N92-22497)

A Simple Method for Simulating Gasdynamic Systems

Tom T. Hartley
Department of Electrical Engineering
The University of Akron
Akron, OH 44325-3904

216-972-5991
December 1990

Introduction

This memo contains a brief discussion of a simple method for performing digital simulation of gasdynamic systems. Basically it is a modification of a method attributed to Courant, Isaacson, \& Rees (1952), "On the Solution of Nonlinear Hyperbolic Differential Equations by Finite Differences," Communications on Pure and Applied Mathematics, vol V, pp 243-255. The approach is somewhat intuitive and requires some knowledge of the physics of the problem as well as an understanding of the effect of finite differences. The method is given in Appendix A which is taken from the book by P.J. Roache, "Computational Fluid Dynamics," Hermosa Publishers, 1982. The resulting method is relatively fast while it sacrifices some accuracy.

Spatial Differencing Revisited

The reader is reminded of the general problem associated with simulating nonlinear hyperbolic systems of the form

$$
\frac{\partial u}{\partial t}+\frac{\partial F(u)}{\partial x}=S .
$$

The problem is that the information is allowed to travel in both spatial directions in subsonic flow. It then becomes difficult to choose a spatial differencing operator. A central difference would be the obvious choice, however the resulting difference equation for u will become dominated by high frequency spurious noise or instability. A pure forward or backward difference, on the other hand, will only allow information to travel in one direction, again yielding numerical instability. The clever thing about the Courante, Isaacson, Rees approach is that the actual physics of the process is
considered when doing the differencing. The terms in the $F(u)$ vector associated with mass flow and energy are assumed to propagate signals downstream. Thus each of these terms are approximated using backward differences. Alternatively, the terms in the $F(u)$ vector associated with pressures are assumed to propagate information in both directions. Thus each of these terms are approximated using central differences. The resulting method has the remarkable properties of stability, shock capturing, and reasonable accuracy. Both the time responses and steady state spatial distributions have first order accuracy. Furthermore, it also appears that some rather large spatial lumps are possible. A real benefit of this method is its simplicity and computational speed. As it does not usually require explicit artificial dissipation and is a one pass method, it should be approximately two times faster than MacCormack's method.

The method, as applied to quasi-one-dimensional gasdynamic systems, is as follows:

$$
\begin{gathered}
\dot{\rho}_{i}=-\frac{1}{H A_{i}}\left[A_{i} m_{i}-A_{i-1} m_{i-1}\right]+\frac{1}{A_{i}} M_{i} \\
\left.\dot{m}_{i}=-\frac{1}{H A_{i}}\left[\frac{A_{i} m_{i}^{2}}{\rho_{i}}-\frac{A_{i-1} m_{i-1}^{2}}{\rho_{i-1}}\right]-\frac{1}{2 H A_{i}}\left[P_{i+1} A_{i+1}-P_{i-1} A_{i-1}\right]+\frac{P_{i}}{A_{i}} \frac{d A}{d x}\right]+\frac{1}{A_{i}} F_{i} \\
\dot{E}_{i}=-\frac{1}{H A_{i}}\left[\frac{A_{i} m_{i} E_{i}}{\rho_{i}}-\frac{A_{i-1} m_{i-1} E_{i-1}}{\rho_{i-1}}\right] \cdot \frac{1}{2 H A_{i}}\left[\frac{A_{i+1} m_{i+1} P_{i+1}}{\rho_{i+1}}-\frac{A_{i-1} m_{i-1} P_{i-1}}{\rho_{i-1}}\right]+\frac{1}{A_{i}} Q
\end{gathered}
$$

The specific method used approximates the time derivatives with Euler's method.

For completeness, the simple first order method of Lax (see Appendix A) was also attempted but was dominated so much by diffusion that no shock capturing was apparent, while some very small spatial oscillations were. This method is not recommended for systems that contain shocks.

40-60 Inlet Validation

The NASA Lewis 40-60 Inlet was simulated in QuickBasic using this approach in order to determine its applicability. The program is given in Appendix B for reference and will be referred to as PHYSL for PHYSical Lumping. Forty-one lumps were used with a timestep of $20 \mu \mathrm{~s}$, half of the usual. The steady state spatial distributions for several flow variables are given in in the figures. It should be noted that the shock is sitting a little farther back in the inlet with respect to the usual distribution from LAPIN and MACGAS which is given in the NASP paper. Also, the shock is a little more mushed out, but not too bad considering the simplicity of the method. A transient response was also obtained on what has become the standard test problem, that is, the downstream pressure input of +100 psf at $t=0.002$ seconds. The response has the same shape, however it is a little slower in responding and peaking. It is not clear whether this is "good enough" but would appear to be very promising as it still allows large perturbations. The LAPIN and MACGAS responses are also included for comparison.

Discussion

Some of the benefits of the PHYSL approach requiring further study are given below.

1) The method should be about two times faster than MacCormack's method. It should be noted that PHYSL appears to need a smaller timestep.
2) Larger lumps may be possible which would then allow even further speedup.
3) Large nonlinear models are easily written down, allowing their direct study for possible model reduction (as opposed to methods using Jacobian computations, prediction and correction, or artificial viscosity).
4) It also allows easy linearization of the discrete lumps for linear models and model reduction.
5) Alternate integration methods may be possible as opposed to Euler's method which the PHYSL method presently uses.
6) It may be possible to use different flow variables to allow even more efficient or natural spatial differencing.
7) It may be possible to develop a more useful buzz model using this method.

The major disadvantage of the method is basically its lack of accuracy. The methods used in LAPIN and MACGAS are second order accurate methods whereas this is a first order accurate method. It is not clear how bad the transient response can become using this method and still be meaningful.

