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Abstract

This paper documents an investigation of a two dimensional, incompressible Navier-

Stokes solver for use as a test-bed for turbulence modelling. DTNS2D is the code under

consideration for use at the Center for Modelling of Turbulence and Transition (CMOTT).

This code was created by Gorski at the David Taylor Research Center and incorporates the

pseudo compressibility method. Two laminar benchmark flows are used to measure the per-

formance and implementation of the method. The classical solution of the Blasius boundary

layer is used for validating the flat plate flow, while experimental data is incorporated in the

validation of backward facing step flow. Velocity profiles, convergence histories, and reat-

tachment lengths are used to quantify these calculations. The organization and adaptability

of the code are also examined in light of the role as a numerical test-bed.

Introduction

The Center for Modeling of Turbulence and Transition (CMOTT) at NASA Lewis has

the mission to improve understanding of turbulence modeling applications. One vital aspect

of this improved understanding results from extensive testing and validation. Therefore a

series of numerical testbeds must be chosen with which to conduct these turbulence modelling

surveys. This paper documents an investigation of the two dimensional flow code DTNS2D

created by Gorski at the David Taylor Research Center. The code utilizes the established

pseudo compressibility technique to solve the incompressible Navier-Stokes equations.

The approach is to utilize laminar analysis to validate the implementation of established

numerical schemes, and turbulent analysis to investigate the behavior of new turbulence

modelling theories. However, the interaction of models and governing equations demands

that a variety of numerical integration methods be utilized to draw any proper conclusions

from the testing of a broad range of turbulence theories. Thus a candidate code must prove

to be versatile in this respect.



Two test caseswill be usedto validate this code in house. First, the classic solution
of Blasius for laminar fiat plate flow will be analyzed.The role of pseudocompressibility
asa convergenceparameterwill bestudiedaswell ashigh Reynoldsnumberflow andgrid
stretchingin the cross-flowdirection. In addition, the backwardfacing stepproblem will
alsobe examined.The 2D laminar flow will beexaminedfor accuracyof the reattachment
lengthandvelocity profiles,following theformatof Armaly et al. Although that experiment
concentratesprimarily upon transitionalflow regime,there is sufficientdata in the laminar
region to draw someconclusionsasfar asaccuracyis concerned.

Method of Pseudo Compressibility

The absence of a variable density term in the continuity equation governing incompress-

ible flow complicates the numerical integration procedure. However, several techniques are

available for solving the system of incompressible equations numerically. One approach is

the stream function-vorticity formulation. While the pressure is eliminated by this formu-

lation, the extension to three dimensions is not obvious. It is preferable to work with the

primitive variables, pressure (p) and the velocity components (u and v), as in the pressure

correction scheme of Harlow and Welch [1]. However, this scheme involves a decoupling of

the pressure and velocity fields which adversely affects the convergence to steady state. Thus

a three dimensional calculation is very expensive. A third approach applies the efficient time

marching strategies of compressible flow to the solution procedure. Straightforward compu-

tation is realizable for two and three dimensional steady and unsteady incompressible flows

with the pseudo compressibility technique. _

The DTNS2D code, created for the solution of two dimensional, incompressible flow, is

based upon the method of pseudo compressibility. This idea was first put forward by Chorin

[2] and presented a novel approach to solving this system of equations using primitive

variables. Steger and Kutler [3] adopted a similar method, applying the implicit approximate

factorization scheme of Beam and Warming [4]. More recently Chang and Kwak[5], Kwak

and Chakravarthy [6], Soh [7], Rizzi and Eriksson [8], and others have found this method

suitable for solving incompressible flow. This particular implementation has been validated

by Gorski [9-I 1], for several benchmark flow situations.

Examine the system of equations solved in the pseudo compressibility method and notice

that they differ from the steady state incompressible flow equations by the addition of a time

l Only the steady, two dimensional formulation is discussed in this paper.

2



dependentterm in the continuity equation.

