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ABSTRACT

This paper is concerned with the implementation of a three-dimensional unstructured-

grid Euler-solver on massively parallel distributed-memory computer architectures. The goal

is to minimize solution time by achieving high computational rates with a numerically effi-

cient algorithm. An unstructured multigrid algorithm with an edge-based data-structure has

been adopted, and a number of optimizations have been devised and implemented in order

to accelerate the parallel computational rates. The implementation is carried out by creating

a set of software tools, which provide an interface between the parallelization issues and the

sequential code, while providing a basis for future automatic run-time compilation support.

Large practical unstructured grid problems are solved on the Intel iPSC/860 hypercube and

Intel Touchstone Delta machine. The quantitative effect of the various optimizations are

demonstrated, and we show that the combined effect of these optimizations leads to roughly

a factor of three performance improvement. The overall solution efficiency is compared with

that obtained on the CRAY-YMP vector supercomputer.

XResearch was supported by the National Aeronautics and Space Administration under NASA Contract
No. NAS1-18605 while the authors were in residence at the Institute for Computer Applications in Science

and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.





1. INTRODUCTION

The relatively rapid growth in microprocessortechnologyover the last decadehas lead

to the developmentof massivelyparallel hardwarecapableof solving large computational

problems. Given the relatively slowincreasesin largemainframesupercomputercapabilities,

it is now generally acknowledgedthat the most feasibleand economicalmeansof solving

extremelylargecomput_ttionalproblemsin the future will bewith highly parallel distributed

memory architectures. While suchhardware already exists and is rapidly progressing,the

software required to solve large problems in parallel has proved to be a major stumbling
block. The softwareproblemsare twofold. First, an efficient and inherently parallelizable

algorithm must be devisedfor solving the problem at hand. Algorithmic efficiencyrelates

to the ability to solvea problemwith a minimum numberof operationsor iterations. Thus,

simple explicit schemesare not generally suitable for large problems, and more complex

implicit or multigrid schemeswhich propagate information more rapidly throughout the

domainarepreferred. A parallelizablealgorithm is onewhich canbe brokenup into smaller

componentsand executedona parallel architecturewithout incurring substantial overheads,
both in terms of reducedcomputationalefficiency(increasednumberof operationsto achieve

the same level of convergence)and increasedcommunication costs. While simple explicit
schemesareoften easilyparallelizable,they arenot efficient. On the otherhand, considerable

difficulty hasoften beenexperiencedin parallelizingmorecomplexalgorithms. This problem

is compoundedin the caseof unstructured grids, since relatively few efficient algorithms

havebeendevised,eveil for sequential(vector) architectures. The secondsoftwareproblem

is an implementation issue.Most often, the programmeris required to explicitly distribute

large arrays over multiple local processormemories,and keep track of which portions of

eacharray resideon which processors.In order to accessa given elementof a distributed

array, communication betweenappropriate processorsmust be invoked. The programmer
shouldbe relievedof suchmachinedependentand architecture specifictasks. Ultimately, a

parallelizing compiler should be capableof automatically distributing data and setting up

inter-processorcommunication in an efficient manner, much as present-daycoarsegrained

sharedmemorysupercomputersprovide automated.support for multi-processing. Suchlow-

level implementational issueshave severelylimited the growth of parallel computational

applications, much in the sameway asvectorizedapplicationswereinhibited early on, prior
to the developmentof efficient vectorizingcompilers.

This work representsthe combinationof two related effortsaimedat easingthe software

problem. On the onehand,anefficient three-dimensionalunstructured solverhasbeendevel-

oped which is highly parallelizable.The sequentialversionof this algorithm haspreviously

beenreported [1]. The data-structuresand solution strategy (multigrid) havebeendesigned



(or chosen)with parallel overheadissuesin mind. (Thesealso have a beneficial effect on

the sequentialcode). O11the other hand, a set of parallellzation softwaretools (primitives)

hasbeen developedin order to easethe task of implementing the presentcode on parallel

architectures. The developmentof a parallelizingcompiler is plannedwhich eventually will
be capableof automatically imbedding the primitives in the sourcecode. However,at this

stage,the user is requiredto explicitly invoke the primitives at the appropriate locations in
the sourcecode.While this doesnot provide a completelyautomatic paraIlelization tool, it
doesrelieve the User:ofthe most burdensomelow:level details 6f:the implementation. The

developmentof theseprimitives, known asthe PARTI primitives (Parallel Automated Run-

time Toolkit at ICASE), aswell asthe compiler,hasbeenunderwayfor sometime, and has

beenpreviouslyreported [2]. This paper is lessconcernedwith the individual developmentOf

the solveror the parallclizi_gprimitives, but moreso w_iththe interaction betweenthesetwo
efforts resulting from-a-specifiCapplication: the implementation of the :unstructured Euler

