. It remains to solve for (and p% ), using

system (VA.6a-6b).

Several facets of this problem will be discussed before proceeding to a solution. The first

aspect involves a re-nondimensionalization of the variables, and hence the system of equations.

The second aspect will address the nature of the forcing (or source) terms. In particular, it is

recalled from Section ffl that the acoustic field itself (i.e. y,°, p" ) has been expressed in terms

of a composite solution. The ramifications of the composite solution for this problem will be

explored.

Re-nondimensionalization Scheme

Heretofore, the nondimensionalizations employed have utilized acoustic field reference

quantities, such as wAc and c0°, the speed of sound in the outer medium. The solutions which

have be found are, of course, nondimensional.

It is found to be more convenient at this stage to re-nondimensionalize with respect to

reference quantities important in the hydrodynamic problem.
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Rewriting (VA.6b) in terms of dimensional quantities yields

t (C°/WA C) §b° - J^ 1 (cV/u^)* V^u"
- 1 •* — ~~"T" —*

(e.0* .C.) (VA.7)

The" * " indicates dimensional quantities.

The drop reference dimension is taken to be d, the reference velocity field is taken to

be (dujrop) , and the reference pressure field is taken to be (p°) (d<4DROpf • These are used

to re-nondimensionalize Equation (VA.7).

A key point is the fact that since the acoustic frequency was chosen so

that (CO/<^AC} would be on the order of the drop size; the drop reference dimension d can be

equated to

After substitution and manipulation, the re-nondimensionalized hydrodynamic field

governing equations are found to be

V' Ui r 0
(VA.8a)

- i.

¥

= (-0 -
•*• COMPLEX COWJ06.ATE

(VA.Sb)

Note that ReBYDR
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Discussion of Forcing Terms

The nondimensional forcing terms seen in equation (VA.Sb) (or in (VA.6b)) are

composed of known acoustic field quantities. Recall that a composite solution exists for v,0.
xv/

For example, v^0 = vflo° (r,0) + vflo° (f,0). Since the time dependence has been eliminated, this

is a variation on results of Section III. As f -* oo , vflo° -» o. There is then an acoustic "sublayer

region" (of dimension SQRT v£/o>Xc ) outside of which any terms involving vflo°, vr,°, or their

respective complex conjugates are zero.

Therefore, outside of this acoustic sublayer region, the only terms which contribute as

-forcing terms are of the form

COMPLEX

However, expressions of this form can be re-written in terms of the gradient of a scalar function.

The ramification is that outside of the acoustic sublayer, the forcing function, written in terms

of the gradient of a scalar function, can be viewed as strictly a modification to the pressure field.

Therefore, outside of the "acoustic sublayer" region, the curl of Equation (VA.Sb) is

« o

Let Aj£(-V x u°\ be the vorticity. Since the velocity field is two-dimensional, only

the e^ component of y£ exists. Equation (VA.9a) can be written in terms of the vorticity as
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-1 VX = Q

In essence, outside of the "acoustic sublayer" region, the forcing of the hydrodynamic field is

zero, and there are no sources of vorticity.

It is inside the "acoustic sublayer" region only that the hydrodynamic field equations are

forced. Solutions to this forced vector equation will be found in terms of f, the stretched

independent variable introduced in Section HI (and 0, of course). These solutions will decay

as f -» oo , and will represent corrections to the unforced problem in the region of the drop/host

medium interface.

Solution in the "Outer" Region Exterior to the Drop

The governing equation is given by (VA.9a). It is reasonable to work this problem in

terms of a Stokes1 stream function. Let

(VA.lOa)

(VA.lOb)

Substitution into Equation (VA.9b) yields
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f Jl + IM 1/.L i
[_ drl r* 30vs*& a&

*«
~

(VA.lla)

The solution to this equation is simply Stokes flow. It is given by

oo

(VA.llb)

Solution in the "Acoustic Sublayer" Region Exterior to the Drop

In this region, the independent variable r is stretched, and is represented by

f - R * eS
Recall that e = 1/SQRT (ReAc). However, the governing system of equations has been re-

nondimensionalized with respect to reference quantities important in the hydrodynamic problem.

The question arises: What relationship should e have to RCHYDR? Recall that 5 =

C. Then

. (VA.12a)

and

(VA.12b)

It is remarked that other nondimensional parameters can be developed which will relate this
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problem to that studied by Riley. Define

- S Hi> (VA.12c)

In this work, it is clear that ReAc > 1 and e < 1 .

In order to select the order of magnitude of RC^DR, a relationship between the orders of

magnitude of 5 and e must be stated. Moreover, selection of the order of magnitude of RBHYDR

will then determine the order of magnitude of R,.

In this work, the following will be taken:

(VA.12d)

Then it follows that R, = o(5). Therefore, the order of 6 must be equivalent to that of e2. (Of

course, ReAc may then be re-expressed as being of order (5"1).)

A formal analogy may be made with the work of Riley. This work considered the flow

field resulting from a solid body in oscillatory translational motion. Such a problem is quite

different from that investigated in this project. However, there are mathematical similarities.

In his work, the parameters RSRJLEY, e^ey, and MRJLEY occur, with RSRH^Y = e2^^ N^RJLEY.

MJULEY corresponds to SQRT (ReAc). em^ corresponds to 5. RR^EY and RSRDJJY correspond to

RCHYDRO *nd Rs, respectively. For the case of M > 1, RRJLEY °f order 1, and RSRJLEY < 1,

Riley finds that the flow outside of a shear layer region is Stokes-like. Note that outside of the

acoustic sublayer in this problem, the flow was found to be Stokes-flow.
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Since e - ^ , the relationship between r and f can be re-expressed as

(VA.13)

with RBHYDR of order one. It now is necessary to rewrite the governing system of equations in

terms of the stretched variable f. Note that in this acoustic sublayer region, the forcing terms

on the right hand side of equation (VA.Sb) will contribute. These forcing terms are comprised

of functions which involve the acoustic velocity field. Recall that this field had a representation

in the acoustic sublayer region which involved functions of f as well as the outer region field

(representing the inviscid acoustic field) re-expressed in terms of a Taylor series expansion.

As was the case in the outer region, it is convenient to work in terms of a stream

function. After taking the curl of equation (VA.Sb) and expanding in terms of the acoustic

sublayer region variable, one obtains

_ _a

(VA.14)

and
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top-to of the order terms in ,5)

c. c.

This simplifies to

(VA.16)

and are zero and

sublayer.

It is necessary to solve for ^ . RecaU ^

(VA.17)
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Y22 (C,6) -XC) sinG J»/ (cos9) , and substitute this into Equation (VA. 17). Continue the

manipulations by multiplying through by P% (cos6) , and integrating over (O,T). This

eliminates the theta dependence, and yields a forced equation for f(f), which is

with 2 =/

and let

- ( V

I?

(VA.18)

^\*J •* ]
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and

It is found that

V5arHcuaT

KJ °- H »*



Therefore, the solution for the stream function in the acoustic sublayer region is given by

00

\ 3vV,&

e O

.„ * b,S * ba°S* * b3 S
1

w:

(VA.20)
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VB. HYDRODYNAMIC FIELD INTERIOR TO THE DROP: EQUATIONS AND
SOLUTIONS

The nondimensionalized nonlinear system of governing equations is given by

TJ* rr i * \ 7 - T T ' ' =O (VB.la)

n"

- -4

+ (***OtV (VB.1W

and the relationship between pressure and density which holds at order 5. The "i" superscript

refers to the region interior to the drop. The velocity field is given by IT , the pressure and

density by p! and p', respectively. The Reynolds-type number is denoted

Let the dependent field variables be expanded in the expansion

parameter fi-Wi^o^ as

(VB.2a)IT =

p4 - P^ -t X *A 4 X""»A (VB.2b)

and

0* = /i -^ £p* + f^P'4
d« r>- (VB.2c)
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The quantities having a subscript "1" are acoustic field variable, "2" indicates hydrodynamic

field variables. At order 5, the governing equations of the acoustic field interior to the drop are

recovered. (These can be found in Section IIIC).

The hydrodynamic field equations occur at order 52. Recall that the hydrodynamic field

is incompressible, and thus

V ' U.} - 0 (VB.3a)

H

It is clear that I— +T'| V /V • &j) which appears in the conservation of momentum equation

must be zero. The quantities v,' and pj are known at this order, and act as forcing terms to

the hydrodynamic field.

Interest is in the steady-state streaming field. The time average of equations (VB.3a-3b)

over a period Zn/o) must be taken. Before doing this, it is noted that

it n

' (VB-4)

'H
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Therefore

ReAt

(VB.5)

Taking the time-average yields

' Uj =0 (VB.6a)

-)• COMPLEX

(VB.6b)

The overbar denotes complex conjugation. AT THIS STEP, IT IS UNDERSTOOD

THAT u^, pi ,and y,' represent expressions that are independent of time.

It remains to solve for M^ (and p£) , using system (VB.6a-6b). The methodology will

proceed in the same manner as that of Section VA.

Re-nondimensionalization Scheme

As was the case in Section VA, it is of interest to re-nondimensionalize the hydrodynamic

field equations with respect to reference quantities of relevance.
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The reference length will be that of the drop dimension, d. The reference velocity is to

be given by da>DROP. Finally, the reference pressure field is denoted by P°J(dtoDROpf .

A key point is that the reference length, related to the drop dimension, must also be the

reference length for the case in which the nondimensionalization scheme is carried out with

respect to acoustic-field-relevant reference quantities. These are tied together because the

acoustic frequency lu>A \ itself was chosen so that (c^/w^J would be on the order of the drop

dimension. Thus, <f-c0°/<DXe .

The re-nondimensionalization of the governing equations yields

V' U =0 (VB.Ta)

¥l* * ̂ Y,J 4 V* ft-V,* ) ) * COMPLEX C6WTU*MTC

Note that /

' *

Discussion of Forcing Terms

The nondimensional forcing terms which appear in Equation (VB.Tb) are composed of

acoustic field variables, which are known at this order (S2). Recall that a composite solution was

found for y,J. Recall, for example, that (v/),, = v9o' (r,0) + v^' (£,0). Since the time

dependence has been eliminated, this is a variation on the results of Section in. As £ -» oo v9o'-

0'.. There is then an acoustic "sublayer region" (of dimension SQRT( (v^/w^) ) outside of

which any terms involving v$0\ vr,
!, or their respective complex conjugates are zero.

