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THE DOUBLE UNIVERSAL JOINT WRIST ON A MANIPULATOR:
SOLUTION OF INVERSE POSITION KINEMATICS

AND SINGULARITY ANALYSIS

Dr. Robert L. Williams II

Automation Technology Branch
NASA Langley Research Center

Hampton, VA 23665-5225

ABSTRACT

The double universal joint robot wrist can eliminate singularities which limit the per-

formance of existing industrial robot wrists. Unfortunately, this singularity-free wrist has

an offset which prevents decoupling of the position and orientation in the manipulator

inverse kinematics problem. Closed form solutions are difficult, if not impossible, to find.

This paper presents three methods to solve the inverse position kinematics position prob-

lem of the double universal joint wrist attached to a manipulator: 1) An analytical solution

for two specific cases; 2) An approximate closed-form solution based on ignoring the wrist

offset; and 3) An iterative method which repeats closed-form position and orientation cal-

culations until the solution is achieved. Several manipulators are used to demonstrate the

solution methods: Cartesian, cylindrical, spherical, and an anthropomorphic articulated

arm, based on the the Flight Telerobotic Servicer (FTS) arm. A singularity analysis is

presented for the double universal joint wrist attached to the above manipulator arms.

While the double universal joint wrist standing alone is singularity-free in orientation, the

singularity analysis indicates the presence of coupled position/orientation singularities of

the spherical and articulated manipulators with this wrist. The Cartesian and cylindri-

cal manipulators with the double universal joint wrist were found to be singularity free.

The methods of this paper can be implemented in a real-time controller for manipula-

tors with the double universal joint wrist. Such mechanically dextrous systems could be

used in telerobotic and industrial applications, but further work is required to avoid the

singularities.



1 INTRODUCTION

Most existing industrial robot wrists have singularity configurations which restrict

manipulator mobility. This fact adversely affects overall manipulator performance for

many common industrial and telerobotic tasks. The double universal joint wrist has been

proposed to eliminate wrist singularities. The kinematic diagram for this wrist is shown

in Fig. 1. Singularities exist for this configuration, but mechanical limits may be designed

to eliminate them and still provide a highly dextrous workspace.

Specific double universal joint wrists have been designed and built by Rosheim (1989),

Milenkovic (1987), and Trevelyan, et. al. (1986). The Omni-Wrist (Rosheim, 1987) is

currently used for industrial spray painting operations. The ET Wrist (Trevelyan, et. al.,

1986) was designed for research in sheep shearing operations. The potential industrial and

telerobotic applications for a manipulator with a double universal joint wrist are many.

Analytical solutions for the foward and inverse position and velocity kinematics of

the general double universal joint wrist are presented in (Williams, 1990). This reference

derives additional kinematic equations for the Omni-Wrist. The present paper studies this

wrist on different manipulator arms.

The double universal joint wrist has an offset which dictates that the wrist coordinate

frames cannot be located with common origins. This offset prevents decoupling of manip-

ulator position and orientation, which complicates solution of the inverse position problem

for a manipulator with this wrist. In the velocity domain, the Jacobian matrix is fully

populated. Manipulators with colocated wrist frame origins have zeros in the upper right

three by three portion of the Jacobian matrix.

The current paper solves the inverse position kinematics problem of the three degree

of freedom double universal joint wrist on three degree of freedom Cartesian, cylindrical,

spherical, and an articulated arm, based on the Flight Telerobotic Servicer (FTS) arm (see

Krauze, et. al., 1990). The FTS is a seven-degree-of-freedom articulated, anthropomorphic



manipulator. In this paper, the first joint of the FTS is assumed to be locked, and the

next three joints are used. The FTS wrist is replaced with the double universal joint wrist.

Hereafter, the FTS is referred to as the articulated manipulator. Three inverse position

solution algorithms are developed. For the Cartesian manipulator and a special case of

the cylindrical manipulator, closed form solutions are found. Such analytical solutions

are the exception; for most manipulators the closed form solution may not exist. The

second method, the Zero Offset method, is an analytical solution. This solution results in

position error because the offset is set to zero. The solution follows standard decoupling

of the position and orientation. There is no orientation error. This method is good for

gross motions which require little precision and/or cases where manipulator dimensions are

large compared to the wrist offset. The idea for the third method, the Position/Orientation

Iteration method, came from a similar method in Milenkovic(1983). A close initial guess is

calculated using the Zero Offset method. The position (arm) variables and then orientation

(wrist) variables are calculated, iterating until convergence to a sufficient tolerance. The

methods all make use of the equations developed in (Williams, 1990).

A fourth solution method, based on iteration over forward kinematics including the

Jacobian matrix (Balestrino, et. al., 1984), was considered but not pursued. The Posi-

tion/Orientation Iteration method developed in the current paper is attractive for several

reasons: reduced computational complexity; a good initial guess is calculated; analytical

solutions are used for each position and orientation iteration; and multiple solutions are

obtained.