Acknowledgements
The author wishes to thank Steve and Amy Chicatelli for their reading of this document and their useful comments.

SHOCKS

V-D-4. Errors Arising from Artificial Viscosities
The use of artificial viscosities is often unavoldable, and it can be acceptable; but some strange errors can arise from explicit artificial viscosities, aside from the obvious ones comon to incospzessible flow calculations (section III-A-8). Schulz (1964) pointed out that simple application of the von Neuman-Richtmyer q_{1} in cylindrical or spherical coordinates causes a diffusion of radial momentum. He extended q_{1} to a tensor form which maintains strict conservation of radial momentum. Cameron (1966) showed that explicit artificial viscosities introduced surprising errors in the calculation of shocks propagating across a material interface or across a change in wesh spacing, Δx. The von NeumannRichtmyer q_{1}-term causes spurious fluctuations for the changes in entropy and density as
the shock crosses a Eaterial interface. Also, when Δx changes, a false shock wave is reflected off the mesh change, and the speed of the original propagating shock is altered. He also found that landshoff's q_{2} did not adversely affect shock speed at a wesh change, but was less useful than the von Neumann-Richtwyer q_{1} because the shock thickness now changed abruptly at the aesh change. Cazeron used both errors to partially cancel each other. By changing $4 x$ at the material interface, he obtained the correct speed for the propagating shock. The false reflected shock still appeared, however. Higbie and Plooster (1968) varied the von Neumann-Richtmyer q_{1} for a shock propagation problea in Lagrangian coordinates in such a way that the shock thickness in mesh increments stayed constant as the mesi spacing continually changed, thus eliminating oscillations.

V-E. Nethods Using Irplicit Artificial Damping
Instead of afding explicit artificial viscosity term like q_{1} to the equations, artificial da:ping nay be added impificly, just from the form of the difference equations. Sometimes these methods add an artificial viscosity in the sense of a non-zero coefficient of second space derivatives, and sometimes they just add arcificial dampiag in the sense of the eigenvalues of the amplification matrix being less than one in magitude. In either case, these $=$ ethods cay require acditional explicit artificial viscosities in order to stabilize strong shock calculations.

V-E-1. Upwind Disferencing
The second method of Courant, Isaacson, and Rees (1952) is a one-sided or upwind differencing scheme, as described in section III-A-8. It was also suggested by helevie: (see Richtmyer, 1957) for Lagrangian equations, and is frequently referred to as Lelevier's method (e.g., Crocco, 1965; Roberts and Weiss, 1966; Kurzrock and Mates, 1966). In equation (4-63), each of the advected properties, U, that appear in F and G is differenced according to the sign of the advection velocity, u or v, respectively. However, the pressure gradients in the momentum equations eust not be evaluated by upwind differences, as will be discussed in the next section. In terms of the 10 inviscid equations ($4-65$), the first upwind differencing method is as follows.

$$
\begin{align*}
& \frac{p_{i}^{n+1}-p_{1}^{n}}{\Delta t}=-\frac{(p u)_{i}^{\pi}-(p u)_{1-1}^{n}}{\Delta x} \text { for } u_{1}>0 \tag{5-22A}\\
& =-\frac{(\rho u)_{i+1}^{n}-(\rho u)_{i}^{n}}{\Delta x} \text { Eor } u_{i}<0 \tag{5-22B}\\
& \frac{(\rho u)_{1}^{n+1}-(\rho u)_{1}^{n}}{\Delta t}=-\frac{P_{1+1}^{n}-P_{1-1}^{n}}{2 \Delta x}-\frac{\left(\rho u^{2}\right)_{1}^{n}-\left(\rho u^{2}\right)_{1-1}^{n}}{\Delta x} \text { for } u_{1}>0 \tag{5-23A}\\
& \because-\frac{p_{1+1}^{n}-p_{1-1}^{n}}{2 \Delta x}-\frac{\left(p u^{2}\right)_{1+1}^{n}-\left(p u^{2}\right)_{1}^{n}}{\Delta x} \therefore \text { for } u_{1}<0
\end{align*}
$$

$$
\begin{align*}
\frac{E_{s}^{n+1}-E_{s}^{n}}{\Delta t} & -\frac{\left[u\left(E_{s}+P\right)\right]_{1}^{n}-\left[u\left(E_{s}+P\right)\right]_{1-1}^{n}}{\Delta x} \text { for } u_{i}>0 \tag{5-24A}\\
& =-\frac{\left[u\left(E_{s}+P\right)\right]_{i+1}^{n}-\left[u\left(E_{s}+P\right)\right]_{1}^{n}}{\Delta x} \text { for } u_{1}<0 \tag{5-243}
\end{align*}
$$

The 2 D difference equations follow this form in an obvious way. The analysis of kurzrock (1966) indicates that stability is iiaited, in addition to the Courant-number restriction, by

$$
\begin{equation*}
\Delta t \leq \frac{|u| / \Delta x+|v| / \Delta y}{\left[|u| / \Delta x+|v| / \Delta y+a / \Delta x \sqrt{1+s^{2}}\right]^{2}} \tag{5-25A}
\end{equation*}
$$

or, for $\Delta x=\Delta y=\Delta($ or $s=1)$,

$$
\begin{equation*}
\Delta \tau \leq \frac{(|u|+|v|) \Delta}{(|u|+|v|+a \sqrt{2})^{2}} \tag{5-25B}
\end{equation*}
$$

This limitation will becope dominant in stagnation regions and in recirculating fiow regions, where $u, v \rightarrow 0$. (See also section $V-E-3$.)

