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I. Introduction

The amplitude of the electric field of a mode of the electromagnetic field is not a

fixed quantity, there are always quantum mechanical fluctuations. The amplitude,

having both a magnitude and a phase, is a complex number and is described by the

mode annihilation operator a. It is also possible to characterize the amplitude by its

real and imaginary parts which correspond to the Hermitian and anti-Hermitian parts of

a,

Xl=?a++a) X2=_(a+-a) , (1.1)

respectively. These operators do not commute and, as a result, obey the uncertainty

relation (h=l)

AX1AX2 > 1 (1.2)
-4

From this relation we see that the amplitude fluctuates within an "error box" in the

complex plane whose area is at least 1/4. Coherent states, among them the vacuum

state, are minimum uncertainty states with AX_ = AX2 = 1/2. A squeezed state,

squeezed in the X1 direction, has the property that AX1 < I/2 (Refs.l-3). A squeezed

state need not be a minimum uncertainty state, but those that are can be obtained by

applying the squeeze operator

a 2. a+2s(c,) = e_" _ , (1.3)

to a coherent state(Ref.1). The phase of the complex parameter ( determines the
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direction of squeezing and its magnitude determines the extent of the squeezing.

Squeezed states are examples of nonclassical states, that is they cannot be

described in terms of a nonnegative definite P representation(Ref.3). This means that a

field in a squeezed state cannot be modeled as a classical stochastic field. It should be

noted that even though a squeezed state is nonclassical it can have a large number of

photons. In fact, a highly squeezed state must have a large number of photons(Ref.4).

Thus we see that the usual association of large photon number with classical behavior
is not correct.

It is possible to generalize the idea of squeezing by looking at fluctuations in

variables more complicated than the mode amplitude. The simplest generalization

involves variables quadratic, rather than linear, in the amplitude. In the case of a single

mode the square of the amplitude, which corresponds to a2 , is one such observable. If

one considers two modes with annihilation operators a and b, then products such as

ab and a+b can be considered. At first glance this procedure appears more

mathematically than physically inspired. However, fluctuations in these quadratic

quantities can be converted into fluctuations of a single mode amplitude by certain

nonlinear optical processes after which they can be measured by standard

techniques. We shall now disscuss the kinds of higher-order squeezing to which

consideration of these quadratic variables leads and the properties they possess.

I1. Amplitude-Squared Squeezing

This is perhaps the simplest example of quadratic squeezing, i.e. squeezing in

a variable quadratic in the mode amplitudes. It describes the fluctuations in the square

of the amplitude of a single mode, a2 (Refs.5,6). Following the example of standard

squeezing we break this variable into its real and imaginary parts

Yl=_-(a+2+a 2) Y2=_-(a+2-a 2) (2.1)

The commutator of these operators is [Y1, Y2] = i(2N+l), where N=a+a, and this leads

to the uncertainty relation

AY]AY 2 _><N+I> (2.2)

A state is amplitude-squared squeezed in the Y1 direction if (AY1) 2 < <N+1/2>.
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States with this property are nonclassical. This follows from the fact that (AY1) 2

can be written as

< :(Y1 - <YI>) 2 "> = (AY1) 2 - <N+l> (2.3)

where the double dots indicate normal ordering. For a classical state the normally

ordered term is always nonnegative so one can see that the onset of amplitude-

squared squeezing corresponds to the onset of nonclassical behavior.

Amplitude-squared squeezing was first disscussed in a paper by Wodkiewicz

and Eberly under the name SU(1,1) squeezing (Ref.7). The reason for this name is

that commutation relations of the operators Y1, Y2, and N are closely related to

those of the Lie algebra SU(1,1). In particular this Lie algebra is described by three

operators K1, K2, and K3, whose commutation relations are given by

[Kb K2] = -iK3 [K2, K3] = iK] [K3, K1] = iK2 (2.4)

If one makes the identification Kl= Y]/2, K2 = -Y2/2 and K3 = (N+1/2)/2, the above

commutation relations are satisfied. This means that the representations of SU(1,1)

can be used to study higher-order squeezing and this has been done by a number of

authors(Refs.8-10).