0u 0( 10u) 0(u2+P ae0x uv

o-7+ uv + Ou\ +P

1 0p Ou Ov

=°

Re = 0

10v)Re09 = 0

Here, x and y are the independent variables and Re refers to the Reynolds number. This

system is hyperbolic in nature while the incompressible flow equations are elliptic. The

pseudo sound speed, c = _'_ +/3, is governed by the value of the parameter/3, whereas

the physical sound speed is infinite. Chang and Kwak [5] have shown that for/3 > 0 the finite

speed pseudo waves vanish as time progresses and yield the proper incompressible solution

at the steady state limit. It is through this parameter/3 that the convective and acoustic waves

are decoupled, and thus convergence is governed. In choosing an optimum value for this

parameter, the goal is to avoid giving the viscous effects time to react to the passing of the

nonphysical transient pressure waves. Thus a lower bound on the acoustic speeds translates

into a lower bound on/3. However, an upper bound on/3 is strictly scheme dependent.

Several authors have attempted to give a more specific guideline as to the optimal

choice of this parameter. Chang and Kwak [5] have suggested a formulation based upon a

comparison of the time scales involved in the propagation of convective and acoustic waves.

This results in a lower bound on/3 which is a function of the Reynolds number. Soh [7] has

given an argument based upon the ratio of largest to smallest eigenvalues. This generates

a value of/3 which is three times the magnitude of an appropriate reference velocity. Choi

and Merkle [12] have found maximum convergence speed in two dimensional flow simply

corresponds to/3 = 1. While all agree that the optimum value is of order one for external

flow, no one rule seems generally more successful than the others. In a later section, it will

be shown that /3 = 1 does not always converge for external flow, and in fact the optimal

value is often an order of magnitude less than one. One other interesting possibility for the

selection of/3 was presented by Rizzi and Eriksson [8]. The value was set " ... in the

spirit of local timestep scaling... " at a value proportional to the local velocity magnitude

squared, with a prescribed minimum limit.

The boundary conditions for this system of equations can be evaluated from analyzing

the direction of the pseudo characteristics, A = u, u + V/_ + ft. For an inflow condition,

there are two right running characteristics which propagate into the domain; at outflow there

is one left running characteristic which likewise propagates into the domain. Thus at inflow

we prescribe two physical (u and v) and one numerical (p) boundary conditions, and just

the opposite at outflow.



Flat Plate Flow

The similarity solution of Blasius for laminar flow over a flat plate is familiar to all

students of fluid mechanics. It states that the streamwise and transverse comments of

velocity can be reduced to similarity profiles if scaled with the parameter 7/= y V/Rx-_, where
r/is a nondimensional coordinate and Rex is the Reynolds number based upon d_st_nce from

the leading edge, x. This solution is derived from the boundary layer equations and is seen

to accurately predict the velocity distributions measured in various experiments. Here, of

course, we are solving the incompressible Navier-Stokes equations.

One important aspect of this boundary layer derivation is that the velocity of potential

flow is constant, and therefore _= 0. Our numerical solution is complicated by this

pressure condition. Given a limited number of grid cells, we can either include the leading

edge in the numerical domain and neglect the flow influenced by the stagnation pressure

region (edge capturing, figure l(a)), or start the domain downstream of the leading edge

by prescribing a Blasius inflow condition (edge bypass, figure l(b)). While both strategies

are successful, for all cases where Rez < 10 8 the former approach is chosen due to the

more general nature of the freestream velocity inlet conditions. At issue is the downstream

influence of the stagnation flow. If, however, one is willing to accept an incomplete resolution

of the stagnation region, then the boundary layer flow downstream of this can be accurately

resolved with a very coarse grid.

Inflow Condition

u = 1.0

vffi 0.0

p is extrapolated Outflow Condition

Reflection Condition No Slip Condition

Outflow

Condition

p= 1.0

UtV are

extrapolated

Inflow Condition

u, v from Blasius
profile

p is extrapolated

Y

Outflow Condition

llil litt- i-

No Slip Condition

Outflow

Condition

pffil.0

u,v are

extrapolated

Figure 1 Flat plate flow grids---(a) edge capturing and (b) edge bypass.

