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OF CYCLOTRON LINES IN GAMMA-RAY BURSTS
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ABSTRACT

We discuss the Bayesian approach to establishing the existence of lines, the importance

of observing multiple cyclotron harmonics in determining physical parameters from the

lines, m_d evidence from cyclotron lines of neutron star rotation.

I. INTRODUCTION

Gamma-ray bursts continue to confound astrophysicists nearly a quarter of a century

after their discovery. The challenge of deciphering their nature is exacerbated by the fact

that one cannot predict when or from where the bursts will occur, and the fact that it

has been impossible to date to find quiescent counterparts of the bursts at radio, infrared,

optical, ultraviolet, X-ray, or _,-ray energies. The latter puts a premium on garnering

knowledge fl'om the bursts themselves.

The shape of the continuum spectrum can provide important constraints on theory, but

inverting it uniquely to determine the radiation mechanism, let alone physical parameters

like the density and temperature, is exceedingly difficult. In contrast, the power of lines

is well known: Analyses of atomic lines transformed astronomy into astrophysics. Because

atomic lines are unavailable above ,,_ 7 keV, studies of _/-ray bursts must rely on cyclotron

and, possibly, pair annihilation lines.

Gamma-ray bursts offer a particularly promising opportunity to study cyclotron lines

because the bursts are bright mad their X-ray continuum spectra are unusually hard. As

a result, tile locations, strengths, and widths of several harmonics may often be measured.

This contrasts with, e.g., accretion-powered pulsars, whose continuum spectra fall rapidly,

even exponentially, above -,_ 20 - 30 keV, making it difficult to detect, let alone measure

the properties of, higher harmonics. Comparison of Figure 1, which shows the observed

count rate and best-fit theoretical photon number spectra for the accretion-powered pulsar

X0115+634, and Figure 2, which shows the same spectra for the ?'-ray burst GB880205,

illustrates this point.

Observations using the Los Alamos/ISAS burst detector on the Ginga satellite have

demonstrated the existence of statistically significant harmonically spaced line features in

three 3,-ray bursts: GB870303 (Graziani et al. 1991), GB880205 (Fenimore et al. 1988), and

GB890929 (Yoshida et al. 1992). Radiation transfer calculations have shown that cyclotron

resonant scattering in a strong magnetic field can account quantitatively for the positions,

strengths, and widths of these lines (Lamb et al. 1989; Wang et al. 1989). The success of

this model convincingly demonstrates the existence of a strong magnetic field (B _ 2 x 10 _2
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Fig. 1--Ginga Large Area Counter observation of the accretion-powered pulsar X0115+634 at phase 6 of the

pulse. Left panel: Count rate spectrum (crosses), normalized to the width of the detector energy loss channels

and best-fit theoretical count rate spectrum (histogram) and iron line contribution (narrow histogram). Right

panel: Best-fit theoretical photon number spectrum. Note the cyclotron scattering lines at _, 12 and 24 keV.

(After Nagase et al. 1991.)
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Fig. 2--Ginga Gamma-Ray Burst Detector spectrum of tile "_-ray burst GB880205, during the 5 second

interval labeled (b) in Figure 2 of Murakami et al. (1988). Left panel: Count rate spectra (crosses), normalized

to the width of the detector energy loss channels and best-fit theoretical count rate spectra (histograms) for

tile PC and SC. Right panel: Best-fit theoretical photon number spectrum. Note the cyclotron scattering

lines at ,_ 20 and 40 keY. (After Murakami el al. 1988 and Wang el al. 1989.)

276



G) in the sources of these "/-ray bursts. This result, taken together with the Ginga (Yoshida

et al. 1991) and Konus (Mazets et al. 1981) data, which show low-energy lines in _ 15%

of all classical "),-ray bursts, provides compelling evidence that many 7-ray bursts come

from strongly magnetic neutron stars in the Galaxy. These conclusions take on added

significance with the discovery that even faint _'-ray bursts are distributed isotropically on

the sky (Fishman et al. 1991), and the ensuing debate about whether some, or all, -)'-ray

bursts are cosmological in origin.