It is possible to find minimum uncertainty states for amplitude-squared

squeezing, i.e. states for which the inequality in Eq.(2.2) is replaced by an

equality(Ref. 11). This is done by solving the eigenvalue equation

(Y1 + i_.Y2) IS°> = 13IhU> , (2.5)

where X is real and positive, and 13is complex. The states IW> which satisfy this

equation have the property that

(AY 1 )2 = _, <tI'q N-_-2 IqJ> (AY2)2 = -1- <qsl N+I I_> . (2.6)

From these equations it is clear that Z. plays the role of a squeezing parameter. If

0 < X < 1, then Y1 is squeezed and if _. > 1, then Y2 is squeezed. The real and

imaginary parts of 13are related to the mean values of Yl and Y2, respectively.

A particularly simple subset of these minimum uncertainty states occurs when 13
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and _. are related. If _.> 1 and 13= (X2_ 1)1/2 (m+1/2), where m is a nonnegative integer,

then the minimum uncertainty states are of the form

I°,°> = Cm(_.) S(_) Hm(i_(;_) a+) 10> (2.7)

Here Cm(X) is a normalization constant, S(_) is a squeeze operator where the squeeze

parameter _ depends on _., Hm is the m th Hermite polynomial and "g_.)= [(X2- 1)a_/2z.]1_.

The cases m=0 and m=l correspond to the squeezed vacuum and squeezed one-

photon states, respectively. Note that this implies that the squeezed vacuum state is a

minimum uncertainty state for both normal squeezing and for amplitude-squared

squeezing.

A second kind of minimum uncertainty state is the amplitude-squared squeezed

vacuum 10,_.>. These states satisfy Eq.(2.5) with 13=0 which implies that they have the

property that <Y1 >=<Y2 > = O. Such states are superpositions of photon number states

whose numbers are multiples of 4.

We now come to the conversion of fluctuations in a2 into fluctuations of the mode

amplitude of a second mode, b. This is accomplished by means of second harmonic

generation(Ref.5). If the mode described by a has frequency 0) and that described by b

has frequency 20) then the Hamiltonian which corresponds to this process is

H = 0)a+a + 20)b+b + k2(a+2b + a2b +) . (2.8)

From this Hamiltonian, using perturbation theory, one can find how fluctuations are

transferred from mode a to mode b. First define the slowly varying operators

A(t) = eimta(t) B(t) = e2i_tb(t) , (2.9)

and

X1B(t) = 1[ B+(t) + B(t) ]

Y1A(t) = _-[ A+(t) 2 + A(t) 2 ]

X2B(t) = _- [ B+(t) - B(t) ]

Y2A(t) = _- [ A+(t) 2- A(t) 2 ]

(2.10)

We then find, if the b mode is initially in a coherent state, that after a time t
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(AX1B(t))2=1__4+ (k2t)2[(AY2A)2- <NA+ 1>]

(AXzB(t))2=¼+ (ket)2[(AY1A)2- <NA + 1>]

(2.11)

where quantities without a time argument, e.g. (AY1A) 2, are assumed to be evaluated

at t=0. What these equations tell us is that if the a mode is initially amplitude-squared

squeezed in the Y2 direction then the b mode will become squeezed in the normal

sense in the XI direction. Similarly, if the a mode is amplitude-squared squeezed in

the Y1 direction the b mode will become squeezed in the X2 direction. Therefore, the

second harmonic generation process converts amplitude-squared squeezing into

normal squeezing.

Because normal squeezing can be measured via homodyne detection the

preceding results suggests how amplitude-squared squeezing can be detected. One

first sends the signal into a frequency doubler and then measures the squeezing of the

second harmonic. If it is squeezed, then the original signal was amplitude-squared

squeezed.

Finally, let us see how amplitude-squared squeezed states can be produced.

The fact that the squeezed vacuum state is also amplitude-squared squeezed shows

that a degenerate parametric amplifier can produce amplitude-squared squeezed

states. As one of us (D. Yu) has shown, a degenerate parametric oscillator can as

well(Ref.1 2). Well above threshold the field inside the cavity can reach a maximum

level of amplitude-squared squeezing given by (AY1) 2 / <N + 1/2> = 1/2, but just below

threshold the amount of amplitude-squared squeezing in the output field can, in

principle, be arbitrarily large. The fourth subharmonic generation process, which has

been studied in connection with generalized squeezed states(Ref.13), can also

produce amplitude-squared squeezing(Ref.6).