±

solver on the Intel iPSC860. For example, the edge-based data-structure employed in the

solver was originally chosen in order to minimize and simplify communication between pro-

cessors. Similarly, experience gained during the implementation was used to modify various

primitives and even to create new primitives whose functionality had not been foreseen.

Parallel unstructured solver implementations have been performed in two-dimensions by

various authors, on SIMD architectures [3], and on distributed memory MIMD architec-

tures [4], [5] and [6]. Software environments for irregular problems have also been developed

and applied to two-dimensional unstructured grid solvers [5], and to two dimensional un-

structm'ed multigrid solvers While much use has been made of the concepts developed in

previous work, new optimizations have also been devised and incorporated. This collection

of techniques has been encapsulated into a set of software primitives which provides the

interface between the parallel implementation and the sequential code.

In the next section, a brief description of the unstructured multigrid Euler solver is

given. Thereafter, a description of the general parallelization approach and of the various

optimizations is given, as well as a description of the underlying philosophy of software-

tool development. Tile goal of the results section is to illustrate the beneficial effects on

performance of each of the individual optimizations, and to compare the obtained perfor-

mance with that of present-day supercomputers. Finally, the solution of a large practical

unstructured grid problem is demonstrated and the parallel efficiency is compared with that

obtained on tim CRAY-YMP-8 vector supercomputer.

2. THREE DIMENSIONAL MULTIGRID EULER SOLVER

The basis for the implementation is a three dimensional unstructured mesh Euler solver.
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Unstructured meshesprovidea greatdeal of flexibility in discretizing complexdomainsand

offer the possibility of easily performing adaptive meshing. However, unstructured meshes

result in random data-sets and large sparse matrices, which pose a significant challenge for

parallelization issues.

The three dimensional compressible gas dynamics equations are discretized on the un-

structured mesh using a Galerkin finite:element approach [1], [7]. The flow variables are

stored at the vertices of the mesh, and piecewise linear flux functions are assumed over the

individual tetrahedra of the mesh. The resulting spatially discretized equations can be recast

as a summation at each vertex of contributions along all edges meeting at that vertex. Thus,

the convective residuals may be assembled by performing a simple loop over the edges of

the mesh. Artificial dissipation terms are required in order to stabilize the solution, and

these are constructed as a blend of a Laplacian and biharmonic operator, the former being

constructed as a single loop over edges, and the latter as a double edge-loop. The spatially

discretized equations thus form a large set of coupled ordinary differential equations, which

must be integrated in time to obtain the steady-state solution. This is achieved using a

5-stage Runge-Kutta scheme. Enthalpy damping, local time-stepping, residual averaging

and an unstructured multigrid algorithm are employed to accelerate convergence to steady-

state. In the multigrid algorithm, at each cycle a single time-step is first performed on the

finest grid of the sequence and the flow variables and residuals are then interpolated up to

a coarser grid. This process continues recursively, on successively coarser grids. When the

coarsest grid is reached, the corrections are interpolated back to each successively finer grid,

and a new cycle is initiated. In the context of unstructured meshes, it has proven useful to

rely on sequences of independent non-nested coarse and fine meshes. In order to efficiently

interpolate variables between such meshes, an efficient search algorithm must be invoked in

order to determine the patterns (addresses and weights) for interpolation between any two

consecutive meshes of the sequence. This is done in a preprocessing stage, on a sequen-

tial machine, prior to the flow computations. Alternatively, this may be viewed as a mesh

generation post-processing stage. The basic data-structure for the Euler solver is based on

the mesh edges. For each edge, we store the addresses of the two vertices on either end of

the edge (similar to the coordinate-storage scheme for sparse matrices). This represents the

minimum amount of information necessary to describe the unstructured grid. It also results

in the minimum amount of data transfer between adjacent vertices within a residual eval-

uation operation, by avoiding duplicate transfers which are usually incurred by face-based

and traditional finite-element cell based data/structures. For parallel implementations, this

results in the minimum amount of c0mmun!cation and enables a relatively simple implemen-

tation, since each edge can be shared by at most two processors. The multigrid interpolation
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procedures,in which the addressesand weights for interpolation have beenprecomputed,

canbeviewedasa simplegather/scatter of data from one array (grid) to another. Suchop-

erations aresimilar to the gather-scatteroperationsrequiredon a given grid for assembling

the residualsand can thereforebe implementedwith existing softwareprimitives.

