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Abstract

Wavelets are an exciting new topic in apphed mathematics and

signal processing. This paper will provide a brief review of wavelets

which are also known as families of functions with an emphasis on

interpretation rather than rigor. We will devise an indirect use of

wavelets for the solution of integral equations based upon techniques

adapted from image processing. Examples for resistive strips will be

given illustrating the effect of these techniques as well as there promise

in reducing dramatically the storage requirement in order to solve an

integral equation for large bodies. We also will present a direct im-

plementation of wavelets to solve an integral equation. Both methods

suggest future research topics and may hold promise for a variety of

uses in computational electromagnetics.

1 Introduction

Wavelets have generated significant excitement amdng applied mathemati-

cians and engineers recently due to their unique properties and diversity.

Wavelets are actually a family of basis functions which are generated by

translation and dilation of a single function. The uses are diverse since many

different wavelets may be generated which possess some properties which

are particularly well suited for a given purpose. Three prominent uses of
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wavelets are image compression which is discussed by Mallat([1],[2]) and

Daubechies[3], solution of partial differential equations by the staff at Aware

Inc.([4], [5]), and the solution of Fredholm Integral Equations by several

members of the Yale research staff([_],[r],[S]).

This paper will give a brief and basic review of wavelets with an empha-

sis on the character of these functions rather than a rigorous mathematical

treatment. Our purpose is to apply wavelet expansions or wavelet trans-

forms to the solution of electromagnetic problems. We will show that a novel

technique which is adopted from image processing may be applied to tra-

ditional Method of Moments(MoM) computer codes to achieve significant

storage savings. Since modern computers are becoming increasingly fast. the

primary limitation on MoM implementations is the O(N 2) storage require-

ment. The use of wavelets is intended to alleviate this requirement. This

"image processing" technique may be used with existing MoM implementa-

tions to reduce storage. Finally we will look at direct applications of wavelets

in electromagnetics with a modal solution of the Fredholm equation and dis-

cuss future research topics. Although we have only used E-polarized resistive

strip examples for this paper these techniques are applicable to other elec-

tromagnetic problems of interest. In particular, although we only use MoM

examples herein, we are interested in applying wavelet analysis in the solution

of the boundary integral associated with the FEM-BE method.

2 Wavelets and Dilation Equations

Wavelets and their underlying form, a dilation equation, is an unfamiliar

concept to most engineers. We will attempt to give a feel for what a wavelet

is and what properties it possesses which are attractive for electromagnetics

without going into detail. Strang[9] gave an excellent high-level review of

the properties of wavelets while Daubechies[10] provides a rigorous review

with significant new material. Mallat[2] was able to relate wavelet decompo-

sition and reconstruction in terms of multiresolution analysis which allowed

significant progress to be made in exploiting wavelets for the aforementioned

applications.

In order to understand wavelets, we must first look at a dilation equation

= c, (2x- k) (1)
k



which is recognized as a two-scale difference equalion. Strang[9] reviews

the criterion which must be met in order for 1) to be unique. The "scal-

ing function",6(x), is determined recursively and thus man5' properties of

it must be observed rather than defined. Daubechies[10] was able to con-

struct orthonormal wavelets with compact support in both domains which

was thought to be impossible by using the recursion

= - (2)
k

with the box function as tile fundamental function (oo(:r)) and certain simple

conditions which determine ck. The family of wavelets derived by I)aubechies

will be used for the examples of this paper although this is certainly not the

only or necessarily optimal choice of wavelets.

At this point, we introduce tile continuous wavelet family which comes

from the scaling function,O(x), as

= - ,)) (3)

where the scale parameter(s) and tile translation parameter(u) range over the

positive real axis and the entire real axis, respectively (Tile notation adopted

for the remainder of this paper is from Mallat [1]). A fundamental property

of wavelets is their approximation capability. Daubechies family' is denoted

by the number of recursions used to determine the analyzing wavelet. For

example we will denote the Daubechies wavelet which has four coefficients

as DAUB4 which can recover up to a linear polynomial since the two lowest-

order moment vanishes as discussed by Strang[9]. As terms are increased,

more moments vanish and thus the polynomial approximation increases in

order (e.g. DAUB6 will recover a quadratic).