This paper first discusses the general inverse position kinematics position problem and

demonstrates why the double universal joint wrist complicates the problem. The three

inverse position solution methods are then developed. The kinematic equations required for

these solution methods are presented in Appendix B for the wrist and Appendix C for the

Cartesian, cylindrical, spherical, and articulated arms, based on the Denavit-Hartenberg



parameters given in Appendix A. Examples are given for all of the manipulators and

methods. The results section discussesan improvement on the Zero Offset method and

studies the convergenceof the Position/Orientation Iteration method. While the thrust of

the paper is inverseposition solutions, the Jacobian matrix is used for singularity study.

Singularities are found to be a problem for the spherical and articulated manipulators.
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[J]
[Jar]
Ig.,_l
[JWT]

[Jwl_]

{_}
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First three joints of a 6 DOF manipulator
Second three joints of a 6 DOF manipulator
Cartesian coordinate frame m

Manipulator base coordinate frame
Manipulator forearm coordinate frame
Manipulator hand coordinate frame
Cartesian arm variables

Cylindrical arm variables
Spherical arm variables
Articulated arm variables

Double universal joint wrist variables
Homogeneous transformation matrix of {m} relative to {n}
Commanded end-effector transformation matrix

Manipulator forearm transformation matrix
Manipulator wrist transformation matrix
Rotation matrix of {m} relative to {n}

Element (ij) of [BHR]

Element (i,j) of [rHR]
Position vector from origin of {n} to {m}, expressed in {n}

{BPH}
Approximation for {_PH}
cosOi

8inOi

tanOi

cos(ei + 0_.)
sin(O_ + as)
Wrist offset between the universal joints
Cartesian Position Error

Convergence tolerance for Position/Orientation iteration

Number of position/orientation iterations
Length of commanded position to origin
Six-degree-of-freedom manipulator Jacobian matrix
Arm translational portion of [J]
Arm rotational portion of [J]
Wrist translational portion of [J]
Wrist rotational portion of [J]

Vector of six joint rates

Cartesian translational and rotational velocities

Arm contribution to Cartesian velocities

Wrist contribution to Cartesian velocities



THE INVERSE POSITIO_q KINEMATICS PROBLEM

The forward kinematics problem is a mapping, f, from joint space, e to Cartesian

space, y. For serial manipulators, the forward kinematics problem is straightforward.

y = f(e) (1)

The inverse position kinematics problem inverts Eq. 1, mapping the Cartesian space

to joint space. Equation 2 is generally difficult to solve because the system is coupled,

transcendental, and multiple solutions generally exist.

e = f-l(y) (2)

This section discusses the general inverse position kinematics problem for a manipula-

tor arm and wrist combination. Two cases are considered: For wrists with three co-located

coordinate frames the position and orientation may be decoupled. For double universal

joint wrists and other wrists without co-located coordinate frames this decoupling is not

available, which reduces the possibility of a closed-form solution.

The forward kinematics solution may be expressed as a concatenation of homogeneous

transformation matrices, partitioned in the following at the forearm frame.

[_T] = [_T(01, e2, _3)] [_T(05, es, 6c)] (3)

The inverse position kinematics problem uses the same equation, but I_T] is specified and

the joint angles are unknown.

RII R12 RI3 __]
[§T]= R2, R22 R:3 PyR31 R_ R33 (4)

0 0 0

3.1 Manipulator Wrists with Co-located Frames

Most common industrial wrists are designed to be purely rotational, with three co-

incident frames. The vector from the forearm frame to the hand frame is zero in this



case. Pieper (1968) proved that if a manipulator has any three consecutive frames with

coincident origins, a closed-form solution exists. This solution is found for many common

manipulators by decoupling the Cartesian position and orientation. The forearm frame

origin is always co-located with the hand frame origin, and so the Cartesian position is

only a function of (o,,e2,e3). This is seen by applying Eq. 3, with {rPH} = O.

l I[_T I .............
o0o I 1 000 ] 1 000 [

IPy = {BPF(01,0_, 0a)}
Pz

After solving (el, e2, 03), #R] is known, from which [_R] is formed.

{Bpr}"
(5)

(6)

[_R] = [_R] -1 [_RI (7)

With [_.R] known, the wrist angles (e4, es, 0c) are found by inverting the appropriate Euler

angle set.

3.2 Double Universal Joint Wrist

For the double universal joint wrist and other wrists which do not have co-located

frames, the position and orientation problem is coupled. This is because {FPH} is non-

zero; {rPH} is the fourth column of [_T] (see Eq. B.1). When the method above is applied

for such wrists, Eq. 6 has the following form.