3, PARALLELIZATION (PARTI) PRIMITIVES

The PARTI primitives (Parallel Automated Runtime Toolkit at ICASE) are designed

to easethe implementationof computational problemson parallel architecturemachinesby

relieving the user of the low-levelmachinespecific issues. The researchdescribedin this

paper beganwith the versionof PARTI describedin [8] and surveyedin this section. We

then proceededto identify ways in Whichthe performanceof Unstructuredcodescould be

optimized. The optimizatlons that involvedreduction of communicationoverheadsresulted

in an improvedversionof PARTI. The optimizations that involvedreductionof computation

time weremanually implemented.
The PARTI primitives enablethe distribution and retrieval of globally indexed but ir-

regularly distributed data-setsover the numerouslocal processormemories. In distributed

memory machines,largedata arraysneedto be partitioned betweenlocal memoriesof pro-

cessors.Thesepartitioned data arraysare calleddistributed arrays. Long term storageof
distributed array data is assignedto specificmemory locations in the distributed machine.

A processorthat needsto read an array elementmust fetch a copyof that elementfrom the

memoryof the processorin which that array elementis stored. Alternately, a processormay
needto store a value in an off-processordistributed array element. Thus, eachelement in

a distributed array is assignedto a particular processor,and in order to be able to access

a given elementof the array we must know the processorin which it resides,and its local

addressin this pr0cessor'smemory. We thus build a translation table which, for eacharray
element, lists the host processoraddress. For a one-dimensionalarray of N elements,the

translation table alsocontainsN elements,and thereforemust be distributed itself over the

local memoriesof the processors.This is accomplishedby putting the first N/P elements

on the first processor,the secondN/P elementsOn the secondprocessor,etc ..., whereP is
the number of processors.Thus, if we are required to accessthe mth element of the array,

we look up its address in the distributed translation table, which we know can be found

in the (m/P + 1) th processor. Alternatively, we could simply renumber all the vertices of

the unstructured grid in order to obtain a regular partitioning of arrays over the proces-

sors. However, the present approach can easily deal with arbitrary partitions, and should

enable a straight-forward implementation of dynamically varying partitions, which may be

encountered in the context of adaptive meshing. One of the primitives handles initializa-



tion of distributed translation tables,and another primitive is usedto accessthe distributed
translation tables.

PARTI carriesout optimizations whichreduceboth the numberof messagessentaswell as

the volumeof data that must becommunicated.In distributed memoryMIMD architectures,

thereis typically a non-trivial communicationslatency or startup cost. Forefficiencyreasons,

information to be transmitted should be collected into relatively large messages.The cost

of fetching array elementscanbe reducedby precomputingwhat data eachprocessorneeds

to sendand to receive.In irregular problems,suchassolvingPDEs on unstructured meshes
and sparsematrix algorithms, the communicationspattern dependson the input data. This

typically arises due to somelevel of indirection in the code. This lack of information is

dealt with by transforming the original parallel loop into two constructscalledan inspector

and executor. During program execution, the inspector examines the data references made

by a processor, and calculates what off-processor data needs to be fetched and where that

data will be stored once it is received. The executor loop then uses the information from

the inspector to implement the actual computation. The PA_RTI primitives can be used

directly by programmers to generate inspector/executor pairs. Each inspector produces a

communications schedule, which is essentially a pattern of communication for exchanging

data.

Significant work has gone into optimizing the gather, scatter and accumulation commu-

nication routines for the iPSC/860. During the course of developing the PARTI primitives,

we experimented with a large number of ways of writing the kernels of our communication

routines. It is not the purpose of this paper to describe these low level optimizations or their

effects in detail; we will just summarize the best communication mechanism we have found.

