
N92-22065
LIMITATIONS ON SQUEEZING AND FORMATION OF THE SUPERPOSITION OF TWO

MACROSCOPICALLY DISTINGUISHABLE STATES AT FUNDAMENTAL FREQUENCY IN THE

PROCESS OF SECOND HARMONIC GENERATION.

Nikitin S.P., Masalov A.V.

Lebedev Physical Institute

Moscow, USSR

In this paper the results of numerical simulations of quantum state

evolution in the process of second harmonic generation (SHG) are discussed.

It is shown that at a particular moment of time in the fundamental mode

initially coherent state turns into a superposition of two macroscopically

distinguishable states. The question if this superposition exhibits quantum

interference is analyzed.

To describe the SHG we use the following Hamiltonian:

t gh(atatb aab t )H = h_ a a + 2hwbtb + +

* b*Here a, a , b, are annihilation and creation operators of the fundamental

mode and harmonic mode respectively, and g is a coupling constant

proportional to the nonlinearity of the medium. The nonlinear interaction is

described by the last term in the Hamiltonian. This Hamiltonian corresponds

to the case when there is no absorption loss in the medium. The initial

quantum state was taken to be a coherent state in the fundamental mode and
vacuum state in the harmonic mode.

In our calculations we have used a number-state basis in which a quantum

state is just a vector and operators are matrices of clnumbers. Details of
our calculations are described in Ref. I. Earlier similar calculations have

been made by Walls and Barakat. It is known that squeezing in the SHG has a

minimum. It is shown in Ref. I that this minimum appears due to the formation

at the fundamental frequency of the superposition of macroscopically

distinguishable states. It is the formation of this superposition that is the

limiting factor of the largest squeezing achievable in the process.

Fig. l represents the dependence of amplitude squeezing in the

fundamental mode versus the dimensionless time T=gt 2_. N is the initial

average number of photons in the fundamental mode. Fig 2 represents the

quasiprobability distribution for the fundamental mode Q(_)=<_Jp]_>/u when

this superposition is formed. Here p is the density matrix of the quantum

state and [a> is a coherent state described by a c-number a. Earlier, in

Ref.2 it was shown that superposition of two coherent states can be obtained

using Kerr nonlinearity. The SHG process appears to be alternative nonlinear

process in which the superposition can be obtained.

The question of the origin of this superposition is discussed in Ref. 1

where this phenomenon is attributed to the instability of the SHG process

with respect to the initial harmonic phase which is completely uncertain for

the initial vacuum state in the harmonic mode. This instability was

illustrated by a classical equation solution where quantum uncertainty of the

harmonic state and the fundamental state was imitated by randomized initial

conditions distributed by the normal law with the same dispersion as quantum

states.
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Here we would like to pay more attention to the question of whether the

superposition is coherent, that is, a pure quantum state, or whether it is a

statistical mixture of two coherent states. In order to answer this question

one usually uses simple numerical criteria such as T = Trp 2 For a pure state

T = 1 while for a statistical mixture T < I. The dependence of T versus T is

shown on the Fig. 3. If N=IO the superposition appears at T = 4. It is

clearly seen on Fig. 3 that T at this time is very far from parameter

specific to the pure state. So, one can expect that no quantum interference

effects could be seen in this state. However, we may check it directly using

the density matrix.

To see quantum interference we may consider the function P{x)=<x|plx>.

Here Ix> is an eigenstate of a quadrature operator x = (a+a')2_.

Experimentally this function P(x) can be obtained using homodyne

measurements. It is known that for a coherent state this function is a

gaussian. If we calculate this function for a statistical mixture of two

coherent states then we get the sum of two gaussians and no quantum

interference. For a quantum superposltion of two macroscoplcally

distinguishable state this function exhibits an interference pattern. It is

therefore interesting to check if the superposition formed in the process of

the SHG exhibits quantum interference pattern in P(x).

Fig. 4 represents P(x) calculated from the density matrix of the

superposition at T=4 and N=IO. This function obviously exhibits quantum

interference, though visibility of the interference pattern is less than for

a pure superposition of two coherent states. This result could be explained

if we assume that the main portion of the statistical mixture, which in fact

the above-mentioned superposition is, is a quantum superposition of two

coherent states. Other states which the mixture contains reduce visibility of

the interference but can not destroy it completely. Thus the superposition

formed in the process of the SHC can exhibit quantum interference though,

generally speaking this superposition is a statistical mixture rather than a

pure state.

Conclusions

Squeezing in the process of the SHC is limited because of the formation

of the superposition of macroscopically distinguishable states at the

fundamental frequency. This superposltion forms because of the quantum phase

uncertainty of the initial harmonic state. Though this superposition is not a

pure quantum state, it does exhibit quantum interference in P(x). This fact

illustrates that analysis of simple numerical criteria such as TF p_ is not

enough to decide whether quantum interference appears or not.
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Fig. 1 Squuezing in the fundamental mode vs T=gt 2V_-N. N=10 (solld lfne)
N=20 (dotted line), N=40 (dashed line)

Fig. 2

Quaslprobabillty Q(_) = <_[p[_>/_
for fundamental mode at T=4; N= I0.

Contours at 0. I/_, 0.2/_, 0.3/_.
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Fig. 3
T = Trp 2 versus T for the fundamental

mode. Average photon number N = 10.
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Fig. 4 Quantum interference in P(x) = <x[p[x> for the fundamental mode at
T = 4. Average photon number N = 10.
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