The godifications of this first upwind differencing tethod, which are necessary to achieve strict conservation near a region of velocity reversal, follow the description in section III-A-10. The more accurate second upwind differencing follows the descripcion in section III-A-11.

These upwind differencing zethods introduce effective "viscosity" through the truncation errors of the one-sided differences. The zethod adds artificial diffusion tezis to $U=p, p u, p v, E_{s}$ in equation (4-63). From the analysis in section III-A-8, the x - and y-dif:usion terus for the teansient analysis are

$$
\begin{align*}
& a_{x}=\frac{1}{2} u \Delta x(1-u \Delta t / \Delta x) \tag{5-26A}\\
& a_{y}=\frac{1}{2} v \Delta y(1-v \Delta t / \Delta y)
\end{align*}
$$

and, for the steady-state analysis,

$$
\begin{array}{ll}
\quad a_{x} & =\frac{1}{2} u \Delta x \\
\therefore \quad a_{y} & =\frac{1}{2} v \Delta y \tag{5-26B}
\end{array}
$$

Note that the viscosity effect is not really equivalent to a physical viscosity, since the coefficients are directional and dependent on the velocity components.

Exercise: In a flow paraliel to the x-axis with $\partial U / \partial x=0$, but with an arbitrary density :.. distribution in the y-direction, contrast. the ertificial diffusion behavior of ․․… distribution in the y-direction, contrast. the artificial diff

For strong shocks appearing in inviscid celculations, this implicit viscosity is not usually sufficient to stabilize the calculations (Richtmyer, 1957), but Kurzrock and Kates
(1966), Scala and Gordon (1967), and Roache and Mueller. (1970) have applied it to low (cell) Reynolds-number flows with success. . This method is also the basis of the PIC and FIIC codes, to be described shortly.

The upwind difference method possesses the transportive property (sections III-A-9, 10) which is significant for both subsonic and supersonic flow. The associated lack of secondorder spatial accuracy is somewhat less significant in supersonic than in subsonic flow, as we now discuss.

$V-E-2$. The Donain of Influence and Truncation Error

In this section, we will compare and relate the domain of influence in continuum and in finite-difference equations. Our cbjective is to show how upwind differencing maintains something of the correct characteristic sense of the continuum equations and does not necessarily have a worse spatial truncation error than do centered difference methods.

Consider first the incompressible continum fiow equations,

$$
\begin{equation*}
\nabla^{2} \psi=\zeta \tag{5-27}
\end{equation*}
$$

a:d

$$
\begin{equation*}
\frac{\partial \zeta}{\partial \tau}=-\nabla \cdot\left(\vec{v}_{\zeta}\right)+\frac{1}{\operatorname{Re}} \nabla^{2} \zeta \tag{5-28}
\end{equation*}
$$

The vorticity transport equation (5-28) is parabolic and, by itself, represents an initialvalue problem with li=ited spatial domain of influence in the inviscid limit $1 / \mathrm{Re}=0$. Sut the Poisson equation (5-27) is elliptic and represents a boundary-value problem. Therefore, a disturbance in ζ at any point in the flow imediately affects all other points in the field, even with $1 /$ Re $=0$, through the nonlinear term \hat{V} wich depends on ψ, and thus ζ, through equation (5-27). This property is shared by the finite-difference cquations. We say that the system (5-27) and (5-26) possesses infinite signal propagation speed, and so does the finite-difference equation.

The inviscid compessible flow ecuations are all transport equations like (5-28) and therefore represent initial-value problems. The signal propagation speed is finite; for small linearized disturbances, the signal propagates at the isentropic sound speed (a) relative to the fluid, or at $(v+a)$ =elative to an Eulerian mesh. Consequently, for $v>a$, i.e., $M>1$, no disturbance is propagated upstreas. This leads directly to the well-knom Nach-cone principle, or the principle of limited upstream influence.

Consider now the signal propagation in a finite-difference equation. If space-centered differences are used, any disturbance at (i) at tice (n) is felt at (iti, $j \pm 1$) at ($n+1$), no matter what the value of Δt. Thus, the propagation distances are always the same, Δx and Δy. The propagation speeds are then $\Delta x / \Delta t$ and $\Delta y / \Delta t$. The Courant-Friedrichs-Lewy (1928) or CFL necessary stability requirement is that the finite-difference domain of influence at least inciude the continuum domain of influence, i.e., $\Delta x / \Delta t<V+a$, or

$$
\begin{equation*}
c=\frac{(V+a) \Delta t}{\Delta x} \leq 1 \tag{5-29}
\end{equation*}
$$

where C is the Courant number. In strong shock problems, where the smali-disturbance assuription is not valid, replacement of "a" by the nenlinear shock propagation speed as a leads to the von Neumann-Richtmyer (1950) requirement.

Courant et al. (1928) did not require anything else from the finite-difference equations, since their objective was only to demonstrate the existence of solutions. But it clearly
*Scala and Gordon (1967) used upwind differencing for the advection terms, but with a more complex pattern of operations, as in Sheldon's method for the Poisson equation (see section III-B-7).
would be desirable also to maintain something of the limited upsiream influence of the continuum system. Working with a rectangular mesh, the most we can accomplish is to restrict the sense, for - , of perturbations along u and v. This led Courant, Isaacson, and Rees (1952) to their method for differenicng in a rectangular mesh, upwind differencing.

This leads again to the notion of transportive differencing for the advection terms, as-discussed in sections III-A-8; 9, 10. But allowance must be made for the possible nonlinear upstream propagation in the case $a_{s}>V$. This leads to the space-centered differencing of the pressure gradient terms of the momentum equations, so that pressure gradient effects are felt upstream.* Note that P is not an advected quantity in $a p / \partial x$ and $\partial p / a y$, but is an advected quantity in the $£ 10$ w-work term, $\nabla \cdot(\hat{V} P$), of the energy equation; consequently, upwind differencing is used on the flow-work term.