In all of the experimental studies reported in this paper, we use the optimized version of the

communication routine kernels.

We communicate using FORCED message types. We use non-blocking receive calls

(irecv), each processor posts all receive calls before it sends any data. Synchronization

messages are employed to make sure that an appropriate receive has been posted before the

relevant message is sent.

Communications contention is also reduced. We use a heuristic developed by Venkatakr-

ishnan [4] to determine the order in which each processor sends out its messages. The

motivation for this heuristic is to reduce contention by dividing the communication into

groups of messages such that within each group, each processor sends and receives at most

one message. As Venkatakrishnan points out, this heuristic makes the tacit assumption that

all messages are of equal length and in any event does not even attempt to eliminate link

contention.



4. COMMUNICATIONS OPTIMIZATIONS

Our communication optimizations reduce the quantity of data that must be transmitted

between processors, the optimizations also reduce the number of messages tha(must be sent.

In our unstructured mesh solver, we encounter a variety of situations in which the same

data is accessed by several consecutive loops. For instance, Consider a step of the Runge

Kutta integration. Flow variables are used in sequence of three loops over edges followed

by a loop over boundary faces. The flow variables are only updated at the end of each of

the Runge Kutta steps. We can obtain all of the off-processor flow variables needed at the

beginning of the step. This makes it advantageous to develop methods that avoid bringing in

the same data more than once, these methods can also reduce the number of communication

startups.

Our new methods make it possible to track and reuse off-processor data copies. We do

this by modifying our software so that we are able to generate incremental communications

schedules, incremental schedules obtain only those off-processor data not requested by a

given set of pre-existing schedules. The pictorial representation of an incremental schedule

is given in Figure 1. In this figure, depict a situation in which a loop over mesh edges

(edgeJoop) is followed by a loop over mesh boundary faces (face_loop). The schedule to

bring in the off-processor data for the edge_loop is given by the edge schedule and is formed

first. During the formation of the schedule to bring in the off-processor data for the face_loop

we remove the duplicates shown by the shaded region in Figure 1. Removal of duplicates is

achieved by using a hash table. The off-processor data to be accessed by the edge schedule

is first hashed using a simple hash function. Next all the data to be accessed during the

face_loop is hashed. At this point the information that exists in the hash table allows us to

remove all the duplicatcs and form the incremental schedule.

5. REORDERING COMPUTATION

The performance of a single i860 processor on computationally important loops over mesh

edges range from 2.75 MFLOPS to 4.1 MFLOPS, in 64 bit arithmetic, depending on the

unstructured mesh used. It seems likely that this relatively poor performance is due to the

effects of irregular data access patterns on the i860 memory hierarchy. The lowest level of

i860 memory hierarchy consists of 32 integer and 32 floating point registers, each 32-bits

wide. Data stored in registers can be used directly for computation without any memory

overheads. At the next level of memory hierarchy, i860 has 8k byte data cache. The cache

line size is 128 bits and two double precision floating point numbers can be loaded from main

memory into cache simultaneously. The data stored in cache can be accessed with a delay of
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one clock cycle. In cases where data is not available in cache it is loaded from memory, which

causes a delay of several cycles. Other than possibly poor utilization of registers and cache,

highly irregular data access patterns can potentially cause severe performance degradation

due to overheads associated with the i860's mechanism for handling virtual memory. The

virtual memory of i860 is divided into 4k bytes pages. Whenever a new page is accessed, a

substantial overhead is incurred, associated with locating the page in physical memory. This

overhead can be saved if the page has recently been accessed. The details of each component

of i860 memory hierarchy can be found in [9].

The single processor performance can be improved by reordering the data and by restruc-

turing the code associated with unstructured mesh computations. Because we employ an

edge based data structure in our codes, most of the computational work in the code is found

in loops over edges so we concentrate our efforts on such loops. We investigated methods

that change the order in which mesh edges are traversed in loops. We also investigated meth-

ods which renumber mesh vertices and reorder data associated with the mesh. Reordering

edges and renumbering vertices is expected to result in better locality and therefore should

improve cache utilization and reduce virtual memory management overheads. We also in-

vestigated the effects of restructuring edge loops to use a compressed sparse row (CSR) type

representation to improve register utilization and reduce the number of memory operations.

Reordering Edges

We reorder list of edges so that all the edges incident on a node are listed consecutively.

