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TECHNICAL PAPER

THE EFFECT OF ACCELERATION VERSUS DISPLACEMENT METHODS

ON STEADY-STATE BOUNDARY FORCES

I. INTRODUCTION

When a substructure model is reduced by the Craig-Bampton method, a number of

degrees-of-freedom (DOF) are retained as physical DOF's to provide interface to other

substructures. When more DOF's are retained in this interface than are actually required, the

model is said to be over constrained. The results of this, when using the displacement

method, are typically an inaccurate distribution of boundary forces. This inaccuracy also

occurs when there are justifiably many interface DOF's which result in an indeterminate
interface. When the acceleration method is used, this inaccuracy is overcome. However, many

people do not fully understand this method and the many ways of implementing it, so its

implementation is sometimes haphazard.

In the space shuttle payload community there has been an increase in the use of over-

constrained payload models. This has been, mainly, to afford easy recovery of relative

deflection data between the payload and the shuttle. While there has also been an increase in

the use of the acceleration method for the recovery of payload displacements and forces, the

displacement method remains the method used for recovering system displacements and
forces.

The purpose of this study is to describe the acceleration method and investigate the

problem of indeterminate or over-constrained interface substructures.

This report will first look at the acceleration and displacement methods from the

example of a simple 2-DOF problem. This will define the methods and describe the

similarities and differences. Generalizations will then be made to larger systems. A simple

two-dimensional, two-beam problem will then be explored and conclusions drawn.
Recommendations for areas of study with space shuttle payload systems will be made.

II. DYNAMIC BASICS

Before discussing the acceleration method, it is useful to look at a simple 2-DOF

system as shown in figure 1.

F (t)

> \1\1\I\1\1\

> x > x

1 2

Figure 1. Two-DOF system.



The equationof motion for this systemis:

[o, ]l:xX:;}+[:,:'I/x:/:{ 't'0}.
(I)

The eigenvalues and eigenvectors can be determined and normalized (appendix A) such that

the problem simplifies to:

1 0 /tl + k (ml+m2)

0 1 q2 0 mlm2

1 1

m2 -rnl 4 m2ml(ml+m2 ) m2 ml(ml+m2 )

F(t)o/

F(t) 1 Iq-_-1+m2

F(t) m2 i_ml(ml+m2) (2)

o921= 0 ; o_ - k(ml+m2)
ml m2 (3a, 3b)

o91 is the frequency of the rigid body mode; i.e., both masses move in unison with no

deflection in the spring. 092 is the elastic mode frequency of the two masses moving relative to

each other deflecting the spring. A rigid-body mode will cause no internal forces since there is

no deflection in the spring.

Here, an assumption will be made about the applied force, F(t). It will be assumed to

be a linear force since this assumption is typically made for each time step in a numerical
solution. Therefore:

F(t) = Fs t+Fc (4)

where s stands for slope and c for constant.

The solutions to the now uncoupled equations in equation (2) are then:

2 qml +m2 ' (5a)

q2 =
+ (A cos met + B sin O)2t) m1(ml+m2)

(5b)

_11 "- F(t) 1
.mT+--_ " (5c)

/_2 = [-(092 A COS 092t + 092 B sin c02t)] 4 m2ml(ml+m2) (5d)
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The detailedstepsfor this solutionareshownin appendixB. The constants,C1, C2, A, and B

are determined by initial conditions.

One can see here that q_ is the generalized displacement of the first mode which is the

rigid body mode. One can also see that q2 is the generalized displacement of the second or

elastic mode. This mode relates to the two masses moving relative to each other, and one can

see that it has two terms. The first term is the particular or steady-state solution which is

the response due to the steady-state equilibrium between the applied and inertia forces. The

second term is the dynamic response due to the harmonic transient. This second term would

damp out if damping were included in the problem.

In regard to the generalized accelerations, one can see that ql is the generalized rigid

body acceleration due to the applied force and that q2 is the harmonic transient acceleration
of the two masses relative to one another.

Now, the physical displacements and accelerations, xl, x2,)71, and 572, can be

recovered by multiplying the modal displacements and accelerations by the eigenvectors.

I 1 m2
{x2}X_= [_] {ql }=q2 4-_1+rn21 -m14ml(ml+m2)m2

m24rnl(ml+rn2)
(6)

X1 = + t---_2+ Clt + C2
2 rn_+m2

m2

0 2 ml(ml+m2)

+ (A cos co2t + B sin ¢o2t) m2
ml(ml+m2) " (7a)

F t 3 Fct_______2+Clt+C2 +
x2 = _+ 2

092 (ml+m2)

+ (A cos cozt + B sin 0)2t)
-1

(ml+rn2) ' (7b)

571 -- F(t) (092 A cos 092t + (02 B sin 092t) m2 ,
(m 1+m2) m l(m 1+m2) (7c)

5?2- F(t) + (093 A cos oy2t + 092 B sin 0920 1
(rn 1+m2) (m 1+m2) (7d)

From these, it can be seen that the displacements, like the generalized displacements

are made up of rigid-body, steady-state, and transient terms. In fact, the rigid body terms for

xl and x2 are identical, which they should be since the body is moving as a whole. It can also

be seen that the steady-state acceleration term is the classic force divided by mass and is

the same for 571and £2 since it is a rigid-body acceleration.
3



Thesethenare the basicequationsfor the responseof a single 2-DOF system.When
the physical displacementscomputed this way are used in loads recovery, the method is
called the displacementmethod.

