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II - RESEARCH SENSORS

David R. Englund

The Lewis program in research sensors is directed at development of sen-

sors and sensing techniques for research applications on turbine engines and
propulsion systems. In general, the sensors are used either to measure the

environment at a given location within a turbine engine, or to measure the

response of an engine component to the imposed environment. Locations of con-

cern are generally within the gas path and, for the most part, are within the

hot section of the engine. Since these sensors are used for research testing

as opposed to operational use, a sensor lifetime of the order of 50 hr is con-

sidered sufficient. The following discussion will present a sample of this

work, describing programs to develop a dynamic gas temperature measuring system,
total heat flux sensors, a variety of thin-film sensors, and high-temperature

strain measuring systems.

DYNAMIC GAS TEMPERATURE MEASURING SYSTEM

One of the most important parameters in a turbine engine hot section is

gas temperature. Normally only time-averaged temperature is measured. Fluctu-

ations in gas temperature are, however, of great concern for hot section dura-

bility and combustor modeling activities. The dynamic gas temperature measuring

system uses a probe (fig. If-l) with two wire thermocouples of different diame-

ters, typically 75 and 25 pm (0.01 and 0.003 in.). The thermocouple junctions

are butt welded and are located midway between the supporting posts. The ther-

mocouples are within i mm of each other so that they are measuring essentially

the same gas sample. This probe provides dynamic signals with limited frequency

response. By comparing these signals over a range of frequencies, a compensa-

tion spectrum can be generated sufficient to provide compensated temperature

data over an extended frequency range. The target frequency response for this

system was i000 Hz. This is probably higher than necessary for questions of

durability loss due to thermal cycling, but if one is interested in modeling

combustor processes or the flow in a combustor, i000 Hz is a reasonable target.

The upper limit in achievable frequency response for such a system is deter-

mined by the signal-to-noise ratio.

This system has been developed and used to measure fluctuating tempera-

tures in both combustors and engines (refs. II-I to 11-4). Figure II-2 shows

dynamic temperature data obtained from a probe at the turbine inlet of a PWA

F-100 engine operating at an intermediate power setting and with an average

turbine inlet temperature of 925 °C (1700 °F). The plot on the left is the

dynamic signal from the 25-pm-diameter (0.O03-in.-diam) wire thermocouple with

no frequency compensation. The rms value of the temperature fluctuation is

41 °C (74 °F). The plot on the right is the compensated signal from the same
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thermocouple. The rms value of the temperature fluctuation is 218 °C (390 °F)

and the peak-to-peak fluctuation is over i000 °C (1800 °F). Such a large tem-

perature fluctuation implies that there are filaments of primary combustion

gas and dilution gas within the combustor exhaust stream.

TOTAL HEAT FLUX SENSORS

Another environmental parameter of interest for hot section durability

is total heat flux. We have developed miniature total heat flux sensors

(refs. 11-5 to II-I0) which can be welded into combustor liners and built into

cooled turbine airfoils. Figure II-3 shows one sensor configuration based on

the Gardon gage design as it would be built into an airfoil. In this case, the

airfoil must be opened so that the sensor can be installed from the cooled wall

side. A cylindrical cavity 1.5 nun in diameter (0.06 in.) is cut in the wall

leaving a thin membrane at the hot side surface. ISA type K thermocouple wires

are located in the cavity as shown, and then the cavity is filled with ceramic

cement. With this sensor, the temperature difference between the center of the

membrane and the side wall is a measure of heat flux. This temperature differ-

ence is measured with the Alumel-bladewall-Alumel differential thermocouple.

The use of the burner liner or airfoil material as part of a differential ther-

mocouple circuit is an innovation that considerably simplifies construction,

but it requires calibration of the materials involved. Calibration tests

showed that this technique could provide acceptable signals. These miniature

heat flux sensors must be calibrated over the temperature range in which they

will be used because of the nonstandard differential thermocouple and because

of the uncertainty in positioning the thermocouple junctions.

Total heat flux sensors have been used in tests on combustor liners and

on turbine airfoils. Figure 11-4 shows a segment of a combustor liner which

has been instrumented with five total heat flux sensors. The sensors are

7.5-mm-diameter (0.3-in.-diam) disks with thermocouple leads radiating from

the edge of the disk. The actual sensor part of the unit is at the center of

the disk and is only 1.5 mm (0.06 in.) in diameter. The sensors are individu-

ally calibrated and then welded into holes cut in the liner. Tests on combus-

tors such as this one have produced useful heat flux data over a range of

combustor operating conditions. Similar sensors built into turbine airfoils

have been less successful because of the sensitivity of these sensors to tem-

perature and/or heat flux gradients, which are more prevalent in turbine

airfoils.

As noted previously in this section, calibration of total heat flux sen-

sors over the range of temperatures and heat fluxes that will be encountered

is a requirement. Figure 11-5 shows a photograph of a heat flux sensor cali-

bration system developed at Lewis. The heat source is a 100-kW arc lamp. A

reflector is used to focus the energy from the arc onto a ceramic sensor holder.

This system can supply a maximum flux of 6 MW/m 2 (500 Btu/ft2-sec), which is

higher than the heat fluxes in present-day turbine engines. The system can

operate in both steady-state and transient modes. Two other roughly comparable

calibration facilities exist in this country; efforts to cross-compare calibra-

tion of test sensors have been started. This is especially important since a

national standard for heat flux sensor calibration does not exist for these

high levels of heat flux.
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THIN-FILM SENSORS

Lewis has been the major advocate and sponsor for development of thin-

film sensors for turbine engine applications (refs. II-II to II-19). Thin-film

sensors applicable to turbine engines include temperature sensors, strain gages,

and heat flux sensors. Thin-film sensors are formed directly on the component

to be instrumented (fig. 11-6) by first depositing a suitable insulating film

and then depositing sensor and protective films as required. A stable, adher-

ent, pinhole-free insulating film is the base for the whole structure and is

the most critical element of the sensor.