II1. Sum Squeezing

Sum squeezing, as opposed to amplitude-squared squeezing, is a two mode

effect(Ref.14). In fact, amplitude-squared squeezing is the degenerate limit of sum

squeezing. Let us consider two modes with annihilation operators a and b and

frequencies (oa and O)b. The variables involved in sum squeezing are the real and

imaginary parts of the product ab, i.e.

V1 = { (a+b + +ab) V2 = _- (a+b+- ab) (3.1)
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The commutator of these operators is [ Vl, V2 ] = _- ( NA + NB + 1 ), where NA = a+a and

NB = b÷b, which yields the uncertainty relation

AV 1 AV 2 > 1< NA + NB + l > (3.2)
4

A state is said to be sum squeezed in the V1 direction if

(AV1) 2 < l<NA + NB +1> (3.3)

Such a state is nonclassical.

The commutation relations of the operators V1, V2 amd NA + NB +l are also

closely related to those of the SU(1,1) Lie algebra. In fact if one sets K1 = Vl, K2 = - V2

and K3 = 9]---(N,_+ NB +1) one obtains the SU(1,1 ) commutation relations given in

Eq.(2.4).

The name, sum squeezing, comes from the fact that this kind of squeezing is

converted into normal squeezing by the process of sum frequency generation. Sum

frequency generation is a three-mode process which is described by the Hamiltonian

H = O)aa+a + o.,'bb+b + (OcC+C+ ks ( ca+b + + c+ab ) , (3.4)

where oc=%+%. As before we define the slowly varying operator A(t)=ei_ta(t), and

similarly for B(t) and C(t). We also define

1 + + i
V](t)=_-(A B +AB) XC2=_-(C+-C) (3.5)

If the c mode is initially in a coherent state then to second order in ks we find

(AXc2(t))2=¼+(kst)2 [ (AV1)2-1<NA +NB+ 1>] , (3.6)

where, as before, quantities without a time argument are evaluated at t=0. Comparing

this equation to Eq.(3.3) we see that the c mode will be squeezed in the Xc2 direction if

the a and b modes are sum squeezed in the V1 direction.

If the a and b modes are uncorrelated, then there is a connection between

squeezing in the individual modes and sum squeezing. In particular, if neither mode is
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squeezed, then the state is not sum squeezed. If one of the two modes is squeezed

and the other is in a coherent state, then the state is sum squeezed. Finally, if both

modes are squeezed, then the resulting state may or may not be sum squeezed.

This connection disappears if the modes are correlated. This can be seen by

considering the state produced from the vacuum by a parametric amplifier. This system

is described by the Hamiltonian

H = (Oaa+a + CObb+b + g (e-i_ta+b + + elm°tab) (3.7)

where, again, e0c = o_a+ eb. This Hamiltonian is an approximation to that in Eq.(3.4)

when the c mode is in a highly excited coherent state. Using this Hamiltonian we find

that if both the a and b modes are originally in the vacuum state, then

(AVI(t)) 2 " ¼<NA(t) + NB(t) + 1> =- 2Lsinh 2 (gt) (3.8)

Therefore, the amount of sum squeezing increases with time and this device is a

possible source of sum squeezed light. A further calculation shows that neither of the

two modes is squeezed in the normal sense. Therefore, for correlated modes normal

squeezing is not a prerequisite for sum squeezing.

IV. Difference Squeezing

Difference squeezing is also a two-mode effect(Ref.14). Its name comes from its

close connection to difference-frequency generation. We again describe the modes by

annihilation operators a and b, and we assume that COb> O3a.The observables which

describe it are

Wl = 21-(ab + + a+b) W2 = _-(ab + - a+b) (4.1)

Their commutator is given by

[W], W21 = ½(NA - NB) , (4.2)

which yields the uncertainty relation

AW] AW2-> 1]<NA - NB >] . (4.3)
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A state is said to be difference squeezed in the Wl direction if

(AWl)2 < I<N A_ NB > (4.4)

Note that for a state to be difference squeezed we must have <NA> > <NB>.

Difference squeezed states are nonclassical but there is a difference in this

regard between them and sum or amplitude-squared squeezed states. For both of the

latter, the condition for squeezing and the condition for being nonclassical are the

same. For difference squeezing this is not true. A state is nonclassical if

(AW 1 )2 < 4]__<NA + NB > , (4.5)

which is not the same as the squeezing condition Eq.(4.4). Therefore, difference

squeezed states are well within the nonclassical regime.