Here we explore issues in the analysis and interpretation of cyclotron lines in the spectra

of _-ray bursts; in particular, we discuss the Bayesian approach to establishing the existence

of lines, the importance of observing multiple cyclotron harmonics in determining physical

parameters from the lines, and evidence fi'om cyclotron lines of neutron star rotation.

II. MODEL COMPARISON

One of the most important, yet nettlesome, issues in the analysis of cyclotron lines

in -)'-ray bursts is establishing the existence of the lines themselves. Here we describe a

rigorous rnethod derived from Bayesian inference; our presentation closely follows Loredo

(1992; for discussions of the conceptual and methodological advantages of the Bayesian

approach, see Loredo 1990).

In Bayesian inference, the probability for a model as a whole is the product of a prior

probability and a global likelihood. In the absence of any information suggesting otherwise,

we take the prior probabilities of competing models to be equal. Then the odds ratio in

favor of one model over another is given by the ratio of their global likelihoods. Suppose

that model 1 has ._I_ parameters, denoted Ao, and has a minimum X _ equal to X_.mi,"
/2Suppose model 2 has -_I2 parameters, denoted A' and has a minimum X 2 equal to X2,minOr' °

Assuming Gaussian errors, the odds ratio in favor of model 2 over model 1 is,

1-1M1 AA_
FIRM, ' (1)

V det_q,,,,=l AA"

where AX2 2 ,2= X_,ml, -- X2,mi_, 171 and V= are the covariance matrices for the estimated

parameters, and AA_ and AA' are the prior uncertainties for the parameters A_ and A'_.

An interesting special case of model comparison is the case of nested models, where one

model is a special case of a more complicated model when the additional parameters in

the more complicated model take on some default value (often zero). Line detection is

an example of this kind of comparison: we want to compare a model consisting only of a

continuum spectrum to a model with an additional feature in it. Figure 3 illustrates the

simple case of a Gaussian line, where the extra parameters are the centroid energy E, the

strength A, and the width AE of the line.

Suppose that there are C continuum parameters common to both models, and that

model 2 is the larger model with L extra parameters. If the common parameters are

measured with about the same precision by both models and the extra parameters are only

weakly correlated with the common parameters, det V2 _ det I'_. det I/'L _ det l,q det VL,

where Vc is the covariance matrix of the parameters common to models 1 and 2, and VL is
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Fig. 3--X 2 surface for two of the three

additional parameters (line centroid en-

ergy E, strength A, and width AE) re-

quired to describe a line feature in the

spectrum. The cross and the two con-

tours in the (A,AE)-plmm show the

best-fit values of A and AE, and the

boundaries of the 68% and 95% confi-

dence regions for the model with a line.

The vertical axis corresponds to a model

with no line. AX2 is the difference in X2

between the best-fit theoretical models

without and with a line.

the covariance matrix of the extra parameters in model 2. Further, if the covariance matrix

VL is diagonal its eigenvalues are a2L, the variances for the extra parameters A_ of model

2. Substituting these results in equation (1) gives,

C+L

02, _ e ax2/_" 1-I (2rr)'/2(a,JAd'_) • (2)
a=C+l

Equation (2) reveals the odds ratio to be the product of the maximum likelihood ratio

and a factor which includes the ratio of the posterior uncertainty of the extra parameters to

their prior uncertainty. The maximum likelihood ratio will always favor the more complex

model, since X _ of the more complex model can never be larger than that of the simpler

model and therefore AX_ _> 0. But the second factor penalizes the larger model, since the

posterior uncertainty for the extra parameters will generally be smaller than their prior

uncertainty. Thus an "Ockham's Razor" automatically appears in Bayesian model com-

parison (the dependence of this factor on the prior range superficially resembles correcting

a frequentist statistic for the number of parmneter values examined, but the horrendous

problems associated with choosing the number and location of the examined values are

absent in the Bayesian approach). Thus AX2 must exceed some critical value before the

more complex model is favored.

