
N92-22073
SQUEEZED STATES AND PATH INTEGRALS

Ingrid Daubeehies

AT&T Bell Laboratories

Murray Hill

New Jersey, 07974

and

John R. Kiauder

Departments of Physics and Mathematics

University of Florida

Gainesville, FL 32611

ABSTRACT

The continuous-time regularization scheme for defining phase-space path integrals is

briefly reviewed as a method to define a quantization procedure that is completely covariant

under all smooth canonical coordinate transformations. As an illustration of this method,

a limited set of transformations is discussed that have an image in the set of the usual

squeezed states. It is noteworthy that even this limited set of transformations offers new

possibilities for stationary phase approximations to quantum mechanical propagators.

1. INTRODUCTION

For many years now it has been customary to define path integrals with the aid of

coherent states [1]. Such formulations have been developed not only for the canonical

coherent states suitable for the Weyl group (i.e., the Heisenberg algebra), but for coherent

states based on other groups as well, notably the unitary and orthogonal groups with

(in)definite signature, the affine group, etc. However, for the sake of convenience and to

focus on the relation with standard squeezed states, attention in this paper will be confined

to path integrals constructed with the aid of canonical coherent states. The construction

of coherent state path integrals is generally carried out in one of two standard procedures

I21. To illustrate these two procedures let us first introduce a few standard definitions

involving coherent states [2]:

f
1

= /[p, q)(19, q[ dpdq/27r,

H (p, q) = _p, qlT-(lp, q),

H (P2, q2;Pt,ql) = (P2, q2[7-l[Pa,qll/(P2,q2[Pl,qll,

- [ h (p,q)[p,q)(p,q[dpdq/2rc,"H
J
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where IP, q), (P, q) elg2, denotes one of a collection of coherent states defined by

[p,q} -- e-iqeeipQ[O}, [Q,P] -- i, (Q + iP)10} = 0,

all of which are normalized, (p, q[p, q} = 1. In addition, we have introduced two "symbols"

associated with a fairly general operator 7-/, namely H and h as functions on phase space.

In terms of these quantities, the propagator form time t t to time t" - t' + T, T > 0, is

given by either of the two expressions

l m//_o I I _
"-"' q"'e-iT-tT'pt' q" iV ---, oc

n=N n=N

n=O v,= 1

,imfl{P",q"l e-i rlp',q'} = N "'" x
n=N n=N

rI _)n+l,qn+llPn,qn} II

n=0 n=l

e- ie h( pn ,q,_)dpndqn / 2 rc,

where we have introduced the notation e = T/(N+ 1), p",q" = pN+(,q_v+i,

and pt qt = P0, q0. In a formal limit, in which the order of integration and the limit

are interchanged and the integrand is evaluated for continuous and differential paths, the

formal result emerges, respectively, that

{P", q"] e-iTiT IP', q'} = JM f ei f[pO- H(p,q)ldt DpZ)q,

{P", q"l e-i_T IP', q') = M/e i f[pq-h(p'q)]dti)p79q,

where, as conventional, we use a single standard integral sign here to represent a (formal)

functional integration. Since, in the general case, H (p, q) =/= h (p, q), we are seemingly

led to a paradox, namely that two generally different expressions can be given for the same

quantity. That these two expressions are different is just a dramatic reflection of the very

formal nature of such "equations" in the first place; each is correct if interpreted in the

manner indicated in the lattice regularized form given above.

In recent years, a very different regularization and formulation of coherent state path

integrals has been developed that is both rigorous in construction and does not exhibit the
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paradox outlined above [3]. In this formulation, a continuous-time regularization scheme

is found that takes the form

(p", q"le-/nTIp' , q') -- lira 27reuT/2 / ei f[p(t)dq(t)_h(p(t),q(t))dt]dtt_v (p, q)l/---_ OG

where #_v denotes a planar two-dimensional Wiener measure with diffusion constant

u that is pinned so that p(F),q(4') = p',q' and p(t"),q(t") = pn, q". Since p(4)

and q (4) are (independent) Brownian motion paths, the integral fp(t)dq (4) is properly

understood as a well-defined stochastic integral [4]. In the present form the Ito and