As was previously mentioned, the Daubechies family is not only orthonor-

mal but they enjoy the useful property of compact support. For example,

figure 1 illustrates DAUB20 wavelet compared with the comparable cosine

if we wish to represent an impulse "frequency" of f = 2...._!_4where A is the
1024A

spatial sample size. As seen, the cosine(Fourier series basis) is compact in

the "frequency" domain yet requires infinite support in the spatial domain.

However, the Daubechies wavelet is compact in both domains. A further

example is given in figure 2 where the excitation impulse is at f loo1024A

and we observe that as the "frequency" increases, the analyzing wavelet has
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diminishing spatialsupport. This is the most important property of wavelets
sincefiner spatial resolutionis usedfor "high frequency" componentswhich
results in a more accurateevaluation than is possiblefor the comparable
Fouriercoefficientwhich is computedwith constantsamplesizeregardlessof
the "frequency".

Severalgroups ([4],[5],[6],[7],[8]) have recognizedthat the property of
compact support in both domainswill result in a sparsematrix when an
integral operator is convertedto a matrix operator. We will discussin the
next sectionthe fact that if one thinks in terms of multiresolution analysis.
the precedingobservationis obvious.

3 Matrix Compression Techniques

One of the most promising applications of wavelets is image compression

for the transmission and storage of detailed images. For example, The FBI

is looking at using wavelet compression techniques in order to store their

extensive finger print library without loss of fidelity. We will give a brief

review of the wavelet transform, multiresolution analysis , and what this

topic has to do with electromagnetics.

The continuous wavelet transform is given here without proof[l]

FF(s,u) = f(z)¢o(z - u)dz (4)
oo

where the wavelet family is given

¢,(x) = (5)

and ¢(z) is the mother wavelet which is denoted as ¢(z) in (8). In order to

reconstruct a signal from its wavelet transform, we define the inverse wavelet
transform as

f(z) = F(s, U)¢o(X - u)dsdu (6)

A more practical transform for numerical applications is the Discrete Wavelet

Transform(DWT) which acts on a sequence of samples. In order to cover the

phase-space, we need to uniformly sample the translation parameter while
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exponentially samplingthe scaleparameter[l]. The resulting DWT is given

//)4;D[f(j,n)l = f(.r)c'2,(u - ,,(_-3)dx (7)

where o is the elementary dilation step. The signal may be reconstructed

from its DWT by the series

f(x) = _ __, < f(u),t_,2,(u- ,,o -a) > t,2,(u -,,o -a (8)
3 n

with < .,. > denoting the standard inner product. In practice, we choose

o = 2 for historical reasons although this is not necessary.

The Fourier transform is recognized as a transformation fronl the spatial

domain to the wavenumber domain. I{owever. the wavelet transform is a

transformation from the spatial domain to the scale domain. This is the heart

of the multiresolution interpretation of (7) as well as its fast imt)lementation,

the Fast Wavelet Transform(FWT). Each successive coefficient of the DWT

describes the difference or details between the current level and a the previous

decimated level. Figure 3 illustrates this concept. The first level, figure

3a, describes the smooth component of the signal. Each successive level

adds detail to the reconstruction. Thus a smooth signal will have a large

large-scale component and very' small detail components which results in

signal compaction. The efficiency of the FWT algorithm follows from the

pyramid structure shown in figure 3. The highest detailed level (smallest-

scale) requires that all samples be used in its computation. However each

successive level requires half (a = 2) the number of samples due to dilation

which results in the FWT having the same order of operations as the FFT.

Mallat[2] was the first to recognize that this property naturally satis-

fies the procedure used in pyramid-encoding schemes. If one applies a two-

dimensional FWT which is computed in a manner similar to the most com-

mon implementation of the two-dimensional FFT to an image, the image

can be compressed into few large components and many components which

are less than some tolerance whose omission does not adversely affect the

fidelity of the image. Significant compression can occur depending on which

analyzing wavelet is used.