The distinction between the tehavior of these equations and the incompressible system is that no elliptic equation like (5-27) appears, so the compressible inviscid system is purely hyperbolic.

The second-order accuracy of space-centered difference methods is still highiy desirable, of course, as it was in incompressible flow. But in supersonic flow, we sacrifice less to achieve the transportive property. The accuaccy evaluation of centered differences of section III-A-1 is based on Taylor series exparsions for the flow properties, assuming continuity of the flow variables and their derfvatives. Eut, in inviscid supersonic flow, the inviscid equations do net necessarily display continuity of derivatives. In fact, characteristic curves may be cefined (Courant and Friedricis, 1948; Shapiro, 1953) as curves across which ficw variables asy have discontinuous derivatives.** Therefore, the Taylor-series expansion is not always valid, and the loss of truncation order of the differentials is not as important in supersonic flow. ***

For viscous flow, the characteristics io not exist and the above arguments are weakened. It does seem reasorable, however, to base a:gjments on the differencing methods for the advection teris on only the behavior of the irviscid equations. This approach is conceptually vague, but the known success of method-oE-characteristics solutions in cojputing real flows with small viscosity supports the approach.

Lax (1969) has shown that the upwind diEEerence form gives a very good shock calculation
 ficui inviscid eçutions and also, surprisingly, for the linearized inviscid Burger's equation. That is, the calculations of the :onlinear Eizetion are fore accurace then those of the inear equation.

$V-E-3:$ PIC and EIIC

A well known method originally devised by Evans and Harlow (1957) is the Particle-inCell or PIC method. The genesis of this method is different from most, in that the attempt Is not made to model the differential equations so much as the fundamental physical process, through a finite-particle approach. IIC may unequivocally be called a "simulation" method. The calculacions proceed in several phases at each time level, with several key intermediate
*Kurzrock (1966) experimented with forward, backward, and centered pressure differences. His experiments and his stability calculations show that centered pressure differencing is preferable for his boundary-layer calculations.

Nota the physical absurdity that would result from using upwind differencing for pressure and all advection terms. Then, in the quasi-id duct flow problem described in section III-C-9, the effects of flow perturbations at outflow. ($1=I$) could never be felt upstream, and a shock could not propagate upstream: $:$ It would therefore not be possible to computationaliy turn off an indraft superscnic wind tunael!
**
It is precisely this property that gives the method of characteristics its utility, allowing different flow regions to be patched together along characteristics.
*k McNamara (1967) credits Trulio (1964) for showing that, for timemarching methods with discontinuous derivatives, the truncation error:tends to zero no faster than (Δx) $3 / 2 .$. i

celi properties being calculated on the basis of pressure contriburions, followed by advec tion calculations. The method is too complicated to describe la complete detall here; búcts the most unique aspect is that continum flow is not modeled; rather, a finite number of particles is used, their locations and velocities belng traced by Lagrangian kinematics ass they move through a computational Eulerian mesh. They are not merely marker particles as : in the KAC code (see section III-G-4), but they actually participate in the calculation; even when free surfaces and interfaces are not present. Cell-averaged thermodynamic properties are calculated, based on the numbers of particies in the cell. As few as six particles/ cell on the average and three particles/cell locally have, been used. The results display..: high frequency oscillations in cell density and pressure, as expected.

A continuum method which evolved out of the PIC code is the Fluid in Cell or FIIC code of Gentry, Martin, and Daly (1966), based on earlier work by Rich (1963). They departed from the finite particle approach of PIC but retained most of the other aspects. It is a two-step method. In the first part of the first step, provistonal values, u^{n+1} and v^{n+1}, are calculated using only the contribution of the pressure gradients and the explicit artificial viscosity terms, if present. [A form like (5-10) is used for the explicit artificial viscosity.] Non-conservation forms are used. Then a provisionai internal energy, e ${ }^{\text {nth }}$, is calculated only from the pressure term of che equation

$$
\begin{equation*}
\frac{\partial e}{\partial t}=-\vec{v} \cdot \nabla e-P \nabla \cdot \vec{V} \tag{5-30}
\end{equation*}
$$

plus its artificial viscosity terms. The divergence $\nabla \cdot V$ is based on velocities $\tilde{u}_{1 j}$ - $1 / 2 u_{i j}^{a}+u_{i j}^{n+1}$ wherein the provisional values $u_{i j}^{n+1}$ have already been calculated; likeulse for $\overline{\mathrm{v}}$. In the second step, only the contributions of advection ceres are calculated. The mass flux across each cell interface is calculated, using donor cell differencing (second upind difference nethod, section III-A-11) based on the provisional values of velocities u^{n+1} and v^{n+1}. This mass flux is used to calculate a new density p^{n+1}, and then to calculate only the advective contribution to u, v and $e_{s}=E_{s} / p$. Note that this final advective contribution rust be adced to the provisional value $u^{\overline{n+1}}$, etc., rather than the original values u^{n+1}, etc.

The PIC caiculation is siailar, but the mass flux calculation is based on a finite number of particles from the donor cell. The particles are not located at the center of the cell, but each particle p has its on Lagrangian coordinates, x_{p} and y_{p}. The particles are moved by the same velocity weighting used in the MAC code (see section III-G-4, equation 3-605). If the particle crosses the cell boundary, it contributes its mass, momentum, and internal energy to the averages in the new cell, upon wich the pressures for that cell are calculated. As mentioned earlier, momentary crowding or depletion of particles in the cells will occur, producing a random high frequency osciliation of cell properties. This oscillation models the nolecular behavior of the gases, but with very few computational molecules.