Stratonovich formulations yield the same result; however, under coordinate transformations

the Stratonovich form is chosen and so it is convenient to adopt the Stratonovich form

from the outset. It must be appreciated that the expression above involving the Wiener

measure is rigorous and unambiguous; the marvel is that this genuine, i.e., continuous time,

path integral formulation actually provides the correct propagator for the Hamiltonian

7-{ provided one adopts the symbol h (p, q) to use as the classical Hamiltonian in the

action even though it may, in general, contain a nonzero h. In a formal, but nevertheless

suggestive language, one may also say that

{p,t, qttle-iT-tTip,, q') = e i f[po-h(p,q)]dt e-_ lip2 +02]dt_Dp_.) q,

which shows the continuous-time regulatory nature of the indicated expression inasmuch

as the u-dependent factor in the integrand formally goes to unity as u --, oe. Although

formal in nature, the last equation may be understood as a short hand expression for the

former one when it is accepted that the various terms do not have independent meaning

but only in combination with one another. Thus they may be recombined into the proper

mathematical form at any time. (This is similar to how the "quotient" dy/dz should be

understood for the derivative.)

The expression for the propagator given above is not only well defined mathematically,

but it also enjoys a covariance under generally time-dependent canonical coordinate

transformations. Let two canonical coordinate systems be related according to the equation

p dq - h (p, q) = _ d q +dG (]J, _, t ) - k (_, _, t)

that not only holds in the classical case but for Brownian motion paths as well thanks to the

choice of the Stratonovich rule [4]. Under the same canonical coordinate transformation,

the metric on fiat space that supports the two-dimensional Brownian motion changes to

dp 2 + d q 2 = de 2 (_ , _t, 4) = A (-fi, 77, t ) d _ d _ + B (p , _ , t ) d _) d -q + C (p , -q, t ) d -_ d -q
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and as a consequence the propagator takes on the form in the new coordinates, which for

convenience we relabel p. q again,

/lira .Mei(G,,_6,, ) ei ilp@k(,p;q;t)]dte_ _ f[da_(p;q.t)/dt_]dt.Dp.Dq
u ---, ¢x:

This formula expresses --for the first time and after over sixty years of the theory of

quantum mechanics--a fully canonically coordinate covariant formulation of the process

of quantization [5]. This expression clarifies the role of the Schroedinger quantization rule

in which coordinates act as multiplication while momenta act as derivatives; this rule of

quantization is valid in and only in Cartesian coordinates as often noted, but Cartesian

coordinates in phase space rather than in p-space and q-space separately as commonly

stated [6]. Of course, the arena for classical mechanics resides in a symplectic manifold and

it does not employ a (Riemannian) metric in its formulation. On the other hand, quantum

mechanics has a different and richer basis in which a metric structure appears. Indeed,

it is not unreasonable from a classical viewpoint that a metric structure is appended to

the classical phase-space manifold, not for purposes of defining the Hamiltonian equations

of motion, but rather to keep track of just what physics a given system refers to. For

example, an harmonic oscillator (centered at the origin) appears as an harmonic oscillator,

e.g., with a Hamiltonian given by ½ (ap 'e + 2bpq + cq2) . ,_ > O. b > O. a c > b'e., only in

Cartesian coordinates in phase space. In non-Cartesian coordinates an harmonic oscillator

assumes a different form from that indicated. Just what system actually corresponds to an

harmonic oscillator (or free particle, or quartic anharmonic oscillator, etc.) is coded into

the classical scheme by the implicit use of an auxiliary fiat metric on the two-dimensional

phase space, and its expression in Cartesian coordinates. This same flat metric space

actually enters the formulation of the quantization procedure as described in the present

article through its use as a carrier for the Brownian motion. Once it is decided which sets

of canonical coordinates are the Cartesian ones, so that the expression for a system which

represents (say) an harmonic oscillator is unambiguous, then the quantization procedure

itself is unambiguous in the approach advocated here. After the well-defined path integral

is set up, then one is free to make a variety of coordinate changes within that integral,

among which possibly time dependent canonical transformations are to be distinguished.