Difference squeezing is also related to a Lie algebra but this time it is SU(2)

instead of SU(1,1). In fact, the operators which describe difference squeezing are

those used in the Schwinger representation of the angular momentum operators

(Ref.15). The SU(2) Lie algebra consists of three operators J1, J2 and J3 whose
commutation relations are

[Jk, Jd = ieldmJm , (4.6)

where all indices run from ! to 3 and eke= is the completely antisymmetric tensor of

rank 3.

If the modes are uncorrelated, then at least one of them must be squeezed for

difference squeezing to be present. If the b mode is squeezed and the a mode is in a

coherent state I(x>, the state wil be difference squeezed but only if Io_12 is large enough.

A necessary, but not sufficient condition is that <NB > < _/-I(zl 2. If the modes are

correlated, then it is no longer true that squeezing in the individual modes is required

for difference squeezing.

Finally, as might be suspected from the name, difference squeezing is turned

into normal squeezing by difference frequency generation. The Hamiltonian

describing this process is
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H = maa+a + o_ob+b + COcC+C+ kd(a+bc + + ab +c) , (4.7)

where COc= O)b- (0,. We define slowly varying A(t), B(t), and C(t) as in the previous

section and then set

Wl(t) = 1(A(t)B+(t) + A+(t)B(t) ) Xc2 = _- (C+(t) - C(t) ) (4.8)

Using perturbation theory we find that if the c mode is originally in a coherent state,

then

(AXc2(t)) 2 = _- + (kdt)2[(AWl)2 - ¼ <NA - NB>]
(4.9)

This equation shows us that Xc2 becomes squeezed if W1 is difference squeezed.

Therefore, difference frequency generation can be used to detect difference squeezed

light.

V. Amplification of Higher-Order Squeezing

An amplifier consists of a collection of two-level atoms N1 of which are in their

ground states and N2 of which are in their excited states where N2 is greater than N1.

We shall assume that we are in the linear regime of this system. An input signal is put

into the amplifier at t=0 and emerges at the output at time t. The signal amplitudes at

the input and the output are related by <a(t)> = G <a(0)> where G is the amplitude gain.

This system was analyzed rather thoroughly by Carusotto(Ref.16).

Hong, Friberg, and Mandel examined the effect of amplification on sub-

Poissonian photon statistics and normal squeezing(Ref.17). They found that both of

these effects disappear at the output, no matter what the input state is, if the intensity

gain, IGI 2, is greater than two. The gain IGt2= 2 is known as the photon cloning limit

because one gets two photons out for every one that goes in. This gain has stood as

an upper limit for the amplification of nonclassical behavior.

Recently two of us looked at the situation for amplitude-squared squeezing

(Ref.18). We found that it can survive amplification for gains slightly greater than two. In

particular, amplitude-squared squeezing will be present at the output if

1 (5.1)
IG 12< 2 + <No> + 1/2 '
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where <No > is the photon number of the input state. Because the right-hand side is

greater than two this suggests that there are states which will still be amplitude-

squared squeezed at the output if [GI 2 is slightly greater than two. Further investigation

shows that the amplitude-squared squeezed vacuum, 10,;L>, with _,<<1 is such a state.

Therefore, the photon cloning limit does not, at least in principle, represent a barrier to

nonclassical behavior. It would be of considerable interest to know if there are

nonclassical states which can remain nonclassical when they are amplified at gains

substantially larger than two.

Vl. Conclusion

Quadratic squeezing represents a new class of nonclassical effects. States with

this property have fluctuations smaller than is possible for classical light in a variable

which is quadratic in mode creation and annihilation operators. As we have seen,

quadratic squeezing can be converted into normal squeezing by Z (2) type nonlinear

interactions.

A direction for further investigations into quadratic squeezing is its connection to

interferometry. Interferometers, both with and without nonlinear elements, can be

described in a natural fashion in terms of the variables which describe quadratic

squeezing(Ref.19). This suggests that interferometers can be used to measure

quadratic squeeezing and that quadratic squeezed states may be of use in

interferometric measurements. We are currently studying these issues.
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