Equation (2) also suggests an appealing intuitive connection between model comparison

and parameter estimation. The quantity i2Xt.min corresponds to X_ minimized with respect

to the common parameters, with the extra parameters fixed at their default values (i.e., E

arbitrary and A = AE = 0 in the case of a simple Gaussian line; see Figure 3). But the

boundary of a credible region for a subset of L parameters of a model is given by a surface

of constant X 2 ,2: Xmin + m?_ 2, with A_ 2 chosen from the X _ distribution with L degrees of

" ,_- defines the boundary of a credible region for model 2freedom. Thus AX2 = _,min -- _)(2,min

that just includes model 1 on its boundary. We can thus interpret equation (2) as stating

that the data favor the more complex model (the odds ratio exceeds unity) only when the

credible region that just includes the simpler model is larger than some critical size. This
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critical value is
c+L AA"

AX2= 2log 1-I (2rr),/_a_ (3)
a=C+l

These results can be extended in a straightforward way to include the case of time-

dependent lines. As do all Bayesian model comparisons, this case requires the explicit

specification of two or more alternative models. To the extent that these models involve

timescMe parameters, Ockham factors will arise which penalize complicated models.

Thus Bayesian inference offers a rigorous method of establishing the existence of spec-

tral lines which holds great promise for the analysis of 7-ray bursts.

III. PHYSICS OF CYCLOTRON SCATTERING

Cyclotron resonant scattering, in which electrons undergo radiative 0 ---* 1 --_ 0 Landau

transitions, produces a dip at the first harmonic frequency w _ wB. No simple description

can be used to explain the first harmonic line, whose appearance depends critically on the

outcome of the nmltiple resonant scatters required in order for individual photons to escape

('Wang, \Vasserman, and Salpeter 1988), as well as on the introduction of new photons at

energies near that of the first harmonic which are "spawned" by Raman scattering at the

higher harmonics, as described below.

Resonant Raraan scattering, in which electrons undergo 0 --+ n ---+n - 1 --+ ... -+ 1 --+

0 radiative transitions, produces dips at the second and higher harmonics (co _ NcoB).

Resonant scattering of second and higher harmonic photons, in which electrons undergo

radiative Landau transitions in which An > 1 (i.e., 0 --+ 2 ---+0) are rare because B/B_ << 1.

Because most of the photons which undergo scattering at the second and higher harmonics

are destroyed, the resulting line feature is approximately that for absorption.

Figure 4 shows theoretical photon number spectra for two different viewing angles O

relative to the magnetic field. The bottom and middle lines show the line profiles that

would result, were they due to absorption, and resonant and Raman scattering without

photon spawning, respectively. The (heavy) top line gives the actual line profiles, which

are due to resonant scattering and Raman scattering with photon spawning. Figure 4

shows that the strengths of the first and second harmonic lines are comparable. Figure 4

also shows that the profiles of the second and third harmonics closely resemble those for

absorption and m'e asymmetric due to relativistic kinematics in one dimension.

The resonant scattering cross section at the N th harmonic is cx (1 + cos 2 O)sin 2N-2 O.

Thus scattering of photons at the first harmonic is moderately peaked along the mag-

netic field, while scattering at higher harmonics is strongly peaked away from the magnetic

field. Therefore Raman scattering prinmrily removes photons traveling perpendicular to

the magnetic field. However, the photons spawned at the first harmonic by resonant iRa-

man scattering at higher harmonics are created with the angular distribution characteristic

of the first harmonic, and therefore have an angular distribution moderately peaked along

the magnetic field. In scatte,'ing, a photon undergoes on average a relative shift in fi'e-

quency _ (Vth/C)cos 0 due to the thermal motion of the electrons along the magnetic field.

