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ABSTRACT

Closed-form techniques for calculating fiber-matrix (FM) interface stresses, using
repeating square and diamond regular arrays, were presented for a unidirectional composite
under thermo-mechanical loadings. An Airy's stress function micromechanics approach from
the literature, developed for calculating overall composite moduli, was extended in the present
study to compute FM interface stresses for a unidirectional graphite/epoxy (AS4/3501-6)
composite under thermal, longitudinal, transverse, transverse shear and longitudinal shear
loadings. Comparisons with finite element results indicated excellent agreement of the FM
interface stresses for the square array. Under thermal and longitudinal loading, the square
array had the same FM peak stresses as the diamond array. The square array predicted higher
stress concentrations under transverse normal and longitudinal shear loadings than the diamond
array. Under transverse shear loading, the square array had a higher shear stress concentration
while the diamond array had a higher radial stress concentration. Stress concentration factors
under transverse shear and longitudinal shear loadings were very sensitive to fiber volume
fraction. The present analysis provides a simple way to calculate accurate FM interface

stresses for both the square and diamond array configurations.
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NOMENCLATURE
fiber radius
arbitrary constants in stress function F
arbitrary constants in stress function F; n = 2, 4, 6, ...
length of one side for square array
components of stiffness matrix, i=1-3, j=1-3
Young's modulus
Airy's stress function
shear modulus
normalized peak radial stress under transverse loading
normalized peak shear stress under transverse shear loading
normalized peak shear stress under longitudinal shear loading
cylindrical cordinates
cylindrical coordinate system with origin at H in diamond array
cylindrical cordinate system with origin at F in diamond array
components of compliance matrix, i=1-3, j=1-3
components of compliance matrix in cylindrical coordinates
iriitial and final temperatures, respectively
displacements in the x, y, and z directions, respectively
fiber volume fraction
cartesian coordinates
coefficients of thermal expansion in cylindrical coordinates
coefficients of thermal expansion in cartesian coordinates
change in temperature
normal strains in cylindrical coordinates

applied normal strains in the x, y, and z directions, respectively



Yeb> Yoz Vez shear strains in cylindrical coordinates

Yxyos Yyzor Yxzo applied shear strains in cartesian coordinates

n—¢ cartesian axes rotated by 45 degrees with respect to the x-y axes
v Poisson's ratio

a,, 0p, 0, normal stresses in cylindrical coordinates

0,,0,,0, average normal stresses in the x, y, and z directions, respectively
Ths Thzs Trz shear stresses in cylindrical coordinates

Tas Tyer T average shear stresses in cartesian coordinates

Superscripts and subscripts

f, m refer to the fiber and matrix, respectively

INTRODUCTION

The fracture of polymer matrix composites can involve three types of local failures:
fiber fracture, matrix cracking, and fiber-matrix (FM) interfacial fracture. While the
properties of the fiber and the matrix are important factors, the strength of the FM interface is
critical to the failure process and overall composite strength [1]. It is therefore important to
characterize FM interface strength. Accurate calculations of FM interface stresses are required
to measure FM interface strength and to predict FM interface cracking.

Micromechanical models for unidirectional composites based on both closed-form and
numerical approaches have been used extensively in the past. A comprehensive review of
earlier micromechanical models is given in reference 2. The simplest and most commonly
used is the composite cylinder model [3], which assumes a fiber embedded in a cylindrical
matrix. Although it lends itself to a closed-form analysis, this model neglects fiber
interactions and, therefore, works well only for low fiber volume fractions. The effect of
neighboring fibers has been accounted for by assuming a regular, periodic arrangement of
fibers in the composite. FM interface stresses were computed by Foye [4] in 1966, using

square and hexagonal periodic arrays and the finite element method. During the same period,



Adams and Doner [5] used a square array and the finite difference method to compute FM
interface stresses. More recently, the finite element technique has been used to compute FM
interface stresses [6]. The boundary element technique has also been used in a recent study
[71.

Numerical solutions usually involve tedious mesh generation and convergence studies
and also require large amounts of computing time. Thus, closed-form solutions, which can be
programmed on a personal computer, are preferable to numerical ones. In 1974, Kobayashi
and Ishikawa [8-10] developed analytical solutions using an Airy's stress function approach for
square, diamond, and hexagonal arrays to compute overall thermoelastic constants. Boundary
conditions for different loading conditions were satisfied by a point-matching technique.
However, they did not provide techniques for computing FM interface stresses. More
recently, Averill and Carman [11] developed a similar series-type solution using point-
matching along the boundaries for a hexagonal array and computed overall composite
properties and FM stresses for different properties of the interphase region between the fiber
and the matrix.

