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ABSTRACT

A new noneontacting waveguide backshort has been developed for millimeter and submillimeter wave

frequencies. It employs a metallic bar with rectangular or circular holes. The size and spacing of the holes are

adjusted to provide a periodic variation of the guide impedance on the correct length scale to give a large

reflection of rf power. This design is mechanically rugged and can be easily fabricated for frequencies from 1

GHz to 1000 GHz. This design is particularly useful for submillimeter wave frequencies above 300 GHz where

conventional backshorts are difficult to fabricate. Model experiments have been performed at 4-6 GHz to

optimize the design. Values of reflected power greater than 95% over a 30% bandwidth have been achieved.

The design has been scaled to WR-10 band (75-110 GHz) with comparably good results.

INTRODUCTION

Waveguides are used in a wide variety of applications covering a frequency range from 1 GHz to over 600 GHz.

These applications include radar, communications systems, microwave test equipment, and remote-sensing

radiometers for atmospheric and astrophysical studies. Components made from waveguides include transmission

lines, directional couplers, phase shifters, antennas, and heterodyne mixers, to name a few. In addition to the

many commercial applications of waveguides, NASA needs such components in radiometers operating up to 1200
GHz for future space missions, and the Department of Defense is interested in submillimeter wave

communications systems for frequencies near 1000 GHz.

One of the most frequent uses of waveguide is as a variable length transmission line. These lines are used as

tuning elements in more complex circuits. Such a line is formed by a movable short circuit or "backshort" in the

waveguide. A conventional approach is to use a contacting backshort where a springy metallic material, such

as beryllium copper, makes DC contact with the broadwalis of the waveguide. The contacting area is critical,
however, and must make good contact to produce an acceptable short circuit. These backshorts are excellent

in that they provide a good short circuit over the entire waveguide band. However, the contacting areas can
degrade from sliding friction and wear. It is also extremely difficult to get a uniform contact at frequencies above

300 GHz where the waveguide dimensions become 0.5 mm x 0.25 mm for the 300-600 GHz band.

An alternative solution is the noncontacting backshort shown in Fig. 1. A thin mylar insulator prevents contact

and allows the backshort to slide smoothly. In order to produce an rf short circuit and, hence, a large reflection,

this backshort has a series of high- and low-impedance sections which are approximately Xg/4 in length where

_.g is the guide wavelength. The rf impedance of this design is given approximately by

Za ( Zlow )n= _ Zlow
Zhigh

(1)

where Zlo w is the guide impedance of the thick (low-impedance) section; Zhi h is the impedance of the thin
(high-impedance) section; and n is the number of sections. Values of Zrf < _ ohm are theoretically possible

which provides a good short circuit. However, beginning near 100 GHz, the thin high-impedance section become
difficult to readily fabricate, and in the 300-600 GHz band, these sections become too thin to fabricate. The

backshort is no longer strong enough to slide snugly in the waveguide.
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Figure 1. Cross sectional view of a conventional noncontacting back.short. "b" is the

waveguide height. - "
z-

New Backshort Deslma "

A new noncontacting backshort has been developed and is shown in Fig. 2. In order to obtain a large reflection,

a noncontacting backshort must provide a periodic variation of guide impedance on the correct length scale. This

is accomplished in the new design by either rcctangularor ¢ireula r holes with the proper dimensions and spacing

cut into a metallic bar. This bar is dimensioned to form a snug fit in the waveguidc with a mylar insulator along
the broadwalls. The holes replace the thin-metal, high-impedance sections in the conventional design shown in
Fig. 1. Since the holes extend completely through-die bar, this yields a -: :-_

(a)

(b) --S©©

HOLES _____ /WAVEGUIDE /MYLAR
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(c) \\ T

New noncontacting backshort desigu. (a) A metallic bar of width W and thickness

T with rectangular holes cut near one end. The hole length L1 and separation S

are Important in determining the d properties. "S" is also the distance from the
end of the bar to the edge of the first hole. (b) A similar backshort design using

round holes. (c) Cross sectional vie w o f the new backshort design in the

waveguide. A thin mylar insulator allows the backshort to slide smoothly.
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higher impedance than the corresponding sections in the conventional design. Thus, the high-to-low

impedance ratio is larger in the new design. In addition, the electromagnetic fields and power are concentrated

near the central axis of the wavegnide, so the holes are effective in producing correlated reflections leading to
an overall large reflection of rf power. The new design is also easy to fabricate and can be used at any

waveguide frequency between 1 GHz and 1000 GHz. For very high frequencies, above 300 GHz, the metallic

bar is a piece of shim stock polished to the correct thickness. The holes can be formcd by drilling, punching,

laser machining, or can be etched using common lithography techniques.