The edges incident on node 1 are listed first, followed by edges incident on node 2 and so on.

We avoid listing and edge (i,j) twice by associating it with node i, if i < j, or with node j

if j < i. The advantage of this reordering is that for all edges associated with a node i, the

data for node i remains in cache, giving a better cache utilization.

Loop Restructuring

We can restructure edge loops to use a CSR type format [10]. When we reorder edges, we

list all edges incident on a node consecutively. We can take this a step further by compressing

the data structure that represents the list of edges. An edge represents an association between

two vertices. Once we have ordered the edges in the manner described above, for each edge

(i,j) we can simply generate an array IA that lists the consecutive values of j. We maintain

a separate pointer array JA. Thus IA(JA(i)),..,IA(JA(i+I)-I) represent the edges associated

with node i.



Node Reordering

The numbering of mesh vertices can have an important effect on the pattern of data

access. We seek to number mesh vertices so that data associated with vertices linked by

mesh edges tend to be stored in nearby memory locations. There is no reason to expect

that mesh orderings produced by mesh generators should have this property. For instance,

Figure 2 depicts data access pattern for the 2800 node mesh shown in Figure 4. The X-axis

and the Y-axis in the figure give node numbers and each point represents an edge between

the corresponding vertices on X-axis and Y-axis.

We expect that the highly non-uniform data accesses shown in Figure 2 will cause poor

cache utilization and high virtual memory management overheads. To reduce these over-

heads, we reorder the vertices using the Reverse Cuthill McKee (RCM) method [11]. The

RCM reordering method is frequently used by researchers in the area of sparse matrix com-

putation. It is a graph based technique to reorder columns of a sparse matrix to reduce its

bandwidth. The resulting data access pattern after RCM reordering in shown in Figure 3.

In comparison to Figure 2, the data access pattern of Figure 3 shows much less irregularity

and therefore, should improve cache utilization and reduce virtual memory management

overheads.

Single Processor Results

The above reordering methods were applied to several meshes to study single node per-

formance on the iPSC/860. The results of our experimentation are summarized in Table

1. Meshes M1 and M2 are "regular" meshes which are represented using our unstructured

mesh data structures (i.e. tetrahedral meshes derived from the subdivision of a structured

hexahedral mesh), and mesh M3 is the smallest of the unstructured meshes used by the

multigrid algorithms to solve the transonic test case over the ONERA M6 wing.

Column one in the above table gives the number of vertices and identification of the

mesh used. The MFLOPS obtained without any reordering by the unstructured Euler solver

are shown in Column 2. The next four columns show the improvement in MFLOPS due

to various combinations of three reordering schemes described above. The results indicate

that edge reordering alone gives significant improvement in performance for all the meshes.

Node reordering in conjunction with edge reordering has more impact on the mesh M3 in

comparison to the two other meshes. This is probably due to the differences in the ways in

which the meshes were generated. The loop transformation does not have much impact on

performance (Column 3 v/s Column 5 and Column 4 v/s Column 6) because use of cache

instead of registers is not very costly. From these experimental results we conclude that



by reordering the performanceon a singlenode of the iPSC/860 can be improved almost

by a factor of two for the types of meshesused in unstructured applications. Since loop

restructuring was found to yield only marginal benefits, in the interest of preservingthe

original structure of the sequentialcode, only edgereordering and node reordering were

employedin all subsequentimplementations.

6. RESULTS

We describethe results of a number of experiments we have carried out to evaluate the

performance impact of our optimizations. These experiments were carried out on an Intel

iPSC/860 hypercube and the Intel Touchstone Delta. For purposes of comparison, we cite

performance numbers obtained from an optimized Cray YMP version of this code [1].

A standard transonic test case is chosen for this comparison, namely a Mach 0.84 flow

over an ONERA M6 wingat 3.06 degrees incidence. The sequence of meshes employed for

the multigrid algorithm in this case are depicted in Figure 4. The coarsest grid contains

merely 2,800 vertices, while the finest grid contains a total of 357,900 vertices and just

over 2 million tetrahedra. The intermediate grids have 9,428 vertices and 53,961 vertices

respectively. The computed Mach contours of the obtained solution are depicted in Figure

5, where the familiar double-shock pattern is observed.