We realized that the typical impedance matrix generated by a MoM code

may be thought of as a complex-valued image! Thus it is reasonable to as-

sume that we may apply the wavelet transform to a dense impedance matrix
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to generatea sparsematrix. It should be mentioned that this technique
is similar in conceptto the ImpedanceMatrix Localization(IML) method
proposedby Canning[ill who usesphysical argumentsto generatea trans-
formation matrix which yields a sparsematrix by using sub-domainbasis
functions. It is not yet apparentwhich method yield superior results.

Supposeonewantsto solvefor the E-polarizedscatteringfrom a resistive
strip. Theappropriateintegralequationisa Fredholmequationof theSecond
Kind

ko/r ' ' lE;(x, y) = R(x,y)d,(x,y) + T _,_ d,(x ,y )U_ )[kol_/(x - x') 2 + (y- y'l)2]dl ' (9)

This may be solved numerically by converting the integral operator into a

matrix operator via MoM to form the matrix equation

Z J, = E: (10)

where each entry of J, and E_ corresponds to a spatial sample. If we look at

the impedance matrix, Z, typically it is dense. This is shown in figure 4 which

is the impedance matrix generated by pulse basis-point matching on a 15x15

corner reflector where clearly all elements of this matrix are important.

If however we apply a wavelet transform to both sides of (10), we get the

transformed equation in the scale-domain

Z J, = E: (11)

Figure 5 illustrates the matrix shown in figure 4 after wavelet transformation

by the DAUB10 analyzing wavelet. Clearly, this matrix has fewer signifi-

cant entries and is thus a sparse matrix. For images, edges tend to be very

important thus we would use very compact (low-order) wavelets in order pre-

serve these edges. However, when one has a smooth matrix such as the one

shown in figure 4, smooth wavelets (large-order) will tend to have greater

compaction capability than a small-order wavelet. In order to verify this

claim, we looked at the compression realized by using different wavelets from

the Daubechies family and a truncation tolerance of l0 -_. Table 1 summa-

rizes the results of this study for the corner reflector when the matrix size

was 32x32. We observe that the apparent storage was reduced to O(20N)

from N _ without loss of fidelity as shown in figure 6. However, the large-

order wavelets did not exhibit a significant advantage with respect to the

small-order wavelets.
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The reasonfor this unexpectedresult is the fact that the matrix in ques-
tion is not large. A similar comparisonis shown in table 2 for the case

of a 6)_ curved(inclusion angle = 45 ° ) metallic strip which used a 12Sx12_

impedance matrix. We recognize some advantage using large-order wavelet s

while maintaining fidelity as seen in figure 7. As a final example, we look

at the simulation of a metallic half plane-linearly tapered resistive half plane

junction which used a 1024x1024 matrix. A clear advantage using large-order

wavelets is seen in table 3 where the apparent storage is reduced to O(70N)

which results in a 93% storage savings without loss of fidelity as shown in

figure 8!

The astute engineer will recognize the use of the term "apparent" in the

preceding storage analysis. This is due to the fact that you need to generate

the entire impedance matrix before transformation which results in O(N 2)

storage. However, we have devised a simple block-by-block technique which

will result in an actual memory savings. If one writes (10) as an augmcmed

matrix equation where there are (N/K) _ blocks of K 2 elements each where

K is of course a power of two(a = 2) then we may' write (11) as

N/K

k=l

(12)

To illustrate this technique, we looked at the junction simulation previously

given. Table 4 compares the compression results realized when K = 64 and

the tolerance was set at 10 -4. The total storage requirement is K2+O(240N)

which is a 75% storage savings compared to the original dense matrix. The

degraded performance is due to that the fact that each block will require a

large smooth component as well as detail components which are a result of

the artificial boundaries created by the block method. It should be stressed

that in spite of these artificial high components, fidelity is maintained as

shown in figure 9. These observations are shown by comparing figure 10

and 11 which is the impedance matrix of a 41 flat strip when the DAUB10

wavelet transform is applied on the entire matrix and in a block-by-block

fashion with sixteen 32x32 blocks, respectively.
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4 Integral Equations

The matrix compression technique described in the previous section is a

rather indirect use of wavelets in electromagnetics. In this section, we will

look at a more direct application of wavelets for the solution of integral

equations. This method will not prove to be very useful but will provide a
reference for future research.

