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Abstract

We investigate the nature of the quantum fluctuations

in a light field created by the superposition of coherent

fields. We give a physical explanation (in terms of

Wigner functions and phase-space interference) why

the one-dimensional superposition of coherent states in

the direction of the x-quadrature leads to the squeezing

of fluctuations in the y-direction, and show that such

a superposition can generate the squeezed vacuum and

squeezed coherent states.

1 Introduction

The coherent states are always associated with the

"most" classical states one can imagine in the frame-

work of quantum theory [1]. In the present Lecture

we will study the quantum interference between co-

herent states and how such interference leads to gen-

eration of states whose properties are as far as one

call imagine from "classical" states. In particular a

one-dimensional superposition of coherent states can

exhibit sub-Poissonian photon statistics or squeezing.

In our Lecture we will concentrate mainly on squeezing

which appears as a consequence of quantum interfer-

ence between coherent states.

Light squeezing (for recent reviews see [2] as well as

topical issues of JOSA B [3] and J. Mod. Opt. [4])

remains a central topic in quantum optics. Generation

of squeezed light has been reported by various groups

[5-11] and offers new opportunities for the utilization of

light with reduced quadrature noise in interferometry,

fiber optics communications and high-precision exper-

iments. Most studies of squeezed states have concen-

trated on those states generated by quadratic field in-

teraction (e.g. parametric amplification). Recently it

has been shown by W6dkiewicz and eoworkers [12] that

a superposition of two number states (for instance, the

vacuum state and the one- or two-photon states) of

a single mode electromagnetic field exhibits interest-

ing non-classical properties. In particular, squeezing

of the variances of the quadrature operators can be

seen (although not necessarily of the quadratic, mini-

mum uncertainty state quality). A superposition of a
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finite number of coherent states has also been stud-

ied [13-17]. In particular, Hillery [13] has studied

the superposition of two coherent states In) + I - a)

(the so-called "even coherent state" [14]) in connection

with amplitude-squared squeezing. Yurke and Stoler

[15] have shown that such a superposition of coherent

states can arise as a consequence of propagation of co-

herent light through an amplitude-dispersive medium.

It has been shown that the even coherent states exhibit

ordinary (second order) squeezing as well as fourth or-

der squeezing [16]. In a recent paper, Janszky and

Vinogradov [17] extended the idea of superposition of

coherent states and investigated the quadrature vari-

ances of a continuous one-dimensional superposition

of coherent states. They have shown that such a su-

perposition of coherent states can lead to significant

reduction of fluctuations _n one of the quadratures.

2 Simple example

We start our Lecture with a simple example consid-

ering a superposition of two coherent states In1) and

I_) = A 1/2 {lal) + In2)}, (1)

where A is a normalization constant

A -1 = 2(1 + Re(Crl]_2)).

The coherent state I_) can be obtained by shifting the

vacuum state 10) by the displacement operator D(a) =

exp(ahl - a'h):

Io,)=

where dt (h) is the creation (annihilation) operator of

a photon.

At first sight, the result of Janszky and Vinogradov

seems quite remarkable, wimn reinterpreted in terms

of interference in phase space: a superposition of co-

herent states in the direction of the x-quadrature leads

to a suppression in the fluctuations in the y-direction,

whereas naively one would expect that the quantum

interference relevant to this superposition would mod-

ify the fluctuations in the original x-direction.

In the present Lecture we give a physical explanation

(in terms of the Wither function and a phase-space for-

malism [18-20]) of the origin of this noise suppression

and squeezing for a one-dimensional superposition of

coherent states. We further demonstrate that a suit-

able Gaussian superposition of coherent states not only

can be squeezed, but is actually a representation of the

minimum-uncertainty squeezed vacuum state.

The density matrix corresponding to the superpo-

sition of coherent states (1) is given by the following

expression

= A(I_)(_ll + 1_2)(_21 + 1_1)(_21 + I_)(_11), (2)

while the density matrix describing statistical mixture

of two coherent states ]c_1) and lets) is

/_M -- PI IOtl)(O_ll -t- p21Ot2)(Ot21 (3)

where Pi is the probability to find the system in the

state Ioq). These probabilities are normalized to 1.