Indeed, one can go so far as to introduce a Hamilton-Jacobi transformation so that the new

Hamiltonian vanishes. This puts all the dynamics into the curvilinear coordinate system

that is used to track the two-dimensional planar Brownian motion. As a consequence, the

overall level of difficulties is conserved, as one would expect to be the case.

It is hard to illustrate this program in its full potential, but it can be shown in a sort

of small scale fashion. Indeed, it is squeezed states that can be used to provide a limited

illustration of this overall program, and it is this "miniature" illustration to which we now
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turn our attention. A convenient place to start the investigation is with the kinematics

rather than the dynamics, and this in turn can be done simply by looking at the propagator

for vanishing Hamiltonian.

2. CHANGE OF VARIABLES IN THE PATH INTEGRAL:

CONSTANT _ TRANSFORMATIONS

KINEMATICS

If the Hamiltonian vanishes, or in the limit that T ---, 0, the "propagator" reduces to the

reproducing kernel, an integral kernel representing a projection operator onto the relevant

subspace of all square integrable functions on phase space as given by

(p", q"; 1 IP', q'; 1) = v ---+ (x_]Jmj_ /e i f pqdte_ _ f(lj_+4_)dt79pT)q,

which may be explicitly evaluated as

(pVt, qtt lip, ' qV 1> -'- Ci½(p" +p')(q'-q')-¼[(p"-p')2 +(q'-q')2] .

In these expressions we have added a "1" to the label to emphasize that the coherent states

are those based on an harmonic oscillator ground state with a unit angular frequency,

= 1. In particular, for a general value of _, the configuration space representation of
the coherent states reads

(x[p, q; w) = (w) ¼e_½w(x_q)2+ip(x_q)
\72 9

and it follows that the overlap of two such states for the same value of w is given by

(p", q"; _[p', q'; oJ) =/(p",q";_lx)(xlp',q';_)dz

It is clear therefore that the coherent state overlap obeys the identity

tt _! t l
(p",q ;_lp',q';_) - (w-½p",w_q"; 11_ 2p ,_q'; 1)

which relates dilation of the angular frequency to a corresponding dilation of the coherent

state labels, i.e., an expansion of one phase space coordinate and a contraction of the other.

This relation may be codified another way as well.

D = ½ (PQ + QP)

Let
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denote the self-adjoint dilation operator with commutation properties [Q,D] =

iQ, [P, D] = -iP, then it follows that coherent states for different angular frequen-

cies are connected by

i! 1 1
[p, q;ca) -- e _ln('_)D[w-_p, co_q; 1).

Thus the unitary transformation generated by D is nothing other than the squeeze operator

relating coherent states and squeezed states, or relating two sets of squeezed states with

different squeezing values. In forming the overlap illustrated above, the squeezing operator

drops out leading to the indicated relation.

A path integral expression for the coherent state overlap at angular frequency _' can

be readily obtained just by a coordinate change of the path integral appropriate for a unit

angular frequency. In particular, if one makes the change of integration variables given by

1 1

then it immediately follows that

(p", q'; w[p', q'; w) = " t 1
hm j_4 e i f pqd c-_ f(_-

p --* (X)

' ti_+.,q'_ )dt D p79 q

showing quite clearly the connection of the relative scale factor in the two-dimensional

Brownian motion and the parametric dependence in the coherent state representation. All

this has assumed that w has been constant throughout; next we take up the case of a time

variable w.

3. CHANGE OF VARIABLES IN THE PATH INTEGRAL:

NONCONSTANT _ TRANSFORMATIONS

The overlap of two coherent states for two different values of w is given by

(P", q"; "PIP', q'; "/) = / (P", q" ;ca"ix) (xlp', q'; co')dz

v/2 exp [i (p"w'

L
+ p'J') (q"- q')

(.jll + (jj!