The E-polarized scattering by a metallic strip may be solved by deter-

mining the current via the integral equation

ko/_ , , , ,E;(x,y) = T _ J_(x ,y )H_')[kolV/(z - x'p + (y - y FI]d/ (13)

where the integration domain, C, suggests the parameterization

Thus (13) may be written

ko
El{t) = T/c,

and

= _(t) (14)
y = y(t)

J_(t')H1_)Ikol_(t, t' )l]dt' (15)

r(t,t') = y/(z(t)- x(t'))2 + (y(t)- y(t')) _ (t6)

Let us now employ the method of weighted residuals using the discrete

wavelet as an entire domain weight

c, E,(t)¢_,(t - m2-_)dt = _°T fc, re, J'(t'lH{_')[k°lr(t't')lldt ¢2,(t - m2-')dt(17)

If we now expand the unknown current in terms of wavelet basis(8) and

r,-alize that all of the resulting integrals are DWTs, we arrive at the matrix

equation

Z,Yz = _ (18)

where now the impedance matrix is given directly by a two-dimensional DWT

of the Hankel function of (17)

Z = Y_IH(o'}[kolr(t,l')I]] (19)



and the unknown vector is composed of modal coefficients. This solution

is analogous to finding a Fourier series expansion solution if the complex

exponential is used rather than the wavelet. We also note that the scattered

field is computed efficiently as

V E - (2o1
ri=O

where the excitation is computed via tile FWT

G = Wo[ e-ik°[¢°'¢'(')+'m¢_(')l] (21)

Figure 12 illustrates that the aforementioned formulation does recover the

solution for a 1._ metallic strip when 64 coefficients are determined. This

is an unfortunately large number of terms required. The usefulness of this

method does not improve with problem size as seen in figure 13 where even

1024 coefficients are not sufficient to characterize a 150_ strip. The failings

of this particular formulation will be discussed in the next section.

5 Conclusions and Future Work

This paper has presented several different uses for wavelets or families of

basis functions for computational electromagnetics. The relevant features

and characteristics of wavelets were briefly discussed. Since the scope of

this paper precludes a detailed review of wavelets, we mention that Strang[9]

and Daubechies[10] give excellent reviews of wavelets. Mallat[1] not only

introduces a particularly useful interpretation of wavelets and the wavelet

transform, he developed from this viewpoint a quite efficient Fast Wavelet

Transform which rivals the FFT in speed. Mallat also served to present this

field in terms which are more accessible to engineers as compared the

mathematicians "flavor" given by Daubechies.

We developed a novel technique adapted from image processing for gener-

ating a sparse matrix where previously a dense matrix was required. It should

be stressed that the utility of this method solely is based of the scale charac-

teristics of the impedance matrix rather than some restrictive mathematical

operation such as convolution. The block-by-block compression method pro-

posed resulted in significant storage savings. In the future, we are interested
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in improving this method with respectto the degradedperformancecaused
by block processing.It is reasonableto anticipate someimprovementsince
only the most readily implementedtechniquesand analyzing waveletswere
employedfor this stud5"and we understand the causeof the degradation.
Howeverit shouldbe pointed out that if we can approachthe efficiencyof
the entire matrix method, the block by block techniquecould be usedwith
anyexistingcodeandasparsematrix solverto dramatically extendthesizeof
problemswhichcould behandledwith integral equationmethodsregardless
of the geometryshape.