Therefore, outside of this acoustic sublayer region, the only terms which contribute as
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forcing terms are of the form

COMPLEX

(Recall that 4>' is the acoustic velocity field potential for the inviscid acoustic field in the "outer

region", still interior to the drop). However, expressions of this form can be rewritten in terms

of the gradient of a scalar function. The ramification is that, outside of the acoustic sublayer,

but still interior to the drop, the forcing function, written in terms of the gradient of a scalar

function, can be viewed as strictly a modification to the pressure field.

Therefore, outside of the "acoustic sublayer" region, the curl of Equation (VB.Tb) is

- * V x ^*u^ = 2
^eKH01 (VB.Sa)

Let <t>1 /-V x ui\ be the vorticity field. Since the velocity field is two-dimensional, only

the e^ component of s&i exists. Equation (VB.Sa) can be written in terms of the vorticity as

e6 n*..» - £

*'"** (VB.8W

In essence, outside of the "acoustic sublayer" region, the forcing of the hydrodynamic field is
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zero, and there are no sources of vorticity.

It is inside the "acoustic sublayer" region only that the hydrodynamic field equations are

forced. Solutions to this forced vector equation will be found in terms of £, the stretched

independent variable, introduced in Section III (and 6, of course). These solutions will decay

as £ -* oo t and will represent corrections to the unforced problem in the "acoustic sublayer"

region (located near the drop/host interface).

Solution in the "Outer" Region Interior to the Drop

The governing equation is given by (VB.8). It is reasonable to work this problem in

terms of a Stokes' stream function. Let

(VB.9a)

- L

Substitution into Equation (VB.Sb) yields

w (VB.lOa)

The solution for ^! is simply that of Stokes* flow. It is given by
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(VB.lOb)

Solution in the "Acoustic Sublayer" Region Interior to the Drop

In this region, the independent variable r is stretched, and is given by

r = R- e
Recall that e~^SQRT^ReAc^~l . The question arises: what relationship does/should e have to

Recall that ^ - ^ l ^ • Then it is seen that

(VB.lla)

or, alternatively,

(VB.llb)

It is noted that other nondimensional parameters can be developed which will relate the

problem under consideration to the work of Riley involving a solid body in periodic motion

(Riley, 1967).

Clearly, the problem under consideration differs in a number of important aspects. The

center of the drop is motionless; no solid boundaries exist in the problem. Most importantly,

the hydrodynamic field (fluid motion) results from the existence of the acoustic standing wave

field. The analogy with the work of Riley is that which has been presented in Section VA.
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Define

Rs = S* ReAC = fit* = J ReHtjDR (VB Uc)

In this work, it is clear that ReAc > 1 and e < 1.

In order to select the order of magnitude of RCHYDR, a relationship between 8 and e must

be established. Moreover, selection of the order of magnitude of Re^^g will then determine

the order magnitude of R,.

In this work, the following will hold

(VB.lld)

from which it follows that R, = o (5).

Re-expressing e in terms of RC^DR, it is seen that

-{T

so that

(VB.12)

It is now necessary to rewrite the system of governing equations in terms of the stretched

variable, f. Note that in the "acoustic sublayer" region, the forcing terms which appear on the

right hand side of (VB.Tb) will contribute. These forcing terms are comprised of functions

which involve the acoustic velocity field interior to the drop. Recall that this field had a
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representation in the "acoustic sublayer" region which involved functions of £ (representing the

viscous correction) as well as the outer region field (still interior to the drop) representing the

inviscid acoustic field re-expressed in terms of a Taylor series expansion.

It is convenient to work in terms of a stream function. After taking the curl of Equation

(VB.Tb), and expanding in terms of the "acoustic sublayer" region variable £, one obtains

(VB.13)

and

Ml-ae /]

= - (i(S- (%^V j
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0 * V£\R*- ••>) I
(VB.14)

'( .
. 'sv_L(w.(v,;*• -I) i)85 — - w JA
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Inspection of the leading order terms in Equation (VB. 14) reveals that

-V COMPLEX

This simplifies to

(VB.15)

RSvxB S

*i

" w

It is clear that T! is of order (ty/tewy™,) in the "acoustic sublayer", such that

n1 (VB.16)

86



It is necessary to solve for Y^(£,6) . Recall that

00

A

. 1 ^
Let YJJ (^,6) - g(0 sin6 Pt (cos6) , and substitute this and the expression for vj into

Equation (VB.16). Continue by multiplying Equation (VB.16) through by Pa(cos6) , and

integrating over (o, T). This eliminates the theta dependence, and renders a forced ordinary

differential equation for g(£) which is

K l-n dij) exo f -/t
' r

R (n ( ia f )

(VB.17)

with 5£ =
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ji:

and let

L-l
». "

with L = ^ to contribute

A

*

(f

It is found that



(VB.18)

with

and

Therefore, the solution for the stream function in the "acoustic sublayer" region is given by

00I . e

(VB.19)
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VC. BOUNDARY/INTERFACE CONDITIONS

The boundary/interface conditions are those appropriate for the hydrodynamic field.

Moreover, the boundary/interface conditions, applied at the drop/host interface, should include

only linearized terms, as the hydrodynamic problem solved at this order is linear. In general,

the conditions are: the radial component of the velocity is continuous (across the interface), the

tangential velocity component is continuous, the tangential stress balance holds, and the change

in normal force across the interface is balanced by the surface tension/curvature term. Finally,

the kinematic condition holds at the interface.

The velocity and pressure fields which enter into these conditions refer to those of the

hydrodynamic field. (That is, these are given by u^, p%, u^, p^ of Sections VA and VB.

Of course, there are surface forces which also enter into the boundary/interface

conditions. These are (^prr<uBa1)) and tfprTANG)9} , which have been presented in Sections n

and IV.
The velocity and/or pressure fields which describe the hydrodynamic field will include

the modifications/corrections which arise as a result of the forcing by the acoustic field

variables. Simply stated, these modifications are those contributions which arose in the "acoustic

sublayer". Were the forcing of the hydrodynamic field governing equations to be neglected, the

resulting hydrodynamic flow would be strictly that of Stokes flow. In the work presented in

Sections VA and VB, it is seen that Stokes flow arises in the "outer" regions (i.e., not in the

acoustic sublayer), both exterior and interior to the drop.

In the work of Marston (1980), the acoustic field was taken to be strictly inviscid.

Then (prTANG)9 did not contribute, and the hydrodynamic field itself was described entirely by

Stokes flow.

It is the intention of this section to develop the boundary/interface conditions which arise
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in the case in which the acoustic field incorporates viscous effects. In doing this, it will be

necessary to look at the velocity fields obtained in the previous two sections in more detail.

As a first step, the equilibrium interface will be defined. This will be followed by a

presentation of the general form of the interface/boundary conditions. Finally, the velocity field

(after some manipulations) and the pressure field determined in Sections VA and VB will be

utilized in the conditions, and specific equations obtained. Of particular interest is the resulting

deformation (from sphericity) of the drop.

Equilibrium Interface

Let the equilibrium interface, Fe, be defined by

T - . o V ^ - D / N - ~re - r - K - /^ fy f^c tose ) - O (vc.i)

with the third term (on the r.h.s.) representing the deformation.

Boundary/Interface Conditions; General Form

The general form of the boundary/interface conditions will be presented. In keeping with

earlier work, there will have been nondimensionalized.

They are:

(Continuity of Radial Velocity)

TJr
A =

(Continuity of Tangential Velocity)

(VC.2a)
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~e ^ ' - IX« " * ~ (vc.2b)

(Kinematic Condition)

= O at

(Tangential Force Balance)

j( VJ. - Vf.)5>je° -I

at f . K .

Recall that «-jiJ/(i* and p-pl/p* . Note that l/J*0 and UJf refer to the hydrodynamic field.

The forcing due to the (6) tangential component of the radiation pressure vector is on the right

hand side. It's form is that discussed in Section IV. That is, for example
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(Normal Force Balance)

<HJr - -p

i < pr R"""u )

(VC.2e)

(
- _ M \

o^p^ <rc>>0jK)j>) ! and o0 is the surface tension associated with the interface

between the liquid drop and the host medium. The unit vector a is the outward pointing

normal to the interface. Specifically, fl-VFe/|VFe| .

Equations (VC.2a-2e) represent the general form of the boundary/interface conditions

which must be satisfied. Note that forcing terms, namely, the lr and ee components of the

radiation pressure vector, appear in the above system of equations. This is a nonhomogeneous

set of linear equations. The unknowns are the coefficients of the velocity and pressure fields.

Once these are determined, the hydrodynamic flow field which only exists as a result of the

acoustic forcing will be known.

Velocity and Pressure Fields

Recall that the velocity fields in both the "acoustic sublayer" region and the "outer"

region exterior and interior to the drop have been found (in general form) in Sections VA and

VB. However, the stream function formulation was employed. This is not convenient, as the

boundary interface conditions require iff and iff . Also, it is necessary to determine

explicitly the pressure field.

Recall that
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00

I

/ N (cose)

(VC.3)

However, as f -» »t the contribution that is in the "acoustic sublayer" region must decay. This

implies that b°0- fef- fc2°- bj* 0 .

It is a straight forward matter to determine u"2 and u^ . These are given by

S (-•0(n\J)eyLp(-(j iOS) V 9
^ «*"»

l*i

or
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/
J

Similarly, (recalling that — =»•
^

dr 6
in the acoustic sublayer),

09

( -ft -JOB

' (J_f V 4
I p/» j / P
\^H^OR./ £ j,|.. ">

Note that the contribution to u^ from the "acoustic sublayer" region is at

and that to tt/2 at . Recall that Re is order one.

The form of u^. and u^ also proceeds from ^ . Recall that

(VC.5)

je--i
00

1*1
CtOS&)

»•* t \* T J »* fc-3

la. ^ b, ̂  ^ ba I -v t3 I

(VC.6)
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Since the contribution that is strictly in the acoustic sublayer must decay

as - b - o .