Py = {BpH(e,,e2,e3,o4,05,06)} (8)
Pz

Three more equations are required (from the orientation); the resulting six equations are

transcendental and fully coupled in the six unknowns. A closed-form solution for this case

is generally elusive.

The following equation is an attempt to obtain an equation in the form of Eq. 6.

{BPF}= {BPX}-IfRICP_} (9)



This attempt fails because {FPn) depends on unknowns (e4, 05, 06).

The inverse position solution is not necessarily the best algorithm for a manipulator

with the double universal joint wrist. The resolved motion rate solution (Whitney (Brady,

et. al., 1982)) is an attractive alternative. The resolved motion rate kinematics solution

for control of instantaneous end-effector velocity is advantageous for many reasons. Two

main reasons are: 1) the solution is linear and unique, assuming the Jacobian matrix has

full rank. 2) inputs from position, vision, force, hand controller, and other control elements

may be summed linearly (weighted) to obtain simultaneous mixed-mode control. However,

this paper concentrates on the inverse position problem.



,_ INVERSE POSITION KINEMATICS SOLUTION METHODS

Three mef' :is were used to solve the inverse position kinematics of the manipulators

in Figs. 2a - 2d with the double universal joint wrist. Closed-form solutions were found

for two manipulators. No analytic solutions were found for the remaining manipulators.

The Zero Offset and Position/Orientation Iteration methods were applied to manipulators

with no analytical solution.

Figures 2a through 2d show the four arms with three freedoms each. Each arm has a

base frame {B} and a forearm frame {F} where the double universal joint wrist of Fig.1 is

mounted. The end-effector frame is {H} in Fig. 1. The kinematic terms used in the inverse

position solution methods are given in Appendices. Appendix A gives Denavit-Hartenberg

parameters (Denavit and Hartenberg, 1955) for the Cartesian, cylindrical, spherical, and

articulated arms, and the double universal joint wrist. A summary of the double universal

joint wrist forward and inverse position kinematics solutions, plus the Jacobian matrix, are

presented in Appendix B, derived from Williams (1990). Appendix C gives the forward

and inverse kinematics solutions for the Cartesian, cylindrical, spherical, and articulated

arms, each having three-degrees-of-freedom.

4.1 Closed-Form Solutions

An analytical solution was developed for the Cartesian manipulator. The basis for this

solution is that [_R] = [I] for all (X, Y, Z). With this information, Eq. 7 yields:

[FR] = [_R] (lo}

With [FR] known, the wrist angles are calculated with Eqs. B.2a through B.2c, given in

Appendix B. Once the wrist angles are known the wrist offset may be accounted for by

using Eq. 9 to calculate the Cartesian joint values (X, Y, Z).

{BPF} = {BpH} --{FpH}

{x} {L I}Y = Py - LK2
Z Pz Lc5c6

(11)



Where KI and Ks are defined in Eq. B.1.

A closed-form solution for the cylindrical l manipulator of Fig. 2b was attempted.

Though this attempt failed, an analytical solution was found for the cylindrical II ma-

nipula_tor. The difference between the cylindrical I and II manipulators is the mounting

orientation of the double universal joint wrist, as seen in Fig. 2b. For either cylindrical

manipulator, [_R] is a function of the unknown 82. Therefore, Eq. 7 may not be applied

to solve (04, 05, 86) first, as in the Cartesian case. Rather, the kinematics equations, Eq. 3,

are used to solve for {h, e,r) first. The key to the solution is the following combination of

the wrist unknowns (8_, 06), where R_2 is given.

Using Eq. 12, the position and orientation is decoupled. The solution is:

h = Pz - Lc5c6 (13a)

r = B: (13c)

where:
Lr12

A= Px-_
2¢5c6

Lr22
8=/5,---

2c5c6

There is a unique solution, assuming R > 0 and using a quadrant-specific inverse tangent

function.

Following the position solution above, Eq. 7 is used to find [_-R] with which Eqs. B.2a

through B.2c yield (04, 05, 06).

4.2 Zero Offset Method

The closed-form solutions presented in the previous section are for special cases. For

general manipulators with the double universal joint wrist, the offset L prevents decoupling

10



of the position unknowns and the orientation unknowns 84, 85, 8o. The Zero Offset method

solves the inverse position kinematics problem by assuming L = 0. Closed-form solutions

result, but there is positioning error. The assumption for this method is that L is small

relative to the other manipulator dimensions.

Figure 3 shows the flow chart for the Zero Offset method, encased in dotted lines. The

assumption L = 0 forces all wrist frame origins to be co-located with the {F} origin and the

following is true:

{BpF } = {BpH} (14)

With this condition, the solution method follows Eqs. 5, 6, and 7. The solutions for

the first three joints given (Px, PY, Pz) are given in the Appendix C for the cylindrical,

spherical, and articulated arms. After solving the first three joint values, the wrist angles

are solved from Eqs. B.2a through B.2c, given [FR] from Eq. 7.