2.1 Wigner functions

Now we introduce the notion of the Wigner function

through the characteristic function C(W)(_), which is
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associatedwith thesymmetricalorderof thebosonic

(photon)operatorsandisgivenbytherelation[21]

c(W)(_) = Tr [/_exp(i_h t + i_*&)] . (4)

The Wigner function is defined as the Fourier trans-

form of the characteristic function C(w)(_):

r -2 f d2_ exp[-i(_fl* + _*fl)]c(W)(,_). (5)W(/3)
J

The Wigner function corresponding to the superpo-

sition of two coherent states (1) can be written in the

form

where

and

W(_3) = A (W, + W2 + W,_) (6.a)

W, = _2exp(_2lc q _ DI2); (6.b)
7r

 ex.[W12= 71"

× {exp [_2_; - 2(Z - "2)(Z" - "7)] (6.c)

+ exp [oqa_ - 2(fl- otl)(/3* - o_)]}

The terms Wi are the Wigner functions correspond-

ing to the coherent states Icq), while the term W12

arises due to the quantum interference between coher-

ent states under consideration.

The Wigner function for the statistical mixture (3)

is given by the relation

WM = pl Wt + p2W2 (7)

and it does not contain the term describing the quan-

tum interfence between coherent states.

2.2 Even coherent states

To simplify our task we will suppose that al = -c_2 =

_, where _ is a real parameter. In this case we obtain

_I. _

Figure 1: Wigner function corresponding to the even

coherent state (8) with cr = 2. The r61e of the inter-

ference term is transparent.

from (1) the following state

Iq) = A '/2 {[a} + [- a}}, (8)

with the normalization constant

A -1 = 2[1 + exp(-2o2)].

The state (8) is called [13,14] the even coherent state.

The Wigner function corresponding to this state can be

found using the general expression (6) and is presented

in Figure 1, where x = Refl and y = Imfl. If we

compare this function with the Wigner function (see

Figure 2) corresponding to the statistical mixture of

states la) and I- a) described by the density matrix

1
_M = _ (1_)((_1+ I- _)(-_1) (9)

we can directly observe that the term W12 correspond-

ing to the quantum interference between states [a) and

[-a) should play an important r61e in statistical prop-

erties of superpositions of coherent states.
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Figure 2: Wigner function corresponding to the statis-

tical mixture (9) with _ = 2 and pt = p2 = 1/2

2.3 Quadrature squeezing

The quadrature operators fi] and a2 corresponding to

the creation and annihilation operators fit and _ are

defined as:

b. + _it h - _it
al - 2 ; a2 = _---. (10)

We can easily find that variances of these operators

((ha;?) = (,_) - (ad_,

in the statistical mixture (9) are:

1

and

(11)

1

From above it follows that the fluctuations in the fia

quadrature are larger in the ease of the statistical mix-

ture compared to the vacuum-state (or the coherent-

state) value, which is equal to 1/4. Fluctuations in fi_

remain the same for both the statistical mixture (9) as

well as for the coherent state I_) (or I- _)).

Figure 3: Quadrature variances given by equations

(12) versus parameter ct, The dashed line corresponds

to ((_(/1) 2) and tile solid line corresponds to ((Ah2)2).

On the other hand, for the even coherent state (8)

we find the reduction of fluctuations in h2 quadrature

(i.e. in the y-direction in the phase space - see Figure

1):

1 _2 exp(-2c_2) (12.a)
((Aa2)_) = _ - 1 + e×p(-2_)"

Simultaneously fluctuations in h 1 are enhanced:

1 _2

((_,_)2) = _ + 1+exp(-2_2)" (12.b)

Variances ((Aai) 2) versus the parameter _ (which is

related to the intensity of the even coherent state) are

plotted in Figure 3. We see that the maxinlum reduc-

tion in the fluctuations can be obtained for quite small

values of o. Reduction of ltuctions below the vacuum-

state (or coherent-state) level is called quadrature

squeezing. Front the above it follows that quadrature

squeezing can emerge as a consequence of the quantum

interference between coherent states. We should note

that even coherent states (8) exhibit not only quadra-

ture squeezing, but also higher-order squeezing as well

as amplitude squared squeezing [13,16].