III. ACCELERATION METHOD

As seen in the previous section, the displacement method uses the eigenvectors to

compute the physical displacements. Another way to compute the physical displacements is

to use the physical accelerations computed above and to re-solve the system equations for

the physical displacements. Reiterating the system equation:

[ 0 1 m20 ]{_;}+[kkkk]{x12}={ F(t)O } "
(1)

Solving for the displacements:

{Xx:)=[kkkk]-'[{F(t)o }_[ ml 0 ]{3710 m2 3/2}] (8)

rk-kl
Now, inverting /_k k/is impossible, since it is free-free and the determinate is zero,

however, it is realized that the accelerations were computed free-free and that any time the

applied forces are in equilibrium with the inertia forces. Thus, one should be able to ground

the system determinately, invert the stiffness matrix, and not induce any additional forces.

The 2-DOF system can be grounded determinately at mass 1 by adding a small stiffness (k2)

to the Kll term of stiffness matrix. The displacements calculated in this way will be called Yl

and Y2 to differentiate the two methods. Doing this, the following is obtained:

{Ym}=Ik+k2Y2k kkIlliCit'}[0 o10m20

[! l J({ }_k2 21 k+k2 0 0 m2

k_ _j

-_2 k2 k2= F(t) - ml m2(k+k2)

-_2 k2 k k2 (9)

Yl-- F(t) ml )Cl --m.---_2jf2 - F(t) F(t) ml
k2 k2 £2 k2 k2 (ml+m2)

+ (0) 2 A cos 0)2t + 0)22B sin c02t)
m2

k2 (ml+m2)

F(t) m2
m

k2 (ml+m2)
- (0)22A cos 0)2t + 0)2 B sin c02t)

m2

k2 (ml+m2)
=0,

(10)
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Y2-
F(t) F(t) ml

F(t) ml Xl m2(k+k2) Y¢2=-
k2 k2 k k2 k2 k2 (ml+m2)

+ (092 A cos fo2t + 0122B sin C02t) m2 F(t) m2 (k+k2)
k2 (ml+m2) k k2(ml+m2)

- (092 A cos c02t + co2 B sin c02t)
m2 (k+k2)

k k 2 (m1+t_12)

= _ F(t) m2 (092 A cos a>2t + 092 B sin c02t) m2
k (ml+m2) k (ml+m2)

F(t) m2 (A cos o)2t + B sin o)2t ) 1

k (ml+m2) ml (1 1)

From this it can be seen that displacement Yl is equal to 0 which indicates that the

ground spring that was added has not deflected, so the assumption of no added forces was

correct. Also, it can be seen that the rigid body term is gone. This is understandable since the

system was grounded, and it does not affect loads calculations since new forces were not
added and rigid-body displacements caused no internal forces. One can also see that Y2 is

exactly equal to the difference between x2 and Xl calculated from the displacement method.

For loads calculations, it is the relative displacements which are important so Y2 suits the

purpose adequately. And finally, Y2 still contains the steady-state and transient terms.

This is the heart of the acceleration method. The displacements are found in terms of
the accelerations.

IV. EFFECTS OF MODAL TRUNCATION

At first glance, the benefit of the acceleration method is hidden, since the same results

have been obtained with much more effort. However, the benefit becomes apparent when
modes are truncated. If, as above, all modes are used, the two methods are identical.

Suppose the elastic mode is truncated from the 2-DOF problem, from equations (5), (6), and
(7):

IF t3 +__ Clt + C2Is Fc t 2 + 1 ,Xl
6 2 ml+m2 (12a)

X2 _._[Fs@ + Fc t 2 +Clt+ C2] 1rnl+m2 (12b)

;il - F(t) .

(ml+m2) (12c)

J(2 -- F(t)

(ml+m2) (12d)
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And, if the new 21 and 22 are substituted into the equations for Yl and Y2 (equations (9),
(10), and (11):

Yl = 0 , (13a)

Y2-
F(t) m2

k (ml+m2) (13b)

Now, it can be seen that xl and x2 have retained only the rigid-body displacement
terms which have been noted to be of little use in loads calculations. However, Y2 has

retained the steady-state term which can be a major load contributor. So, it is the accuracy of

the steady-state displacement term which is the benefit of the acceleration method.

V. GENERALIZATION OF RESULTS

If one looks closely at the results from the 2-DOF problem in the previous section,

some generalizations can be made to multi-DOF problems. First, ignoring rigid-body

displacement, the modal displacements are:

n

=1__.!___, OijFi(t) + A sin ((0it) + B cos ((0jt) ,
qje_.c °)2 i=t (14)

where:

j = mode number

i = physical force DOF number

n = number of physical DOF's.