A benefit of this method is that the orientation error is zero. The (84, 85, 80) values are

not the exact solution. However, they produce the exact commanded orientation because

they are based on [_R] (calculated from the first three joints which are in error due to

L = 0) and the original [_R].

The position vector error resulting from the Zero Offset method is expressed by the

scalar Cartesian position error (CPE). The commanded position vector is {_PH }; the actual

position vector is {B PH}E, calculated by forward kinematics with the first three joint values

from the Zero Offset method. The Euclidean norm is used in Eq. 15.

CPE = II{BPH} -- {BPH}_II (15)

4.3 Position/Orientation Iteration Method

The Position/Orientation Iteration method for solving the inverse position kinematics

of a manipulator with non-co-located wrist axes is an extension of the Zero Offset method.

The flow chart for the Position/Orientation Iteration algorithm is shown in Fig. 3.

11



To start the process, the offset L is assumed to be zero, which leads to Eq. 14. Given

this {DPr}, the position unknowns are found and then the orientation unknowns (84, es, e6)

are solved in the same manner as the Zero Offset method.

Equation 9 is used to obtain a better value for {_PF} than the zero-offset assumption

yields. This equation may be applied because approximate values for the joints have been

calculated. The updated {BPF} is used to repeat the calculations, solving the position and

then wrist unknowns. By using Eq. 9, the zero-offset assumption is no longer required,

and {BPH}_ rapidly converges to {_P_}. The algorithm terminates when CPE is below a

specified tolerance e.

The Position/Orientation Iteration method has several strong points. The convergence

is rapid and assured when L is small relative to other manipulator dimensions. No initial

guess is required; the starting point is calculated by assuming zero offset. While the overall

scheme is numerical, the position and orientation solutions are analytical. Due to this fact,

all possible solutions are given, where most numerical techniques track only one solution.

12



5 EXAMPLES

This section gives inverse position kinematics examples for the methods and equations

presented in Section 4. Closed-form solutions are available for the Cartesian and cylindrical

II manipulators. For the cylindrical I, spherical, and articulated manipulators, examples

are given for the Zero Offset and Position/Orientation Iteration methods.

Units for the examples are meters for length and degrees for angles. The position

error (CPE) is given in millimeters. The articulated manipulator dimensions are LI =

0.230, L2 = 0.560, and La = 0.555. The prismatic joints for the Cartesian, cylindrical, and

spherical manipulators are allowed enough range to reach the articulated manipulator

workspace. Angular limits are not considered. All manipulators have the double universal

joint wrist with L = 41 mm which is taken from the commercial wrist in (Rosheim, 1987).

For the Position/Orientation Iteration method, e = 1 turn; N is the number of iterations for

convergence. As derived in Appendix C, the spherical arm has two and the articulated

arm four inverse position solutions.

For all examples, the input command is:

-0.211 -0.480 -0.852 0.600]
(_T1 = 0.857 0.328 -0.397 0.300104 0 o6o0,

1J0 0 0

(16)

5.1 Closed-Form Solutions

X

0.632

Cartesian Manipulator

Y Z 0_ 05 06

0.278 0.587 -88.5 68.4 -34.0

CPE

0

h

0.587

Cylindrical II Manipulator

r e4

0.691 -112.2

13

05 OG CPE

68.4 -34.0 0



5.2 Zero Offset Method

Cylindrical I Manipulator

h o r e4 0_ 06 CPE

0.600 26.6 0.671 -46.3 15.2 51.6 41

Spherical Manipulator

8 ¢ r 04 85 e6 CPE

26.6 41.8 0.900 4.7 61.7 42.2 41
206.6 138.2 0.900 184.7 61.7 42.2 41

Articulated Manipulator

01 _2 OS _4 e5 oo CPE

26.6 102.0 255.6 132.1 13.2 51.0 41
26.6 5.4 -271.0 -13.8 65.2 -39.4 41

206.6 161.2 -37.5 41.5 71.5 24.2 41
206.6 131.4 22.1 -20.7 44.9 51.7 41

5.3 Position/Orientation Iteration Method

Cylindrical I Manipulator

h e r e4 e5 e6 CPE N

0.628 25.0 0.646 -48.1 13.7 52.4 0.84 2

Spherical Manipulator

e ¢ r 04 05 e6 CPE N

23.9 43.4 0.886 6.5 63.2 42.6 0.89 2
203.9 136.6 0.886 186.5 63.2 42.6 0.89 2

14



Articulated Manipulator

25.1 104.2 -103.2 132.8 14.7 52.6 0.02 3

23.8 3.7 88.5 -16.5 66.8 -36.8 0.19 3

203.3 163.8 -43.2 52.5 73.5 20.2 0.36 3

204.6 127.3 27.1 -23.8 43.0 53.6 0.09 3

For the Closed-Form solutions CPE is zero, assuming ideal kinematics. The Zero

Offset method always has CPE = L, which is 41 mrn in this example. The final CPE

for the Position/Orientation Iteration examples is smaller than e = 1 turn; many cases

are significantly smaller. Convergence was obtained in two or three iterations for all

manipulators.