Then

(VC.7)

and, recalling that in the acoustic sublayer region, — -» - .
dr \

^2™ J. f it is found that

u,
oC

JM

(VC.8)
•j

The specific forms of U&, u^, uf
r2, u?2 have been determined, up to a constant. The

unknown constants which remain are B°, F°, X', E1 . Of course, these depend upon "1".
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(Recall that Kl*f and K2*f are known from previous sections, and also depend upon "1".)

It remains to explicitly determine p^ and p% . From the governing equations for the

hydrodynamic field presented in Sections VA and VB, it is clear that the contribution

to p*f from the "acoustic sublayer" region cannot be greater than order (^ft/Jtegyzu) at the very

most.

The determination of p'^ in the Stokes layer region can utilize the results of Miller and

Scriven (1968). That is, although they solved for the hydrodynamic field of an unforced,

naturally oscillating drop, the pressure for Stokes flow can be recovered by setting their

oscillating frequency to zero. Then the contribution to pressure which depends on the radial

coordinate r is proportional to, in the Stokes' flow region exterior to the drop,

A3 -

This is found to be zero. A similar development can be done for the pressure in the Stokes

region interior to the drop.

It is then found that, to lowest order, the contribution to the normal stress balance of the

hydrodynamic field will involve terms which are the radial derivative of the radial component

of the hydrodynamic field.

It is remarked that this result was also the case in the work of Marston (1980).

Boundary-Interface Conditions: Secific Euations

Substitution of the forms for U^, U*f, p** presented in the prior subsection into

Equations (VC.2a-2e) will be done.
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Lowest order terms only will be kept. It is recalled that the hydrodynamic field itself

occurs at order 52 in the overall perturbation scheme.

(Continuity of radial velocity)

(Continuity of tangential velocity)

= (1-0 *•«-
(Kinematic condition)

= 0

=0 (VC.ll)

(Tangential stress)

S*o

M (VC.lla)

Notice that presence of the forcing term due to the tangential component of the (time-averaged)

radiation pressure vector, but only lowest order terms will be kept. The expansion
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for UQ t/e in terms of £ (f) can be written, utilizing a Taylor series expansion, as

IT,9 ' ,£?•)

and

(VC.12b)

'3«*

+ fir<f K«H(J»D,

(VC.12c)

Substitution of (VC.12b) and use of 0J*- M'^ yields (to lowest order in
*HYDR
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'4»

60

- E l -
l«i

(0

(VC,12d)
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Gathering terms yields

Z
M

oo

hi

Multiply through by (sin0 • PJ and integrate over (o, T) to obtain

A C R f t

(VC.12e)

The right hand side of Equation (VG. 12f) can be written as

101
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r

using Equation (IVA.3). Note that

A *

conaex

Also recall that

(VC.13)

and
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Therefore, the right hand side of Equation (VC.12f) can be further expanded as

P

•*• COMPLEX

\ fo 4 if uf^L J Pf (tostO
/ xl J_ l gl j * I ** S-/. d r V H < ! o I*.

V" ?

t
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However, certain integrals are equivalent to pre-defined quantities. Therefore, the r.h.s. of

Equation (VC.2f) can be further expressed using the definitions of (/lj), (72J), (/I*), (/2°) and the

continuity of the radial component of velocity of the acoustic filed across the interface. This

yields

(R.H.S.) of (Eq. VC.llf)

o

'I

(VC.14)

Therefore,

l Klj* +
T

t - I)/ - iaj° j

(VC.15)

Recall that

11! ; IWJ » (-S) Ren
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Therefore, the tangential stress balance in the hydrodynamic field is given as

fc J R R

(VC.16)

Clearly, the contribution to the tangential stress balance which arose due to the modified flow

field (different from that of Stokes' flow) cancels the component of the forcing (radiation

pressure) vector. This is for the very restricted subcase in which the response to the forcing has

zero phase lag with respect to the forcing. This results in

(VC")

Clearly, use of the kinematic condition could serve to simplify this expression.

Thus, for Equations (VC.9), (VC.10), VC.ll), and (VC.17) represent the specific

boundary/interface conditions. It remains to construct the specific form of the normal force

balance condition.
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(Normal Force Balance)
From the previous discussion

(VC.18)

To lowest order (in the hydrodynamic field balance) this becomes

00

-

M

v (VC.19a)

The theta dependence can be eliminated after multiplication through via Pa(cos6)sin9 and

integration over (o,rc) . This yields

- 5L

(VC.19b)

- RAOtM.^ ̂ Q
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Let the right hand side of (VC. 19b) be renamed as

*& <p

(VC.20)

The boundary/interface conditions applied at the order of the hydrodynamic field and

forced by the radiation pressure vector components at the surface (r-R, C-S-o) are listed below

for convenience. They are

(VC.21b)

(VC.210

A R1*1 * E^ ^iH =0 , (VC.21d)

^ (VC.21e)

and
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u .
(VC.21f)

The unknown coefficients are: K,, A', B°, E\ F°. (The two kinematic conditions are not

necessary - that is, only one should be used. Either (VC.21c) or (VC.21d) can be utilized).

It is possible to eliminate Ef and F°. This yields a system of nonhomogeneous linear

algebraic equations for the unknowns K,, A', and B°. These are

B° =0 (VC.22a)

B*

and

A1 -v
ftx

(VC.22c)
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Final Comments

It is clear that

-1

L -' 8

Therefore

^ * (

(VC.23)

Ki is the coefficient of the deformation, and is directly proportional to the radial component of

the radiation pressure vector.

The tangential stress has been included in the calculations. First, the viscous acoustic

field was determined. This allowed the tangential (ce) component of the radiation pressure

vector to be calculated. Secondly, the modification of the hydrodynamic field due to source

terms in the governing equation was determined. The source terms are caused directly by the

inclusion of viscous effects on the acoustic field. Solution of the governing equations shows
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there to be enhanced flow in the "acoustic sublayer" region, particularly of the UQ component.

The flow correction due to this enhanced flow is o * for UQ, which is the largest such

component in the acoustic sublayer region. Stokes'flow is the flow in the "outer" regions,

both interior and exterior to the drop.

In the application of the boundary/interface conditions, only lowest order contributions

(at the level of the hydrodynamic field) are included. Of course, in the tangential stress balance

condition, this results in the inclusion of velocity gradient terms (of 1%) from the acoustic

sublayer region.

It was found that these contributions to the stress balance cancel the forcing due to the

tangential component of the radiation pressure vector for the special subcase in which there is

no phase lag of the hydrodynamic field with respect to the initial forcing.

It is clear that incorporation of viscous effects into the acoustic field and investigation of

the forced hydrodynamic field shows that the velocity field has a level of complexity which is

not apparent if only the inviscid acoustic field is considered. It is only through doing the

"viscous" problem that the structure of the velocity field in the "acoustic sublayer" regions -

which border the drop/host interface can be elucidated. The hydrodynamic (streaming) field

due to an unmodulated acoustic standing wave field has been considered. In the case of a

modulated standing wave field, static (streaming) contributions to the hydrodynamic field would

exist as well as the oscillating contributions. However, there would be a phase lag between

forcing a response, in general, so that the deformation would be due not only to the radial

component of the radiation pressure vector, but to the tangential component as well.
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VI. HYDRODYNAMIC FIELD; FORCED BY A MODULATED ACOUSTIC STANDING
WAVE FIELD

This section details the structure of the hydrodynamic field which exists (at second order

in the expansion parameter 6 ) strictly as a result of the modulated acoustic standing wave

field. In this case, the resulting hydrodynamic field is oscillatory in time. The drop itself is

undergoing (small amplitude) shape oscillations due to the forcing at the natural frequency of

the drop.

Let (*>AC~<'>'-<i*'t+u>DROp , with CD" the acoustic frequency of a second acoustic wave.

Clearly, at'-at"-<&DROP , the drop oscillation frequency. The frequencies of the acoustic waves

are orders of magnitude larger than that of the natural frequency of the drop. The time-

( 2n \ will result in a set of time-
<*AC)

dependent equations. However, the frequency of the resulting time dependence is at the "beat"

frequency, which is that of drop's natural frequency of oscillation. (Refer to Miller and Scriven,

1968, for a discussion of natural (free) drop oscillations.)

The hydrodynamic field is considered to be viscous and incompressible It must be

determined both interior and exterior to the drop. The generation of the governing equations

for both regions will be presented explicitly.

It is remarked that the methodology of this Section is quite simialr to that of Section V.

Of course, the time dependence introduces an additional level of complexity. However, some

of the discussions, such as the need for re-nondimensionalization, apply in both cases. Where

possible, it is the intention to avoid reduplication providing clarity is not compromised.

Moreover, an expanded discussion as to the motivation behind several of the methological steps

will be included.
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VIA. HYDRODYNAMIC FIELD EXTERIOR TO THE DROP: EQUATIONS AND
SOLUTIONS

The nonlinear system of governing equations given previously in Section IIC (see Eqs.

IIC. 1-3) is nondimensionalized through utilization of the relationships given in Section IIIB (see

IIIB.l). Acoustic field reference quantities were used in the nondimensionalization scheme.

The resulting sytem is

V - U = 0
^ o (VIA. la)

/

(VIA.lb)

Also, the relationship between pressure and density holds at o ( 6 ) . The "o" superscript refers

to the region exterior to the drop. The velocity, pressure and density fields are given

by u°, p°, and p° , respectively. ReAC is a Reynolds-type number, and is given as

c£(c2/<*>Ac)/Vo » with WAC the acoustic frequency.

Let the dependent variables be expanded in a series in the expansion parameter 6 .

(Note that t>-v>DROP/v>AC .with <*DROP representing the natural frequency of oscillation of the

drop.)

That is,
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(VIA.2a)

(VIA.2b)

o A u. r~° 4 f i n " (VIA.2c)

Acoustic field variables are denoted by the "1" subscript (v£, p°, p°) , and hydrodynamic

quantities by "2" (u%, Pa°) . At order 5, the governing equations of the acoustic field are

recovered (see Section HIE, Equations IIIB.2a-2c).

It is at order 52 that the hydrodynamic field occurs. It owes its existence to the

(modulated) acoustic standing wave field. The hydrodynamic field is taken to be incompressible.

Resulting governing equations are then

, (VIA.3a)
^' U, = O

4

"H" Reivc ^ H

(VIA.35)
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Clearly, the term I —+t°J V (V • uf*) which formally appears at this order is zero due
\ -J / Tt6tnmn * * /

RGKYDR
to the incompressibility of the hydrodynamic field.