Within a composite ply, fibers are arranged randomly and may resemble a square array
in some regions, a diamond array in some regions and a hexagonal array in other regions. To
characterize FM interface strength and predict FM interface cracking, it is important to use the
array that leads to the most critical FM interface stresses under a given loading condition. For
a given fiber volume fraction, Foye [4] demonstrated that the stress concentrations at the FM
interface, for both normal and shear loadings, are higher for the square array than for the
hexagonal array. This may be explained by the fact that the fibers are closer to one another in
the square array. Furthermore, for shear loading, the diamond array may have a higher stress
concentration than the square array. Therefore, under combined loading, the most critical FM
interface stresses will either be produced by the square array or the diamond array. Thus, to

characterize the FM interface strength, FM interface stresses calculated using the square and



diamond arrays will need to be compared to determine which array leads to the more critical
stresses at the FM interface.

The objective of the present study was to apply closed-form micromechanical
techniques to compute accurate FM interface stresses for thermo-mechanical loadings using
square and diamond regular arrays. The Airy's stress function approach used by Kobayashi
and Ishikawa [9] was adopted in the present analysis for the solution of the basic equations.
Procedures for calculating FM interface stresses under thermal, longitudinal, transverse,
trans.erse shear and longitudinal shear loadings were developed in this study. Unit load
solutions are presented for each of these load cases. The FM interface stresses computed using
the closed-form approach were evaluated using finite element results for the square array.
Comparisons were also made between the FM interface stresses calculated using the square and
diamond array solutions. Finally, the effects of fiber volume fraction on FM interface stresses

are presented.

ANALYTICAL METHODS

As mentioned earlier, the analytical methods used here are based on those presented in
References 8-10. However, the emphasis in References 8-10 was on determining overall
elastic constants. The procedures for applying various loadir : to the models in order to
calculate FM interface stresses were developed in the present study. For this
micromechanics analysis, these loadings correspond to ply stresses in a laminated composite.
Since the basic assumptions in the present study are the same as those in References 8-10, only
an outline of the analytical procedures is described here.

Closed-Form Solution

As shown in Fig. 1, the origin of the cylindrical cordinate system used in this study is
lccated at the center of the fiber and the z-direction is along the fiber axis. The fibers are
assumed to be circular in cross-section (radius = a), homogeneous, and orthotropic with

transverse isotropy in the x-y plane. The matrix is homogeneous and isotropic and the fiber



and matrix are perfectly bonded. A state of generalized plane strain is assumed (¢, =
constant) for all loading cases except the longitudinal shear loading case. Note that the
diamond array (Fig. 1(b)) is equivalent to the square array (Fig. 1(a)) rotated by 45 degrees.
The analysis uses the repeating unit cell ABCD for the square array, and EGH for the
diamond array as indicated by the shaded areas.

The boundary conditions on side EG of the diamond array can be conveniently
described by considering three coordinate systems. The polar coordinate system r;-6; has its
origin at H with 8, measured with respect to the x-axis. The r,-¢, system has its origin at F
with ¢, measured with respect to the horizontal x-axis. The angle 8, is measured with respect
to the line FG. Points along the line AC are shared by the diamonds 1 and 2 which are
centered at points H and F, respectively. Thus, a point with coordinates (r;, 6,) can also be
described by coordinates (r,, ¢,) or by (r,, 8,). The cartesian coordinate system 7 —{ is
rotated by 45 degrees with respect to the x-y coordinate system.

vernin io

The present problem can be separated into two cases; (a) all loadings except
longitudinal shear (i.e., thermal, longitudinal, transverse, and transverse shear) and (b)
longitudinal shear loading. Case (a) can be solved by assuming a state of generalized plane
strain which reduces the problem to two dimensions. The Airy's stress function, F, can be
used to solve this two-dimensional elasticity problem. The governing biharmonic equation can
be written as

? 198 .18
to—+5

ar? radr r?ae?