15



6 INVER,_]_ POSITION KIN]_MATICS RESULTS

In this section, an improvement on the Zero Offset method and its effect on the articu-

lated manipulator is studied. Also, the Position/Orientation Iteration method convergence

is presented for a specific command to the cylindrical I, spherical, and articulated manip-

ulators.

As demonstrated in the examples, the solution for any manipulator using the Zero

Offset method always yields CPE = L, the double universal joint wrist offset. A simple

modification of the method is attempted to reduce this error without additional calculation

or using Position/Orientation Iteration. The offset is still set to zero, so that {H} is co-

located with {F}. However, three values for L3 are considered: 1) L3 = L0, the original

case; 2) L3 = L0 + £2; and 3) L3 = L0 + L;

This modification may be applied to all of the manipulators in this paper. Results are

reported in Fig. 4 for the articulated manipulator. The input command is:

[-0.211 -0.480 -0.852 0.667S]

/ o.  7sj c171f rl--[o o -0o814-0 3970.3420°333s/

The orientation is fixed; CPE is studied for commanded reaches of 0.30, 0.60, 0.90, and

1.20 m (S = 0.30, 0.60, 0.90, 1.20 m in Eq. 17) from the origin, along the unit vector

direction {0.667,0.333,0.667} T. The average CPE from multiple solutions is reported.

The horizontal line on Fig. 4 represents the Zero Offset method results, with a constant

CPE = 41 ram. The other two lines ({F} origin shifts of _ and L) show that significant error

reduction is achieved by the modified Zero Offset method for shorter reaches. However, the

modified method can yield errors greater than the wrist offset for longer reaches. In conclu-

sion, the modified Zero Offset method can give better results for the same computational

effort, but regions exist where the results may be worse.

Figure 5 shows the convergence of the Position/Orientation Iteration method for the

cylindrical, spherical, and articulated manipulators. The input command is Eq. 16. For

16



each iteration, CPE decreases approximately by an order of magnitude. The first iteration

is the same as the Zero Offset method; hence, CPE = 41 rara for all manipulators. After

the second iteration, all errors are about 1 rata, and after three iterations all errors are

significantly less than 0.1 ram. Therefore, for telerobotic and industrial tasks, two or three

iterations are sufficient for these manipulators. The calculations required at each iteration

are relatively few due to the use of analytical solutions given in Appendices B and C. The

methods of this paper should be implementable in a real-time controller for manipulators.

17



7 MA]NIPULATOR SINGULARITY ANALYSIS

Manipulator singularitiesmay be found mathematically via the determinant of the

manipulator Jacobian matrix. This paper has presented position methods thus far;the

Jacobian matrix isin the velocitydomain. All joint angle setswhich resultin zero or near

zero determinant are at or near singular configurations.Singularitiesarisefrom workspace

boundaries and other workspace conditions which instantaneously cause the lossofa degree

of freedom, such as two or more manipulator joint axes aligning. In the neighborhood of

singularities,a finiteCartesian velocity command requires joint velocitiesapproaching

infinity.The result isthat the commanded Cartesian velocity cannot be achieved when

the manipulator configuration isnear a singularity.

For manipulators with a spherical wrist mechanism, singularitiesmay be classifiedas

arm singularitiesand wrist singularities.Under such cases,the Jacobian matrix isof the

following form. The position and orientationcomponents are decoupled, as discussed in

Section 3.1. In Eq. 18, the subscripts A,W,T, R stand for Arm, Wrist, Translational,and

Rotational, respectively.Each sub-matrix of Eq. 18 has order three by three.

[JAT]I [0]][ (18)
0[j]= [JAR] I [JwR]

The arm singularities are found from IJATI = 0 and wrist singularities from ]Jwa[ = o.

For a manipulator with a non-spherical wrist mechanism, such as the double universal

joint wrist, the Jacobian matrix is fully populated. That is, [JwT], the upper right quadrant

of Eq. 18, is not equal to the zero matrix. The double universal joint wrist alone is

singularity-free (Rosheim, 1987, and Williams, 1990). Any singularities existing for the

first three joints also exist for the overall manipulator. The following question arises: Are

there any singularities due to the coupling of position and orientation? In other words,

are there any wrist joint sets which cause singularities for the overall manipulator? This

18



question is answered by analyzing the determinant of the complete Jacobian matrices for

each manip:Aator that includes the double universal joint wrist mechanism. The full six

by six determinant is studied because of the position and orientation coupling.