The numerical domain is set up such that the leading edge is at z = 0. The boundary

layer thickness _L = 6(ReL) is used to scale the y-direction. For instance, an unstretched

(16x 16) cell Cartesian grid is generated with dimensions L x d7L. In addition, a (4× 16)

cell grid is added upstream of the leading edge. This allows the influence of stagnation

to propagate forward enough so that freestream velocity conditions can be applied. The

boundary conditions can thus be summarized in figure 1.
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The velocity profiles shown in figure 2 correspond to a calculation of flow along a plate

where ReL = l0 s. Figure 2(a) demonstrates that the streamwise component is well resolved

on this (20x 16) cell grid. Notice that the data of figure 2(b), which corresponds to a (40x 32)

cell grid, does not show any substantial improvement in the solution quality. However, the

transverse component of velocity reveals a different story. The data of figure 3 corresponds

to the same calculations described in figure 2. These velocity component profiles indicate

that the (20x 16) cell calculation is not fully resolved. This is not surprizing if one remembers

that the Blasius theory provides a profile which scales as a product of the square root of

Reynolds number:

U--_ = 2 r/f(r/)- f(r/)

f(r/) -- _

where f(r/) is the dimensionless stream function. Thus g __v cx _'ex and is more sensitive to

grid resolution. The behavior of the transverse profile at Rex = 100,000 is still not fully

resolved even on the finer grid, though. The constant pressure boundary conditions imposed

at the outflow (x=L) and freestream (r/=5.5) are believed to contribute to this condition.

The zero pressure gradient which has been imposed at these boundaries is not strictly valid.

Further refinement and extension of the numerical domain has been shown to alleviate this

problem. However, in keeping with the spirit of this calculation, the accuracy of the velocity

profiles demonstrated above in figures 2(b) and 3(b) is sufficient.
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Figure 2 Streamwise velocity profiles--(a) (20x16) cell grid and (b) (40x32) cell grid.
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Figure 3 Transverse velocity profiles--(a) (20x16) cell grid and (b) (40x32) cell grid.

The convergence of this flat plate flow from a uniform initial condition can be seen in

figure 4. Several values for the pseudo compressibility parameter at a CFL number of 13 are

seen in figure 4(a). Various CFL number values are also shown at fl = 0.15 in figure 4(b).

As noted earlier, a pseud 9 compressibility parameter of unity does not insure convergence of

a two dimensional laminar flow field. However, optimum value does reduce the root mean

squared value of (Atp/cel] volume) by 10 orders of magnitude in 900 iterations.

-_32_ fl=10+/

___
._ -6 _ ..... i%-3-- -
t. .._

"% -8 __ _.
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0 400 800 1200

iteration

- _ _ CFL= 1

- 5

o -10 \

\ _1o
-12

-14 ' ' ' _ _ ' '
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Figure 4 Convergence histories--(a) CFL=13 with various pseudo compressibility

parameter (fl) values and (b) fl=0.15 with various CFL number values.

In a turbulent calculation, high Reynolds number flows with near wall modeling are

often encountered. Resolving the drastic variation in length scales present in such a flow
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demands some form of grid stretching. Thus response of the DTNS2D code to a high

Reynolds number flow over a stretched grid is very important. Figure 5 shows the results

of ReL = 1.01 x 107 over a 32x32 cell cartesian grid. This grid is stretched from an aspect

ratio of 9.9x 103 at the wall to a value of 7.2× 10--1 at the freestream boundary, using the

Roberts [13] transformation:

x =_L

(c_+l)-(a-a){[_] 1-_}

Y=_L
1-r

(a-1)J + 1

where the parameter c_ governs stretching and (_',_) are normalized coordinates. The edge

bypass strategy was used because a prohibitively large value of R%en was demanded by the

edge capturing method. The CFL number for this calculation is 100. Figure 5 illustrates that

both accuracy and efficiency can be maintained under these conditions.
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Figure 5 Rex=l.01 x 107 flow over a stretched grid----aspect ratio of

9800 at wall (a) streamwise veloci_ profile and (b) convergence history.

Flow Over a Back Facing Step

Another excellent benchmark flow geometry is the back facing step. The presence of

recirculation and developing internal flow make this a challenging flow to simulate with

DTNS2D. There is a large body of work in this area for both laminar and turbulent flows.

The interested reader is referred to the following references: [14-17].

