

DIGITAL SYNCHRONIZATION AND COMMUNICATION TECHNIQUES

William C. Lindsey Lincom Corporation Los Angles, California 90024

RESEARCH IN DIGITAL SYNCHRONIZATION AND COMMUNICATIONS

- DIGITAL CODING/MODULATION UNDER INVESTIGATION
 - MPSK (BPSK, QPSK, OQPSK, MSK) OFFSET VS NON-OFFSET
 - MDPSK (DBPSK, DQPSK, ODQPSK, DMSK)
 - CONVOLUTIONAL CODES AND TRELLIS-CODED MODULATION
 - BANDWIDTH EFFICIENT
- CHANNELS UNDER INVESTIGATION
 - . AWGN
 - RAYLEIGH/RICE/SCINTILLATION
 - . JAMMED
- RESEARCH EMPHASIZES
 - (RAPID ACQUISITION WITH HIGH PROBABILITY
 - ACQ . AVOIDING HANG-UP DURING ACQUISITION
 - (. AVOIDING CYCLE SLIPPING
 - TRACK . MINIMIZE TRACKING JITTER
 - ELIMINATE PHASE AMBIGUITIES
 - ACHIEVING PERFORMANCE OF CODED-COHERENT COMMUNICATIONS

DIGITAL SYNCHRONIZATION PROJECT MOTIVATION

- FUTURE COMMUNICATION MODEMS ARE LIKELY TOO EMPLOY ALL DIGITAL IMPLEMENTATIONS AS THE <u>DIGITAL SIGNAL PROCESSING</u> SPEED BARRIER BETWEEN DIGITAL AND ANALOG HARDWARE RISES DUE TO EMERGING TECHNOLOGIES, E.G., VLSI.
- COHERENT (C) VS. DIFFERENTIALLY COHERENT (DC) VS. NONCOHERENT (NC) DETECTION IN MODEMS

Eb/No, dB

L

Desired Modem Implementation

- N-CM: NON-CONSTANT MODULUS
- DA: DATA-AIDED
- DD: DECISION DIRECTED
- NDD: NON-DECISION DIRECTED

SALIENT CHARACTERISTICS OF OPEN LOOP DIGITAL SYNCHRONIZERS

- DERIVED FROM ADAPTIVE FILTERING THEORY
- DO NOT REQUIRE LOCALLY GENERATED SYNC REFERENCE BY MEANS OF A VCO OR NCO
- SYNC REFERENCE IS NON-CONSTANT MODULUS
- DOES NOT REQUIRE A PHASE-ERROR MEASUREMENT TO UPDATE PHASE ESTIMATE

OPEN LOOP PHASE AND FREQUENCY ESTIMATOR

 β - SAMPLE WEIGHTING FACTOR

EXPONENTIALLY WEIGHTED PHASE ESTIMATOR LEARNING CURVES. $\beta = 0.875$

SYMBOL TO SYMBOL PHASE ROTATION LEARNING CURVE. $\omega_0 = 1.0$ radians/symbol

A Digital Receiver Structure Utilizing an Open Loop Estimator in a Decision-Directed Architecture

SIMULATED STEADY STATE WATERFALL CURVE OF THE EW DD ESTIMATOR FOR SQPSK MODULATION. $\beta = 0.875$

Eb/No,dB

SIMULATED STEADY STATE WATERFALL CURVE OF THE EW DD ESTIMATOR FOR QPSK MODULATION. $\beta = 0.875$

Eb/No,dB

PROBABILITY OF REMAINING IN A HANGUP CONDITION FOR BPSK MODULATION. $R_{b} = 2dB, \beta = 0.875.$

PROBABILITY OF REMAINING IN A HANGUP CONDITION FOR QPSK MODULATION. $R_{b} = 2dB, \beta = 0.875.$

Symbol Number

'S' CURVE FOR A DECISION-DIRECTED BPSK AND QPSK LOOP EW ESTIMATORS

I

Motivation For Research

- Modems used in burst mode communication systems (TDMA or FHSS) or a fading channel typically use noncoherent demodulation techniques
 - PLL structures and fast acquisition with high probability requirements are not compatible
 - Coherent demodulation improves the performance
- Technology advances favor digital receiver structures
 - VLSI or gate array implementations can significantly reduce the cost, size, and possibly power consumption while improving the reliability of modems.