Therefore the Doppler width of the cyclotron lines is large looking along the magnetic field
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Fig. 4--Theoretical photon number

spectra for B = 1.71 x 1012 G, N_ =

1.2 x 1021 electrons cm -2, T = 5.3 keV,

and two different viewing angles 0 rela-

tive to the magnetic field. The bottom

and middle lines show the line profiles

that would result from absorption, and

resonant and Raman scattering with-

out photon spawning. The (heavy) top

line gives the actual profiles, which are

due to resonant scattering, and Raman

scattering with photon spawning. (From

Lamb, Wang, and Wa,sserman 1991.)

and decreases as one looks away from it. Figure 4 shows that these two effects produce

pronounced variations in the strengths and widths of the various harmonics as a function

of viewing angle 0.

IV. PARAMETER ESTIMATION

Observations using the Los Alamos/ISAS burst detector on Ginga have demonstrated

the existence of statistically significant harmonically spaced cyclotron lines in three _f-ray

bursts. Analysis of these observations using radiation transfer calculations have shown that

cyclotron resonant scattering in a strong magnetic field can account quantitatively for the

positions, strengths, and widths of these lines. Here we emphasize that the power of this

analysis depends crucially on the observation of multiple lines.

As described in the previous section, the relative strengths of the first and higher

harmonics show a pronounced variation with viewing angle 0: at small 0 only the first

harmonic is visible, while at large 0 the second harmonic is dominant (see Figure 4). This is

particularly the case for current detectors, which effectively integrate over the scattering dip

and the spawned photon peak at the first harmonic because of modest spectral resolution.

As a result, if we observe one line only, we have no way of knowing whether this line

corresponds to tim first or second harmonic. Obviously, the value of the magnetic field will

be uncertain by a factor of two (as in, e.g., the I(onus bursts).
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TABLE 1
BEST-FIT MODEL PARAMETERS

Line Parameters Absorption Model Scattering Model
1.69-4- 0.04B (10'2 G)

N, (1021 cm -2)

cos 0)
kT[[ cos 2 8 (keV)

N_°'EI,,1_ + cos 2 0) (10 21 cm -2)

N_';(1 - cos4 0) (10 2' cm -2)

6.6 4- 2.4

0.23

2.4

1.71 4- 0.07

1.2 4- 0.6

0.31 4- 0.05

Worse, however, is the fact that analysis of the line cannot determine the physical

parameters of the line-forming region, i.e., its optical depth (or column density), tempera-

ture (or velocity), and the geometry (or viewing angle). This is because the physics of the

line formation is very different for the first and second harmonics; without knowing which

harmonic we are observing, we do not know which physics to apply. Even if we somehow

knew which harmonic we are observing, analysis of a single cyclotron line cannot determine

the physical parameters of the line-forming region. This is because the line is a function

of four parameters (the magnetic field strength B, the temperature T and column depth

N, of the line-forming region, and the viewing angle 8), but current detectors are sensitive

only to two (e.g., the ccntroid energy E and the equivalent width EW) because of modest

spectral resolution. As a result, a single line can be fit by an iufinite family of solutions in

which N_ decreases and T increases as 0 increases.

This situation is illustrated by the cyclotron absorption model, which has been used

by many authors. The choice of this model is motivated by the facts that the model

is analytic and that approximating cyclotron Raman scattering by cyclotron absorption

is valid at higher harmonics. However, such as1 approximation is not valid at the first

harmonic, and therefore different temperatures and column densities must be allowed at the

first and second harmonics. The situation then becomes equivalent to fitting a single line,

even if the first and second harmouic are both strongly present.