The modal accelerations are:

n

/_j.g,d= ,_, ¢ij Fi(t) .
i=1 (15a)

_i_jelastic "----(0 2 A sin ((0jr)- (02 B cos ((0jr) (15b)

The detailed steps for these solutions are shown in appendix C.

Now, the physical displacements are:

in

= j=l
__. qJij Fi(t) + A sin ((0it) + B cos ((0jt)] ,
i= 1 (16)

6



where:

j = mode number

i = physical force DOF number

p = physical displacement DOF number

m = number of elastic modes.

The physical accelerations are:

;fp = dppj 4)ij Fi(t)

j=l

m

]=i (17)

where:

j = mode number

i = physical force DOF number

p = physical displacement DOF number

m = number of elastic modes

r = number of rigid body modes.

Since it has been determined that it is only the steady-state terms which the

acceleration method helps, these terms can be isolated as follows:

Xpsteady state = Cpj

j=l 0)2
_ Oij Fi(t) 1i= 1

(18)

j=l i=1 (19)

So, one can see that the steady-state displacement is determined by the summation
of contributions from each elastic mode. As modes are truncated, this summation will contain

more error. However, the steady-state acceleration term which causes this displacement is
dependent only on the summation of rigid-body modal contributions. These rigid-body modes

are rarely truncated. Therefore, no matter how many elastic modes are truncated, steady-
state displacements computed in terms of this acceleration will contain no error. Of course the
transient term of the acceleration is still a summation, so the error introduced to the transient

displacements by model truncation is unaffected by solution in terms of acceleration.



VI. IMPACT ON COMPUTATION OF FORCES

As has been shown, the truncation of mode shapes of the boundary can lead to errors
in the displacements computed by the displacement method. The error to the displacement

vector {x} can be called {e}. Then one can find the error in the forces computed from these

displacements since:

IF} = [K] Ix} , (20)

SO,

{F}error = [K] {e} . (21)

For a simple 3-DOF problem, if the interface is determinate, then the DOF's are
relatively uncoupled:

/k k 01tell{ke, ,-k k+k2 -k2 e2 = -k el + (k+k2) e2 -k2 e3 •

0 -k2 k2 e3 -k e2 +k e3 (22)

If they were indeterminate or coupled then:

k -k

-k k+k2-k2

[_] -k2 k2

l k el -k e2 + [-_ 1= -kel + (k+k2) e2 -k2e3 i "

_-_ -k2 e2 + k2 e3 (23)

So, as shown by these additional terms, the more coupled or indeterminate the system

the more a force computed for 1 DOF is affected by error in the displacements at other
DOF's. It should also be noted that because of the nature of the stiffness matrix these

magnification effects on the displacement error can be quite large, thus producing large force

errors from seemingly insignificant displacement errors. The acceleration method produces

extremely accurate displacements which overcomes this problem.

VII. APPLICATION TO A SIMPLE BEAM

A somewhat more complicated problem can now be defined for investigation. Take a

simple two-dimensional beam with element nodes having translational and rotational DOF's

(fig. 2). Two of these discrete physical models can be coupled together. Thus, as shown in

figures 3 and 4, each model can be divided into interior and boundary DOF's, coupled together

at either 2 or 4 translational DOF's and driven by a force.

The equations of motion for these beams and system can be written:



I II

2 12

21 31 41 51 61 71 81

22 32 42 52 62 72 82

Figure 2. Simple beam DOF's.

BEAM B
I 11

2-_-,,"
I !1

BEAM A

21 31 41 51 61 71 81

_ _ _ == _

I-I_== _ .= == _ _-

21 31 4_ 51 61 71 81

F(t)

Figure 3. Two beams coupled at 2 DOF's.

BEAM B

I 11

==

I 11
BEAM A

21 31 41 51 61 71 81

I-I - -
m-m

21 31 I 51 61 71 81

F(t)

Figure 4. Two beams coupled at 4 DOF's.



 ,,bll ,l {x,}{0}+ Kbb B = 'KbiMei Mbb (24)

Mib Mii gib Kii ' (25)

[M] 2_, +[K] Xb =_ 0
X.,A X_A F (26)

here:

i = interior DOF

b = boundary DOF.

Equation (26) can then be coupled by a eigenvalue problem.

XiB }
xb =[_] {q} ,

(27)

/°}[1]{_}+[w2]{q}=[O] r 0 •
F (28)

These uncoupled equations can then be solved for {q} and {_}.

The physical displacements can then be recovered by the displacement or acceleration

method. Equation (27) is the displacement method, and the acceleration method is shown in

equation (29). The displacements from the acceleration method will again be called Y to
differentiate them.

r_ =[K*]-' 0-[M] _ .