7.1 Manipulator Jacobian Matrices

The Jacobian matrix is a linear operator which maps joint space velocities to Cartesian

velocities. In Eq. 19, m is the coordinate frame that the Cartesian velocities and Jacobian

matrix are expressed in.

m ()_-} _ m[j](0} (19)

For six axis manipulators operating in a six dimensional task space (three translations

and three rotations), m[j] is a square matrix of order six. A method is presented in this

section to determine this overall manipulator Jacobian matrix by combining the arm wrist

Jacobian matrices.

The arm joint Jacobian matrix represents the translational and rotational Cartesian

velocity components due to the arm joints. The vector {)(1} contains the linear and angular

velocities of {F} with respect to {B}, expressed in any coordinate frame (assume {B} for this

section). The symbolic terms for the various arm joint Jacobian matrices are not presented.

They are readily obtained using the Denavit-Hartenberg parameters of Appendix A and

any Jacobian matrix derivation method (for example, see Whitney (Brady, et. al., 1982),

Paul (1982), or Craig (1986)). The Denavit-Hartenberg parameters in Appendix A are

based on Craig's notation (1986).

[-tJA.lj
(20)

The Cartesian velocity vector {_'2} contains the linear and angular velocities of (H}

with respect to {F}, expressed in {H} in this paper. This accounts for the translational

19



and rotational Cartesian velocity components due to the wrist joints.

HIJwT d4

.... _5 j (21)(x2): LH[JwR]]{d 6

The matrices H[Jwr] and HIJwR ] are given in Eqs. B.3a and B.3b of Appendix B.

The overall manipulator Jacobian matrix [J] is found with the relative velocity equa-

tion, Eq. 22; both velocity vectors must be expressed in the same frame. The Jacobian

matrix is assumed to be expressed in {B}; therefore, the wrist Jacobian matrices are trans-

formed as shown.

& = {-_1} + {fl(2} (22)

[J]--L;(LR-) I

7.2 Manipulator Singularity Conditions

Singularity conditions are reported below for the manipulators studied in this paper.

The symbolic overall Jacobian matrix determinants are presented for the Cartesian, cylin-

drical I, cylindrical II, and spherical manipulators with the double universal joint wrist.

The articulated manipulator determinant was derived symbolically but is not given because

of its complexity. Equating the determinant of [J] to zero yields the singularity conditions.

The Jacobian matrix determinant for the Cartesian manipulator with the wrist is Eq.

24.

]Jl:4csc_=O (24)

Due to the simple structure of the Cartesian manipulator, Eq. 24 is identical to the

rotational Jacobian matrix (Eq. B.3b) determinant of the wrist standing alone (Williams,

1990). The singularity conditions are solved by inspection, 06 = +9o ° or 06 = ±9o °. If the

wrist is designed such that these angles are out of the mechanical wrist workspace, the

Cartesian manipulator with the wrist is singularity free. The commercial wrist in Rosheim

2O



(1987) has limits -45 ° < o5,06 < 45°, and still achieves a large nominally hemispherical

workspace.

As the manipulator complexity increases, the symbolic form of the Jacobian matrix

determinant grows, and less is evident from the determinant structure. The remaining ma-

nipulator with wrist singularity conditions are derived via an exhaustive multi-dimensional

numerical search for small determinant. Partial analytical results are given for the cylindri-

cal I, cylindrical II, and spherical manipulators. These determinants each have a factored

multiple of c6 (Eqs. 25, 26, and 27). Thus, 06 = +90 ° is a singularity condition for these

three manipulators with the wrist.

For the cylindrical I and cylindrical II manipulators, respectively, the determinants

are given below.

{Jl = 2rc l-sesss - + coc6]= 0 (25)

(26)

Both cylindrical manipulators with the wrist are singularity-free. The angle o was

varied over a revolution, while o_,e6 were varied over +500, all with one degree steps. No

determinant was less than 0.2 for either case. The cylindrical manipulators both have

singularities for r = 0, but this is assumed to be out of the workspace. Several coupled

singularities were found at general wrist angle values, but all were out of the commercial

wrist workspace mentioned above.

The Jacobian matrix determinant for the spherical manipulator is Eq. 27.

= s5c6) + c¢c_s6c6 + s¢s_] = 0lJ{ cGl4r_c¢csc_ + 2rs¢(1 - 2 2 (27)

The determinant above is zero for r = 0 and ¢ = 0 or 06 = 0, but r = 0 is assumed

to be out of the workspace. The spherical manipulator yields many coupled singularities

throughout the workspace of the manipulator and wrist. The singular conditions occur at

general angular values, and are non-intuitive.
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The articulated manipulator Jacobian matrix determinant is not given due to the

complexity. The behavior of the articulated manipulator with wrist is similar to that

of the Spherical manipulator. There are many coupled position/orientation singularities

existing at various locations within the workspace. Locations for these singularities are

difficult, if not impossible to predict analytically.