The secondmethodlookedat wasa direct solution of the integral equa-
tion by waveletexpansion. This proved very disappointing. It is known
that a Fourierseriesexpansionof the current requiresthe retentionof many
terms. However,it was felt that the compact support property of wavelets
would result in a dramatic reduction in the numberof requiredcoefficients.
Although this initial trial did not succeed,we note that the waveletscho-
senwereavailablerather than the best possible. Further stud), may reveal
moreappropriateanalyzingwaveletsfor our purposeor perhapshigherorder
waveletsare requiredfor sufficientapproximation.

Another avenueof researchisemployingwavelettestingwith sub-domain
basisfunctions. One may think of this operation as row-only compression
rather than row and column compressionwhich would result from the two-
dimensional processingas describedabove. However, there would be no
artificial componentsalong the rows and by inspecting figure 11 we note
that a significant amount of the spuriouscomponentsarealong rowsof the
matrix. This shouldresult in a sparsematrix due to the local support of the
basisand the compactsupport of the weightsand a particularly appealing
choiceof basisare the onesusedby Canning[Ill sincethis basis will aid in
compressionalongcolumnsof the resultingmatrix. To this date, wehavenot
investigatedthis method. In addition, further study of Alpert et a/[7] may

yield further insight. It is noted that [7] investigated non-oscillating kernel

functions while our kernel is certainly still a matter of research.

Wavelet processing and direct solution offers a promising avenue for ex-

tending integral equation techniques to much larger structures. It is noted

that all methods described herein used FWT to evaluate all the integrals in

an efficient manner. Although the examples presented involved the MoM, we

are interested in using these techniques when terminating a Finite Element

mesh with a boundary integral. An efficient solution in terms of unknowns
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maybe foundfor arbitrarily' closures.This is in contrast the fewavailable
closuresif oneemploysthe CGFFT method to solvethe boundary integral.
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Table 1

1 lambda Corner Reflector using 32 Unknowns and Io1=10"-2

Wavelel Zeros Non-zeros Total Order

DAIJB4 370 654 1024 20N

DAUB6 451 573 1024 20N

DAUB8 454 570 1024 20N

DAUB10 444 580 1024 20N

DAUB12 439 585 1024 20N

DAUB14 436 588 1024 20N

DAUB16 426 598 1024 20N

DAUB18 420 604 1024 20N

DAUB20 387 637 1024 20N

Table 2

6 lambda Curved Strip using 128 unknowns and to1=10^-2

Wavelet Zeros Non-zeros Total Order

DAUB4 10311 6073 16384 50N

DAUB6 12312 4072 16384 30N

DAUB8 13214 3170 16384 20N

DAUB10 13388 2996 16384 20N

DAUB12 13597 2787 16384 20N

DAUB14 13591 2793 16384 20N

DAUB16 13643 2741 16384 20N

DAUB18 13713 2671 16384 20N

DAUB20 13656 2728 16384 20N



Resislive Junction using
Wavelet Zeros
DAUB4 573834

DAUB6 777806

DAUB8 871382

DAUB10 917716

DAUB12 940642

DAUB14 954802

DAUB16 966321

DAUB18 973085

DAUB20 978972

Table 3

1024 unknowns and Io1=10^-4

Non-zeros Total Order

474742 1048576 460N

270770 1048576 260N

177194 1048576 170N

130860 1948576 130N

107934 1048576 110N

93774 1048576 90N

82255 1048576 80N

75491 1048576 70N

69604 1048576 70N

Resistive Junction using

Wavelel Zeros

DAUB4 2684O 1

DAUB6 432037

DAUB8 569457

DAUB10 685377

DAUB12 744733

DAUB14 786832

DAUB16 796331

DAUB18 797724

DAUB20 799690

Tabel 4

block method w/ block size=64x64

Non-zeros Total Order

780175 1048576 760N

616539 1048576 600N

479119 1048576 470N

363199 1048576 350N

303843 1048576 300N

261744 1048576 260N

252245 1048576 250N

250852 1048576 240N

248886 1048576 240N
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4Z Strip Impedance Matrix after Wavelet Transform perfonned block-by-block
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