We employ a single grid algorithm along with two versions of multigrid algorithms. The

two versions of multigrid are W and V-cycle algorithms. The V-cycle multigrid algorithm

visits all meshes an equal number of times within a single cycle, while the W-cycle visits

coarse meshes more frequently than fine meshes. Details of these algorithms can be found in

[1]. W-cycle multigrid strategies require slightly more work per cycle (of the order of 15% to

25% depending on mesh sizes), but often converge slightly more rapidly and are thus more

efficient overall. However, the relative merits of W versus V-cycle strategies can be very

case dependent. On the other hand, both strategies always offer large increases in efficiency

over single grid explicit methods. Figure 6 provides a performance comparison between the

single grid and W-cycle multigrid code by plotting convergence histories in terms of work

units for the solution of flow over the ONERA M6 wing at the above prescribed conditions

on the 357K mesh. In this plot, a work unit is defined as the time required for a single grid

explicit cycle. As can be seen in this figure, the W-cycle multigrid algorithm converges over

6 orders of magnitude in roughly 150 work units, which corresponds to 100 multlgrid cycles,

while the single grid calculation is seen to require almost an order of magnitude more work

to reach the same level of convergence.

On the CRAY-YMP, the single-grid code for this case required a total of 33MW of

memory and ran at a speed of 19 seconds/cycle on a single processor. The W-cycle multigrid



code required a total of 42 MW of memory and ran at a speed of 34 seconds/multigrid cycle.

For both cases, the computational rates achieved were about 100 Mflops. For the muitigrid

run, engineering solutions (3 to 4 orders of Convergence) for this case could thus be obtained

in roughly 30 minutes of CRAY-YMP single processor CPU time.

We employed the recursive spectral partitioning algorithm to carry out partitioning

[12], [13]. Williams [14] compared this algorithm with binary dissection [15] and simu-

lated annealing methods for partitioning two dimensional unstructured mesh calculations.

He found that recursive spectral partitioning produced better partitions than binary dissec-

tion. Simulated annealing in some Cases produced better partitions but the overhead for

simulated annealing proved to be prohibitive even for the relatively small meshes employed

(the largest had 5772 elements). Venkatakrishnan [4] and Simon [13] also reported favorable

results with this partitioner. We carried out preliminary performance comparisons between

binary dissection and the recursive spectral partitioning and found that recursive spectral

partitioning gave Superior results on the IPSC/860 on our three dimensional meshes. The

results we report all have been obtained using recursive spectral partitioning to partition

all meshes. Partitioning was performed on a sequential machine as a preprocessing opera-

tion. In all of the experimental studies reported in this paper, we use the same optimized

version of the communications kernelS which employed forced message types, non-blocking

receives (irecv), and which employ Venkatakrishnan's heuristic to determine the order in

which messages are sent.

Table 2 examines the effects of the communication optimizations and the reordering

optimizations. The table depicts the Mflops obtained with the single grid, and the W and V

cycle multigrid algorithms on a 357K node fine mesh. The figure also depicts the performance

of the single grid method on the second finest grid (53,961 vertices). Measurements were

performed on a 128 processor Intel iPSC/860. We achieve roughly a factor of 2.5 to 3

improvement in computational rate from the use of our optimizations. For instance, consider

the single mesh code on the 357K mesh. When we employed both optimizations, we saw a

computational rate of 356 Mflops. Communications optimizations without reordering yielded

217 Mflops, reordering without communications optimizations yielded 149 Mflops. When we

employed neither optimization, we achieved 127Mflops. Analogous improvements are seen

in the multigrid codes.

The multigrid V and W cycle algorithms achieved 298 and 244 Mflops respectively when

we employed both communication optimizations and reordering. The frequent visits to coarse

meshes, interpolation and prolongation in W cycle multigrid might be expected to lead to

a significant degradation in computational rate. A degradation of roughly 32% compared

to the single grid code was in fact observed, but substantially larger degradations are seen

m

m

=

m

i

i0



when we leave out either our communication optimizations or reordering.

Table 3 gives information on the effects of the different optimizations on communication

and computation time. For the single mesh code, use of the communications optimizations

lead to a fourfold reduction in time spent on communication. For the W cycle multigrid, we

have broken down communication time into

communication time required to carry out calculations on one of the four individual

meshes in the multigrid calculation (intra-mesh communication in Table 3), and

communication time required for transferring data between meshes (inter-mesh com-

munication Table 3).