The quantities x° and p° are known at this order. They act as forcing (or source)

terms in the conservation of momentum Equation (VIA.3b).

Now; the acoustic field represented by x° (and, of course, p° ) is a modulated

standing wave field. For example,

"
(VIA.4)

with 4>gCt (the scattered) velocity potential for the acoustic wave. The "'" refers to the acoustic

wave of frequency O>/(-G>AC) and """ refers to the wave of frequency «".

The time average of Equations (VIA3a-3b) over a period of I—— I must be taken. This
V wAcy

will result in having a time-dependent source term (i.e., the right hand side), of a form to

be exhibited explicitly. A solution for u% (and p2°) will be sought with this same time-

dependence. Taking the time average of terms on the right hand side yields

< R H S > =•

i v r ) i

(VIA.5)
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In this expression only, the caret "A" indicates a time independent general quantity. Both

r\" and r\' indicate phases. Note that there is a steady state contribution to the forcing as well

as the cos ( 5 t+V'-V ) time dependent forcing. The steady state forcing was addressed via

consideration of the unmodulated acoustic standing wave field, in Section V. It will not be

considered in this section. Rather, the focus will be solely on the response of the hydrodynamic

field to the oscillatory forcing.

The governing equations, after being time-averaged, are

^' ±Z =0 (VIA.6a)

COMPLEX COUT06.ATE

Note that Equations (VIA.6a-6b) are nondimensional, and have been nondimensionalized

with respect to acoustic field reference quatitiies. The periodic temporal forcing contains "6t";

with 6 < 1. However, at this stage, the hydrodynamic field is of interest. A re-

nondimensionalization scheme will be performed following the methodology discussed in Section

V.
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Re-nondimensionalization

From a physical point of view, it is the hydrodynamic field which is the focal point. It

is the hydrodynamic field which exists only as a result of the forcing. This is clearly shown in

Equations (VIA.6a-6b). However, in these equations all quantities have been

nondimensionalized with respect to reference quantities which are not relevant to an oscillating

drop.

The re-nondimensionalization acts as a renormalization, with the result that the oscillating

drop problem is viewed from the standpoint of the hydrodynamic field as opposed to that of the

acoustic field.

Rewrite (VIA.6b) in terms of dimensional quantities as follows

v: *•
-V COMPLEX

Cos -v>," -^'

(VIA.7)
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The " " indicate dimensional quantities. Renondimensionalize as follows:

A
i * ; ^ x = x

u - _
(VIA.8)

The reference length is that of the drop dimension, d. This, in fact, provides the coupling to

c°
the acoustic field; d — . The natural frequency of oscillation of the drop provides the time

scale.
Utilizing the re-nondimensionalization scheme yields, after manipulations

=0

<pa
0R

= -a.
t COMPLEX

(VIA.9b)

with ReHYDR- (cf2<od /v^) . The quantities are now nondimensional with respect to

hydrodynamic field quantities. Moreover, U£ and Pf represent the hydrodynamic/drop

oscillation field quantities. The system represented by (VIA.9a-9b) is linear. Of course, the
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right hand side of (VIA.9b) contains nonlinear forcing terms, but these are known quantities.

It proves to be more convenient to work in terms of

(VIA.IOa)

: (VIA.IOW

Let

Substitution of (VIA. 1 1) into system (VIA. lOa-lOb) yields

V ' £ = ° CVU-12-)
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<VIA.,2b,

It is the system (VIA. 12) which must be solved for u£ (and p2° ).

Discussion of Forcing Terms and Resulting Decomposition

The forcing terms on the right hand side are of the form

fyo . Tjyo + pO fixQ + c.c.\ , and represent real quantities. In particular,

tf - v ' f r . a ) * y,'(s,e)
A.

with ^° referring to the velocity field in the outer region (represented by V<J>° ), exterior to

the drop and with i f ° (C/6) referring to the correction to the acoustic velocity field in the

"acoustic sublayer" region. As f -» oo, quantities which depend on f will go to zero.

If the curl of Equation (VIA.12b) is taken, the quantities on the right hand side which

contain only terms representing the inviscid outer flow will not contribute. That is, if the

vorticity equation is constructed, it will be unforced in the outer region.

With this in mind, decompose as follows

(r,e)

(VIA. 13)
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Solution in the "Outer" Region Exterior to the Drop

Taking the curl of Equation (VIA. 12b) - and the restricting attention to the "outer" region

exterior to the drop (i.e. no remaining C dependence), one obtains

-
n (VIA.14)

with o>° the vorticity in the outer region exterior to the drop. Notice that there are no sources

of vorticity; in this region the hydrodynamic field is unforced. However, this is precisely the

problem that was investigated by Miller and Scriven (1968), although their analysis was

dimensional and the notation differs somewhat from the present exposition.

The solutions can then be written for both the velocity and pressure fields in this region.

(VIA.lSa)

ue.

(VlA.lSb)
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(VIA.ISc)

with s2- (-i Re^

Solution in the "Acoustic Sublayer" Region Exterior to the Drop

In this region, the independent variable r is stretched, and the independent (radial)

variable C is related to r as

r - R

Recall that e- * — . However, the system of governing equations has been re-

nondimensionalized with respect to hydrodynamic field reference quantities.

A relationship between e (—=—) and ReHYDR must be stated.
ReAC

Recall that 6 - WOTOP/O)AC . Then

(VIA.16a)

and

£ ~ * « / » '^KMBR
3 (VIA.16b)
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One can also define a third "Reynolds number-like" parameter, Rg , such that

R - Sa

In this work, it is clear that ReAC > 1 and e < l , 6 < 1 . If the order of magnitude

relationship between 5 and e is specified, an order of magnitude for R, will follow.

The remarks concerning the relationship of this forced drop problem to the work of Riley

(1967), which involved a solid body in periodic motion which were presented in

Section V carry over to this Section. Therefore, they will not be repeated here.

Select .Re^yjyj - 0(1) . Since ^-^/^R&HYDR , the relationship between r and 5 can

be re-expressed as

(VIA.17)

with RBHYDR of order one. It is now necessary to rewrite the governing system of equations in

the variable f. Note that in this region, the forcing terms on the right hand side of (VIA.12b)

will contribute. The forcing terms themselves are comprised of functions which involve the

acoustic velocity field.

The expansion will be done in terms of the primitive variables as opposed to a stream

function. Since the conservation of momentum equation is a vector equation, the

§r and Ba component equations will be expanded in the acoustic sublayer region. Writing

the §z and §e component equations yields:
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( er cons, of momentum)

Re *
0

w

V,r r 4 V V

(VIA.lSa)
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COOS
. of momentum)

V

Now, expand in terms of

/o
t= U

* . .. (VlA.l9a)
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~< o
U:

(VIA.19b)

with

s
(VIA.19c)

The right hand side forcing terms in (VIA.18a-b) (written terms of ft are known from

knowledge of j^ (and pf ), which are the acoustic field quantities.

Therefore,

( er cons, momentum - expanded)

Re*•5011 f fR«^\jL
[ V T / w *
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•+...n

"

- ( R ( Vw. |R * ̂  '». * • • ')

COMPLEX

(VIA.ZOa)
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The x£ and p° quantities represent the acoustic field. They are expanded in the

acoustic sublayer region; and contain both terms which decay to zero out of the sublayer region

(i.e. as f -» w) and terms which represent the inviscid acoustic field quantities re-expressed in

a Taylor series expansion in terms of f in the sublayer region. The subscript "1"

on Y° and p? is kept in order to distinguish clearly these acoustic field quantities from the

hydrodynamic field quantities, which are indicated by a "2" subscript. It should be clear that

there is not any time dependence present in Equations (VIA.18a-18b) through (VIA.20a-20b).

For more details concerning the acoustic field quantities, see Section III.

The expanded form of the ee conservation of momentum equation will be exhibited.

The above remarks also apply to this equation.

( ee cons, momentum - expanded)
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V'

-t

(VIA.lOb)
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Note that in both (VIA.20a-20b), the terms on the right hand side involve products, as least one

factor which involves only the viscous correction to the acoustic field. Also, it is necessary to

expand the conservation of mass equation in order to relate ur° and Ue° • It is

(cons, mass-expanded)

(VIA.21)

It is clear from Equations (VIA.20a-20b) that a balance can be achieved between the

forcing terms and the hydrodynamic field terms if u«i is selected to be of order ^ .*WF /"Vp^r
VKfiHYDR

Physically, the hydrodynamic field is forced by the acoustic field. The objective of the

mathematics is to have the lowest order hydrodynamic field terms balanced by the lowest order

forcing terms.
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Inspection of (VIA.20b) shows that this is the case if the highest derivative of the

tangential component of the hydrodynamic field balances the radial derivative (normal to the

interface) of the tangential component of the acoustic field, convected by the radial component

of the inviscid acoustic velocity field. Moreover, it must be that fi£ is zero, and that the

balance occurs with 0^ (C/ 6) .

This has ramifications for the u£ component. From Equation (VIA. 21), it is clear

that 8+i. is the lowest order contribution to

From (VIA.20b),

( V|r>
COMPLEX

1=0

(
OT *
s^

\
(VIA.22)

which is
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I'M

(VIA.23)

It is possible to re-express the coefficient in 6 as expansions in —£ ; that is,

00 00

"* ^t Vy 11B 8 L i*v ̂
N'=, £ 8Ly ^e /

(VIA.24a)

and
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no

so

Let

- i

'C^p (-0-0/75

(VIA.245)

(VIA.26)

Then, using (VIA.26) in (VIA.25), and multiplying through by I -^JsinO , and integrating
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yields,

d4-° (IT1 I

Let

L=l dB

(VIA.27a)

and

(VU.27b)

(VIA.27c)
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yields

dV

/ ) (

solution to (VIA^vlA-

and

can be written as

=i;

(VM.27d)

<*&

(VM.28a)

(VIA.285)
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VIB. HYDRODYNAMIC FIELD INTERIOR TO THE DROP: EQUATIONS AND
SOLUTIONS

The nonlinear system of governing equations (see Section IIC) is nondimensionalized with

respect to acoustic field reference quantities. The resulting system, governing flow interior to

the drop is:

P ' ^ - U " = 0
' - (VEB.la)

K

?AC
(VIB.lb)

with a-n/n* and T ' - « U S / I * * • The "i" superscript refers to the region interior to the drop.