184



0.40

0.35
Z
C)
_- 0.30

CD
_f0.25
F--

(.,'3
0.20

0.15

(_ O.lO

0,05

0.00

i

I
0 1 2 5 4 5 6 7 8 9 10 11 12 13 14 15 16

r3

Figure 4: Photon number distribution for a superposi-

tion of two coherent states (8) with amplitude e = 2.

The dashed line is the distribution of the correspond-

ing statistical mixture (9).

2.4 Photon number distribution

distributions corresponding to two independent coher-

ent states [el) and le2). On the other hand, in the case

of a superposition of coherent states le_) and le2) the

term corresponding to the quantum interference plays

an important r61e. To see this clearly we wil! assume

that al = -eu = e. In this case the statistical _,fixture

(9) has just the Poissonian photon number distribution

I e-I°l_ (16)p,,,_ le _"
n!

The superposition of coherent states under consider-

ation (i.e. the even coherent state) has the following

photon number distribution:

C¢2_

2exp(-Ic'12) _ if n = 2m
p, = l+¢xp(-t,_P) (17)

0 if n=2m+l,

The oscillations in P, are very similar to those in the

case of the squeezed vacuum discussed by Schleich and

Wheeler [18]. Generally, these oscillations are due to

quantum interference in the pha,se space.

Here we discuss briefly properties of the photon num-

ber distribution of the statistical mixture (3) as well

as the superposition (2) of two coherent states. The

photon number distribution is defined as

P. = <-1,@9. (13)

and can be evaluated easily for both the statistical

mixture (3)

1 {p]lell2,,e_l_,,l: + p21e212,,e_l,_:l: } (14)PM=_. 1

and for the superposition of coherent states (2):

A { + je2j2ne_l_l_P,_ = _.. I_tl 2"e-l_'l_

(15)
In the case of the statistical mixture the photon num-

ber distribution (14) is just the sum of two Poissonian

3 Continuous superposition of

CS

Now we will discuss the properties of one-dimensional

continuous superposition of coherent states. Recently

Janszky and Vinogradov [17] defined the continuous

superposition I_) of coherent states la) in the following

way

/;I,') = cr F((_,Ol_)de, (18)

where the coherent state amplitude e is supposed to

be real. The normalization constant Cr is defined as:

//;CTF2 = F(e, _)F(e', _) exp[-(e-e')2/2]do_de '.
oo

(19)
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WiththesuperpositionstateI') givenbyequation(18)

onecanfindexpressionsforthemeanvaluesof prod-
uctsofthecreationfit andtheannihilationh operators

of the field mode in the following form:

//:((at)ma ") = F(a,_,)F(_',()

× exp[-(_ - _')2/21_m(_')"d_d_'. (2O)

In particular, if F(a,,) is taken to be the Gaussian

function

F(a,,)=exp [ (1-,)_212, (21)

with, E (0, 1) and

C_' = 7r-'/_(1
_)i/4

(_),/2 , (22)

then one can find for the variances of the quadrature

operators hi, a2 given by eq. (10) the following ex-

pressions

((Ahl)2) = (1--,)'

(1) (1-,) (23.b)<(Aa2)2) -- (1V,)'

From this one can conclude that the states I_): i) he-

long to the class of the minimum uncertainty states;

ii) the fluctuations in the "second" quadrature are re-

duced below the shot noise limit.

on the vacuum state 10) of the field mode. To do so

we decompose the coherent state I¢,) in equation (18)

into number states:

cx) O' n

Is) = exp(-a2/2) _ _ln)'
n-_0

and exchange the order of integration and summation

procedures, i.e. we rewrite equation (18) in the form

I_>= cr
I

x _ dc_ c_n exp [-_a2]. (25)