YiA F XiA (29)

Here, an adjustment must be made so that a comparison can be made between the two

methods. In the acceleration method, because the stiffness matrix is grounded, the

displacement of the ground DOF is zero and all other displacements are relative to it. In the

displacement method, assuming rigid body displacements are zeroed, all displacements are
relative to the center of gravity. Therefore, a correction is made to the displacement method

displacements. If the displacement method displacement of the acceleration method grounded
DOF is distributed by a rigid-body transformation and then subtracted from the displacement

method displacements, a one-to-one comparison can be made between the two methods.

10



Now, as has already beennoted, the accelerationmethod is only useful in gaining
accuracy in the displacementscausedby the steady-stateaccelerations. Therefore, it is
desirableto isolatethis displacementto eliminateconfusionwith othereffects.As seenin the
accelerationmethod, it is easy to separatethe steady-state,rigid-body accelerations, and
thereforedisplacements,from the transientsby simply partitioning {_}. This separationis not
possiblein the displacementmethod.However, it hasbeenshown that if both methods are
truncated the same, then the transient portions are equal. Therefore, the steady-stateand
transient portions of the displacementscan be computedby the accelerationmethod.This
transient portion can then be subtractedfrom the displacementmethodsolution to obtain a
displacementmethod steady-statesolution. The two methodscan then be comparedwithout
confusionby truncationeffectson thetransientportions.

VIII. RESULTS FOR THE SIMPLE BEAM PROBLEM

For the problem of two discrete physical beam models coupled together as described
in section VII, the effect of truncation in the system eigenvalue problem, equation (27), was

investigated. The particular aspect investigated was that of interface forces between the

substructures or beams as computed by equations (24) and (25). The results were compared

for both the acceleration and displacement methods and for severely truncated modes (all

rotational modes truncated) and no modal truncation. These results are tabulated in table 1.

Keep in mind that only the steady-state response is compared and that the only truncation is
at the system eigenvalue level.

As can be seen, and expected, there is excellent comparison between the two

methods when all the modes are used. The acceleration method also agrees exactly whether

modes are truncated or not. However, the displacement method with truncated modes is

greatly in error. In fact, the error in the applied force on beam A is 90 to 95 percent.

IX. CRAIG-BAMPTON REDUCTION

An investigation of what happens if beam B is reduced by the Craig-Bampton method
is shown in the following. The coordinate transformation for this reduction is:

(30)

Equation (24) can then be replaced by:

EI Mib __A + _ _

Mbi Mbb J(b B 0 Kbb Xb B (31)

11



Table 1. Effect of accelerationversusdisplacementmethodson steady-state
boundary forces.

BEAMA

2 coupled DOF's

4 coupled DOF's

ERROR

abs(abs{REFERENCE)-abs)
acceleration

method

all modes

DOF 1 0.00000000

DOF 41 0.00000000

DOF 81 0.00000000

DOF 1 0.00000000

DOF 21 0.00000000
DOF 41 i 0.00000000

DOF 61 0.00000000

DOF 81 0.00000000

displacement
method

all modes

0.00000001

0.00000005

0.00000001

0.00000019

0.00000011

0.00000000

0.00000000

0.00000000

acceleration

method

truncated

0.00000000

0.00000000

0.00000000

0.00000000

0.00000000

0.00000000

0.00000000

0.00000000

displacement
method

truncated

0.02689317

0.47039463

0.02689319

0.00602957

0.02826142

0.44786349

O.02826125

0.00602981

REFERENCE

VALUE

acceleration

method

all modes

-0.16666667

O.49999997
-0.16666665

-0.00722064

-0.15944602

0.50000000

-0.15944602

-0.00722064

BEAMB

2 coupled DOF's

4 coupled DOF's

DOF 1

DOF 41

DOF 81

DOF 1
DOF 21

DOF 41

DOF 61

DOF 81

ERROR

abs(abs(REFER ENCE)-abs)
acceleration displacement acceleration

method method method

all modes all modes truncated

0.00000000 0.00000000 0.00000000

displacement
method

truncated

0.01147362

REFERENCE

VALUE
acceleration

method

all modes

0.16666667
0.00000000

0.00000000

0.00000000

0.00000000

0.00000000

0.00000000

0.00000000

0.00000004

0.00000001

0.00000030

0.00000063

0.00000004

0.q0000000

0.00000000

0.00000000

0.00000000

0.00000000

0.00000000

0.00000000

0.00000000

0.00000000

0.00540434

0.01147363

0.00057095

0.02842032

0.00320943

0.02841970

0.00057068

0.00000000

O.16666665

0.00722064

0.15944602

0.00000000

0.15944602

0.00722064

The coupled system is then:

l O_i 
L,

XiA

{0}+[r--I =o
XiA F

(32)

QiB }The displacements Xb can be determined by the same methods as equations
x.,a

(27), (28), and (29). The interface forces for beam B are computed from equation (31).

In this study, four different Craig-Bampton boundary conditions were considered. The
first two were an over-constrained case where all translational DOF's of beam B were

12



retainedas boundaryDOF's; onewas for no Craig-Bampton modal truncation and another for

severely truncated Craig-Bampton modes. The third case considered was a Craig-Bampton
reduction from the physical model down to the coupling DOF's. Craig-Bampton modes were

truncated. And finally, the fourth case was a two-step reduction first to the translational

DOF's with truncation and then to the boundary DOF's.