We note that the cost of carrying out intra-mesh communication is over an order of magnitude

higher than the cost of carrying out inter-mesh communication. This indicates that we do not

appear to be making a significant performance compromise by independently partitioning

the meshes in the multigrid algorithms.

The final test case involves the computation of a highly resolved flow over a three-

dimensional aircraft configuration. We employed the single mesh code for this test case,

although plan soon to run the multigrid case. The mesh contains a total of 804,056 points

and approximately 4.5 million tetrahedra. This is believed to be the largest unstructured

grid problem attempted to date. In Figure 7, we depict the second mesh of the proposed

multigrid sequence (we do not show the 804K mesh due to printing and resolution limita-

tions). For this case, the freestream Mach number is 0.768 and the incidence is 1.16 degrees.

The computed Mach contours are shown in Figure 8, where good resolution of the shock

on the wing is observed. This case achieved a rate of 778 Mflops on 256 processors of the

Delta machine, and 1496 Mflops on the full 512 processor configuration of the Delta. The

same case was run on the CRAY-YMP-8 machine, using all eight processors in dedicated

mode. The CRAY autotasking software was used to parallelize the code for this architecture.

Both the single grid and multigrid codes achieved a computational rate of 750 Mflops on

all eight processors, which corresponds to a speedup of roughly 7.5 over the single processor

performance. A residual reduction of six orders of magnitude was obtained in 100 multigrid

W-cycles which required 16 minutes on the full CRAY-YMP-8. Although the computational

rate achieved on 512 processors of the Delta machine is roughly double of that delivered by

the CRAY-YMP-8, a degradation of about 30% can be expected with the implementation

of the multigrid W-cycle on the Delta for this case, as was observed for the previous case.

Thus, a similar solution should be achievable on the Delta in just under 10 minutes.

In Table 4 we depict the computational rates achieved on different architectures for the

single mesh solution procedure, along with V and W cycle multigrid solution procedures,

11



for the two casespreviously described.Weemployedall of our optimizations in these tests.
As expected, for the CRAY-YMP, single processorrates are relatively insensitive to the

problem sizeand the solution strategy. On the iPSC/860 and the Delta the computational
rates are calculated by counting the number of floating point operations performed. On
the CRAY-YMP, the system facility called hpm was utilized to measure the rates. If we

scale the computational rate given by the CRAY-YMP facility, to get the rate for the Intel

machine, the scaling factor being the ratio of the time per cycle on the CRAY-YMP to

the corresponding value on the Intel machine, we find the rate is about an average of 40

Mflops more than that presented for the iPSC/860 and the Delta. On the iPSC/860 and the

Delta architectures, maximum computational efficiency is achieved for large meshes using

the single grid solution strategy. Thus the single grid run of the 804K grid on 512 Delta

processors achieves twice the computational rate of the CRAY-YMP-8, or 15 times the

rate of a single CRAY-YMP processor. Similarly, the 357K mesh achieved about 7 times the

performance of a single CRAY-YMP processor for a single grid run, (roughly equivalent to the

full CRAY-YMP-8 performance) and 4 times the single processor CRAY-YMP performance

for a W-cycle multigrid run (or about 60% of the CRAY-YMP-8 performance). Since the

overall solution efficiency of the multigrid strategy is much higher than that of the single

grid explicit scheme, this emphasizes the need to use overall solution time as a measure of

solution efficiency rather than simply computational rates.

f

7. CONCLUSIONS

A number of earlier reports have noted that two dimensional, explicit unstructured mesh

solvers appear to be well suited for distributed memory multiprocessors. While explicit

schemes may be easily parallelizable, they are not numerically efficient. We have developed

a distributed memory version of an efficient three dimensional unstructured multigrid code.

We have shown that competitive computational rates can be achieved for this problem on

massively parallel distributed memory architectures. An approximately three-fold perfor-

mance improvement was obtained by optimizations which reduced communication overhead

and increased the computation time required by the processors.

The encapsulation of the communications optimizations into a set of software primitives

eases the implementation of similar problems and the porting to different architectures, while

providing the foundations for possible run-time compilation support of parallelization [8].

The simultaneous use of an efficient multigrid algorithm and massive parallelism results in

rapid solution times for large problems.