After performing the integration on the r.h.s of equa-

tion (25) we find

oo

I,)-- (1- _u),/4 _--_ [(2nl!]1/2{.12n) ' (26)
2"n!

n----O

from which it follows that the one-dimensional super-

position of coherent states (18) with the distribution

function (21) is identical to the squeezed vacuum state:

FI_) = cF r(_,_)a_b(_)10) = _(,)10). (27)
oo

We should stress here that the last equation describes

the relation between the states, but not between the

displacement and the squeeze operators themselves.

We see, therefore, that the one-dimensional superpo-

sition (with Gaussian distribution) of coherent states

leads to states exhibiting a large degree of squeezing

(in the limit , ---* 1). We now demonstrate by direct

calculations that if F((_.,) is the Gaussian function

(21), then the state I_) is equal to the squeezed vacuum

state generated by the action of the squeeze operator

s(at, a, ,):

, = tanh r, (24)

3.1 Origin of squeezing

We next provide a physical explanation of the origin

of the squeezing generated by such a superposition.

We address the question of how the one-dimensional

superposition of coherent statcs in direction of the x-

quadrature (corresponding to the operator hi) leads to

squeezing of the fluctuations in y-direction (associated

with the quadrature operator h_). To do so we use

the Wigner-function phase-space formalism: we define

the Wigner function W03 ) in the following way. First,

186



weintroducea "generalized"characteristicfunction

0(w)( _, _',0:

c2(w)(,_,,_',_) = (,_'lb((:)l_)

= exp - I& + i_,_'+ iC_ - _(_ - ,

and the "generalized" Wigner function l_(a, a', _):

14"(a, a',/3) = 7r-2 f d2(

x exp[-i((°/3 + (/3*)]C(W)(a, a', () (29)

= - exp * -/3- _' + ol) _
71"

X exp [__(_ +/?. _ o__ _,) 2 1 o/)2 ]- _(_-

The Wigner function W(/?) can now be expressed in a

very simple form:

J/?W(_) = C_, dc, da'F(c,)F(a')12V(c,, c,', _).
oo

(30)

To make our discussion more transparent we will

first analyze in detail the simple superposition of two

coherent states Ic_) and I - (_) and the vacuum state

10), i.e. we will study the state [17]

I_)= cr {1_)+ pl0)+ I - _)}, (31)

which can be obtained from equation (18) with a

weight function F(x) = 6(x - or) + p6(r) + 6(z + a).

The normalization constant in this case is given by the

relation:

CF 2 = 2 + p2 + 4pexp(_a2/2) + 2exp(_2or2). (32)

One can easily find the variance of the quadrature op-

erator as for the state (31):

1
((Aa_)_) = _ {1 - 4C_ _

x[2 exp(-2c_ 2) + pexp(-a2)]}, (33)

from which it follows that a high degree of squeezing

(up to 74%) can be obtained for the optimum case,

= 1.57andp= 1.35.

The Wigner function of the state (31) can be ex-

pressed as the sum of two terms:

where

w(z) = w4z) + w_o.,(_), (34)

w4z) = 2c____{exp[-2(_ - _)_ - 2U']
7r

+ exp[-2(_ + _)_ - 2y_]+ p_exp[-2_ _ - 2y_]}

(35)

and

Wgu,nt(/3) = 2C.__..___{2 cos(4ay)exp[-2x 2 - 2y =]
7r

+v cos(2_v) [exp (-2(_ - _/2) _- 2y_)

+ exp (-2(z + a/2) 2 - 2y2)] } . (36)

The normalization constant CF in this case is given

by equation (32) and x = Re3; V = Im3. The function

W,t(B) is equal (up to normalization factors) to the

sum of the independent Wigner functions of the vac-

uum state and two coherent states and can be identi-

fied with the Wigner function of the statistical mixture

of coherent states and the vacuum state described by

the density matrix

_,u = e, io)(ol+ v_l_)(,_l+ v_l- -)(-,_1 (37)

with properly chosen parameters pi.