The particular experiment used to validate this code is that of Armaly et al. [18] This

experiment was chosen mainly because it involves a detailed examination of the flow from



_ _ "_ 2h70 < ReD < 8000, where ReD = inlet-if" is a function of the mean inlet velocity measured

two channel heights upstream of the step, and the hydraulic diameter (see figure 6). This

Reynolds number region encompasses the two dimension laminar and turbulent regions as

well as the highly three dimensional flow between these extremes. Although we have only

examined the performance of DTNS2D over a small portion of this Reynolds number regime,

50 < ReD < 1095, future 2D and 3D flow computations can utilize the same extensive data

set for validation. The experimental velocity measurements were made with a laser-Doppler

anemometer. The tunnel was constructed so that the inlet flow is fully developed two

dimensional channel flow over the whole Reynolds number range. The exit is located over

one hundred step heights downstream of the step pl_e and ensures fully redeveloped channel

flow at the exit for the particular Reynolds number span used in this validation. This is

particularly convenient for numerical simulation because it creates a very general boundary

condition eliminating the need for experimental inlet velocity profiles.

h=5.2mm

s=4.9mm

i__

I//////////////////////////%

x3

xl _

x/.//////////,/.////,///_

Figure 6

200ram 500mm ;-

Back facing step--experimental setup.

Preliminary analysis has shown that the computational domain can be significantly

smaller than the actual tunnel dimensions if the fully developed flow assumptions are utilized.

An inlet channel of length equal to two hydraulic diameters is appropriate for applying the

parabolic flow profile. The channel downstream of the step was truncated to four times the

length of the primary recirculation region Xl, allowing the Von Neumann boundary condition

for the velocity components at the exit. Grid stretching was used in both the x and y

directions, concentrating on both the near wall regions and the primary recirculation zone.

The mesh density was held constant throughout this recirculation zone. Because the length

of this recirculation zone varies from nearly zero to sixteen step heights in the Reynolds

numberrange we are investigating; two grids were generated. For flow at 50 < ReD _< .500

a 4352 cell grid was generated (figure 7) and for 500 < ReD _< 1095 a 7424 cell grid was



generated.The meshdensityin the recirculationzonesis the samein both, and hasbeen
shownto generategrid independentresultswhencomparedto a 13312cell mesh.

16x16 CELL BLOCK !

12|x16 CELL BLOCK 2

12|xl6 CELL BLOCX 3

Figure 7 Backward facing step grid---4352 cell version for flow at

RED<500. Note that the grid downstream of the step has been truncated.

The experimental data clearly defines the Reynolds number region of two dimensional

laminar flow as ReD < 400. Qualitatively, this corresponds to the appearance of a second

recirculation zone along the wall opposite the step. Figure 8 demonstrates the accurate

prediction of the primary reattachment length, Xl within this region. Additionally, the

Reynolds number corresponding to the onset of secondary recirculation is predicted. Armaly

et al., indicate that spanwise variation in the primary reattachment location at Reynolds

numbers greater than 400 is evidence of an onset of three dimensional flow. Thus one

would expect that the primary reattachment xl and secondary detachment x2 locations do not

accurately predict the experimental findings, taken at midspan, for ReD > 400. However, the

coupling of the primary and secondary reattachment locations exhibited in the experiment

(x2 < xl < x3) is preserved. Surprisingly, the secondary reattachment point, x3, follows the

predicted experimental results quite well. It is interesting to note that the reattachment point

furthest from the step is accurately predicted up to a Reynolds number of 800. This trend is

also observed in the data of Chen [19]. Perhaps a pocket of strongly three dimensional flow

initially exists only in the vicinity of the secondary detachment and primary reattachment

locations. Unfortunately, no spanwise measurements of secondary reattachment location are +

available in this Reynolds number region. Further investigation using a three dimensional

version of DTNS2D is beyond the scope of this paper.
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Similar conclusions can be drawn from the velocity profile data at three different

Reynolds numbers. Figure 9 displays the profile comparisons at five different locations

downstream of the step for a Reynolds number of 100. The calculation is well within the

two dimensional flow regime and the predictions match the experimental results very well.