(p,, _ p, )'2

2 (J' +
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This expression also exhibits an alternative form given by

{p", q"; cJ'lp', q'; co') = Co"-½p", co"}q"; lie -i½I. ( _ ) DIw'-k p', _"½q'; 1)

_ (j,-½p,,, ,,½,, _=D ,'-- co q ;1]e-if2,o ]w'-½p',_.2q';1)

_ (j-+p,,, ,,'--q,,, I_dto- co _ "lie-' Ico'-_p',J½q'; 1}

where we have introduced a smooth but otherwise arbitrary function w (t), t' _< t _<

t",which interpolates between co" = co (t") and co' = co (t'). Of course, this expression

holds as well even in the special case that cJ ! = co' in which case w (t) goes smoothly

between equal initial and final values, but is otherwise arbitrary.

In the latter form the overlap of two coherent states for differing angular frequencies

has been expressed in terms of the matrix element of a kind of propagator between coherent

states of the same angular frequency. But the latter form admits a path integral expression.

In particular, it follows that

{p", q"; lie -if _Ddtlp',q'; 1}

J

lim ak4/ e i f[p4-_pq]dt e-_ I[i_'+02]dtDpDq.1,'-.--+ OC

Now, much as was the case earlier when w was constant, we next make a time-dependent

change of variables of the form

p(t) co(l)-}--+ p(t),
q(t)--+co(t)+q (t),

where co" = co (t"), co' = co (t'). In making a time-dependent substitution of variables,

additional terms will arise in the path integral integrand on the right hand side. In particular,

the term

f [vO- _,,q] dt --, f [pO]d_,

the formal flat measure remains unchanged,

7)pT;)q ---+ Dt>"Dq ,

while the all important formal weighting factor

' ffp'+Oqd, ' f[_(t)-' '+_ )4_]e-2- 7 _ e-2- 7 p (t dr.
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Other terms might be contemplated in the exponent of the final expression such as those

involving time derivatives of w (t); however all of these will be negligible in the limit that

v ---, oc since they are not as singular as the indicated terms. While we prefer this heuristic

characterization of the transformed Wiener process one should bear in mind that only the

coordinate description of the planar two-dimensional Brownian motion is being changed

and the process itself is in no way effected. We are encoding this change of coordinates

by means of the change of coordinates of the metric on the plane. (A rigorous analysis of

such transformed Wiener processes is in progress by the present authors.) Thus it follows

after such a substitution of variables that

(p", q";w"lp', q'; co') = (Jr-{pit, _"½ qt'; 1 le-/½ f -_Ddt ij- ½p' c:'½ q'; 1)

m
m

lira j_4J e i f p'idte-_ f[_(t)-li)2+a'(t)O_]dtDp79q.V'---* OQ,

Consequently, the introduction of a smooth, time-dependent angular frequency that

interpolates between the initial and final values in the Wiener measure provides just the

right ingredient to yield the overlap between two different coherent states based on two

different angular frequencies. This expression yields a simple but nontheless bona fide

example of how the classical Hamiltonian -- here just a3 (t)p (t) q (t)/2_ (t) -- may be

eliminated in favor of a change of coordinates with which to describe the two-dimensional

Brownian motion on the phase space plane. Such an elimination additionally involves a

change of coordinates at the endpoints, as illustrated in the central equation, but in the case

of squeezed states, there is an alternative interpretation involving coherent states based on

differing angulai" frequencies as embodied in the first part of the equation. We now turn

our attention to the inclusion of dynamics in this example through the presence of a rather

general nonvanishing Hamiltonian.

4. CHANGE OF VARIABLES IN THE PATH INTEGRAL: NONCONSTANT

TRANSFORMATIONS AND A GENERAL HAMILTONIAN

INTRODUCTION OF GENERAL DYNAMICS

Based on the earlier discussion it is quite straightforward to include a rather general

Hamiltonian h (p, q) into the problem. In particular, based on the initial discussion, let

us consider

(p", q"; llTe -i f[ + D]atlp', q'; 1)

m
m ei f[p4-h(p,q)-_-_pq]dt e- 1--_,f[ti_+_p]dt 79p79q
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which after a change of integration variables becomes

where

lirn j_ f ei f[p_-k(p,q,l)]dl c-2-_-_,f[_o(t)-l f_2+.,(t)4"]dtTtpD qV "_ (X?