This function is plotted in Figure 5a, from which it

is obvious that Wa(_) is positive for any value of x

and y. The phase-space contour lines of this function

are plotted in Figure 5b. In contrast to the function
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Figure 5: Function Wcs(x,y) given by Equation (35)

representing the part of the Wigner function of the

superposition state (31) is plotted for a = 1.57 and

p - 1.35 (a). In Figure 5b the phase-space contours

corresponding to this function are plotted.

W_l(fl), the function Wqu_.t(fi) can be negative. This

function describes in phase-space the quantum inter-

ference effects between the states ]a), ] - a) and ]0).

The quantum interference is responsible the appear-

ance of the cosine terms in tim y-direction, and these

oscillating terms are responsible for: 1) negative val-

ues of the function Wq_..t(fl) (see Figure 6a) as well

as the total Wigner function W(_) (Figure 7a); 2)

squeezing of the variance of the quadrature operator

in the y-direction, which is clearly seen in Figures 6b

and 7b.

This simple example helps us to understand the na-

ture of squeezing in the one-dimensional superposition

of coherent states. The squeezing arises as a conse-

quence of quantum interference between the macro-

scopically distinguishable states. Generally, if more

states are involved in the superposition, a higher de-

gree of squeezing (depending on the appropriate shape

of the distribution F(c_)) can be obtained for the same

mean value of photons in the mode.

Now we turn our attention to the displacement of

the superposition state such that there is a mean field

amplitude. We show that a one-dimensional superpo-

sition of coherent states with the distribution function

F(e, _, ¢/) centered at a non-zero value of a is equal to

the squeezed coherent state. We take for our distribu-

tion function F(c_, _, fl) the displaced form

F(_,_,fi) = exp [ (l_)(a - x0)2] , (38)

with the normalization constant CF given by equation

(22) and with a displacement

= (1+_'_ 1/2
• 0 \7-C7 / _.

In this case from equation (18) we obtain for the state
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Figure 7: The total Wigner function W(r, y) is plotted

for a = 1.57 and p = 1.35 (a). In Figure 7b the phase-

space contours corresponding to this function are plot-

ted.
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1¢)thefollowingexpression:

,_)=(1-_)l/4exp[ (1-_)x02]_-

× _ _ [(1- _¢)xo]n
n=O

%, (30)
( k=0 (n-2k)'k' 2(1--_)2z0_"

where Ilzll denotes the greatest integer less than or

equal to z. Using the new parametrization:

1 -¢

/J- (1-¢2)1/2 ; v= (1-¢2)1/u' (40)

with p2 _uS = 1 and [/_] > Jv[, we can rewrite equation

(39) in the form:

'_)="-l/2exp[ (1-v/")3212

°-
.=o (41)

where H,(x) is the tlermite polynomial. It is obvious

that the last expression obtained describes precisely

the squeezed coherent state as defined by Yuen [22],

i.e., we have explicitly proved that

fS(¢)b(3)10) = Cr daF(m,¢,3)D(a)[0). (42)
oo

In other words, we can construct, through a one-

dimensional superposition of coherent states with a

properly chosen distribution function, the squeezed co-

herent state. Obviously, the physical reason for squeez-

ing is the same as for the case of squeezed vacuum

state discussed earlier. It is amusing that a superposi-

tion of the most classical of field states, the coherent

states, can through the action of quantum interference,

generate the archetypal nonclassical field states - the

squeezed vacuum and the squeezed coherent state.

It can also be shown that the squeezed number state

[23] defined as a result of a action of the squeezing op-

erator S(¢) on the number state In) can be constructed

as a one-dimensional superposition of displaced num-

ber states [24], the states obtained through the action

of the displacement operator on the number state, that

is

S(¢)ln) = (43)
oo

where function F(a, ¢) and the normalization constant

CF are given by the Equations (21) and (22), respec-

tively.