The fi'ee parameters of the cyclotron absorption model are then the line centroid en-

ergies E, = E2, the line widths AEN = EN(2kT HcOs20/md), where 0 is the viewing

angle relative to the magnetic field, and the line strengths AN = ._'_e,NOf-N,Tk;rl°"' where .AH°'.,,N

and aN are the column density along the line of sight and the absorption coefficient

of the N 'h harmonic. The physical parameters that may be deduced from the fit are

N,,1,o,(1 + cos 2 0) and N_,2,o,(1 - cos 4 0), and kTil,_cos20/rnd and l,'Ttl,2cos20/mc 2. However,

Nto, and kTII.1 cos 20/mc 2 have no straightforward physical meaning because the cyclotrone,1

absorption model is not valid at the first harmonic, respectively. Table 1 gives the best-fit

parameters of the model for GB880205 (Fenimore et al. 1988); as expected, B is well-

determined but 0 is undetermined and T and N_ °' are therefore poorly constrained.
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Fig. 5--(top) Observed (crosses) and best-fit theoretical (x's) count rate spectrum of the proportional counter

(PC) and scintillation counter (SO) on Ginga for GB880205. (middle) Residuals for the PC and SC counters.

(bottom) Best-fit theoretical photon number spectrum (solid curve) aud Ginga PC and SC data (crosses).

(From Wang et al. 1989.)

Fig. 6--The 68.3%, 95.4%, and 99.7% confidence regions in (B,N_,p)-space, as determined by )3 fits of

theoretical photon number spectra to the Ginga data for GB880205: (top) projected in the (p, B)-plane;

(middle) projected in the (p, N_)-plane; (bottom) projected in the (B, N_)-plane. (From Wang et al. 1989.)
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1991 .)

In contrast, if multiple lines are strongly present, the physical parameters B, N_, kT,

and 0 can be determined.

If only the first and second harmonics are present, theoretical radiation transfer calcu-

lations are required. This approach is illustrated by the fits to the spectrmn of GB880205

carried out by Wang et al. (1989). Folding Monte Carlo spectra through the Ginga detector

response functions, they fit the observed photon count rate spectrum. Figure 5 shows the

predicted and observed photon count-rate spectra, the residuals, and the incident photon-

number spectrum for the best-fit parameters. Figure 6 shows the 68.3%-, 95.4%-, and

99.7%-confidence regions in (B, N_,p)-space. Table 1 gives the best-fit parameters of the

model. The resonant cyclotron Compton temperature is not a free parameter, but is fixed

by their model to be Tc ._ q+0a keV.

If multiple higher harmonic lines are strongly present, one has three observed quantities

(E_ = 2E:, EWe, and EBb) and some information about two others (AE_ and AE2) to

determine the four physical parameters (B, T, N, or N_ °_, and 0). The physical parameters

can then be determined using either the absorption model or theoretical radiation

transfer calculations. However, multiple higher harmonic lines will be strongly present only

if the column density of the line-forming region is large. To date, such column depths have

not been seen in 7- ray bursts.
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Figure 8--(top) Observed count-rate spectra (+'s) and best-fit absorption model count-rate spectra (x's) for

intervals S1 and S2 of GB870303 for the PC and SC data on Ginga. (middle) Residuals. (bottom) Best-fit

absorption model photon-number spectra. (From Graziani el al. 1991.)

V. NEUTRON STAR ROTATION

The pronounced variations in the strengths ¢'md widths of the cyclotron lines as a

function of 0 provide a distinct signature of neutron star rotation. As a simple example,

consider cyclotron lines formed in a small region near one magnetic pole of an orthogonally

rotating neutron star with the observer located in the plane perpendicular to the rotation

axis. Then the rotation angle ¢ = 0. As the neutron star rotates, 0 varies, producing
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TABLE 2
BEST-FIT ABSORPTION MODEL PARAMETERS

Line Parameters S1 $2

E1 (keV)

kT, II cos _ 0 (keV)

'°' O)(cmN,, 1 (1 + COS 2

kT211cos 2 0 (keY)

N'o'(1 - cos40) (cm
e_2

EW1 (keV)

EW2 (keV)

21.1_+I: 
< 15

> 3.14 x 10 2o

10.5 :t: 2.1

21.4 + 0.7

1R+7.15
•_--4.29

+023 1020(1.19_0.20) X

In _+_o.5
_'_-5.77

+0.48(2.33_o45) x 1021

4 81+o.9o
• _ -0.82

8 A "_+0'26
._v-O.?l

pronounced variations in the strengths and widths of the cyclotron lines. Looking down the

magnetic field (0 = 0), the first harmonic is strong and wide, due to Doppler broadening,

but no higher harmonics are visible. As the viewing angle 0 increases, the strength of

the first harmonic decreases while the strengths of the higher harmonics, particularly the

second, increase. At the same time, the Doppler widths of all the lines decrease. Figure 4

illustrates this behavior.