(Also, the relationship between pressure and density holds at order 6 .) The velocity, pressure,

and density fields are given by if, pl, and p' , respectively. ReAC is a Reynolds-type

number, and equals c*(c*/oxc)/v* , with o>xc the acoustic wave frequency.
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Let the dependent variables be expanded in a series in the expansion parameter, 6 .

(Note that 6-wCJW?/(i)xc ,with v>DROP indicating the natural frequency of oscillation of the

drop.) That is

IT = ^ + ^U*
(VIB.2a)

(VIB.2b)

(vm.2c)

Acoustic variables are denoted by the "1" subscript, (y,', p,', p,!), and the hydrodynamic

quantities by "2" («!, pj\ • At order 6 , the governing equations of the acoustic field are

recovered (see Section HI).

It is at order 62 that the hydrodynamic field occurs. It owes its existence to the

(modulated) acoustic standing wave field.

The hydrodynamic field is taken to be incompressible. Resulting governing equations
are then

\7 - i/' =0 (VIB.3a)
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H ^

i^L +

/
(VIB.3b)

Clearly, the term J —+T' V /V • u^\ which formally appears at this order is zero due to the
V J / K.K . ̂  *

incompressibility of the hydrodynamic field.

The quantities v,' and p\ are known at this order. They act as forcing or source terms

in the conservation of momentum Equation (VIB.Sb).

The acoustic field represented by y,! (and p/, pi ) is a modulated acoustic standing wave

field. For example,

//
= (J) -V

(VIB.4)

with ^' the velocity potential for the acoustic standing wave. The '"" refers to the acoustic

wave of frequency w^-w AC\ , and """ refers to the wave of frequency a/7 .

The time average of Equations (VIB.3a-3b) over a period of 2til^AC must be taken.

This will result in having a time-dependent source term (i.e., the right hand side), of a form to

be exhibited explicitly. A solution for u^ (and P^ ) will be sought with this same time

dependence.

Taking the time-average of terms on the right hand side yields
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/p

( vj • v\/ ;) (4 + <a«osu**>)"-f ))

/U)AC (VIB-5)

In this expression only, the caret '"*" indicates a time independent, general quantity.

Both r\" and r\' indicate phases. Note that there is a steady state contribution to the forcing

as well as the cos(6/ + r\"- T^ time-varying dependent forcing. The steady state forcing was

addressed via consideration of the unmodulated acoustic standing wave field (see Section V).

It will not be considered in this section. Rather, the focus will be solely on the response of the

hydrodynamic field to the oscillatory forcing.

The governing equations, after being time-averaged, yield

(Vm.6a)

138



n

- " A P V*' • VV,1 + J5" ( iV,*') •*• COHPLEV

• ^S(S^Y-V) (Vffi6b)

Note that Equations (VIB.6a-6b) are nondimensional, and have been nondimensionalized with

respect to acoustic field reference quantities. The periodic temporal forcing contains "5t", with

5 •« 1. However, at this stage, the hydrodynamic field is of interest. A re-

nondimensionalization scheme will be performed following the methodology discussed in Section

V.

Re-nondimensionalization

The hydrodynamic field is the focal point. It is this flow which exists as a result of the

acoustic forcing. This is clearly shown in Equations (VIB.6a-6b). However, in those equations,

all quantities have been nondimensionalized with respect to reference quantities which are not

relevant to an oscillating drop. In particular, the "St" in the periodic time dependence

indicates a very slow scale - yet the drop oscillation time should define the time scale of the

hydrodynamic field.

The re-nondimensionalization acts as a re-normalization, with the result that the

oscillating drop problem is viewed from the standpoint of the hydrodynamic field as opposed to

the acoustic field.

Rewrite (VTB.6b) in terms of dimensional quantities as follows
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V-u*

ax

-V COMfLPX

**f,

The "A" indicates dimensional quantities. Re-nondimensionalize as follows:

(VBB.7)

jt X =

" « f. f *

(VIB.8)

The reference length is that of the drop dimension. This, in fact, provides the coupling to the
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acoustic field: d - c"/coxc . The natural frequency of the drop oscillation provides the time

scale.

Utilizing the re-nondimensionalization scheme yields, after manipulations

(VIB.9a)

-v

(Vffi.9b)

with ReHYDR = (d2 a>d/V0°). The quantities are now nondimensional with respect to acoustic field

quantities. Moreover, T^and Pj represent the hydrodynamic/drop oscillation field quantities.

The system represented by (VIB.9a-9b) is linear. Of course, the right hand side of

(VIB.9b) contains nonlinear forcing terms, but these are known quantities. It proves to be more

convenient to work in terms of

' W- " (VIB.lOa)
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- -a. f (^ • +

Let

142

It istheS,s,em(VIB,2) ™ be So,ve, for < <M ri )•

.10b)

CViB.il)

of (VIB.U, into system

(VIB.12a)

3 0

COMPLEX CortTlimTe / (VIB.ttb)



Discussion of Forcin Terms and Resultin Decomposition

The forcing terms on the right hand side are of the form |py| Vfc' + Pi('*') + c.c.l ,

and represent real quantities. In particular, the field variables y| and p'| are functions

of (r,0) and £ • For example

A • K
with y,' referring to the velocity field in the outer region interior to the drop and with j,'

(£,0) referring to the correction to the acoustic velocity field in the "acoustic sublayer" region.

As £ -» oo, quantities which depend on £ will decay to zero.

If the curl of Equation (VIB. 12b) is taken the quantities on the right hand side which

contain only terms representing inviscid outer flow will not contribute. That is, if the

(linearized) vorticity equation is constructed, it will be an unforced equation in the outer region.

With this in mind, decompose as follows:

fc'lr.e) t
(VIB. 13)

Solution in the "Outer" Region Interior to the Drop

Taking the curl of Equation (VIB. 12b) - and restricting attention to the "outer" region

exterior to the drop (i. e., no remaining £ dependence), one obtains
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- 06 V tOa - Q

(Vffi.14)

with o)' the vorticity in the outer region interior to the drop. Note ther are no sources of

vorticity; in this region the hydrodynamic field is unforced.

However, this is the problem investigated by Miller and Scriven (1968), albeit their

analysis was dimensional, and differed somewhat from the present exposition.

The solutions can then be written down for both the velocity and pressure fields in this

region. They are:

a«X fM * a3 \i (* r)J ^ ICOS0 } (VIB.lSa)

** V7

O^v ' / 'L
r1"1

(Vffi.lSb)

and
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(VIB.ISc)

with

Solution in the "Acoustic Sublayer" Region Interior to the Drop

In this region, the independent variable r is stretched, with the independent (radial)

** .£

variable f related to r as f = R — t 5.

Recall the e = l/SQRT(ReAC). This system of governing equations has been re-

nondimensionalized with respect to the hydrodynamic field reference quantities. A relationship

between e and RC^DR must be stated. Recall that

(VIB.16a)

and

(vm.i6b)

One can also define a third Reynolds like number, R,, with
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(VIB.16c)

In this work, ReAC > 1, and c •< 1, 5 •< 1. Now RC^DR is taken to be order one, and so R,
< 1.

The remarks concerning the relationship of this forced problem to the work of Riley

(1967), which involved a solid body undergoing periodic motion; which was presented in Section

V carry over to this section. They will not be repeated here.

Since RC^DR = O(l), e = bl Re^R is then of order SQRT (5). The relationship

between r and £ is given by

r = R -
/^Hio«. (VIB.17)

with RBHYDR of order one. It is now necessary to rewrite the system of governing equations in

the stretched variable £. Note that in this region, the forcing terms on the right hand side of

(VIB.12b) will contribute. The forcing terms themselves are comprised of functions which

involve the acoustic velocity field.

The expansion will be done in terms of primitive variables as opposed to the stream

function. Since the conservation of momentum equation is a vector equation, the t, and e9

component equations will be expanded separately in the acoustic sublayer region. Writing the

6r and e^ component equations yields:
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(er cons, momentum)

* f r £_ + ii_ + i.
^— J L «l r Jr '•*

) •*• COMPLEX C«OJ06,MT£

(eecons. momentum)

T ^ ^ii- t -i |L
L "̂ n" ^ ^r ras^& ̂

(VIB.lSa)
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Now, expand as

with

(VIB.19c)

A similar expansion is done for py. All functions overbarred with a " —" are dependent upon

£ and 6. The right hand side forcing terms in (VIB.18a-18b) (written in terms of £) are known

from knowledge of v,' (and /o,'), which are acoustic field quantities.

Therefore,

(er cons, momentum - expanded)
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\

*

U^ •* ' - ]

e ^ V r ( s^a C uide

-

(VIB.20a)
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The y,' and p,' quantities represent the acoustic field. They are expanded in the acoustic

sublayer region; and contain both terms which decay to zero as £ -* oo and terms which

represent the inviscid field quantities re-expressed in a Taylor serves expansion in terms of £ in

the sublayer region. The subscript "1" on y,' and p,1 is kept in order to distinguish clearly these

acoustic field quantities from those of the hydrodynamic field, indicated by a "2" subscript.

Note that the terms on the right hand side involve products, at least one factor of which

involves only the viscous correction to the acoustic field. It should be clear that there is no

time-dependence in Equations (VIB.18a-18b) through (VIB.20a-20b). For more details on the

acoustic field quantities, see Section III.

The expanded form of the te - conservation of momentum equation is needed at this

point. It is

(3, cons, momentum - expanded)

-o(
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.
09

( (^ ,; — i)

(VIB.lOb)
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Finally, it is necessary to expand the conservation of mass equation in order to relate

to u^ . It is

(cons, mass - expanded)

Vi •'

-I

• ' 3

— O

(VBB.21)

It is clear from Equations (VIB.20a-20b) that a balance can be achieved between the

forcing terms and the hydrodynamic field terms if Uj8 is of order ( S/ RC^DR).

Physically, the hydrodynamic field is forced by the acoustic field via convective

acceleration type terms; that is, the forcing terms are quadratic in the acoustic field contribution.

The objective of the mathematics is then to have the lowest order hydrodynamic field terms

balanced by the lowest order forcing terms.