7.3 Manipulator Singularity Summary

For simple manipulator structures such as the Cartesian manipulator and both cylin-

drical manipulators, the double universal joint wrist does not cause coupled singulari-

ties. Therefore, these overall manipulators are singularity-free, preserving a benefit of the

wrist (ignoring workspace limit singularities). As the manipulator structure becomes more

complex, coupled position/orientation singularities arise, at locations difficult to predict

off-line.

A possible singularity remedy is to calculate the overall manipulator Jacobian matrix

determinant for each time step. If the determinant is zero or small, the Moore-Penrose

pseudoinverse (Noble, 1966) may be used instead of standard numeric or symbolic matrix

inversion. The resulting motion will not track the command exactly near a singularity,

but will enable smooth motion out of the singular region.
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8 CONCLUSION

This paper presents methods to solve the inverse position kinematics problem, plus a

singularity analysis of the double universal joint wrist on a manipulator. The offset of this

singularity-free wrist prevents decoupling of the position and orientation. The theory is

applied to Cartesian, cylindrical, spherical, and articulated manipulators.

Closed form solutions are found for the Cartesian and cylindrical II manipulators.

The Zero Offset method is a closed form solution, but has an associated positioning error.

The orientation error is zero, assuming ideal kinematics. This method may be used for

gross motions, assuming that the wrist offset is small relative to the other manipulator

dimensions. The modified Zero Offset method presented in the Section 6 can reduce this

error significantly; however, longer manipulator reaches can increase the error.

The Position/Orientation Iteration method is iterative, but each step uses analytical

solutions. It was found that two iterations are sufficient for most industrial and telerobotic

requirements, using the manipulators in this paper. Three iterations allows high precision;

the resulting error is smaller than the physical system uncertainties and backlash. No

initial guess is required, multiple solutions are found, and the method is efficient.

A manipulator singularity analysis was performed using the Jacobian matrices of the

Cartesian, cylindrical I and II, spherical, and articulated arms with the double universal

joint wrist. It was found that the Cartesian and cylindrical manipulators are singularity

free when using the wrist. Singularities were found at many non-intuitive locations for

the spherical and articulated manipulators. This is a potentially serious limitation of the

wrist, used on common manipulator structures.
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APPENDIX A: DENAVIT-HARTENBERG PARAMETERS

This appendix presents the Denavit-Hartenberg parameters (Denavit and Hartenberg,

1955) for the three-axis Cartesian, cylindrical I and II, spherical, and articulated arms of

Figs. 2a - 2d. The parameters describe manipulator links and joints in a standard manner,

based on the notation of Craig (1986). The Denavit-Hartenberg parameters are also given

for the double universal joint wrist from Williams (1990). The wrist parameter table,

Table A.5, has five lines of parameters. However, there are only three degrees-of-freedom

due to the coupling of wrist joint angles.

To obtain the overall manipulator parameters, parameters i = 4 through H are ap-

pended to the parameters of the selected three degree-of-freedom arm. The wrist base

frame in Williams (1990) is {F} in this paper. For the articulated arm parameters, {F} is

defined as shown in order to make use of the wrist frames in Williams (1990). No variable

exists on line F in Table A.4. The remaining manipulators mount the wrist so {F} is the

same as the third coordinate frame. For the examples in Section 5 and the kinematic

equations in Appendix C, L4 = 0 in Table A.4.

Table A.I: Cartesian Arm Parameters

i a__ 1 a__ 1 d, _

1 0 X 0 9O°
2 0 Y 0 -90 °
3 0 0 Z 0

Table A.2a: Cylindrical I Arm Parameters

1 0 0 h 0
2 0 0 0 8 + 90 °
3 9o° 0 r 0
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Table A.2b: Cylindrical II Arm Parameters

i c__, a_- _ d_ Oi

1 0 0 h 0

2 0 0 0 0
3 0 r 0 0

Table A.3: Spherical Arm Parameters

i ct__i a_- 1 d_ O_

1 0 0 0 0

2 90° 0 0 _ + 90°
3 90° 0 r 0

Table A.4: Articulated Arm Parameters

i a__ 1 a_- 1 [ d_ 0i
A_

1 0 0 0 01
2 90° L1 0 0_
3 0 L_ 0 03 + 90°
F 90° L4 L3 90°

,!

Table A.5: Double Universal

4
5
6
7

H

_i-- 1

0
90°
90°

0
-90 °

_/'i-- 1

0
0
0
L
0

Joint Wrist Parameters

d_ 0_

0 04 + 90°
0 85 + 90°
0 0o
0 0o
0 05 - 90°
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APPENDIX B: DOUBLE UNIVERSAL JOINT WRIST KINEMATICS

A kinematic diagram of the general double universal joint wrist is shown in Fig. 1.