Measurement Techniqu_

The backshort design was optimized by testing the performance in WR-187 band wavcguidc (3.16 GHz - 6.32

GHz). The waveguide dimensions are 47.5 mm x 22.1 mm (1.87 in x 0.87 in). The magnitude and phase of
the reflection coefficient were measured with an HP 8510B Vector Network Analyz.er. A commercially available

coaxial-to-waveguide transition was used to connect the waveguide to the nctwork analy-zcr. This measurement

system was calibrated using two offset contacting shorts set at _.g/8 and 3Xg/8 in the wavcguidc and a sliding

waveguide load. Subsequent verification using a contacting short indicated a measurcment crror of about t0.2

dB in the magnitude measurement.

Several WR-187 band backshorts were built and tested. The varied paramctcrs were the (a) shapc of the holes,

(b) size of the holes, (c) spacing of the holes, (d) number of holes, (e) thickness, T, of the backshorts and, hence,
width of the gap between the backshort and the waveguide wall, and (f) thickness of thc mylar insulator. Each

of these parameters can affect the electrical length of the high- and low-impedance sections which determines
the performance of the backshort.

Millimeter wave tests were also made in WR-10 waveguide at 75-110 GHz. The test apparatus is shown in Fig.

3. A Micro-Now backward wave oscillator (BWO) and Singcr sweeper were used to provide a 75-110 GHz swept
signal. A direct detector, 10 dB directional coupler, and Wihron 560A Scalar Network Analyzer were used to

detect the reflected power. The system was calibrated by placing a copper plate at the position of the reference

plane at the wavegulde flange.

SCALAR NETWORK IANALYZER

Q:
BWO

75 - 1 IS GHz

DETECTOR

X
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Figure 3. Millimeter wave test apparatus.
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RESULTS

WR-187 Band Mqasuremcnls

Figure 4 shows thc rcflcctcd signal fl)r a solid bar without holcs. This backshort has dimensions W = 47.5 mm

and T 19.7 mm. This leaves a gap of 1.2 mm on eithcr side of the bar and waveguide wall. This is a large

gap, but it corrcsponds to typical machining tolcrances to bc expected for much smaller waveguides at 200-300

(;Hz. Thc mylar is 0.89 mm thick (thc mylar thicknesses used for the various backshort tests were obtained by

stacking two to five laycrs of 0.127 mm and 0.254 mm thick sheets). As seen in Fig. 4, the solid bar without

holes does not makc a good backshort. Thcrc arc several frequency bands where the reflection is much less than

-1.0 dB (0.79 rcflcctcd powcr). A mode is rcadily generated in the mylar-filled gap between the bar and the

wavcguidc wall, and the power cscapcs out the end of the waveguide. At a few frequencies, the reflection

cocfficicnt approaches -0.25 dB but only ovcr a very narrow bandwidth.

Figure 4.

Figure 5.
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Reflected Power from a solid bar without holes. This design does not make a

good backshort. Several large dropouts occur across the frequency band.
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Reflected power from a backshort with three rectangular holes. The mylar is 0.89

mm thick. Excellent performance is obtained over a broad bandwidth.
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Figure 5 shows the reflected signal for a bar with rectangular holes. The reflection coefficient is greater than

-0.2 dB (0.95 reflected power) over a 33% bandwidth centered around 4.8 GHz. This is, of course, a dramatic
improvement over the solid bar without holes. The backshort dimensions are W = 47.5 mm × T = 19.7 mm,

and the mylar thickness is 0.89 mm. There are three holes, each with dimensions L 1 = 19.3 mm, 1.2 = 28.4 mm

and spacing S = 8.7 mm. Taking the center frequency of the stop band to be 4.8 GHz implies that the high-

impedance section lengths are L! = 0.24 _.g where _tg = 79.1 mm, and the low-impedance sections are S = 0.17

_.g where _.g = 50.3 mm. The presence of the mylar modifies the waveguide modes. The guide wavelengths,
_.g, for the high- and low-impedance sections were calculated using a transverse mode technique which is

described in references [1] and [2]. We are currently working on a full theoretical description which will allow

one to calculate and design the center frequency, bandwidth, and reflection coefficient as a function of hole size,

shape, spacing, and dielectric thickness [3].

A significant decrease in the reflection coefficient (a "dropout") is seen near 5.8 GHz in Fig. 5. The position of

this dropout was dependent on mylar thickness. Increasing the mylar thickness, which decreases the guide

wavelength, moved the dropout to lower frequency. Decreasing the thickness moved it to higher frequency.
Figure 6 shows the result for a mylar thickness of 0.64 mm. The response is much flatter except for a slight

decrease in reflection near 4.8 GHz. This response is comparable to that obtained for the conventional type of
backshort shown in Fig. 1.

Figure 6.
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Reflected power from a backshort with three rectangular holes. Reducing the

mylar thickness to 0.64 mm moved the dropout seen in Fig. 5 out of band. The
performance is comparable to a conventional noncontacting backshort.