X. RESULTS OF CRAIG-BAMPTON REDUCTION SCHEMES

For all four Craig-Bampton cases described in section IX, it was, again, the interface
forces that were studied. The acceleration method with and without system modal truncation

and the displacement method using all modes showed excellent agreement. This data is

presented in appendix D.

For all four cases, the only method that indicated error was the displacement method

using truncated system modes. These results are tabulated in table 2. Keep in mind that this

data is only for the displacement method using truncated system modes, and that only the

steady-state response is considered. The following conclusions can be drawn from this data:

The severity of truncation of the Craig-Bampton modes does not affect steady-state

interface force error. It is the truncation of modes describing the motion across the boundary

(i.e., system modes) that causes the error.

Over-constrained Craig-Bampton models, when used with the displacement method,
introduce sizeable error in the steady-state interface forces.

Boundary-constrained Craig-Bampton models, when used with the displacement

method, provide accurate steady-state interface forces. It is noted that they are not as

accurate as those computed by the acceleration method.

For boundary-constrained Craig-Bampton models, the error for indeterminate
interfaces is greater than for determinate interfaces.

A two-step reduction to the boundary provides just as accurate steady-state interface
forces as a single-step reduction.

Finally, a discrete physical model is the limit in over constraint. A discrete physical

model can be considered to be over constrained by retaining all DOF's. The error due to

system mode truncation is substantial since more information is truncated than in Craig-

Bampton models.

13



Table 2. Effect of Craig-Bampton reduction schemes on steady-state boundary

forces (truncated displacement method).

BEAMA
Phvsical

2 coupled DOF's

4 coupled DOF's

DOF 1
DOF 41
DOF 81

DOF 1
DOF 21
DOF 41
DOF 61
DOF 81

ERROR

abs(abs(REFER ENCE)-abs)
Physical Beam A

Beam B
over

constrained
no truncation

0.02689333
0.47039469
0.02689316

0.00602957
0.02826125
0.44786349
0.02826125
0.00602962

REFERENCE
VALUE

Beam B
over

constrained
truncated

Beam B

1-step to
boundary
truncated

Beam B

2-step to
boundary
truncated

acceleration
method

all modes

0.02689277
0.47039462
0.02689277

0.00602840
0.02826261
0.44786334
0.02826261
0.00602892

0.02689245
0.47039451
0.02689206

0.00602595
0.02825282
0.44786317
0.02825274
0.00602571

0.02689188
0.47039449
0.02689189

0.OO6O2551
0.02825380
0.44786309
0.02825380
0.O06O2551

-0.16666667
0.49999997

-0.16666665

-0.00722064

-0.15944602
0.50000000

-0.15944602
-0.00722064

BEAMB
Craia-BamDton

2 coupled DOF's

4 coupled DOF's

DOF 1
DOF 41
DOF81

DOF 1
DOF 21
DOF41
DOF 61
DOF 81

ERROR

abs(absIREFERENCE)-abs )
Physical Beam A

Beam B Beam B Beam B

over over 1-step to
constrained constrained boundary

no truncation truncated truncated

Beam B

2-stepto
boundary
truncated

REFERENCE
VALUE

acceleration
method

all modes

0.01335352
0.00547892
0.01335353

0.00046798
0.02862931
0.00327701
0.02862883
0.00046812

0.01335329
0.00547904
0.01335329

0.00046793
0.02863001
0.00327707
0.02862996
0.00046814

0.00000000

n/a
0.00000001

0.00001097
0.00001101

rVa
0.00001098
0.00001095

0.00000000

n/a

0.00000002

0.00001097 I

0.00001103
rVa

0.000O1099
0.00001097

0.16666667
0.00000000
0.16666665

0.00722064
0.15944602
0.00000000
0.15944602
0.00722064
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Xl. CONCLUSIONS AND RECOMMENDATIONS

This study has described the acceleration and displacement methods for use in the

recovery of coupled-system boundary forces. A simple 2-DOF system has been used for
illustration. The effect of the choice of method for use with indeterminate or over-constrained

boundaries has been investigated. It has specifically looked at results from a simple two-

dimensional beam problem using both methods.

In the space shuttle payload community, there has been an increase in the use of

over-constrained payload models. Much work has been done on the effects of Craig-Bampton

modal truncation on system displacements and forces, however little work has been done on

system-level modal truncation (i.e., modes across the boundary). The findings of this study
indicate that the effect of this system-level truncation is significant. This may be particularly

true for the 35-Hz system cutoff frequency that is required by the space shuttle. From this

study's findings, the following recommendations can be made:

The effect of using displacement method recovery for over-constrained payload models

with the space shuttle directed 35-Hz system cutoff needs to be studied.