Williams (1990) presents forward and inverse position and velocity kinematics both for

the general wrist and a commercially-available wrist of this kinematic structure. This

reference gives equations for the wrist standing alone, i.e. relating {H} to (F}. The

forward and inverse position solutions are summarized below for use in the larger inverse

position kinematics solution for a double universal joint wrist mounted on a three degree

of freedom manipulator arm. The wrist Jacobian matrix is also given, for use in singularity

analysis, Section 7.

The forward position solution forms [_T] given (04,86, _6).

'2sscoKl - s4 2c6c6Kz -2soKz + c4 L(Kz)]2ssc6K_ + c4 2c5c6K2 -2soK2 + s4 L(K_) |
2c5c6 - 1 -2c5a6c6 Lc co

o o

K 1 : C486 "Jr- 8485C6

K 2 = 8486 --C 485c 6

Due to the offset L between the two universal joints, {FPH} is non-zero.

The inverse position kinematics solution finds (e4, 06, 06) given [_R]. The full I_T] cannot

be specified because it has six freedoms.

es__ oo-1[r13 :-.3c.1
t r33 J

Oo = ltan-12 L['(r23c4 r13c4-_ r13s--'4 )SS+r23s4----r33c6 ]

where:

(B.?_)

(B.2c)

E= -(rl3+r2z)

F-_ rll - r23

G--- r32÷ 1

Due to symmetry, there are four solutions, summarized in Table B.1.
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Table B.I: Wrist Inverse Position Solutions

Solution 04

1 e4
2 04
3 04
4 04

05 0o

05 0o
05 8o+r

85 + r -00

The commercial wrist detailed in (Rosheim, 1987) has angular limits -45 ° < 05, 80 < 45 °.

Therefore, only the first line of Table I is a viable solution.

For the double universal joint wrist standing alone, the Jacobian matrix order is six

by three. Three joint rates are mapped to six Cartesian velocity terms, three translational

and three rotational. The Jacobian matrix for the wrist is reported below, with respect to

{H} coordinates, where H[Jwr] is the translational part and HlJwn] the rotational part.

to0X[JwT] = L s5co csso [ (B.3a)
Lssco 0 c6 j

H[jwR ] _ 2 (B.3b)= 2c5cc - 1 c5s206 -2s5
-ess20o 2c_ 0

For spherical wrists, [JwR] = [0]. The matrix H[JwR] above demonstrates the coupling

between position and orientation.
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APPENDIX C: MANIPULATOR POSITION KINEMATICS

This appendix presents position kinematics for the first three joints of the cylindrical

I, spherical, and articulated manipulators, pictured in Figs. 2b - 2d. For each manipulator,

the forward kinematics solution [BT] is given. Also, the inverse position kinematics problem

is solved: given {aPE}, calculate values for the first three joints. These solutions are

used along with the wrist solutions (Eqs. B.2a through B.2c) in the Zero Offset and

Position/Orientation Iteration methods described in Sections 4.2 and 4.3, respectively. The

inverse position solution for the three-axis Cartesian manipulator is presented in Section

4.1,

C.1 Cylindrical I Manipulator

0cerci],B_,= c0 0 8e r 0
[F_] 1 0

0 0

(c.,)

h = Pz (C.2a)

o = ta.-' (_-_) (c.2b)

r = V/Px 2 + py2 (c.2c)

There is one solution, assuming positive r.

C.2 Spherical Manipulator

-iO -c_8¢ c_c¢ rcOc¢'
[_T]= c_ -8084 s0c¢ r_Oc¢

c¢ 8¢ _ ¢
o 0 ]

¢ = San-I Pzc#
Px

r = _/Px 2 + Py= + Pz 2
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(C.4c)



There are two solutions, (e, ¢, r) and (e + _, _ - ¢, r).

C.3 Articulated Manipulator

The articulated manipulator kinematics equations are derived with L4 = 0 in Table

i.4.

I si cls23 clc23 Llct+L:c,cs+Lactc:3]
[r]'BT'= - ' sis:3 s,c:3 Lxsl + L:stc2 + LzSlC_Z| (c.s)

--C23 ,923 L2,92 + L3s23 |

o 0 1 J

-F 4- v/E: + F 2 - G:](e: + e3),_ = 2tan-1 _--_-
J

[ Pz-L3,923 ]

03=(02+03) - e2

(C.6a)

(c.60

(c.60

(c.6_)

where:
E = 2L3(Pxcl + Pys, - L,)

F = 2LaPz

G = L2:- L32 - (Pxc, + Pysl - L,)_- Pz=

Equation C.6a has two solutions,81 and o, + r. Due to the length LI, the quadrant-

specific inverse tangent solution for 01 is valid (assuming the command is within the ma-

nipulator workspace) but the second solution exists only if the radicand in Eq. C.6b is

non-negative. Each viable ot has two associated 02 and 03 values. Thus, there are either

two or four solutions.
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