Figure 7 shows the reflection coefficient for a backshort with three circular holes of diameter D = 19.3 mm and

spacing S = 8.7 mm. The bar dimensions are W = 47.5 mm x T = 19.7 mm, and the mylar thickness is 0.89

mm. The reflection is greater than 0.2 dB over a 32% bandwidth with a center frequency near 4.75 GHz. This

gives the high-impedance section lengths D = 0.24 _.g where _.g = 80.6 mm, and the low-impedance section

lengths S = 0.17 _.g where _.g = 51 mm [1, 2]. These results are similar to those obtained with the rectangular

holes. This is encouraging since round holes are easier to fabricate. The dropout near 5.7 GHz is somewhat

larger than that seen in Fig. 5. This probably results, in part, from power which leaks around the edges of the
holes. Deceasing the mylar thickness to 0.64 mm moves the dropout to high frequency. The result is shown in

Fig. 8. A new dropout, however, is beginning to appear at the low frequency end.

Many other variations of the backshort parameters, other than those discussed here, were tested. These

variations affected the magnitude, phase, and bandwidth of the rf reflection. A more extensive discussion of

these systematic variations will be given at a later date. The results discussed here are typical of the best
performance to date.
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Figure 7.
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Reflected power for a backshort with three round holes. The mylar thickness is

0.89 ram. The performance is comparable to the backshort with rectangular holes.
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Figure 8. Same backshort as in Fig. 7, except mylar thickness is reduced to 0.64 mm. The

dropout at the high-frequency end has moved out of band.

WR-1Q Band Measurements

A crucial test of this new design is to measure its performance at miUimeter wave frequencies. The WR-187

band backshorts were scaled for use at WR-10 band. The scale factor is 0.0535. Thus, the backshort d_ensi_ns

are W -- 2..54 mm x T = 1.05 ram. The WR-10 waveguide d_ensions are 2.54 mm x 1.27 mm (0.10 in x 0.05

in). The frequency range, 4 GHz - 6 GHz, scales up to 75 GHz - 112 GHz.
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Figure 9 shows the reflection coefficient versus frcquency for a backshort with three rcctangular holes. The hole
dimensions and spacing were scaled from the low frequency case. The mylar is 0.051 mm thick which

corresponds to 0.95 mm at WR-187 band. Thus, the results in Fig. 9 should correspond approximately to those

shown in Fig. 5. As seen in Fig. 9, the performance is excellent and corrcsponds wcll with the low-frcqucncy

case. The decrease in reflection near 110 GHz corrcsponds almost exactly to thc dropout sccn near 5.8 GHz.
The reflection coefficient is -0.05 dB to -0.3 dB over about a 30% bandwidth. This is suitable fl_r practical

applications. The missing sections of the curves in Fig. 9 corrcspond to frcqucncics at which the BWO was

unstable and the data could not be adequately normalized.
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Reflected power for a backshort with three rectangular holes in WR-10 _aveguide.

The 0 dB reference is provided by a metal plate inserted between the waveguide
flanges. Excellent performance is obtained over a broad bandwidth. This result

is comparable to the low-frequency case (see Fig. 5).
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Figure 10. Reflected power for a backshort with three round holes in WR-10 waveguide. Tire

0 dB reference is provided by a metal plate inserted between the waveguide

flanges. The performance is comparable to the low-frequency case (set' Fig. 7), but
the bandwidth is narrower.

167



s

Figure 10 shows the performance for a backshort with three round holes. These results correspond to the low-

frequency case shown in Fig. 7. The reflection coefficient is -0.3 dB or better over the frequency range from
about 76 GHz to 90 GHz. Again, this is well suited for many applications. However, this is only about half the

bandwidth observed in the low-frequency case. The dropout near 105 GHz, nonetheless, corresponds well to

that seen in Fig. 7. The generally low reflection, '. -1 dB, between 90 GHz and 105 GHz, however, is not seen

in the low-frequency case. It may simply result from the mylar thickness not being exactly correct. Further tests

with the low-frequency backshort are needed to check this as well as sensitivity to other dimensional tolerances.

CONCLUSIONS

A new noncontacting waveguide backshort design has been developed which provides performance as good as

the more developed conventional approaches. It employs a metallic bar with rectangular or circular holes to

provide a periodic variation of the waveguide impedance on the correct length scale to result in a large reflection
of rf power. This design is mechanically rugged and can be easily fabricated using a variety of methods for

frequencies from 1 GHz to 1000 GHz. It should allow tunable waveguide systems to be extended well above
300 GHz.

ACKNOWLEDGEMENTS

We wish to thank M. A. Frerking and P. Siegel for valuable discussions. This work was supported in part by

the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics

and Space Administration and the Innovative Science and Technology Office of the Strategic Defense Initiative

Organization.

REFERENCE

Ill

I21

M. K. Brewer and A. V. Raisanen, IEEE Trans. Microwave Theory Tech. MTr-30, 708 (1982).

R. F. Harrington, Tim¢-Hormonic El¢¢tromagneti¢ Fields, McGraw-Hill, New York, pp 158-161 (1961).

[3] T. Weller, P. B. Katehi, and W. R. McGrath, to be published.

i

168