Until this recommended study is conducted, either the acceleration method should be

used or a secondary Craig-Bampton reduction to only the attaching interfaces should be done

for payload-coupled loads analyses.
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APPENDIX A

Eigenvalues and Eigenvectors of a 2.DOF System

The homogeneous equation of motion for a 2-DOF system is:

I o0 m2 kJ|x21=_ 0 "

Assuming a sinusoidal response:

xl = A cos (cot-00 x2 = A cos (o9t-00

41 = -o92 A cos (ogt-00 42 = _o92 A cos (o9t-0¢)

Substituting into equation (A-I):

E I Iv:l__ m, ° {al+ Ial= Ial=
0 m2 B B -k k_o92rnz B

Equation (A-3) has a nontrivial solution only if the determinate is zero, i.e.,

k-o92ml -k

-k k-o92 m2

(A-l)

(A-2)

o}0 " (A-3)

= (k-o92ml) (k-o92rn2) - (-k) (-k) = oge (o92 mlrnz_k(rnl+m2)) = 0

(A-4)

co_ : 0 , (A-5a)

The roots of equation (A-4) are:

092 _ k(ml+m2)
mlm2 (A-5b)

To define the eigenvectors, the top half of equation (A-3) is:

(k-o92 rnl)A -kB = 0 .

c=B= (k-w2ml) _ 1-0)2 m__L
A k k

Cl = 1-0 = 1

Defining:

(A-6)

(A-7a)

C 2 : 1-k(m1+m2) rnl _-ml
mira2 k m2 (A-7b)

17



Therefore,the eigenvectors:

E01111]_ml •

These eigenvectors are then normalized such that ¢ :rM_ equals unity:

oalized mlm m2t
-ml / mz
m2 "V ml(ml+m2)

(A-8)

(A-9)
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APPENDIX B

Solution of Uncoupled Equations of Motion of a 2-DOF System

The uncoupled equations of motion for a 2-DOF system are:

_ F(t) - (Fst+Fc) 1
711+0 ql 4--mTT--m_ _ '

712+c02q2 = (Fst+Fc) ^/ rn2
V ml(ml+m2)

The solutions to these equations will take the form:

q = Clt3+C2t2+C3t+C4+C5 sin O)t+C6 cos 09t ,

Cl = 3Clt2+2C2t+C3+mC5 cos 09t-c0C6 sin rot ,

71= 6C:t+2C2-m2C5 sin o)t-o)2C6 COS cot .

In equation (B-l) o_ = 0, therefore:

Therefore:

6Clt+2C2 = (Fst+ Fc)

C1 - Fs 1
6_

C2 = Fc 1
2_

q-_-i +rn 2 ,

ql = [_-_ + Fct----_3+ C3+64 l2

Substituting equations (B-3) into equation (B-2):

o92C1t3 +o92C2t2 +( f-o2C3+6C1)t +( fo2C4+ 2C2) = (Fst + Fc) ^ /
V

C1 =0 ,

m2

rnl(rnl+m2)

C2 = 0 ,

(B-l)

(B-2)

(B-3a)

(B-3b)

(B-3c)

(B-4)

(B-5a)

(B-5b)

(B-6)

(B-7)

(B-8a)

(B-8b)

19



°j2C3t+oj2C4 = (Fst+Fc) _/ m2
V ml(ml+m2)

Fs _/ m2C3 =--_ ml(ml+m2) '

C4=__ 4 m2
ml(ml+m2)

(B-9)

(B-10a)

(B-10b)

therefore:

= IF(t) + 092t)] ,, / ml

q2 [-_22 (a cos c02t+B sin JVml(ml+m2) (B-11)

Constants A and B in equation (B-11) and constants C3 and C4 in equation (B-6) are
determined from the initial conditions.
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APPENDIX C

Solution of Uncoupled Equations of Motion of a General System

The uncoupled equation of motion for a general system is:

n

?1J+OJ2qj = Z (_ij Fi(t) ,

i=1

where:

j = mode number

i = physical DOF number

n = number of physical DOF's.

If linear forces are assumed, then the solution to this equation will take the form:

q = Clt3+C2t2+C3t+C4+C5 sin o3t+C6 cos lot ,

Cl= 3Clt2+2Cet+C3+09C5 cos 0_t-09C6 sin o_t ,

71= 6Clt+2C2-c02C5 sin (0t-0)2C6 cos o)t .