Both the PIC and FLIC methods use donor cell (second upwind) differencing for the ad vection terms and therefore have an implicit artificial viscosity (see sections v-E-1,2). Gentry, Martin, and Daly (1966) pointed out that the effect of q - $|u|$ in PIC and FLIC means that the artificial diffusion is not Galilean-invariant, i.e., the "wind tunnel transformation" does not apply to these computations.* Also, the method is locally unstable at stagnation points without the additional explicit. q terms because the implicit $q-|u|$, according to Evans and Harlow (1958, 1959) and Longley (1960). See also equation (5-25) et sef. Zoth methods are fresented in the original papers for boch Cartesian and cylindrical coordinate systems.

The PIC method is most advantageously applied to interface problems (free surface or multiple materials), because the discrete particles may be assigned different masses, specific heats, etc., to represent two fluids, a free fluid surface, or even a fluid and a deformable solid. Solutions to the early problems of empty cells, boundary conditions,
${ }^{*}$ Also true of all upwind differencing methods.

LAX'S HETHOD

and details of the particle feighting procedurea have evolved over the years of successful application (Evans and Haylow, 1957, 1958, 1959; Evans et al., 1962; Harlow, 1963, 1964). A review of these techniques, was given by Amsden (1966). Mader (1964) has exterided the approach to include chemically reactive Eluid dynamics in his Explosive-in-Cell or EIC method; Hirt (1965) also presented PIC calculations of shock detonation by explosives. The PIC approach was extended to. plasma stability calculations by Dickman et al. (1969) and Morse and Nielson (1971). Armstrong and Nielsen (1970) demonstrated the good agreement of PIC transient computations with transform wethod calculations of the nonlinear development of a strong thostream plasma instability. The accuracy has also been demonstrated by several PIC-like multi-material codes at Physics International (Buckinghamet al., 1970; hatson and Godfrey, 1967; Watson, 1969). Amsden and Harlow (1965) calculated the gross features of supersonic turbulent flow in a base region. Crane (1968) attempted an accurate calculation of a hypersonic near wake problem using PIC with inviscid equations; the method is not well suited to this problem, and the calculation was unsuccessful. The accuracy of the FIIC method was independently ascertained by Gururaja and Dekker (1970) on several complex 2D shock-propagation problems, and by Sarofuka (1970) in calculating 2 D planar and cylindrical shock tube problems, Another FLIC-type code is the TOIL code of Johnson (1967); see also H111 and Larsen (1970) and Reynolds (1970). For references of other work on PIC and FLIC codes performed at Los Alamos Scientific Laboratory, see Harlow and Amsden (1970A).

Butler (1967) included viscosity and heat conduction in both PIC and FLIC, and found that the two methods produced comparable results.

V-E-4. Lax's Method
\qquad

Using the relation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t}=\frac{\partial}{\partial t}\left(-a \frac{\partial u}{\partial x}\right)=-u \frac{\partial}{\partial x}\left(\frac{\partial u}{\partial t}\right)=+u^{2} \frac{\partial^{2} u}{\partial x^{2}} \tag{5-36}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\frac{\partial u}{\partial t}=-0 \frac{\partial u}{\partial x}+\left(\frac{\dot{\partial} x^{2}}{2 \Delta t}-\frac{\Delta t}{2} a^{2}\right) \frac{\partial^{2} u}{\partial x^{2}}+0\left(\Delta x^{2}\right) \tag{5-37}
\end{equation*}
$$

From this transient analysis，Lax＇s＝ethod is seen to introduce an effective artificial． diffusion coefficient，

$$
\begin{equation*}
\alpha_{e}=\left(\frac{\Delta x^{2}}{2 \Delta t}-\frac{\Delta E}{2} \Delta^{2}\right)=\frac{\Delta x^{2}}{2 \Delta t}\left[1-\frac{u^{2} \Delta t^{2}}{\Delta x^{2}}\right] \tag{5-38}
\end{equation*}
$$

or

$$
\begin{equation*}
a_{e}=\frac{i x^{2}}{2 i x}\left[1-c^{2}\right] \tag{5-39}
\end{equation*}
$$

Stability in the model equation requires ${\underset{e}{e}}^{2} 0$ or $c \leq 1$ ，as usual．For $c=1$ ，the exact solution of the model equation is obtaired．Since the zethod is applied to all variables $U=\rho, \rho u, E_{s}$ ，the artificial diffusion ：epresents not only an artificial viscosity，but also artificial mass diffusion and heat cenduction．＊

The order of the truncation error is determined fron equation（5－37）to be

$$
\begin{equation*}
E=O\left(\Delta x^{2}, \Delta t, \frac{\Delta x^{2}}{\Delta t}\right) \tag{5-40}
\end{equation*}
$$

This equation indicates that；as $\Delta t+0$ for fixed Δx ，the truncation error becomes unbounded． This indication is ceaningful．It is disconcerting．in the extreme to accidentally rum a shock propagation code with $\Delta t=0$ ，as the present author has done，and find that the shock still propagates：［Consider equation（5－32）with $\Delta t=0$ ．］The disturbance does not actually propagate with a wave front，as a shock does，but diffuses out from the initial jump condi－ tion for $\Delta t=0$ ．

For small enough Δt ，the method obviously provides sufficient a_{B} to stabilize a strong shock calculation．For $c-1$ ，the damping vanishes and the method cannot be used with shocks．