Similar comments can be made about the velocity profiles at a Reynolds number of 389,

sh0wnin figure 10. The results for the ReD = 1095 case seen in figure 11 are slightly

different, as we would expect. However, the overall shape of the primary and secondary

recirculation regions are clearly visible.
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The performance of the DTNS2D code in the two dimensional backward facing step flow

is demonstrated in the convergence histories of figure 12. The calculation is of the RED=389

flow, similm- to that shown above in figure 10. Figure 12(a) shows that an optimum value of

the pseudo compressibility parameter has a value around unity. An order of magnitude more

or less in value severely restricts the convergence properties of the scheme. This behavior

was typical of that seen throughout the two dimensional laminar flow range, with the optimum

consistently valued around unity. The maximum CFL number can be seen from figure 12(b)

to be seven for this case. This CFL limit was seen to gradually decrease in value as the

Reynolds number increased, which is to be expected. For example, at a Reynolds number

of 100, the CFL I[mit was observed to be twenty. The approximate factorization scheme

does possess the ability to operate at an infinite CFL condition in the linear case; however,

the nonlinearity of the Navier-Stokes equations prohibits such performance. This three block

calculation with 4352 cells performed at a speed of 2.19 x 10-5(iteration-gridpointCPUseconds ._ on the

Cray Y-MP at NASA Lewis Research Center.
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Figure 12 Convergence histories for backward facing step flow at ReD=389--(a) CFL=7 with various

pseudo compressibility parameter (fl) values and Co)/3=1.0 with various CFL number values.

Implementation

The DTNS2D implementation of the pseudo compressibility method offers several

important choices to the CMOTT turbulence modelling community. One aspect is the

choice of approximate Riemann solver. The user is able to choose a third order accurate

Chakravarthy and Osher TVD method. This method is based upon Roe's scheme and is

widely accepted as an accurate and efficient method for solution of hyperbolic systems. The

user is also able to choose between several time integration schemes, including: approximate

factorization, lower-upper symmetric successive over-relaxation, or explicit Runge-Kutta

methods. Another helpful feature is the multiblock grid capability. This makes the solution

of backward facing step flow possible in both sections of the tunnel. The code has already

incorporated the algebraic eddy viscosity model of Baldwin and Lomax [20] as well as a

differential k-c approach of Gorski [21]. Further turbulence modelling efforts can effectively

build upon this ground work. Overall, the code is well organized: the three dimensional

and the axisymmetric versions share the same structural framework. This will be most

advantageous when upgrading to three dimensional studies. As mentioned earlier, DTNS2D

is capable of resolving unsteady flow, although validating the implementation is beyond the

scope of this paper.

Conclusions

The accuracy and efficiency of the 2D incompressible flow code DTNS2D were estab-

lished for two laminar benchmark flow geometries: flat plate and backward facing step.
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Accurate Blasius velocity profiles were presentedfor flows in the range 2.0 × 104 <

Rex < 1.01 x 107 over uniform and nonuniform cartesian grids. The corresponding con-

vergence patterns, although sensitive to the value of the pseudo compressibility parameter fl,

were very good. Similarly encouraging results were observed for the backward facing step

calculations. The accuracy observed in the two dimensional flow regime of ReD < 400 can

be seen in the primary reattachment location, Xl, and the velocity profiles taken along the

tunnel downstream Of the step. The onset of three dimensional flow, corresponding to the

appearance of a secondary recirculation zone, was accurately predicted.

Analysis indicates that the efficiency can be improved further by concentrating efforts

on the Riemann solver and TVD routines. Future plans include an implementation of the

advection upwind splitting method (AUSM) developed by Liou and Steffen [22]. This

scheme, coupled with a high order accuracy monotone interpolation may simplify the solution

algorithm without sacrificing any performance.

Although an optimum value of the pseudo compressibility parameter is fairly difficult

to predict a priori, it was relatively easy to find empirically. Often a value for fl of unity

was satisfactory, if not optimum. This was especially true for the backward facing step flow.

This problem needs to be addressed more thoroughly. Nevertheless, the method of pseudo

compressibility is a proper framework for numerical solution of the incompressible Navier

Stokes equations; DTNS2D is recommended as a satisfactory implementation for use as a

test-bed for turbulence modelling.
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