VF=0, V2= (1)
When only average normal stresses, o,, ¢, and o0, ( 7,, = 0) are applied to the composite,

the x- and y-axes become axes of symmetry and a gerieral solution to Eq. (1) in the form of a

Fourier series can be written as



F = F() + F,(r) cos nd,

a =2, even

where, )]
F,(r) A2 +B, + Cor’logr + D, logr
F() = Ar™?+Br +Cr™? +D "

where A, B, C;, D,and A, B, C, and D, (n = 2, 4, 6, ...) are arbitrary constants.
Equation (2) is valid for both the square and diamond arrays only when symmetric loading is
applied. Transverse shear loading for both the square and diamond arrays will need special
consideration as described later. Case (b), with longitudinal shear loading, will need a
different stress function and is described in a later section. The arbitrary coefficients in Eq.
(2) are determined by satisfying stress and displacement boundary conditions for each loading.
The fiber and matrix regions will each have a different set of arbitrary coefficients.

The expressions for the stress components oy, og, and 7§ can be determined from the
stress function F by taking derivatives [8]. The strain components can be expressed in terms
of the arbitrary coefficients in Eq. (2) by using the constitutive law. It is assumed that the
oomﬁosite material is transversely isotropic and the constitutive law can be written in

cylindrical coordinates as [8,12]

{e} = [Sql{o} + {a} AT ©))
where,
{e} = {&, & &) Yit> Vo0 Y} >
{0} = {or, 99, 05 T, 700> Tra}
{a} = {a,, ay, a,, 0, 0, 0} coefficients of thermal expansion,
[S,4] = compliance matrix (in cylindrical coordinates),
and AT = Tg - T = temperature change.



The expressions for the displacements u, and ug can then be obtained by integrating the
expressions for the normal strains [8,10]. Note that for the thermal loading case, temperature
dependent material properties can be readily incorporated into the analysis by considering an
incremental form for Eq. (3), in which {€}, {0}, and AT are replaced by {é¢}, {6d}, and &T,
respectively, and following the incremental procedure outlined in Ref. 10. The effects of
moisture can also be readily incorporated into the analysis by adding to Eq. (3) an extra term
which is similar to the thermal strain term with the coefficients of thermal expansion replaced
by the coefficients of moisture absorption.

m n nditi

Using the expressions for the stresses and displacements, the internal boundary

conditions at the fiber-matrix interface for both the square and the diamond array can be

written as,

(74),=(70),

(0,)n @
(U,)m ’ (Uo)f = (“a )m-

(e.), =

(u,),

where the subscripts f and m correspond to the fiber and matrix, respectively. As explained
in Ref. 8, the coefficients of the inverse powers associated with the fibers, i.e., Cg, and Dy,
must vanish in order that the stresses and the displacements be finite at r=0. Eq. (4) leads to a
set of linear simultaneous equations by which the coefficients for the matrix region A, By,
Cpnn» D are expressed in terms of the coefficients for the fiber region Ag, Bg,. Similarly,
the coefficients, A, and D, are related to Ag. The coefficients Ag, A, and By, are
determined by satisfying the external boundary conditions.

The micromechanics problem of an interphase layer between the fiber and the matrix

can also be analyzed using the present analysis technique by satisfying Eq. (4) at the



fiber/interphase and the interphase/matrix interfaces. The additional equations will be used to
determine the unknown coefficients in the interphase region.
rnal Boun nditi

- The displacement and stress conditions on the sides AB and BC (see Fig. 1(a)) for the
square array and side EG for the diamond array constitute the external boundary conditions.
For a given set of average strains £, , £, and ¢, the following boundary conditions were
presented in Ref. 9:
For the square array, along lines AB and BC:

0 =0-»x/4 : ul, = ¢,b, =0,

"ol ®)

0=x/4 > x/2 : V|, =¢,b, = 0.