_, ,,--'_,, ,,1_-,,- _co ,p ,co _q ;llTe -if IJ-½p',J½q';1)
1 ! I1 i

= (a_"--2p ' ,co '-2q"., lie-: lna_"DTe-ifT-l'(t)dte_lnw'DIw'-½p',w'_q';1 )

-- (p", q"; cJ'lTe -i / _'(t)atlp' , q'; co'),

k (p (t), q (t), t) = h (co (t)_ p(t),w (t)½ q (t)),

which contains an explicit time dependence from the angular frequency as well as an

implicit dependence just from the time dependence of p and q themselves, and in addition
where

• tot) "1 tot

The basic significance of the preceding equations can be summarized as follows:

(p,,,q,,; cj,[Te-i f _'(t)dtlp,, q,; j)

= (w"-½p",w"½q"; llTe-i$[7"t+_D]atlco'-½p',w'½q'; I)

[ lim j_/ei$[p4_h(p,q)__ at -_ "2+'_dt-- _ ]= atoPq] e .;I[P q ] l)pl)q
1]-'--* (X_ pO)-.to(t)- :_p(t)

,t
q(t)--.to(t)2q(t)

ei f[p4-k(p,q,t)]dt e-_ f[_°(t)-'lJ'+w(t)q']dt_gp_q.

This is the most general form we are able to offer using squeezed states, and it shows, in the

first of the equalities, how part of the Hamiltonian can be absorbed quantum mechanically

by a change of the fiducial vectors -- indeed just like going to the interaction picture in

ordinary quantum mechanics, which is then responsible for the introduction of the time-

dependent "interaction" picture Hamiltonian 7-(_ (t). The second pair of equalities just uses

the original form of the path integral as modified by a change of variables that effects

the end point conditions as well. The final equality just accounts for that very change of

variables as requested in the line above.
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5. EQUAL END POINT ANGULAR FREQUENCIES

Let us retum to the path integrals discussed at the beginning of this article, namely

to those for which the initial and final angular frequencies are the same. For the sake

of convenience, let us choose that value to be unity, i.e., w" - w _ = 1, and return to

the original notation for the coherent states with unit w, namely that ]p,q) = ]p,q; 1).

However, this time we will retain the option of using a time-dependent angular frequency

(t) to interpolate smoothly between the original and final values of unity. In this case

the formulas developed above simplify to become

(p",q" ]Te-i I W(OdtIp', q')

= (p",q"lTe -i$[_+_Dldtlp''q')

= It,' ----,c_lim.Mfeil[p4_h(p,q)__pq]dte__i[p_+4_]dt _1
p(t)--._{t) 2 p(t)

q(t)--*w(t)_q(t)

e i f[PCl-k(P'q't)]dte-_ :[w(t)-lr:'_+_(t)q'_] dt DpT)q.

With a slight generalization, we can now turn this equation around to read

(p",q"le -iT"tT[p', q')

e i f[P?l-h(p'q)]dte-_ f[P_+ei=ldt 79p79q.

lim /= .,_
t/ --+ OG

m

e i f[Pci-h(p'q)]dte-_ f[fi_+eJ2]dt DpDq] p(o--._(t)-½v(t)

1
q(t)-,,.,(O 2q(t),

L

/ ,lim .,_4 ei I[PO-k(P'q't)+_pq]dte-_ f[_(t)-_P%_(t)4_] dt DpDq.
lJ ---* (_

In this expression the third line holds because it simply corresponds to a change of

integration variables that does not have any effect on the values of the boundary labels

since jt = j = 1. The last line represents, just as before, the consequences of that very
change of variables.
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Now observe that on the left side of this equation there is no reference to the function

co (t), t t < t < t", co (t") = co(_) = 1, while on the right side of the equation, in

the last part of the equation in particular, the function co (t) enters in a prominent way.