Inspection of (VIB.20b) shows that this is the case if the highest derivative of the

tangential component of the hydrodynamic field balances the radial derivative (normal to the

interface) of the tangential velocity component of the acoustic field, convected by the radial
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component of the inviscid acoustic velocity field. Moreover, it must be that u£ is zero, and
o

that the balance occurs with ut)

This has ramifications for the iu, component. From Equation (VIB.21), it is clear that

u_ is the lowest order contribution to u^.
>* **

From (VIB.20b)

(V'^le «:»«

de

(Vffi.22)

which, when the right side is written out, is
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oO

(VIB.23)

olP,
It is possible to re-express the coefficients in 0 as expansions in —j- ; that is,

06

(VEB.24a)

and

X —A dp
CL IB

L=l

(VIB.24b)

Therefore,
00

(VEB.25)
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Let

oo

L-l
(VIB.26)

After a substitution of (VB.26) into (VIB.25), multiplying through by (d Ps/d0)sin 6, and

integration over (O,T),

CLa&")

va:

(Vffi.27a)
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Let

W

and

(Vffi.27b)

ot>

which yields

(VIB.27c)
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The solution to (VIB.27d) is found to be

do + d,

and

(VBB.28a)

(Vffi.28b)
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VIC. BOUNDARY/INTERFACE CONDITIONS

The boundary/interface conditions are those that must be applied at the hydrodynamic

field level. Of course, these conditions themselves will be linearized, as the hydrodynamic

problem itself is linear. The boundary/interface conditions which must be applied are: (a)

kinematic condition, (b) continuity of velocity field components across the drop/host medium

interface, (c) tangential stress balance across interface, and (d) normal stress balance (including

surface tension/curvature contribution) across the interface.

The velocity and pressure fields which are utilized are those of Uj', u2°, pj, p2°, given in

Sections VIA and VIB.

In addition, the surface forces due to the radiation pressure vector will enter into the

boundary/interface conditions. Recall that these are the projection of the acoustic radiation stress

tensor upon the surface of the drop. (That is, pf^01"- and prTANO, which have been presented

in Sections II and IV.)

The velocity (and pressure) field which comprise the hydrodynamic field do include

contributions which arise as the result of forcing (of the governing equations) by acoustic field

quantities. These contributions arise in the acoustic sublayer. If their contribution to the

hydrodynamic problem velocity field were to be neglected, the resulting hydrodynamic flow field

would be only that of an oscillating drop (previously investigated by Miller and Scriven, 1968).

In the work presented in Sections VIA and VIB, it has been seen that the flow in the "outer"

regions (both interior and exterior to the drop) is precisely that of an oscillating drop. Of

course, in the work presented in these sections, the contribution to the velocity field arising in

the acoustic sublayer region is determined, also.
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In the work of Marston (1980), the acoustic field was taken to be strictly inviscid. Then

a non-zero contribution to (prTANa)« does not exist. Moreover, the hydrodynamic governing

equations themselves are not forced. Therefore, only (pT"1"11) will force the oscillating drop

solutions in the boundary/interface conditions in the case in which the acoustic field is strictly

inviscid.

It is the goal of this section to develop the boundary/interface conditions which apply in

the case in which the acoustic field incorporates viscous effects. In doing this, it will be

necessary to look at the velocity fields obtained in the previous two sections in more detail.

As a first step, the equilibrium interface will be defined. This will be followed by a

presentation of the general form of the interface/boundary conditions. Finally the velocity and

pressure fields pertaining to the forced hydrodynamic problem will be utilized in the conditions,

and specific equations obtained.

Equilibrium Interface

The equilibrium interface is defined by

R V
. = P - R ' X

(VIC.l)

The third term (following the first equality) represents the time-dependent oscillation of the

interface.

Boundary/Interface Conditions; General Form

The general form of the boundary/interface conditions will be presented. In keeping with
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earlier work, these have been nnnrf-
been nondmiensionalized. They are:

(Continuity of Radial Velocity)

U -* •< (t +-»}»->,»}
1 1}

or

160

(VIC.2a)

e ' i' _

<W"«»a«c Condition, " n * , * > * * o <WC.

n-»^«aIForceBalaDce)
 a h ' R ' s ' 5 ' o <™*)



\
)

/^A

(M»r0

Recall that a. = iijln* and /? = p0Vp0
0. I// and If' refer to the time-independent factor in

the hydrodynamic field. The forcing due to the tangential component of the radiation pressure

vector is shown (on the r.h.s.). Its form is that discussed in Section IV. The "*" over^'°

refers to the contribution due only to the inviscid acoustic field. Clearly, \fc0
i>0, the^ component

of the acoustic field, includes viscous effects. That is to say, for example,

(Normal Force Balance)

+ ^_
3r /

(VIC.2e)
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with G = (ojpo d3 ojDROP
2), and a0° the surface tension associated with the interface between the

liquid drop and the host medium. The unit vector ft is the outward pointing normal to the

interface. Specifically, n = V Fe/ | VFe | .

Equations (VIC.2a-2e) represent the general form of the boundary/interface conditions

which must be satisfied. Note that forcing terms, namely, the er and &s components of the

radiation pressure vector, appear in the above system of equations. This is a nonhomogeneous

set of linear equations. The unknowns are the coefficients of the velocity and pressure fields.

Once these are determined, the hydrodynamic flow field, which exists as a result of the acoustic

forcing, will be known.

Velocity and Pressure Fields

Recall that the velocity fields in both the "acoustic sublayer" region and "outer" region

interior and exterior to the drop have been found - up to the unknown coefficienct - in Sections

VIA and VIB. Also, the pressure field in the "outer" region (interior and exterior to the drop)

was determined explicitly (also up to a constant.) The pressure field in the "acoustic sublayer"

region is of higher order in (Jbl Re^oiO and will not contribute.

Recall that

/

(VIC.3)
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with,!2 = (-i

and

o r *S e

S)

IB

(VIC.4a)

However, as f -* oo t the contribution that is in the "acoustic sublayer" region must decay. This

implies that d0° = dt° = 0. Therefore,

C-0On) (ti/)

KT
(VIC.4b)
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The pressure field exterior to the drop is given by

(VIC.5)

Note that the contribution to the pressure is essentially due to the "outer" region solution.

The velocity and pressure fields interior to the drop must be utilized also. These are

T i s \A r (VIC.6)

with

V 7 \

+

Aflfi

die'\to

(VIC.Ta)

J
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The requirement that the solution which involves the "acoustic sublayer" variable, £, decay as

| -» oo implies that d,,' = d,' = 0. Therefore

Finally, the pressure field is given by

0 (

(VIC.Tb)

(VIC.8)
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Boundary Interface Conditions; Specific Equations

It is necessary to substitute the expressions for u-jj;0, u-i'0, p^-0 found in Equations

(VIC.3-VIC.8) into the general form of the boundary/interface conditions given by Equations

(VIC.2a-2d) in order to obtain the specific system.

Lowest order terms only will be kept.

(Continuity of Radial Velocity)

Q;
K

(VIC.9)

.with = (-

(Continuity of Tangential Velocity)

* -

I

(VIC. 10)

166



(Kinematic Condition)

- < - K * t

(VIC.ll)

(Tangential Stress Balance)

This requires some further manipulation in order to see clearly the substitution steps.

Expanding on Equation (VIC.2d) yields

tt<

- Uae
r I* * Y

> fi

(VIC.12a)

Of course, after substitution, only the lowest order terms are kept. This leads to
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rl-5i<*ji

\*

R

l

£«+!)
4Pi e

(

i

(VIC.12b)
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''-"-'—e,asumroa(ion(overyintteaboveequafon
can be simplified to yield

'')

(VIC.120
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But

(Z *• «* g
•»• COMPLEX

(VIC.13a)

(VIC.13b)

Therefore, multiplying by —- , and integrating over (O,T) yields, after utilizing orthogonality
d&

properties,
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; )

n
l» I
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However, recall that

T rg

,

and

MM w A I*
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Therefore, taking ££ =,£

ad-i)

(3 Uij

V
\
/

(VIC.15)

The factor [21(1 +1)7(21+1)] appears in each term (and can be cancelled). This yields
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Jft+0

/ attti) R
I a*o

(V1C.20,

Note that the contributions due to the velocity field gradient in the acoustic sublayer, which are

"2 )S RCHYDR (cl,1 + C2/)" on the left hand side and "2 RCHYDR (cl° + c2,°)" on the right hand

side are exactly cancelled by the tangential component of the radiation pressure vector which

appears as "2 j3 RC^DR (cl/ + c2,j) - 2 RC^R (cl,° + c2,°)" on the right hand side!
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Therefore, the net effect is that the tangential stress resulting from the velocity gradient

in the acoustic sublayer region variable cancels the tangential component of the radiation

pressure vector at the interface. Both of these effects owe their existence to the inclusion of

viscous effects in the acoustic field.

As far as this particular boundary/interface condition is concerned, there is no change

from the case in which the acoustic field itself was taken to be strictly in viscid.

It must be noted that the phase of the response has been set to be equal to the phase of

the forcing. If there were to be a phase lag, then the exact cancellation would not occur.

Rather, let »?IMPOSED = *?" -*?' an<^ let ^RESPONSE = Vs. be unspecified. In the case in which

^R = '/IMPOSED. total cancellation occurs. However, if TJR ?* 77^^08^ (= 17,̂ , then the tangential

stress balance will be given by

* -
I

- - * CRe HHi ") ̂  C tit + C^' ) •» ̂ Rl«v«. C«/ •» c V )
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That is, if there is a phase lag between the forcing and the response, then the tangential

stress balance becomes a forced equation (in unknowns (a2°, a/, a,°, a3')), with

ooCtt*

177

(VIC. 18)

(Normal Force Balance)

(VIC.19a)



. ,
with (prradiat) the time independent contribution of the radial component of the radiation

pressure vector.

Notice that in this section, the possibility of a phase lag between the forcing term and the

response is acknowledged explicitly.

After substitution, the normal force balance equation becomes

/
V

\|
J

«> «k P «

/ A

(VIC.19b)
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It is understood that there is a summation sign (over 1) in the above equation. Recall that A2 = -

i RCHYDR and J2 = -i RemDR (/3/a).