For rigid-body modes coj2 = 0, therefore:

n n

?1J= Z _ijFi= Z (_ij(FsitFci)=6Clt+2C2 ,
i= 1 i= 1

n

n

C2 = I Z _)ijFci •
t=l

So, for rigid-body motion:

qja_d=t3 _ OijFsi+ t2 £ dPijFci+C3t+C4
6 i=1 2 i=1

n n n

?1j,,_ = t _._ (_ijFsi + _._ f_ijFci = Z OijFi(t)
i=1 i=1 i=1

(C-l)

(C-2a)

(C-2b)

(C-2c)

(C-3)

(C-4a)

(C-4b)

(C-5)

(C-6)

21



For elastic-body modes:

n

i=1 (C-7)

Substituting equations (C-2) into equation (C-7):

n

092Ci t3 +0)? C2t 2 +(o)?C3+6C1)t+(oD2C4+2C2) = _ _ij(Fsit+Fci)

i=1 (O8)

C1 =0 , (C-9a)

C2=0 , (C-9b)

n

(.02C3/+ (02C4 = _ _ij(Fsit+Fci) ,

i=1 (c-t0)

= I.._L_ _oFsi ,
(C- 11 a)

/1

.
C4 = °97 i=1 (C-11b)

So, for elastic motion:

n

1 _._ ¢PiyFi(t) + A sin (¢ojt) + B cos (cojt) ,
qj, l.", 0)? i= 1 (C-12)

_j,,_,a = -r_o] A sin (09it)-r.o] B cos (09it) (C-13)

Constants A and B in equations (C-12) and (C-13) and constants Cs and C4 in equation

(C-5) are determined from the initial conditions.
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APPENDIX D

Analysis Results

EFFECT OF ACCELERATION vs DISPLACEMENT METHODS ON
STEADY STATE BOUNDARY FORCES

(Beam B - Craig-Bampton - over constrained - no truncation)

BEAMA
Physical

2 coupled DOFs

4 coupled DOF's

DOF 1
DOF 41
DOF 81

DOF 1
DOF 21
DOF 41
DOF 61
DOF 81

ERROR

abs(abs(REFERENCE)-abs)
acceleration

method
all modes

0.00000000

0.00000000

0.00000000

0.00000000
0.00000000
0.00000000
0.00000000
0.00000000

displacement
method

all modes

0.00000016
0.00000001
0.00000002

0.00000042
0.00000000
0.00000000
0.00000000
0,00000000

acceleration
method

truncated

0,00000000
0,00000000,
0,00000000

0.00000000
0.00000000
0.00000000
0,00000000
0.00000000

displacement
method

truncated

O.O2689333
O.47039469
0.02689316

0.00602957
0.02826125
0.44786349
0.02826125
0.00602962

REFERENCE
VALUE

acceleration
method

all modes

-0.16666667
O,49999997

-0.16666665

-0.00722064
-0.15944602
0.50000000

-015944602
-0.00722064

BEAMB
Craig-Bampton

2 coupled DOF's

4 coupled DOF's

DOF 1
DOF 41
DOF 81

DOF 1
DOF 21
DOF 41
DOF 61
DOF 81

ERROR

abs(abs(aEFERENCE)-abs)
acceleration

method
all modes

0.00000000
0.00000000
0,00000000

0.00000000
0.00000000
0.00000000
0.00000000
0,00000000

displacement
method

all modes

0.00000001
0.00000003
0.00000002

0.00000030
0.00000049

0.00000003
0.00000000
0.00000000

acceleration
method

truncated

0.00000000

0,00000000

0.00000000

0.000000001

0.00000000

0,00000000

0.00000000

0,00000000

displacement
method

truncated

0.01335352
0.00547892
0.01335353

O.O0O46798
0.02862931
0.O0327701

0.02862883
0.00046812

REFERENCE
VALUE

acceleration
method

all modes

0.16666667
0.00000000
0,16666665

0.00722064
0.15944602

0.00000000
0.15944602
0.00722064
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EFFECT OF ACCELERATION vs DISPLACEMENT METHODS ON
STEADY STATE BOUNDARY FORCES

(Beam B - Craig-Bampton - over constrained - truncated)

BEAMA
Physical

2 coupled DOF's

4 coupled DOF's

DOF li
DOF 41
DOF 81

DOF 1
DOF 21
DOF 41
DOF 61
DOF 81

ERROR

abs(abs(REFER ENCE)-abs)
acceleration

method
all modes

0.00000000
0.00000000
0.00000000

0,00000000
0.00000000
0.00000000
0.00000000
0.00000000

displacement
method

all modes

0.00000000
0.00000004
0.00000001

0.00000045
0.00000000
0.00000000
0.00000000
0.00000000

acceleration
method

truncated

0.00000000

0.00000000

0.00000000

0.00000000
0.00000000
0.00000000
0.00000000
0.00000000

displacement
method

truncated

O.02689278
0.47039459
0.02689277

0,00602840
0.02826261
0.44786334
0.02826261
0.00602892

REFERENCE
VALUE

acceleration
method

all modes

-0.16666667
0.49999997

-0.16666665

-O,0O722064
-0.159446O2
0.50000000

-0.15944602
-0.00722064

BEAMB
Craig-Bampton

2 coupled DOF's

4 coupled DOF's

DOF 1
DOF 41
DOF 81

DOF 1
DOF 21
DOF 41
DOF 61
DOF 81

ERROR

abs(abs(REFER ENCE)-abs)
acceleration

method
all modes

0.00000000
0.00000000
0,00000000

0.00000000

0.00000000

0.00000000

0.00000000

0.00000000

displacement
method

all modes

0.00000000

0.00000005

0.00000000

0.00000014
0.00000005
0.00000003
0.00000000
0.00000000

acceleration
method

truncated

0.00000000

0.00000000

0.00000000

displacement
method

truncated

0.01335330
0.00547904
0.013353291

0.00000000
0.00000000
0.00000000
0.00000000
0.00000000

0.00046793
0.028630011

0.00327707
0.02862996
0.00046814

REFERENCE
VALUE

acceleration
method

all modes

0.16666667
0.00000000
0.16666665

0.00722064
0.15944602
0.00000000
0.15944602
0.00722064
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EFFECT OF ACCELERATION vs DISPLACEMENT METHODS ON
STEADY STATE BOUNDARY FORCES