Our approach is designed to facilitate the development of parallelized adaptive meshing

strategies. The PARTI primitives currently support problem remapping but do not as yet

12
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support the functionality that will be required for the process of adaptive remeshing itself.

Once this functionality is developed, we will be able to implement adaptive three dimensional

multigrid codes on distributed architectures.
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Mesh

size

545(M1)

3681(M2)

2800(M3)

Original

4.03

4.09

2.76

Edge Reordering

Original

Node Ordering

Node

reordering

6.15

6.27

5.42

Loop Restructuring

Original

Node Ordering

5.90

6.13

4.28

Node

reordering

6.53

6.42

4.35

6.74

6.74

5.76

Table 1: Performance of reordering on single node of iPSC/860 in Mflops

Method

No Communication Opt.

Original Mesh Ordering

No Communication Opt.

Reordered Mesh

Communication Opt.

Original Mesh Ordering

Communication Opt.
Reordered Mesh

Explicit

53K Mesh

85

88

172

216

Explicit

357K Mesh

127

149

217

356

Multigrid
357K Mesh

V Cycle

105

120

181

298

Multigrid

357K Mesh

W Cycle

92

100

153

244

Table 2: Performance in Mflops of Unstructured Mesh Code on 128 Processor iPSC/860
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Method Explicit
comm total

No CommunicationOpt.
Original Mesh Ordering

No CommunicationOpt.
ReorderedMesh

CommunicationOpt.
Original MeshOrdering

CommunicationOpt.
ReorderedMesh

Multigrid W Cycle
comm total

intra-mesh inter-mesh

7.6 14.1 30.1

7.6 12.0 29.4

1.8 8.2 9.6

1.8 5.0 9.4

1.7 40.1

1.6 35.8

0.5 22.7

0.4 14.6

Table 3: Communication,Tota_Time per Cycle (seconds).Unstructured Mesh Code 128
ProcessoriPSC/860 357K Mesh

_=

7

Method

128 Processor

iPSC/860

128 Processor

Delta

256 processor
Delta

1 Processor

Y/MP

Explicit
357K Mesh

356

408

646

103

Multigrid
357K Mesh

V Cycle

298

320

516

100

Multigrid

357K Mesh

W Cycle

244

267

412

100

Table 4: Computational Rates (Mflops) Unstructured Mesh Code iPSC/860 and Delta.

Incremental Scheduling, Blocked and Reordered Mesh
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INCREMENTAL SCHEDULE

OFFPROCESSORFETCHES
IN SWEEPOVER EDGES

OFFPROCESSORFETCHES
IN SWEEPOVERFACES

MENTAL

/
EDGE SCHEDULE

Figure 1: Incremental Schedule
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Figure 2: Initial Data Access P_ttern of 2800 Node Mesh
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Figure 3: Data Access Pattern of 2800 Node Mesh After RCM Reordering
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T f J

Mesh 1

/

Mesh 2

Mesh 3

Figure 4: Sequence of Global Coarse and Fine Meshes Employed for Computing Inviscid

Transonic Flow over the ONERA M6 Wing. Mesh 1:2,800 Nodes, 13.576 Tetrahedra, 2,004

Boundary Faces; Mesh 2:9,428 Nodes, 47,504 Tetrahedra, 5,864 Boundary Faces; Mesh 3:

53,961 Nodes, 287,962 Tetrahedra, 23,108 Boundary Faces; Mesh 4:357,900 Nodes, 2,000,034

Tetrahedra, 91,882 Boundary Faces (Not Shown).
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Figure 5: ComputedMach Contourson the Second Finest Mesh of the Multigrid
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Figure 6: Comparison of the Multigrid Convergence Rate and the Single Grid Converge Rate
on the Finest Grid of the Sequence about the ONERA M6 wing as Measured by the Average

Density Residuals versus the Number of Work Units
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Figure 7: Coarse Unstructured Mesh about an Aircraft Configuration with Single Nacelle;

Number of Points = 106,064, Number of Tetrahedra= 575,986 (Finesh Mesh Not Shown)
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Figure 8: Mach Contoursfor Flow over Aircraft Configuration Computed on Fine Mesh of

804,056 Vertices and 4.5 million Tetrahedra (Mach = 0.768, Incid ence = 1.116 degrees)
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