Lax＇s method is very easily extended to two and three dimensions，as

$$
\begin{align*}
& u_{i j}^{n+1}-\frac{1}{4}\left[u_{1+1, j}^{n}+u_{i-1, j}^{n}+u_{i, j+1}^{n}+u_{i, j-1}\right]+\Delta t \cdot \frac{\delta u^{n}}{\delta t} . \tag{5-41}
\end{align*}
$$

${ }^{*}$ A diffusive scheme doubly violates the transportive property．．Whereas the leapfrog methods（section III－A－6），for example，advect the effect of a perturbation upstresm， against the velocity，a diffusive scheme also advects it at right angles to the velocity：
Orvormers ar

The corresponding stability requirements ars:

$$
\begin{gather*}
C_{2 D} \equiv \frac{(v+a) \Delta t}{\Delta \Delta \Delta y} \sqrt{\Delta x^{2}+\Delta y^{2}} \leq 1 \tag{5-43}\\
c_{3 D} \equiv \frac{(v+a) \Delta t}{\Delta x \cdot \Delta y \cdot \Delta z}\left(\Delta x^{2}+\Delta y^{2}+\Delta z^{2}\right)^{3 / 2} \leq 1 \tag{5-44}
\end{gather*}
$$

Thus, for $\Delta x=\Delta y=\Delta z$, the largest possible Δt is reduced by a factor of $1 / \sqrt{3}=0.58$.
Exercise: Derive expressions for a_{e} of Lax' aethod in two and three dimensions.
Exercise: Determine the conditions for which Rusanov's method reduces to Lax's method.
Moretti and abbett (1966A) used the two-dimenaional version of Lax's method in conJunction with a patched characteristics solution in an attexp to calculate base flow. They noted a phenowenon which they called "stalling". That is, with a spatial gradient of properties such that

$$
\begin{equation*}
u_{1}^{n}+i_{1}^{n} \equiv \frac{1}{4}\left(u_{1+1, j}^{n}+u_{1-1, j}^{n}+u_{1, j+1}^{n}+u_{1, j-1}^{n}\right) \tag{5-45}
\end{equation*}
$$

the time solution adjusted to a condition where

$$
\begin{equation*}
u_{i}^{n}-\dot{u}_{i}^{n}=\frac{\delta U^{n}}{\delta t} \Delta t \tag{5-46}
\end{equation*}
$$

so that $U_{i}^{n+1}=U_{i}^{n}$ for all i. The situation could be changed by changing Δt. of course, the method was not intended to be used on this subsonic shock-free problem, but the example shows up another shortcoming of the method.

In spite of its shorcomings, the method has an importanc.asset: aimplicity. It is also easily adapted to cylindrical, spherical, and 30 problers. This appears to be the major reason for its use by Bohachevsky and Rubin (1966), Bohachevsky and Mates (1966), Bohachevsixy and Kostoff (1971), Barnwell (1967), Xerikos (1968), and Emery and Ashurac (1971). Kentzner (1970B) experimented with using the Lax aethod and the midpoint lapfrog wethod (section III-A-6) at different time steps and in different veighted combinations, in a two-dimensional problem in which the shock discontinuity was treated as a boundary.

Because it is easily programed and is dependable, Lax's method can be used to advantage in the early stages of program development. The program can be converted to more complex methods afterwards.
Exercise: Show that the use of Lax's method on the advection term and FICS differencing. on the diffusion teril of the model equation results in an unconditionally unstable method.

HINT: Use the analysis for the FTCS wethod, replacing a by ($a+a_{e}$).
 V-E-S. Lax-Hendroff Method
(1964) investigated al of netiode wheh has attained
$\therefore \because \operatorname{Lax}$ and Wendroff (1960,1964) Investigated a class of metiods wich has attained considerable stature in theoretical atudies of difference methodi; and which led to a class of two-step mechods (next section V-E-6) which are curcently the most popular methods for solving compressible flow problems. Like leith's method (section III-A-13), all these,
are based on a second-order Taylor series expansion in'tim, and ail are identical to Leith's method for the constant-coefficient model equation.

Compared with Leith's method for incompresibie fiou the application of the time expansion to compressibie fiow is greaty complicated because a systom of equations is


```
                                    Agpundix B
DIM r(50),m(50),e(50),nr(50),nm(50),ne(50)
DIM fr(50),fm(50),fe(50),p(50),a(50),dadx(50),np(50),mach(50)
a(1)=1.5173
a(2)=1.462
a(3)=1.4027
a(4)=1.3399
a(5)=1.2675
a(6)=1.1812
a(7)=1.0862
a(8)=.9875
a(9)=.8995
a(10)=.8194
a(11)=.7738
a(12)=.7605
a(13)=.7617
a(14)=.7658
a(15)=.776
a(16)=.7927
a(17)=.8164
a(18)=.8487
a(19)=.8893
a(20)=.9334
a(21)=.9798
a(22)=1.0267
a(23)=1.0756
a(24)=1.1182
a(25)=1.1163
a(26)=1.1278
a(27)=1.1532
a(28)=1.1829
a(29)=1.2215
a(30)=1.2518
a(31)=1.2602
a(32)=1.2463
a(33)=1.2372
a(34)=1.2238
a(35)=1.2092
a(36)=1.2052
a(37)=1.1882
a(38)=1.1905
a(39)=1.2124
a(40)=1.2547
a(41)=1.2986
r(1)=.00033261#
r(2)=.00034841#
```