(Beam B - Craig-Bampton - 1 step to boundary - truncated)

BEAMA
Physical

2 coupled DOF's

4 coupled DOF's

DOF 1
DOF 41
DOF 81

OOF 1
DOF 21
DOF 41
DOF 61
DOF 81

ERROR

abs(abs(REFERENCE)-abs)
acceleration

method
all modes

0.00000000
0.00000000
0.00000000

0.00000000

0.00000000

0.00000000

0.00000000

0.00000000

displacement
method

all modes

0.00000043

0.00000003'

0.0000O003

0.00000000
0.00000006
0.00000000
0.00000000!
0.00000008

acceleration
method

truncated

0.00000000
0.00000000
0.00000000

0.00000000

0.00000000

0.00000000

0.00000000

0.00000000

displacement
method

truncated

O.O2689245
0.47O39448
0.02689207

0.00602595
0.02825282
0.44786317
0.02825274
0.00602571

REFERENCE
VALUE

acceleration
method

all modes

-0.16666667
0.49999997

-0.16666665

-0.00722064
-0.15944602
0.50000000

-O.15944602
-0.00722064

BEAM B

Craig-Bampton

2 coupled DOF's

4 coupled DOF's

DOF 1
DOF 41
DOF 81

DOF 1
DOF 21
DOF 41
DOF 61
DOF 81

ERROR

absIabs(REFER ENCE)-abs )
acceleration

method
all modes

0.00000000
n/a

0.00000000

0.00000000
0.00000000i

n/a
0.00000000
0.00000000

displacement
method

all modes

0.00000000

n/a

0.00000000

0.00000000

0.00000004

n/a

0.00000000,

0.00000003

acceleration
method

truncated

0.00000000
n/a

0.00000000

displacement
method

truncated

0.00000000

n/a

0.00000000

0.00000000

0.00000000

n/a

0.00000000

0.00000000

0.00001097
000001101

n/a
0.00001098
0.00001095

REFERENCE
VALUE

acceleration
method

all modes

O.16666667
0.00000000
0.16666665

0.00722064
0.15944602
0.00000000
0.15944602
0.00722064
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EFFECT OF ACCELERATION v$ DISPLACEMENT METHODS ON
STEADY STATE BOUNDARY FORCES

(Beam B - Craig-Bampton - 2 step to boundary - truncated)

BEAMA
Physical

2 coupled DOF's

4 coupled DOF's

DOF 1
DOF 41

DOF 81

DOF 1
DOF 21
DOF 41
DOF 61
DOF 81

absIal-
acceleration

method
all modes

0.00000000
0.00000000
0.00000000

0.00000000
0.00000000
0.00000000
0.00000000
0.00000000

ERROR

s/REFERENCE)-abs )
displacement acceleration

method method
all modes truncated

0.00000000
0.00000004
0.00000003

0.00000000

0.00000000

0.00000000

0.00000000
0.00000000
0.00000000
0.00000000
0.00000000

0.00000000
0.00000000
0.00000000
0.00000000
0.00000000

displacement
method

truncated

0.02689188
0.47039445
0.02689191

0.00602551
0.02825380
0.44786309
0.02825380
0.0O602551

REFERENCE
VALUE

acceleration
method

all modes

-0.16666667
0.49999997

-0.16666665

-0.00722064
-0.15944602
0.50000000

-0.15944602
-0.O0722064

BEAMB
Craig-Bampton

2 coupled DOF's

4 coupled DOF's

DOF 1
DOF 41
DOF 81

DOF 1
DOF 21
DOF 41
DOF 61
DOF 81

abs(alc
acceleration

method
all modes

0.00000000
n/a

0.00000000

0.00000000
0.00000000

n/a
0.00000000
0.00000000

ERROR

,s{REFERENCE)-abs)
displacement acceleration

method method
all modes truncated

0.00000000

n/a

0.00000000

0.00000000

n/a

0.00000000

0.00000000
0.00000000

n/a
0.00000000
0.00000000

0.00000000
0.00000006

n/a
0.00000002
0.00000000

displacement
method

truncated

0.00000000
n/a

0.00000000

0.00001097
0.00001103

n/a
0.00001099

0.00001097

REFERENCE
VALUE

acceleration
method

all modes

0.16666667
0.00000000
0.16666665

O.O0722O64
O.15944602
0.00000000
0.15944602
0.00722064
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