4 Discussion

In our Lecture we discussed the r61e of the quan-

tum interference in the origin of squeezing in the one-

dimensional superposition of coherent states. With

the aim to make the discussion as clear as possible

we started our Lecture with a simple example of su-

perposition of just two coherent states 1o,) and 1- o,).

Finishing the Lecture we return to this simple example

but we take into account the relative phase between the

coherent states under consideration, i.e. we will study

the following superposition

1") = A1/2 {[a) + e'*l- a)}, (44)

with the normalization constant

A-l=2(l+cos_e-"_2).

We will show that the phase $ plays a crucial r61e

in the character of the quantmn interference between

coherent states.

First of all we write down the corresponding Wigner

function for the state (44). This function can be ex-

pressed as a sum of two terms:

w(3) = w ,(fl) +w,°o.,(fl), (45)
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Figure 8: Wigner function corresponding to the super-

position (44) of two coherent states with the relative

phase ¢ equal to 0 (a); _r (b) and 7r/2 (c); a = 2.

where

_r

Jre- 2(x +o_)_- 2Y2} (46)

and

Wquon,(/3) = 4___AAcos(4ay + ¢)e -_'2-2_=. (47)

As earlier we use the notation x = Refl; y = Imfl.

To investigate the dependence of the quantum in-

terference on the value of the parameter ¢ we will em-

ploy two parameters describing nonclassical properties

of light fields. Namely, we will study the Mandel Q

parameter, defined as

Q = ((Ah)2>- (h) (48)
<,-,)

which is related to the degree of sub-Poissonian pho-

ton statistics. In particular, if Q = 0 the state has

Poissonian photon statistics, while for Q < 0 (Q > 0)

the state has sub-Poissonian (super*Poissonian) pho-

ton statistics. The second parameter we will study is

the squeezing parameter

Si = 4((Aa,) 2) - 1 (49)

describing the degree of quadrature squeezing. A state

is said to be squeezed if 5'1 or 5'2 is less than zero. In

what follows we will suppose three values of ¢.

1) Let the phase ¢ be equal to zero. In this case the

state (44) is equal to the even coherent state (8) and

we find

4a2 exp(-2o_ 2 )

Q = 1 - exp(-4a 2) > O; (50)

4ot 2

S1 = > O; (51)
1 + exp(-2a 2)

S_ = 4c_exp(-2a_) < 0, (52)
1 + exp(-2a 2)

191



from which it follows that the even coherent state has

super-Poissonian photon statistics and simultaneously

is squeezed in the fi2 quadrature.

2) If ¢ = r then the state (44) is an odd coher-

ent state [14]. This state has sub-Poissonian photon

statistics, i.e.

402 exp(-2_ 2)
Q = 1 - exp(-4_ 2) < 0; (53)

but is not squeezed

4o_ 2

S1 = 1- exp(-2a 2) > 0; (54)

40_2 exp(-2c_ 2)

82 = 1 - exp(-2cr 2) > 0. (55)

3) Finally, if ¢ = 0, then the state (44) has Poisso-

nian photon statistics

5 Conclusion

The main information carried in this Lecture is: A su-

perposition of the most classical of field states

can through the action of quantmn interfer-

ence, generate the archetypal nonclassical field

states: the squeezed vacuum and the squeezed

coherent state.
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Q = 0, (56)

and simultaneously we can observe squeezing in the fi2

quadrature

$1 = 4c_; (57)

$2 = -4c_ 2 exp(-4a 2) < 0. (58)

The dependence of the statistical properties of su-

perpositions of coherent states on the value of the rel-

ative phase is caused by the character of the quan-

tum interference, that is whether this interference is

constructive or destructive in various regions of phase

space. This can be clearly seen from Figure 8 in which

the Wigner function corresponding to the state (44) is

plotted for ¢ = 0; 7r and lr/2. We see significant dif-

ferences in the shape of Wign_r functions for various

values of ¢, which is related to the completely different

statistical properties of the corresponding states.
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