Tay Io
Boundary conditions for the diamond array were determined by considering displacements and
stresses for the diamond shaped region below the line EG (subscript 1) and for the diamond

shaped region above line EG (subscript 2). Along line EG we have:

6, =0->x/4 : uyly = Uy, =—u,|¢z + &,+2b,
= -u,, + e, ©
= -Ull_l_'_o + Sxoﬁb.
2 1

and,

8, =0~ x/4 : vily = -vilz_, +€,+2b,
1 2 1

g =0'|
lp, ﬂg_o"

e = e
g, ﬂg_gl

Q)



The n— ¢ axes are shown in Fig. 1(b) and are oriented at 45 degrees to the x-y axes. After
substituting appropriately for the stresses and displacements in Eqs. (6) and (7) and using Eq.
(4), the external boundary conditions can be expressed in terms of the coefficients Ag, Ag, and
Bg,. A simple point matching technique was used in which these conditions were satisfied at
discrete points on the boundary. The Fourier series in Eq. (2) must, therefore, be truncated so
that the number of terms, i.e., the number of arbitrary constants Ag,, Ag, and By, matches the
number of independent boundary conditions satisfied at discrete points. These boundary
conditions lead to a set of linear simultaneous equations by which Ag, Ag, and By, are
determined. For the present analysis, the boundary was divided into 5 degree segments. Asa
result, 37 terms in the Fourier series, i.e., 37 unknown constants were used for both the
square and diamond arrays. It was shown in Ref. 8 that 37 terms were adequate for
convergence of the results. In the present study, to check the accuracy of the analytical
solutions, FM interface stress results were compared with finite element results for each
loading case. These results will be described later. After the constants Ag, Ag,, and By, are
determined, the stress state in the unit cell is known for a given set of average strains €, , £,

and £,. The FM interface stresses can then be calculated from the constants in the fiber region

as

(0,). =24, + 2Z{2+n n? “A,n+(n—n2)a"'2B,n}oosn0
"~ 8)

('r,,,)i = in {(1 +n)a*A, +(n—1) a""Bﬁ,} sin né

=2, ev

Iculati v
The average stresses due to applied strains on the unit cell are calculated simply by

integrating over the appropriate region. For the square array,
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_ 1t 1}

Ux = -b-£UX|x=°dy =g‘!0"|0=‘l’/2dr

_ 1 1¢

9 = Ejayly-odx =E£a'lo-odr ©)

0
g, = %H o,dS =i2j'j [Ee,, +v (0, + 0,)1dS
b ABCD b ABCD

where &, is the constant strain in the z-direction and v, is the Poisson's ratio. All
integrations were carried out exactly except for the (o, + 69) term in the last equation, which
was integrated numerically (over the matrix region) using Gauss quadrature. For the diamond

array the same equations can be used if all the b terms in Eq. (9) are replaced by Vv2b in
the equations for ¢, and ¢, and ABCD is replaced by EGH in the equation for ¢ ,.

Loading Procedures

The procedures for applying appropriate boundary conditions to achieve the different
symmetric and anti-symmetric loading conditions and preserve the compatibility of the unit cell
with its neighbors were developed in the present study and are presented in the following
section.

ri in

Symmetric loads such as thermal, longitudinal, and transverse can be applied by
imposing average strains &, , £, and &, appropriately. For the thermal loading case, the
FM interface stresses were determined by a two step procedure. Tirst, overall coefficients of
thermal expansion for the composite were calculated using the macroscopic constitutive

relation for the normal components of stress and strain.
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€0 Su Spp Si| |0, o, AT
ot = |8 Sp Sy Ey + o AT (10)
€50 Sy Si» Sy o, o, AT

For a given AT and ¢, = &, = £, = 0 imposed on the analysis model the overall «,, for

example, can then be computed using the relation,

a, = -(Syd, + 8,5, +8,5,)/ AT (11)

where 7., 0, and ¢, are the average stresses calculated using Eq. (9). The compliances S;;

in Egs. (10) and (11) were calculated using only mechanical loading as described later. A
similar procedure can be used to calculate overall a, and «, .

Next, FM interface stresses were calculated by imposing the overall strains

&, = a,AT, £, = a AT andé,, = o AT on the analysis model. The computed average

stresses (o, , ,, 0,) for this set of strains will be zero since they simulate unconstrained

thermal loading. Such a procedure ensured compatibility between adjacent unit cells during
thermal loading. Both the square and diamond arrays can be analyzed by this procedure. For
the case of temperature dependent material properties, the same two-step procedure can be
used at each increment of temperature (see Ref. 10).