$$
\begin{aligned}
& r(3)=.00036703 \# \\
& r(4)=.0003892 \# \\
& r(5)=.00041833 \# \\
& r(6)=.00045941 \# \\
& r(7)=.00051552 \# \\
& r(8)=.0005917 \# \\
& r(9)=.00068451 \# \\
& r(10)=.00080715^{\# \#} \\
& r(11)=.00091045 \# \\
& r(12)=.00094969 \# \\
& r(13)=.000946 \# \\
& r(14)=.00093331 \# \\
& r(15)=.00090439 \# \\
& r(16)=.00086285 \# \\
& r(17)=.00081293 \# \\
& r(18)=.00075621 \# \\
& r(19)=.00069773 \# \\
& r(20)=.00064524 \# \\
& r(21)=.00059902 \# \\
& r(22)=.00055888 \# \\
& r(23)=.0011533 \\
& r(24)=.0013227 \\
& r(25)=.0013217 \\
& r(26)=.0013278 \\
& r(27)=.0013401 \\
& r(28)=.001353 \\
& r(29)=.0013678 \\
& r(30)=.0013781 \\
& r(31)=.0013807 \\
& r(32)=.0013763 \\
& r(33)=.0013733 \\
& r(34)=.0013687 \\
& r(35)=.0013633 \\
& r(36)=.0013619 \\
& r(37)=.0013552 \\
& r(38)=.0013561 \\
& r(39)=.0013646 \\
& r(40)=.001379 \\
& r(41)=.001392 \\
& m(1)=.6187 \\
& m(2)=.6422 \\
& m(3)=.6692 \\
& m(4)=.7006 \\
& m(5)=.7407 \\
& m(6)=.7948 \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{m}(7)=.8643 \\
& \mathrm{~m}(8)=.9506 \\
& \mathrm{~m}(9)=1.0436 \\
& \mathrm{~m}(10)=1.1458 \\
& \mathrm{~m}(11)=1.2133 \\
& \mathrm{~m}(12)=1.2344 \\
& \mathrm{~m}(13)=1.232 .4 \\
& \mathrm{~m}(14)=1.2259 \\
& \mathrm{~m}(15)=1.2098 \\
& \mathrm{~m}(16)=1.1842 \\
& \mathrm{~m}(17)=1.1499 \\
& \mathrm{~m}(18)=1.1061 \\
& \mathrm{~m}(19)=1.0556 \\
& \mathrm{~m}(20)=1.0057 \\
& \mathrm{~m}(21)=.9582 \\
& \mathrm{~m}(22)=.9143 \\
& \mathrm{~m}(23)=.9292 \\
& \mathrm{~m}(24)=.8396 \\
& \mathrm{~m}(25)=.8408 \\
& \mathrm{~m}(26)=.8322 \\
& \mathrm{~m}(27)=.8141 \\
& \mathrm{~m}(28)=.7937 \\
& \mathrm{~m}(29)=.7685 \\
& \mathrm{~m}(30)=.7498 \\
& \mathrm{~m}(31)=.745 \\
& \mathrm{~m}(32)=.7534 \\
& \mathrm{~m}(33)=.7587 \\
& \mathrm{~m}(34)=.7671 \\
& \mathrm{~m}(35)=.7763 \\
& \mathrm{~m}(36)=.7789 \\
& \mathrm{~m}(37)=.79 \\
& \mathrm{~m}(38)=.7886 \\
& \mathrm{~m}(39)=.7744 \\
& \mathrm{~m}(40)=.7481 \\
& \mathrm{~m}(41)=.7229 \\
& e(1)=978.86 \\
& e(2)=1022.18 \\
& e(3)=1073.01 \\
& e(4)=1133.21 \\
& e(5)=1211.74 \\
& e(6)=1321.41 \\
& e(7)=1469.42 \\
& e
\end{aligned}
$$

```
e(11)=2460.65
e(12)=2555.09
e(13)=2546.03
e(14)=2515.9
e(15)=2446.01
e(16)=2345.17
e(17)=2223.24
e(18)=2083.06
e(19)=1936.75
e(20)=1804.08
e(21)=1685.8
e(22)=1582.19
e(23)=2890.29
e(24)=3315.79
e(25)=3313.64
e(26)=3326.71
e(27)=3353.03
e(28)=3380.58
e(29)=3411.96
e(30)=3433.77
e(31)=3439.31
e(32)=3430!
e(33)=3423.6
e(34)=3413.82
e(35)=3402.4
e(36)=3399.3
e(37)=3385.14
e(38)=3387.13
e(39)=3405.1
e(40)=3435.67
e(41)=3463.18
p(41)=1300
np(41)=p(41)
nr(1)=r(1)
nm(1)=m(1)
ne(1)=e(1)
p(1)=.4*(e(1)-.5*m(1)*m(1)/r(1))
np(1)=p(1)
OPEN "friedss" FOR INPUT AS #1
FOR j=1 TO 41
    INPUT #1,r(j),m(j),e(j),p(j),a(j),dadx(j)
NEXT j
CLOSE
X=.1427
T=.00002
```

```
cfl=T/X
10 k=k+1
LOCATE 1,1
PRINT "Time = ", k*T
PRINT "xs = ",xs
qS=INKEYS
IF qS="c" THEN CLS
IF q$="c" THEN k=2
IF q$="p" THEN np(41)=np(41)+100
IF q$="m" THEN np(41)=np(41)-50
IF q$="f" THEN nm(1)=nm(1)+.02
IF q$="o" THEN GOTO 51
FOR j=1 TO 40
    PSET(k/10+200,1200-50*xs)
    'PSET(k+200,1400-np(25))
    'PSET(j,100-10000*nr(j))
    'PSET(j,150-25*nm(j))
    'PSET(j,200-.01*ne(j))
    'PSET(j,250-25*a(j))
    dadx(j)=(a(j+1)-a(j))/X
    'PSET(j,300-50*dadx(j))
    PSET(j,300-25*mach(j))
    PSET(j,400-.02*np(j))
    np(j)=.4* (e(j)-.5*m(j)*m(j)/r(j))