Multiply (VIC. 19b) through by (Px sin 8) and integrate over (O,T). Use of orthogonality

properties yields

*• ft

At

a,
*

^ /
\

*»**!«•

Pr

(VIC.19c)
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Clearly, this can be simplified to

.-< -N

I1

Re, I R

|.l / •

/ J_ Ji-
I RfHyt ftti)

*x - o ->>.« A

RRDtAL

(VIC.19d)
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with &2 = -i RBHYDR and A2 = -i
£

Looking more closely at prradUI, it is seen to be the projection of the radial component of

the radiation pressure vector onto the "P^" mode (or ¥,<, mode, if spherical harmonics required).

It is of the form

(VIC.20)

A.
with /S'-0 the adiabatic compressibility, and the subscript "1" indicating the acoustic field. Now,

to this order of approximation; v^-0 remains the same as if only the inviscid acoustic field were

taken into account. It is in v^-0 that the viscous correction to the acoustic field will contribute.

Therefore, although the form of the forcing term is the same as in the case in which the

acoustic field is inviscid, it is in fact "corrected" by inclusion of the terms due to viscous

acoustic field contributions.
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It is remarked that the drop is taken to be spherical. The actual deformation to the drop

was determined in Section V. Calculations indicated that for a millimeter drop, the deformation

from sphericity is on the order of microns; and is therefore neglected as a possible modifying

agent in the boundary/interface conditions.

Final Comments

It is helpful to the purpose of further discussion to reprise the final form of the

boundary/interface conditions in one subsection. They are given by

(VIC.21a)

(VIC.21b)

(VIC.21c)

182



**"-«)

*

(VIC.21d)

JxA + -?o<({.,) £
IT- ~?p
^ few fc
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Clearly, this is a forced system in five unknowns: a,', a3', a^, 84° and it,. If the forcing terms

are set equal to zero, the problem reduces to that of free drop oscillations addressed by Miller

and Scriven (1968).

In comparing, it must be noted that they did not nondimensionalize. Also, they found

it more convenient to work in terms of surface divergence conditions. (However, their results

can be recovered from those listed in Equations (VIC.21a-21e), provided the forcing terms are

set equal to zero, the system re-dimensionalized, and some manipulations performed.)

If there is no phase lag between the time periodic forcing and the time periodic response;

then only the normal force balance equation is forced. However, even in this case the results

do differ from those in which the acoustic field is considered strictly inviscid - that is, the

viscous acoustic field would modify the forcing in Equation VIC.21e).

To summarize, the inclusion of viscosity in the acoustic field produces three effects:

1.) in the "acoustic sublayer" region, the velocity field is enhanced

/v
2.) the tangential stress balance equation, taken at the drop/host interface, r = R, £ = f =

0. (linearized case), is forced by the (projection of the) tangential component of the radiation

pressure vector provided there is a phase difference between the time periodic forcing and the

time periodic response.

and

If
3.) VJA which occurs in the forcing of the normal stress balance is modified by inclusion

of viscosity in the acoustic field.
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vn. CONCLUSIONS

The focus of this project has been to elucidate the nature of the flow field (both interior

and exterior to the drop) for the case in which acoustic radiation pressure forcing due to the

tangential radiation stress is incorporated.

It is clear from the physics of this problem that viscous effects in the acoustic field must

be included in order to have a non-zero tangential radiation pressure contribution. Prior

analytical work in this area is represented by the major work of Marston (1980), and several

other related later papers (Marston et. al., 1981, 1982). In this prior work, the acoustic field

was assumed to be inviscid. Thus, no tangential stresses could be taken into acount due to the

nature of the formulation.

Physically, it is recognized that the flow field of the oscillating drop only exists if the

acoustic standing wave field itself is modulated, with the difference between the acoustic wave

frequencies that of the natural oscillation frequency of the drop. In the mathematical formulation

of this situation, prior work has noted that, were a consistent formulation to be developed, there

would be no forcing of the hydrodynamic field vorticity equation since the acoustic field was

taken to be inviscid. Therefore, the previous analytical formulation assumed that the

hydrodynamic flow field would be adequately represented by the known solution of the freely

oscillating drop; and simply proceeded to force this solution by adding the forcing term the

boundary/interface conditions.

In addition to the primary goal of this research project which did determine the viscous

acoustic field and elucidate the nature of the resulting hydrodynamic field forcing, certain side

topics were investigated briefly. These include the radial forcing only of a compound drop with
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core/shell of the same density and compressibility (presented in Appendix II) and a discussion

of the effects of non-axisymmetric acoustic forcing. It was seen that shear waves could be

excited were the acoustic forcing to be non-axisymmetric.

Work done in this project has determined the viscous correction to the acoustic field.

These results are presented in Section III. It is remarked that in order to accomplish this task,

an acoustic boundary layer/method of composite expansion technique was used.

The acoustic boundary layer/composite expansion approach was developed as an

alternative to an exact anlytical method approach involving an acoustic field decomposition that

was tried initially. The results of this first approach are listed in Appendix I. Briefly, this first

approach was not useful because it was too difficult to implement the resulting

boundary/interface conditions numerically - some terms proved to be extremely small relative

to others in the equation. It is this result which pointed in the direction of a boundary

layer/composite type expansion approach.

Results obtained for the acoustic field with viscous effects (Section III) included show that

the solutions for the "inner" region decay exponentially as the inner region variable goes to

infinity. An inner region solution was found for both regions interior and exterior to the drop.

Since the drop is liquid as opposed to a solid sphere, the perhaps more typical case of imposing

the no-slip condition is replaced by solving a set of boundary/interface conditions. One

interesting result of this process was that the boundary/interface conditions of (1) the radial

component of the acoustic velocity field balance at the interface and (2) the normal force balance

at the interface were unchanged from what they had been for the case in which the acoustic field

is strictly inviscid. (Of course, in the work of this project, nondimensionalizations have been
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done. This must be remembered in any comparisons with the literature.) The inclusion of

viscous effects in the acoustic field is manifest in the boundary/interface acoustic field conditions

of (1) tangential /ee) component of the acoustic velocity field balance at the interface, and (2)

the tangential stress balance at the interface. It was determined that the tangential stress balance

is due only to terms which arise via incorporation of the viscous effects. In the tangential
\

velocity balance, both terms which arise due to viscous effects (i.e., the inner region

contribution) and to the inviscid formulation (i.e., the outer region contribution) enter. It is

through the solution of these boundary/interface conditions that the unknown coefficients are

found, and the acoustic field characterized.

Of the inner region dependent field quantities, only the tangential component of the

acoustic velocity is of order one (in the inner region, it decays to zero as the inner region

independent variable goes to infinity). All others of lower order.

The results of Section III which give the viscous correction effects to the acoustic field,

although interesting in their own right, are absolutely necessary in order to determine the

hydrodynamic field. It is in Sections V and VI that the structure of the hydrodynamic field itself

is elucidated.

Before addressing the hydrodynamic field structure, the ramifications of incorporating

viscosity into the acoustic field description on the tangential radiation stress tensor and on the

radiation stress vector were explored in Section IV. The form of the tangential radiation stress

was exhibited.

It must be kept in mind that few examples in the literature exist on real or even supposed

experimental systems. The work of Marston and others has utilized p-xylene drops in water and
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silicone oil drops in water. The calculations of relevant quantities in the inviscid acoustic field

approximation - are minimal in the existing literature. A caluclation due to Marston (1980) and

later improved/corrected by Marston et. al., (1981) for a p-xylene drop in water exists. It is

this result which forms the basis for a quantitative comparison. The work in Section IV has

proceeded to calculate the forcing terms in the boundary interface conditions only. This is an

intermediate step which may be done before actually solving for the new hydrodynamic field

itself.

The comparison between the calculations of this project for a one mm drop of p-xylene

in water and those of Marston (1980, 1981) were done in Section IV. The results between the

work of this project and Marston's were found to be quite close for the calculation of the radial

component of the radiation pressure vector, which was on the order of (. 1) dynes/cm2 for a

carrier wave amplitude (in pressure) of 10s dynes/cm2. This comparison utilized terms found

in the inviscid acoustic field approximation only. In the calculation of the effect of the tangential

stress upon the drop deformation, it is necessary to utilize the viscous acoustic field. It was

found that effect is of the order of between (.01) to (0.1) dynes/cm2. The formulation of

Marston (1980, 1981) could not and does not include a viscous acoustic field, and so did not

calculate this quantity.

It is possible to do a limited parameter study of "theoretical" systems. Because no

comparisons exist with experiments, the results are not being presented here, but will be found

in the MS thesis (by Ferguson).

The results of Section IV show that the viscous acoustic field contributes tangential

stresses which have an effect upon drop deformation, as well as other quantities.
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It is the actual structure of the hydrodynamic field which has been probed in Sections V

and VI.

In the work of Marston, the flow field is taken to be that of a freely oscillating/decaying

viscous drop which is forced via the boundary/interface conditions. No modification of the

hydrodynamic field itself occurs due to the forcing of the Navier-Stokes equation by functions

quadratic in acoustic field quantities. This entirely consistent with the level of approximation

done by Marston; but such an approach cannot incorporate tangential forcing, which is the

primary goal of this project.

A formal expansion scheme in the small parameter 6 , which represented

(^DROfJ^ACousnc) was utilized in obtaining the forced hydrodynamic field incompressible

Navier-Stokes equation.

It is noted that a re-normalization was performed at this stage. This involved a re-

nondimensionalization with respect to hydrodynamic field reference quantities as opposed to

acoustic field reference quantities. Following this, the following restriction was made that

teinDRo (• <*DKOP ^/vj is of order one.

A detailed discussion relating this to streaming Reynolds number as well as ReAC was

done in Sections V and VI. The relationship of this work to that of Riley was explored.

The resulting forced equations were solved. It was seen that the forcing of the equations

by acoustic field quantities only existed in an acoustic sublayer region; outside of this region the

flow field is given by either Stokes flow (if the acoustic field was unmodulated) or the freely

oscillating drop flow field of Miller and Scriven (if the acoustic field was modulated).

This, then, represents the modification in the hydrodynamic field due to acoustic field

forcing. Moreover, is is seen that the correction to the hydrodynamic velocity field is smaller
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than order one in the acoustic sublayer region. Moreover, these contributions decay as the

"acoustic sublayer" region is left. It is the tangential component of velocity that is the largest

in this sublayer region, and therefore the tangential component of the hydrodynamic field which

receives the most enhancement from the acoustic forcing. However, this largest enhancement

is smaller than order one.