Longitudinal loading was applied by imposing £, = 1 and &, = €, = -»;, &, . The
macroscopic Poisson's ratio, »,, of the composite is determined by first considering the

macroscopic Hooke's law for normal stresses:
P

12 CIS exO

(12)
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and calculating the constants Cijj. For example, C,;, C,,, and C,, can be determined by
imposing &, = 1and &, = £, = 0 on the analysis model. Based on Eq. (12), we have
C,=90,,C,=0,,and C, = 7,, where o,, o, and o, are the average stresses
calculated using Eq. (9). Similarly, the constants C,, and C,, can be determined by imposing
g, = 1and g, = &, = 0 and C,, can be calculated by imposing &, = 1 ande, =€, =0.
The Gjj matrix in Eq. (12) is then inverted to give the compliance matrix, Sij: for normal
stresses (see Eq. (10)). The unknown w,, is equal to -S,;/S;;. A similar procedure is used to
calculate »,, which is given by -S,,/S,,. The FM interface stresses under transverse loading
were calculated by imposing £, = land g, = ¥, &4 , &, = -¥;; &, . These procedures are
equally applicable to both the square and diamond arrays.

nti- ri in

The inplane shear (7,, ) and longitudinal shear (7,, ) loading cases involve somewhat
different considerations than the symmetric loading cases. Note that the square and the
diamond arrays are essentially the same except for a 45 degree rotation. This fact can be used
to advantage in the solution of these anti-symmetric loading cases.

Inplane Shear Loading: Using the inplane strain transformation equations for a 45
degree rotation, applied normal strains £,, = -1/2 and £, = 1/2 (v, = €, = 0) on a square
array model are equivalent to applied shear strains v, , = 1 (¢, =&, =0)ona diamond
array model. Similarly, applied normal strains &, = 1/2 and &, = -1/2 (7,0 = &4 = 0) on
a diamond array model are equivalent to applied shear strains vy, , = 1 (¢, = &, =0)ona
square array model. Thus, FM interface stresses under inplane shear loading for the square
array model were obtained by imposing the appropriate normal strains on the diamond array
model and using the same micromechanics analysis described earlier. Similarly, inplane shear
loading for the diamond array model was analyzed using normal strains on the square array
model.

Longitudinal Shear Loading: The solution for the square arfay under longitudinal

shear loading was presented in Ref. 9 for computing overall longitudinal shear stiffness. FM

13



interface stresses for the square array were calculated in the present study by using similar
solution techniques. The solution for the diamond array under longitudinal shear loading could
be obtained by imposing appropriate boundary conditions on the model as presented in Ref.
11. However, in the present study a simple procedure was developed to calculate FM
interface stresses for this case. Once again the similarity of the square and the diamond arrays
can be used to advantage in this case. If the FM interface stresses under longitudinal shear
loading can be obtained for the square array, they can be obtained for the diamond array by
simple transformations.

The governing equation for the square array under longitudinal shear loading can be

written in terms of the longitudinal displacement w as [9]

(13)

The solution to this equation is obtained for an average applied shear strain 7,, (O 7)-
From the symmetry and anti-symmetry conditions, a general solution to Eq. (13) takes the

form [9]

w = ; (A, r* + B, r™) sinnd, (14)

odd

where A and B are arbitrary constants that are determined by the internal and external

boundary conditions. Internal boundary conditions at the fiber-matrix interface are given by

we=w,, (1) =(T)n> (15)

14



where f and m correspond to the fiber and matrix, respectively. Eq. (15) leads to a set of

simultaneous equations by which A_, and B, are expressed in terms of A, . External
boundary conditions on the sides AB and BC of the square array (Fig. 1(a)) can be written as
0wy _ 0,

ax (16)
0=x/4 > /2 : w, =Dby,.

6=0-»x/4:

These boundary conditions are satisfied at discrete points on the boundary to determine A, .
As shown in Ref. [9], using point matching for points at every 5 degree increment along the
boundary was sufficient to achieve convergence of the numerical results. Once the constants

A, are determined, FM interface stresses can be computed as,

19
(r.), = G Z na'A, } sin nf 17
n=], odd

where G! is the longitudinal shear modulus of the fiber and a is the fiber radius. The
average applied stress on the model can be computed, after the arbitrary constants are

determined, as

7 =ijj 1,,dS. (18)

y: bz ABCD

A similar procedure can be used for an average applied shear strain 7.
The solution for the diamond array under longitudinal shear loading can be obtained
from the solution of the square array by recalling that both arrays are essentially the same

except for a rotation of 45 degrees. Using stress transformation equations for a 45 degree

15



rotation, an average shear stress 7, applied to the diamond array is equivalent to applying

equal longitudinal shear stresses 7, and ?'y, to the square array, and the two cases are related

by:

i} 1 L
T = [(cos 45% + sin 45° )] (T +70). (19

Thus, FM interface stresses for the square array under equal longitudinal shear loadings
7, and 7, can be superposed according to Eq. (19) to obtain the FM stresses for the

diamond array under longitudinal shear loading 7, .