NEXT j
FOR j=1 TO 41
IF k<2 THEN GOTO }1
    r(j)=nr(j)
    m(j)=nm(j)
    e(j)=ne(j)
12 fr(j)=m(j)*a(j)
    p(j)=np(j)
        PSET(50+4*j+2*k,400-.05*p(j)-3*k)
        fm(j)=a(j)* (m(j)* m(j)/r(j))
        fe(j)=a(j)*m(j)* (e(j))/r(j)
NEXT j
js=0
FOR j =2 TO 40
    nr(j)=r(j)-cfl*(fr(j)-fr(j-1))/a(j)
    nm(j)=m(j)-cfl* (fm(j)-fm(j-1))/a(j)-cfl*.5* (a(j+1)*p(j+1)-a(j-1)*p(j-1))/a(j)+\mp@subsup{T}{}{*}p(j)*dac
    ne(j)=e(j)-cfl* (fe(j)-fe(j-1))/a(j)-cfl*.5* (a(j+1)* p(j+1)*m(j+1)/r(j+1)-a(j-1)*p(j-1)**m(
1))/a(j)
    np(j)=.4*(ne(j)-.5*nm(j)*nm(j)/nr(j))
    mach(j)=nm(j)/(nr(j)*SQR(1.4*np(j)/nr(j)))
IF js>0 THEN GOTO 66
```

```
    IF mach(j)<1 THEN js=j
6 6 ~ N E X T ~ j ~
xs=js-1+(mach(js-1)-1)/(mach(js-1)-mach(js))
nr(41)=1.1*nr(40)-.1*nr(39)
'ne(41)=1.1*ne(40)-.1*ne(39)
nm(41)=1.1*nm(40)-.1*nm(39)
ne(41)=np(41)*2.5+.5*nm(41)*nm(41)/nr(41)
'nm(41)=SQR(nr(41)*2*(ne(41)-2.5*np(41)))
GOTO 10
51 OPEN "friedss" FOR OUTPUT AS #1
FOR j=1 TO 41
    WRITE #1,r(j),m(j),e(j),p(j),a(j),dadx(j)
NEXT j
CLOSE
END
```

```
3.3261E-04,.6187,978.86,161.3707,1.5173,-.3875262
3.490575E-04,.6421022,1023.219,173.0542,1.462,-.4155576
3.688516E-04..6692475.1075.901,187.5026,1.4027...4400836
3.934306E-04,.7006146,1139.949,206.4511,1.3399,..5073579
4.271239E-04,.7406338,1226.446,233.7263,1.2675,..6047654
4.756736E-04..7947454,1349.906,274.3936,1.1812...6657325
5.437855E-04,.8642546,1521.851,334.0234,1.0862,..6916607
6.352177E.04..9506363,1752.094.416.3023..9875,-.6166784
7.418117E-04.1.043639,2023.014,515.5511,.8995,-.5613174
8.449772E-04,1.145659,2292.624,606.3818,.8194,-.3195515
9.016081E-04,1.213173,2445.335.651.653..7738.-9.320253E-02
9.11371E-04,1.23439.2475.782.655.9336,7605,8.408975E-03
8.993929E-04,1.232445,2449.963,642.2195,.7617,2.873178E-02
8.787841E-04,1.225846,2403.358,619.348,.7658,7.147879E-02
8.479405E-04,1.209733,2330.654,587.0831,.776,.1170285
8.089402E-04,1.184248,2236.579,547.896,.7927,.1660827
7.638988E-04,1.149869,2125.713.504.114,.8164,.226349
7.15049E-04,1.106107,2002.318.458.7206,.8487,.284513
6.670071E-04.1.055609,1877.251.416.7781,.8893..3090399
6.273364E-04,1.005734,1767.817,384.6516,.9334..3251577
6.074699E-04..9581046,1693.779.375.2855..9798,.3286618
6.415262E-04,.9143353,1730.304,431.4897,1.0267,.342677
8.079688E-04,.8727631,2087.237,646.3432,1.0756,.2985278
1.138254E-03..8395169,2871.563,1024.791,1.1182,-1.331435E-02
1.298073E-03..8409532,3261.311,1195.566.1.1163.8.058865E-02
1.291775E-03.8323805.3242.571,1189.758,1.1278..1779961
1.313123E-03..8140482,3290.748,1215.37.1.1532..2081284
1.328064E-03,.7935094,3322.475,1234.144.1.1829..2704982
1.348537E-03..7685305,3368.435,1259.778,1.2215,.2123329
1.353843E-03,.7499269,3379.432,1268.693.1.2518,5.886533E-02
1.345854E-03..7449259,3360.645,1261.796,1.2602,-9.740744E-02
1.332856E-03..7532317,3329.793.1246.784,1.2463,-6.376987E-02
1.335863E-03..7587691,3338.633.1249.258,1.2372.-9.390384E-02
1.326157E-03,.7670736,3316.679.1237.934,1.2238,-.102312
1.322379E-03..7763314,3308.145,1232.106,1.2092,-2.803131E-02
1.32531E-03..7789035,3317.32,1235.374,1.2052.-.1191308
1.310563E-03,.790042,3281.903,1217.51,1.1882,.0161179
1.32432E-03..78851,3313.474,1231.493,1.1905,.1534684
1.33831E-03..7742607,3346.921,1249.181,1.2124,.296426
1.370761E-03..7481508,3399.041,1277.95,1.2547..3076385
1.374007E-03..7455398,3452.266,1300,1.2936,0
```

