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ABSTRACT

Minkowski-signature wormhole solutions of the Einstein field equations require the existence of

negative energy density in the vicinity of their throats. In this note, we point out that the

gravitational interaction automatically generates squeezed vacuum states of matter, which by

thier nature, entail negative energy and thus provide a natural source for maintaining this class

of wormholes.

1. Introduction

Wormholes are handles in the spacetime topology linking widely seperated regions of the Uni-

verse. Major insights have been made in the past few years in understanding general properties

and physical consequences of Minkowski-signature wormholes [1-3]. A key aspect of wormholes

discovered in [1] has to do with the type of matter and energy needed to thread the wormhole

throat: it must violate the weak energy hypothesis. Although no known form of classical matter

violates this energy condition, the squeezed vacuum does, and moreover, the coupling of matter to

gravity leads automatically to the production of squeezed vacuum states [4]. The negative energy

of the squeezed vacuum can be understood in simple terms. Consider a single mode oscillator. Its

vacuum state is represented in phase space (from the Wigner distribution) by a circle centered at

the origin. The squeezed vacuum state, by contrast, leads to an elliptical region. As this ellipse

rotates (with the angular frequency of the mode), its periodic profile exhibits quantum fluctua-

tions both larger and smaller than the uniform profile characteristic of the unsqueezed vacuum

state. In field theory, the energy of the unsqueezed vacuum gets renormalized to zero. Thus, any

state having lower fluctuations than the ordinary vacuum must have a negative (renormalized)

energy.

2. Quantized scalar in a uniform gravitational field

We make these concepts explicit by showing that the interaction between matter and gravity

leads to a squeeze operator acting on the Fock space of particle states, which includes the vacuum.

We consider a scalar under the influence of a uniform background gravitational field. From the

equivalence principle, this can be handled by transforming to a uniformly accelerating frame (i.e.,

Rindler space). Take the background field pointing in the x-direction. The transformation from

Minkowski (t,x) to Rindler (T,X) is x = X cosh(T) and t = X sinh(T), and the scalar equation

to be solved is

[](I) + ra:_ = 0. (1)

The normalized solution is given by

4,k.5(T, X; xi ) = 7r-'[sinh(Trj)]l/2K_j((m: + k_)l/:X)e -ijTe ik±'x± , (2)
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where K is a modified Bessel function of imaginary order, m is the scalar mass, k± = (kv, kz)

refers to the transverse momentum and j _> 0. Contrast these Rindler modes with the familiar

plane wave solutions of (1) for Minkowski space:

ei(k.x-0_kt)

Vk-- 2v i, (3)

where w k = (rrt 2 + k2) 1/2. The complete solution of (1) in Rindler or Minkowski space can be

expanded in terms of the sets (9.) and (3), respectively. The expansion coemcients become, after

canonical quantization, operators satisfying the algebras [5(j, k±), 5t(j', p±)] = 6(j, j')6(k± - p±)

and [a(k),at(k)] = 6(k- p) The Rindler and Minkowski vacua are defined by 5]0 >= 0 and

a[0 >= 0. Completeness of the two sets of modes (2) and (3) leads to nontrivial relations among

the Minkowski and Rindler creation/annihilation operators:

a(k) = f dj d2px a(j, px]k)5(j,p±) + t3*(j,p±]k)_tt(j,p±), (4)

together with the Hermit±an conjugate. The Bogolyubov coefficients in (4) are computed from the

inner product and measure the overlap between the Rindler and Minkowski modes: a = ((I)kj.jIUp)

and/3 = -((I)kzj[Ut_ ). A most important consequence of (4) is the inequivalence of the vacuum

states [0 > and ]0 >, and the Fock spaces built up from them. This inequivalence shows up

physically as squeezing.

3. The Squeezed Vacuum

The free Hamilton±an for a massive scalar in Minkowski space is

H = f dZkwkat(k)a(k), (5)

where Wk = (m 2 + k2) a/2. From the point of view of the Rindler modes, (5) is a quasiparticle

hamilton±an, and so the canonical transformation in (4) allows one to derive the exact interaction

hamilton±an acting on Rindler states. One can also start from the exact Rindler hamilton±an,

which has the same form. as (5) when expressed in terms of the Rindler operators, and applying

(4) leads to the exact Minkowski interaction hamilton±an. Since the intermediate momentum

integrations are easier to carry out in the Minkowski picture, we derive the squeeze operator for

Rindler states, but the equivalence principle guarantees the existence of an identical operator

(expressed in Minkowski momenta) acting on the Minkowski modes. Using (4) and performing

the intermediate integrations over the Minkowski momenta yields [4] H = Ho + H' where

and

Ho = f dj d_p± wpihl(j)?zt(j,p±)a(j,p±) , (6)

H' = J dj dj' d2p± Wp± (h2(j,j')[?L(j',p±)?z(j,-p±) + at(j,, px)at(j, _p±)]
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+hl(j,j')O(j - j') + O(j'- j)_t(j, pi)_(j',p±)) , (7)

where

cosh[_(j + j')/2](1 + (j - j,)2)-1 _e-p_(j-j')/2(1 + (j + j,)2)-a
h1 (j, j') = and h2(j, j') = (8)

2_r[sinh(nj)sinh(Trj,)]x/2 ' 4_[sinh(_rj)sinh(_j,)]_/2 '

are functions computed from the Bogolyubov coefficients [4]. We begin to see the operator struc-

ture characteristic of squeezing. To make this precise, consider the SchrSdinger equation for a

state of the scalar formulated in terms of the interaction picture. The above splitting of the Hamil-

tonian suggests writing the full time evolution operator as U = U°U ' where U°(T) = e -iH°T. The

interaction Hamiltonian in the interaction picture is computed from H'I(T) = U°t(T)H'U°(T)

[4]. Then, the state of the scalar at any time T is simply given by

(/:)I¢(T) >1= Texp -i/h H_(T')dT' I¢(To) >, (9)

where the time evolution operator is a (multi-mode) squeeze operator, by virtue of (6) and (7).

This is the main result. If we now identify the initial state with the Rindler vacuum, ]O(To) >=

10 >, the final state is precisely the gravitationally squeezed vacuum. Since every quantum field is

equivalent to an infinite collection of (coupled) harmonic oscillators, it should come as no surprise

that the evolution operator for • is just a multi-mode generalization of the single mode squeeze

operator. If we specialize to two scalar modes having equal but opposite values of the transverse

momentum and with j = j', then the evolution operator in (9) reduces to

-i

S(z) = ezp (-_-[za(3, p±)a(j,-px)- z*at(j, pi)_t(j,-px)]) , (10)

ih2(J)[e-2iwP± hl(j)T 1] is the squeeze parameter for these modes. Apart from thewhere z = h1(3)

bounded T-dependent factor, we see that appreciable squeezing obtains for j _ 0. Expressing j

back in terms of physical quantities, we have j = _ where/_ is the mode wavlength and rs is the
), ,

Schwarzschild radius of the equivalent gravitational mass giving rise to the constant acceleration

at the point rs [4]. Thus, the interaction between matter and gravity leads to squeezed states

of matter, and these provide a natural source of negative energy for supporting wormholes in

Lorentzian spacetime.
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