While such a combination of variations in line strengths and widths may not be unique,

simple changes in the temperature or column depth of the line-forming region do not suffice

to produce it. A decrease in the temperature produces narrower lines, but does not change

the strength of the first harmonic relative to the higher harmonics. A decrease in the column

depth of the line-forming region produces a weaker first harmonic, but also produces weaker,

not stronger, higher harmonics.

Graziani et al. (1991) find that the burst GB870303 exhibits two broad peaks and

lasts approximately 45 sec. An exhaustive search of the data revealed two time intervals

(hereafter S1 and $2) in which statistically significant spectral lines are seen. $1 is a

previously unreported 4 sec interval; $2 is the 9 second interval reported in Murakami et

al. (1988). The midpoints of S1 and $2 are separated by 22.5 sec. Figure 7 shows the

count rate spectra for $1 and $2, normalized to the width of the energy loss channels; the

spectrum for $2 is identical to that reported in Murakami et al. (1988). Note the line at

20 keV in the S1 spectrum, and the two lines at _ 20 and 40 keV in the $2 spectrum.

Graziani et aI. (1991) carried out a one-line (3-parmneter) fit to S1 and a separate

two-line (5-parameter) fit to $2, using the cyclotron absorption model. Figure 8 shows the

observed count-rate spectra (+'s) and best-fit absorption model count-rate spectra (x's)

for $1 and $2. Also shown are the residuals and the best-fit absorption model photon-

number spectra. Table 2 gives the best-fit parameters and la errors for the absorption

model fits to S1 and $2. The values of kTllcos20/mc _ and (ph)_(1 + cos20) for S1 are

only upper and lower 95% confidence limits, respectively, because the line feature is so

deep that, after background subtraction, the net counts in some channels are negative,
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although the error barsextend to positive values.Thus the fit can alwaysbe made slightly
better by increasingfll and compensatingby decreasingAE1. Table 2 implies very similar

magnetic field strengths for S1 and $2: B [1 R9+0095_ 10,2= _ .... 0086J x G and (1.86-4-0.06) x 10 l_ G,

respectively. Table 2 also shows that the Doppler widths of the first and second harmonics

are similar for S1 and $2, within statistical uncertainties; in contrast, the strengths (and

EW) of the first and second harmonics differ greatly for the two intervals.

Comparison of Figures 4 and 8 shows that the change in the line spectrum between

S1 and $2 is qualitatively similar to that produced by a change in the viewing angle 0.

We conjecture that this change is due to rotation of the neutron star. We suggest that

during $1 our line of sight is nearly parallel to the field, so that only the first harmonic is

visible, while during $2 our line of sight is nearly perpendicular to the field, so that both

first harmonic and second harmonics are visible, with comparable strengths (see Figure 4).
The time At between the centers of S1 and $2 is 22.5 sec. Within the framework of the

rotation picture, we may associate At with either a minimum change in rotational phase

A¢ ,_ 7r/4 or a maximum change A¢ _ rr. These values constrain the rotation period P of

the neutron star to lie in the range 2 x 22.5 sec _ 45 sec _ P _ 8 x 22.5 sec _ 180 sec.

This result, if confirmed, has profound implications for the location, extent, and stabil-

ity of the ")'-ray burst line-forming region, and for the origin and evolution of the magnetic

neutron stars which are the sources of many "/-ray bursts.
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