The application of boundary/interface conditions at this hydrodynamic field level produces

a very interesting result.

The boundary/interface conditions at the hydrodynamic field level are the kinematic

condition, the velocity component balance at the interface, and the stress balances at the

interface. It is the normal force balance across the interface which includes the surface

tension/curvature contribution. These quantities are all evaluated at the interface.

There are also contributions due to the radiation pressure vector; the radial component

of which forces the normal force balance equation. It is the e6 tangential component of the

radiation pressure vector which forces the tangential stress balance equation.

The radiation pressure terms have an associated (constant representing the) phase, and

the hydrodynamic field variables have an associated phase; in general these are not equal.

The effect of the viscous acoustic field contributes most dramatically to the tangential

stress balance. Not only do the tangential velocity components resulting from acoustic field

forcing in the sublayer appear in this equation, but also the tangential component of the radiation

pressure vector serves to force this equation. Of course, the tangential velocity components

associated with the standard oscillating drop solution also contribute.

After the evaluation at the interface, it is seen that the velocity field modification terms

due to the acoustic forcing in the sublayer are the same but opposite in sign from the terms
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involved in the tangential radiation pressure forcing - up to the phase angle. If the phase of the

response (i.e., the hydrodynamic field) is the same as the phase of the forcing, then the

contributions would identically cancel! This would result in the effect of the acoustic forcing

being present only through the radial component of the radiation pressure vector. (Of course,

this radial component itself is recalculated to include the viscous contributions of the acoustic

field, but the form would not change from that used by Marston.)

However, it is not reasonable in general to suppose a response (i.e., the hydrodynamic

field) which does not have a phase lag with respect to the forcing. The smaller this lag, the

more the tangential forcing term is reduced. The final system given in Section VI may be solved

for values of the physical parameter of interest.

Finally, although there is enhancement of the flow field in the "acoustic sublayer" region,

this enhancement is less than order one. Also, outside of this sublayer region, the flow is that

given by Miller and Scriven (1968), and assumed by Marston (1980); i.e., the flow field of the

oscillating drop.
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APPENDIX I:

DETAILS ON VELOCITY DECOMPOSITION APPROACH
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This section presents in detail the determination of the viscous acoustic field by means

of the velocity decomposition approach.

The acoustic field which incorporates the effects of viscosity must be solved for in the

regions interior and exterior to the drop. Quantities in the respective regions will be designated

by superscripts i and o respectively.

To facilitate solution of the acoustic field equations, the velocity vector is decomposed

as

Vi - ^q> + Vx£ (AIla)

T V X f t (Al.lb)

into irrotational and solenoidal parts. The vector potential is denoted by £' (and A°). In order

to render that analytical calculations tractable, axisymmetry is assumed. Then A/ = (0,0,^!),

with $'(T,0,t) a scalar function which is independent of <£* This is done in a similar fashion for

A°. The vector potential has a structure akin to that of a toroidal field in the familiar

poloidal/toroidal vector filed decomposition approach. However, \f/ does not generate A in the

usual sense.

It is noted that exterior to the drop the acoustic field must account for the scattered as

well as the incident wave contributions. (This is in addition to whatever contribution exists due

to the presence of viscosity.) Thus, 4>° = <t>£, + ^c0-

Substitution of the velocity field decomposition into the linearized governing equations

and further manipulations yields
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Exterior region

r (AI.2a)

fr (AI.2b)

Interior region

(AI.3a)

(AI.3b)

The incident wave is known strictly in terms of<t>mc°. In order to deternmine the scattered wave

field, both A,° and </>,° must be determined. This is also the case when determining the velocity

field in the interior of the drop.

Note the factor which appears (with i,o superscripts) in Equations AI.2a and AI.3a. This

indicates that the effects of (shear) viscosity (/*) and bulk viscosity (/XB) appear in the

197



longitudinally propagating part of the acoustic wave. These effects serve to attenuate the wave.

Moreover, the bulk viscosity does not contribute to the solenoidal part of the velocity field. This

is evident by considering Equations AI.2b and AI.3b. These equations are vector diffusion

equations, with the shear viscosity responsible for the diffusion. This will be discussed further.

The incident traveling wave can be expressed as

t-O (AI.4)

where o> is the acoustic frequency (carrier frequency in the case of the modulated wave). This

wave is proceeding from -oo to the drop in the direction of the polar axis. Ultimately, the

interest is in the acoustic standing wave field. This can be expressed as the superposition of two

(oppositely) traveling wave fields.

Assuming a form of <t>° (or (£') to be an expansion in Legendre polynomials, with

harmonic time dependence

oo

(AI.5)

the equation governing the longitudinally propagating part of the wave reduces to

Ao *«,§ .L j \ d

" '*"N - 0 (AI.6a)
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with

(AI.6b)

A change of superscripts will denote the equation governing <£'. The solution for the exterior

region is given by

(AI.6c)

with hi(1) (1C,, r) indicating the outwardly propagating wave. In the interior of the drop, the

solution is given by

CO

A i * I \D -xwt

, * «*• (AI.6d)
jt=o

Since axisymmetry has been assumed, there will be only one contribution to the vector

potential equations, the CA component. This yields a scalar equation

n; - *• n ..
(AI.Ta)

governing the shear wave exterior to the drop. Replacement of the o by i superscripts, together
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with the physical properties data, gives the equation governing the shear wave interior to the

drop. The exterior solution is given by

oo

(AI.7b)

where y = SQRT (i w p0°//O and PV *s tne associated Legendre polynomial.

The interior solution is given by

(AI7c)

Since the standing wave field is of interest, these solutions will be superimposed with

waves travelling in the other direction. This can be indicated by a change in the multiplicative

constants. Let

(AI.7d)

with h the distance from the acoustic velocity nodal plane to the drop's center. (This will be

taken to be zero; then, for odd values of 1, 5, will be zero.)
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*. o

with

The general form of the solutions which satisfy conditions of finiteness in the respective

regions has been determined. It remains to solve for the multiplicative constants, which can be

done through the imposition of the appropriate conditions at the drop/host medium interface.

The conditions on the acoustic field are that (1) the pressures balance, (2) the radial and

tangential components of velocity are continuous (respectively), and (3) the shear stress balances

at the interface. This yields four conditions for each 1 value, and there are four unknown

constants existing for each 1 value. It remains to determine the pressure in order to construct

all the necessary conditions.

The pressure can be determined quite readily. It is a solution of

V
"n"

•*••

(AI.9a)

The pressure in the exterior and interior regions is given by

* ± a.JL -

(AI.9c)
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For completeness, the velocity components interior and exterior to the drop are listed

below. These are

202

(Al.lOa)

(ALlOb)
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The conditions at the interface are then given by

(ALllo)
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APPENDIX H;

ACOUSTIC FORCING (UNMODULATED) OF COMPOUND FLUID DROP:

SUBCASE OF CORE/SHELL VISCOSITIES DIFFERENT

204



This work considers the effect of acoustic forcing upon a compound drop system. The

compound drop system itself consists of a core fluid of density pj, viscosity /*„', surrounded by

a shell fluid (density p0\ viscosity jO embedded in a host medium (with p0°, ^0°). In general,

the surface tension values at the inner and outer interfaces will differ. Only a specialized sub

case of the general compound fluid drop system is considered. Attention is restricted to the case

in which the core and shell fluids have the same density and compressibility, but differ in

viscosity.

The acoustic wave providing for the forcing of the drop is considered to be inviscid.

That is, the viscous effects will be restricted to the hydrodynamic field. The acoustic wave then

sees the outer interface as a boundary between two media since the acoustic wave is taken to be

inviscid, the only contributing term in the radiation pressure vector will be the radial component.

The case of the unmodulated acoustic wave is considered. This will result in drop

deformation. The problem is to determine the deformation and compare it to what would exist

for a simple drop.

Linearized governing equations for the hydrodynamic field reflect the steady state nature

of this problem. Manipulations on the conservation of momentum equation will yield the

following system, expressed in the radial components of velocity,vorticity (of the hydrodynamic

field)

(AILla)

S ° A t ( i, s, o\ (AH.lb)
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That is, the steady state forced hydrodynamic field problem can avail itself of the same

decomposition as that used by Miller and Scriven in their analysis of the unforced oscillating

drop problem. The boundary/interface conditions can be expressed strictly in terms of the

aforementioned radial components.

Since the only forcing component from the acoustic field is in the radial direction, the

necessary boundary conditions will be expressed in terms of the radial velocity only. Solutions

to the system are found to be

(An.2a)

(AH.lc)

The boundary/interface conditions which must be imposed are the kinematic condition,

continuity of velocity components across the interface, and that the normal and tangential stress

balances at the interface. This is at both the inner and outer interfaces. However, the additional

(acoustic) forcing in the radial direction will enter into the normal stress balance at the outer

interface. It is this contribution which will force the system, and result in deformation.
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2.H3

(An.3a)

jido 5 Oi(«-i "* " 'W (AH.3b)

U C u V (AH.3d)

(AH.30
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(AH.3g)

R / (JNI)

t

With s = SQRT (R^J and r = SQRT (Ro/R,). This system of equations is a set of forced

equations in the unknown coefficients: c,, a,, b,, c,, d,, d0, f*, f°. The deformation at the outer

interface is indicated by f°. Note that this is a reduction from the tenth order algebraic system

which would have been expected if the compound drop were oscillating (either free or forced).

This is due to the repetition of relationships in two interface equations.

This is an (8 x 8) nonhomogeneous linear system which can be solved by standard

numerical means. Although not efficient numerically, it is clear that an application of Cramer's

rule would lead to a solution for f°, which is of interest. This solution would be in the form of

a numerical value. Application of the symbolic mathematics manipulator REDUCE (Hearn,
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1987), leads to an expression for f°, which is

(An4)
This is the result obtained for the deformation of the interface of the simple drop. Note that the

inner surface tension does not contribute. At first, this appears to be a surprising result.

However, upon reflection it is recalled that the core and shell region fluids differ only in their

respective viscosities, and that the unmodulated acoustic wave responsible for the forcing is

taken to be inviscid.
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