An excellent application for thin-film thermocouples is the measurement

of the surface temperature of a cooled turbine vane such as shown in figure II-7.

The surface of the vane is covered with AI203 thermally grown from an anticor-

rosion coating and augmented with sputtered AI203. Pt and Pt-Rh films are

sputter-deposited with thermocouple junctions formed by overlapping the two

films at the desired spot. The films extend to the base of the vane where

leadwires are connected. Typical thicknesses are 3 _m for the AI203 and 5 _m

for each of the thermocouple alloy films; in this case, no cover film was used.

The advantage of this technique over the previous technology, which required

swaged thermocouple wires to be buried into grooves cut into the surface,
should be obvious.

The present state of the thin-film sensor technology is sufficiently

advanced that dynamic strain gages have been used on compressor blades, and

thermocouples have been used to measure turbine airfoil surface temperatures

in some turbine engine test facilities in the United States. Thin-film, high-

temperature static strain gages and thin-film heat flux sensors are still under

development. In addition, work is continuing on the basic thin-film sensor

technology with the goals of simplifying and improving sensor processing and

adapting the presently used techniques to other substrate and sensor materials.

One of our goals is to make the thin-film sensor technology available to

the whole U.S. turbine engine community. Impediments to wider usage of this

technology are many. One problem is that sensor fabrication is material spe-

cific; technology has not been established for a wide variety of materials.

Another problem is that the investment required to establish a thln-film sensor

fabrication capability is considerable, and commercial services for custom fab-

rication of thin-film sensors are not yet available.

HIGH-TEMPERATURE STRAIN MEASURING SYSTEMS

The most ambitious goal of the research sensor program is development of

980 °C (1800 °F) strain measuring systems. Approaches being followed in this

work include both wire and thin-film resistance strain gages and remote strain

measuring systems. The resistance strain gage work involves development of new

strain gage materials and extensive testing of available strain gages. Work on

remote strain measuring systems has involved three different system concepts

based on laser speckle patterns.

A major part of our work in resistance strain gages has been the develop-

ment of a new palladium-based strain gage alloy (refs. 11-20 and 11-21). The

219



outstanding property of this alloy is its repeatability of resistance over the
temperature range up to 980 °C (1800 °F). Repeatability of resistance over the
temperature range within a few hundred parts per million is a fundamental
requirement for a high-temperature strain gage alloy. Work is now underway to
develop thin-film and wire strain gage systems using this alloy. Work with
other strain gages has involved high-temperature evaluation testing (refs. 11-22
to 11-24) including a 700 °C (1300 °F) strain gage available from the People's
Republic of China.

Resistance strain gages are not the only approach to high-temperature
strain measurements. Attractive alternatives are found in a variety of remote
optical strain measuring systems, manyof which use the laser speckle pattern
as a basis for measurementsof in-plane surface deformation. Wehave worked
with two laser speckle systems: a photographic system in which speckle pattern
photographs are analyzed in an interferometric photocomparator, and an elec-
tronic system in which strain is determined from the shift in the speckle pat-
tern falling on a linear photodiode array. This work has included both
laboratory development and evaluation in test cell environments (refs. 11-23
and 11-25 to 11-27). A fundamental problem with remote optical systems in
test cell environments is interference generated within the viewing path;
methods for minimizing or eliminating this problem are being studied.

FUTURETHRUSTSIN RESEARCHSENSORS

Future work in research sensors will be strongly influenced by programs
to develop new materials for turbine engines which will permit significantly
higher hot section temperatures. These materials are expected to be in the

forms of metallic or intermetallic and ceramic matrix composites. The impact

of such developments will be twofold. First, these new materials will have

markedly different properties compared to the metals involved in the sensors

developments already described. The emphasis for surface-mounted sensors will

be on thin films, and extensive development of fabrication procedures for

these new substrate materials will be required. For remote sensors, there

will be requirements to adapt or develop new sensing techniques suitable for

these new materials.

The second area of impact is the higher temperatures that will be encoun-

tered. Higher temperatures may require new sensor materials and may ultimately

require abandonment of surface-mounted sensor techniques. Work is already in

progress on development of sensors and sensing techniques for ceramic compo-

nents for turbine engines. Results of studies on applicable sensor techniques

for measurements of surface temperature, strain, and heat flux are available

(refs. 11-28 and 11-29).
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Figure II-i. - Dynamic gas temperature probe.
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Figure 11-2. - Fluctuating gas temperature measured at turbine inlet of PWA

F-100 engine. Left plot shows as-recorded data from 25-_m-diameter

(0.003-in.-diam) wire thermocouple with no compensation; right plot shows

same data compensated for flat frequency response to i000 Hz.
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Figure II-3. - High-temperature heat flux sensor based on Gardon gage design.
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Figure 11-4. - Segment of combustor liner instrumented with heat flux sensors.
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Figure II-5. - Heat flux sensor calibration system at Lewis Research Center.
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Figure TT-6. - Cross section of thin-film sensor on blade.
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Figure 11-7. - Cooled turbine vane instrumented with four thin-film

thermocouples.
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