The FM interface stress results for all the symmetric and anti-symmetric loadings for
the square array were compared with finite element results to check the accuracy of the

analytical solutions.

Finite Element Analysis

The finite element mesh used in the present study is shown in Fig. 2. It consisted of
one layer of isoparametric hexahedral elements. Three dimensional elements were used to
facilitate the imposition of generalized plane strain. There were 526 nodes and 238 elements
in the model and the analysis was performed using the MSC/NASTRAN code [13]. The
dimensions of the fiber radius, a, and the unit cell side, b, were chosen to represent a fiber
volume fraction of 0.625. A generalized plane strain condition (for the symmetric loading
cases) was imposed by constraining the z-displacement, w, to be zero on the back face and
imposing w=constant (using multi-point constraints [13]) on the front face. For the transverse
shear case, the out-of-plane displacements, w, were constrained to be zero throughout the
model. For the longitudinal shear loading case, the inplane u- and v-displacements were
constrained to be zero throughout the model. The different loading conditions and the

corresponding displacement boundary conditions are listed in Table 1. A convergence study

16



was performed to decide upon the mesh refinement, especially in the region near the FM

interface.

RESULTS AND DISCUSSION

FM interface stresses were computed using the analytical and finite element models for
thermal, longitudinal, transverse, inplane shear, and longitudinal shear loadings. All the results
were obtained for a graphite/epoxy, AS4/3501-6, unidirectional composite. The constituent
material properties used in the present study [14] are given in Table 2.

Fig. 3 shows the normalized FM interface stresses under unit thermal loading
(AT = -1). The analytical results for the square and the diamond arrays are shown by solid
and dashed lines, respectively. The finite element results for the square array are shown by
solid circular symbols. There is excellent agreement between the closed-form and finite
element results. Both the peak radial, o,, and the peak transverse shear, 7.9, stresses for the
square and diamond arrays were the same except for a shift of 45 degrees. To characterize
FM interface strength and predict interface failures, these thermal residual stresses will need to
be superimposed with FM interface stresses from the mechanical loading cases. The variations
in the interface stresses are due to the presence of the neighboring fibers. The effects of
uneven fiber spacing on thermal residual stresses in a unidirectional metal matrix composite
were studied in Ref. 15, which showed that the effect of closely spaced fibers on FM interface
stresses can be analyzed by considering a regular array with a larger fiber volume fraction.

Figure 4 shows FM interface stresses under longitudinal loading (o,). Once again,
there is excellent correlation between the closed-form and finite element results. The stress
concentrations (peak stress/applied stress) at the FM interface for this loading are very small
since there is no load transfer across the interface under longitudinal loading. The interface
stresses are purely a result of Poisson's ratio effects and fiber interactions. As before, the

stresses for the square and diamond arrays were the same except for a shift of 45 degrees.
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Figure 5 shows FM interface stresses under transverse loading (o,). Once again there
is excellent agreement between the closed-form and finite element results. The radial stress
concentration for the square array was about 1.35. This was 30% higher than the stress
concentration for the diamond array. Thus, in a transversely loaded composite the regions in
which the fibers are arranged in a square array would be more likely sites for FM interface
failures. The regions where the fibers are packed closer together are likely to be even more

critical, as will be shown later,
The FM interface stresses for transverse shear loading (7, ) are shown in Fig. 6.

There is excellent agreement between the closed-form and finite element results. The radial
stress concentration of 1.54 for the diamond array was 40% higher than that for the square
array. In contrast, the stress concentration for 74 of 1.23 for the square array was 25% higher
than that for the diamond array. Depending on the relative FM interface strength under
normal and shear loads, the regions in a composite which resemble a square array or a
diamond array could be candidate sites for FM failures.