This becomes especially significant when an approximate evaluation of the path integral

is admitted, such as that which arises from a stationary phase approximation. Stationary

phase approximations for coherent state path integrals with Wiener measure regularization

of the kind considered here have been worked out previously [7] and we do not repeat

that discussion here. The point we wish to emphasize, however, is that the choice of the

angular frequency co (t) will enter most probably in the form of the approximate solution,

and naturally some expressions will be better approximations to the real answer than other

expressions will. Just which will be the best approximation is, of course, not too easy to

establish. Perhaps one scheme is to ask that the result be stationary with respect to small

changes of the functional form of co (t). In practice one might want to let co (t) depend on

just a few discrete parameters and to seek stationary variations with respect to just these

few parameters. This certainly seems easier to do than to ask for an extremal variation

with respect to the entire function co (t).

One can actually see a miniature working of this general kind of procedure in comparing

the usual and the Maslov stationary phase approximations to the sharp position propagator;

see, e.g., [7]. As given earlier, the configuration-space form of the coherent states given by

(._C[p,Q;CO} -" (_)_e -l°'(z-q'2+ip(x-q,,

makes clear that lira (_)¼(xlp, q;@ = 6(z-q) which converts the coher-
03---+ O0

ent state representation to the sharp position or configuration representation, while
1

lim 1 72r_0 (TUd) _ (:clP, q;co) = eiP(z-q) which converts it to the dual or momentum rep-

resentation (up to an unimportant phase factor). These features can also be seen in the
relation

(P", q"; co"lP', q' ; co'} =/(p",q";J'lx><_lp',q';J>dx

= / _f_57v/_ exp[i (p'co' + p'a/')(q"- q') _ (p,,_ p,)2 _ co,,co, (q,,_ q,)_] .

VV7 + + + 1
that gives the overlap of two coherent states based on differing angular frequencies.

Consider the limiting situation in which both co" ---, oc, u/_ O. In that case it follows that
1

lim ( co" "__ (p.. q,, ; l__.eip' (q,'_q,)
_"--'_ \16-_J,/ w'rlp"q';J)- "

_,) t -.....+0
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Thus it should be no surprise that the two standard stationary-phase type approximations are

actually contained in the coherent state approach in the form of suitable limits. In a manner

of speaking, the usual configuration space approach just involves choosing a constant and

very large value of the angular frequency parameter _ (taken to infinity at the end of the

calculation) and making a stationary phase approximation to the resulting path integral.

On the other hand, the Maslov approach takes the propagator from a sharp configuration

initially to a sharp momentum finally, approximates that path integral by a stationary phase

approximation, and then returns the end point to configuration space by a Fourier transform.

This approach can be approximated in our method by taking an angular frequency history

(t) that is initially huge (tending toward infinity) and finally very small (tending toward

zero), approximating that path integral by a stationary phase approximation, and finally

making a change from coherent states based on a very small angular frequency to one based

on a huge angular frequency just by the kinematical factor given above. The coherent

state approximation developed in particular in reference [7] proceeds in yet another way,

namely, starting with a sharp configuration initially, propagating to a coherent state with

a finite nonzero value of the angular frequency, i.e., a; = O (1), approximating that path

integral by a stationary phase approximation, and then passing from the final coherent state

representation to a sharp configuration one. This approach can also be approximated in our

scheme by having an _v (t) that initially is huge, and finally is finite and nonzero [ O (1) ],

approximating, in turn, that path integral by a stationary phase approximation, and then

passing back to a coherent state based on a huge angular frequency at the final point.

6. CONCLUSIONS

In this article we have attempted to show the reader what the authors believe is

the "latest" in path integral construction --- the state of the art -- and illustrate how

variable changes can be rigorously carried out within the path integral formulation itself.

Squeezed coherent states have been used as convenient bases throughout in the illustration

of the general program by a "miniature" subprogram involving a fairly limited change of

integration variables. The resultant formalism is able to express a path integral in terms

of an essentially arbitrary function, the time varying angular frequency, w (t), which lends

itself to various selections in case an approximation scheme is invoked. By illustrating

that the usual and the Maslov approaches are but two small examples of how such an

optimization can be used, it becomes clear that there are hidden in these formulas a whole

host of differing approximation schemes some of which, in certain applications at least,

may well be better than the schemes currently in use. It is left to the future to see just

how to exploit the vast number of possibilities that have been opened up here.
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