Figure 7 shows the FM interface shear stress, 7., under longitudinal shear loading
(7. ). The results from the closed-form analysis and the finite element analysis were in
excellent agreement. This loading produced the highest stress concentration factor of 1.88 for
the square array. There was a 60% difference in the peak 7., for the square and the diamond
arrays. Also, the location of this peak was shifted by 45 degrees. In a composite, the regions
that resemble a square array will be most likely to experience FM interface failures under
longitudinal shear loading.

The variation of the peak FM interface stresses with fiber volume fraction can be
readily studied using the analytical solutions. The effect of variations in V;on the FM
interface stress concentrations can be used as an indicator of the effect of uneven fiber spacing
on FM stress concentrations. For example, the effect of fibers being closer together than the
assumed distance 2b (Fig. 1(a)) could be studied by considering higher V; values. The stress

concentration factors for the square array, under mechanical loading, are plotted as a function
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of fiber volume fraction in Fig. 8. The stress concentration factors K, K 4, and K, denote
the normalized peak o, under transverse loading, normalized peak 79 under transverse shear
loading, and normalized peak 7, stress under longitudinal shear loading, respectively. The
K, was least affected by V;. The finite element results for V¢ = 0.625 and 0.7 are also
shown as a further validation of the closed-form results, especially for higher fiber volume
fractions. For low fiber volume fractions (V¢ < 0.5), there is virtually no effect on the stress
concentration factors. Thus, FM interface stresses calculated using a simple composite
cylinder model would be adequate for V¢ < 0.5. However, for V¢ > 0.5 the effects of fiber
interactions on the FM interface stresses become more apparent. For example, there was a
22 % increase in the K , when V¢ was increased from 0.625 to 0.75. The K was the most
sensitive to V. It increased by 28% when the Vi was increased from 0.625 to 0.75. These
results for increases in V; suggest that the effects of fibers being closely spaced are minimal
for transverse loading but they can be high for the shear loading cases and need to be

accounted for when considering these cases.

CONCLUDING REMARKS

Closed-form techniques for calculating fiber-matrix (FM) interface stresses were
presented for a unidirectional composite under thermo-mechanical loadings using repeating
square and diamond regular arrays. An Airy's stress function micromechanics approach from
the literature, developed for calculating overall composite moduli, was extended in the present
study to compute FM interface stresses for a unidirectional graphite/epoxy (AS4/3501-6)
composite under thermal, longitudinal, transverse, transverse shear and longitudinal shear
loadings. Comparisons with finite element results indicated excellent agreement of the FM
interface stresses for the square array.

Under thermal and longitudinal loading, FM peak stresses were the same for the square
and the diamond arrays. The square array led to higher stress concentrations under transverse

normal and longitudinal shear loadings. Under transverse shear loading, the square array had
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a higher shear stress concentration, whereas the diamond array had a higher radial stress
concentration. Stress concentration factors under transverse shear and longitudinal shear
loadings were very sensitive to fiber volume fraction. The present analysis provides a simple
way to calculate accurate FM interface stresses for both the square and diamond array
configurations.

The stress concentrations under various loading cases will be different when thermal
residual stresses are included with the mechanical stresses. Within a composite laminate, there
will usually be a combination of normal and shear loadings in each ply. The present analysis
provides a simple way to calculate accurate elastic FM interface stresses for both the square

and diamond array configurations under combined thermo-mechanical loadings.
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Table 1 -- Displacement boundary conditions applied to finite element model.

Loading Boundary condition at
x=Db y=b x=0 y=0
Thermal, AT & u=const.> v=const.® u=0 v=0
Longitudinal, o ¢ u=const.b® v=const.b u=0 v=0
Transverse, 0 u=¢g,b v=const® u=0 v=0
Transverse shear, 7,, v =19,,b/2 u=1,,b/2 v=0 u=0

Longitudinal shear, 7, u=v=0 W=9,b u=v=0 w=0

8Thermal load was applied by imposing AT = constant at all nodes in the model.
bA constant displacement was achieved by imposing multi-point constraints on
the indicated nodal displacements.
“Longitudinal loading was achieved by imposing w = £, t on the front face,
where t was the thickness of the model.

Table 2 -- Material properties of the constituents [14].

Material E, E G, G, vy v a a,
(GPa) (GPa) (GPa) (GPa) (106/°C)

Fiber (AS4) 220 13.8 340 55 020 0.25 -0.36 18.0
Matrix (3501-6) 4.3 4.3 1.6 1.6 0.34 0.34 40.00 40.0
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