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SUMMARY

The objective of the NASA aircraft icing research program is to develop

and make available to industry icing technology to support the needs and

requirements for all-weather aircraft designs. Research is being done for

both fixed- and rotary-wing applications. The NASA program emphasizes tech-

nology development in two key areas: advanced ice protection concepts and

icing simulation (analytical and experimental). This paper reviews the com-

puter code development�validation, icing wind tunnel testing, and icing flight

testing efforts which have been conducted to support the icing technology

development.

PROGRAM OVERVIEW

The major areas of emphasis of the NASA icing research program are shown in

figure I. The program has a generic portion which is devoted to developing the

required fundamental technology. The basic technology is applied with appro-

priate modifications and alterations to fixed- and rotary-wing specific icing

problems. The icing research program is a balanced effort (fig. 2) in that it

contains analysis code development/validation, wind tunnel testing, and icing

flight research activities. These elements of the program are closely coordi-

nated since all are conducted within the icing rsearch group. In addition,

close coordination exists with industry and universities through formal con-

tracts and grants as well as through collaborative and cooperative programs.

Some recent accomplishments of the icing research program will be reviewed

by looking at some past activities in two technology areas: ice protection

concepts, and analytical and experimental icing simulation. The first area to

be reviewed will be ice protection concepts, where the goal is to develop con-

cepts which will result in lighter, more efficient ice protection systems for

advanced military and civilian aircraft.

In fiscal year 1987, a 5-year NASA/industry/university program was com-

pleted to develop the technology data base for the electromagnetic impulse

deicer concept (or EIDI) which shows great promise for providing highly effi-

cient deicing with low power requirements. The major phases of this program

are shown in figure 3.

The technology was developed through many different Icing Research Tunnel

(IRT) tests of various general aviation and commercial transport components

which require ice protection. The hardware was provided by the many aerospace

companies that were part of the consortium. Complimentary analytical modeling

315

PRECED;?;G MAG£ _LAi'_K NOT FILMED

https://ntrs.nasa.gov/search.jsp?R=19920013291 2020-03-17T11:59:23+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42813186?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


(structural and electrodynamic) and laboratory tests were conducted at Wichita

State University to better understand the key physics associated with EIDI.

Natural icing flight tests were conducted with the NASA icing research aircraft

to which was affixed a leading edge glove or cuff with the EIDI system

installed. Excellent deicing performance was documented in natural icing con-

ditions. As a result of this program, the technology is now in hand for both

the general aviation and transport manufacturers to consider EIDI for main

wing/tail deicing for future applications.

The electrothermal deicing system has become the de facto standard for

the helicopter industry, but the weight, power requirements, and complexity of

electrothermal deicing systems has caused the industry to seek alternative con-

cepts. In a joint program with the Army and industry (Bell Helicopter Textron

and B.F. Goodrich), a pneumatic boot deicer was applied to the UHIH rotor and

highly acceptable deicing capability was demonstrated (fig. 4). Deicing per-

formance was demonstrated in both forward flight conditions behind the Army's

spray tanker and near hover conditions at the Canadian NRC's Ottawa Spray rig.

Prior to the icing flight tests, tests were conducted in the IRT on a full-

scale, fixed-position UHIH rotor section. These tests were used to screen

various pneumatic boot configurations and led to the selection of the configu-

ration shown. Two of the attractive features of the pneumatic boot deicer

system is that it had relatively few components and the UHIH system weight was

only about 40 lb.

As a result of this program, the Army has qualified the UHIH helicopter

with pneumatic deicers to fly into forecast icing conditions up to the

"moderate" level. Future activities are being conducted by the Army and

B.F. Goodrich to acquire the needed field experience especially as related to

rain and sand erosion characteristics and the frequency of field repair/

replacement required.

The second icing technology area to be reviewed will be analytical and

experimental icing simulation. The following activities are included in this

technology area:

(I) Developing/validating codes to predict aircraft performance, stability,

and control in icing

(2) Improving/validating icing simulation facilities

(3) Conducting natural/artificial icing flight tests

(4) Improving icing instrumentation

First, the development and validation of icing analysis computer codes

will be discussed. Figure 5 attempts to show the many codes required to form

a comprehensive icing analysis methodology as well as some of the many inter-

faces required. The individual computer codes currently being developed and
validated are as follows:

(I) Trajectory analyses, both two dimensional and three dimensional

(2) Airfoil ice accretion
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(3) Aerodynamic performance-in-icing, including airfoil, propeller, rotor
(approximate), and complete aircraft (approximate)

(4) Ice protection systems, including electrothermal, electroimpulse,
fluid freezing point depressant, and pneumatic boot.

This set of codes forms a core analysis capability which can be used to build
a more comprehensive icing analysis capability. Someexamples of the various
codes being developed and the supporting fundamental and validation
experiments being conducted will be given.

A number of two- and three-dimensional trajectory analysis codes have been
developed which can calculate water droplet paths around bodies ranging from
simple, single-element airfoils to complete aircraft configurations. Appropri-
ate data are required to validate the code accuracies, and one aspect of this
experimental research as shownin figure 6. This is a joint NASA/FAAprogram
to measure local water impingement rates (often called local collection effi-
ciencies) on various airfoil, wing, and inlet configurations.

These curves are determined by collecting water mixed with a known concen-
tration of blue dye on blotter strips affixed to the models like the Boeing
737-300 I/4-scale inlet shown. A He-Ne laser system measures the local
reflectance of the blotter paper which can be converted to local collection
efficiency. The first phase of this joint program has been completed, and
additional tests are planned in order to acquire a comprehensive data base for
code validation.

Figure 7 shows a computer graphics representation of the NASA icing

research aircraft, a deHavilland DHC6 Twin Otter. This computer model is being

used to calculate three-dimensional trajectories of water droplets about the

aircraft to help in interpreting icing cloud instrument data. Selected results

of trajectory analysis studies of the laser spectrometer droplet sizing instru-

ment are shown in figure 8. The results show that significant errors can occur

when the instrument is mounted beneath the main wing of the NASA icing research

aircraft. This error is attributed to the three-dimensional flowfield effects

on the trajectories of the water droplets. The curves indicate that, for the

droplet sizes of interest (i0 to i00 _an), the instrument will sense that fewer

droplets per cubic meter exist than actually do exist in the "free stream"

icing cloud. Similar results would be expected for any other aircraft configu-

ration which had icing instruments located in close proximity to the aircraft

surface.

A first-generation code has been developed to predict the growth of ice on

a single-element airfoil. A typical comparison of the predictions of this code

(called LEWICE) with data taken in the IRT on a 21 in. chord NACA 0012 airfoil

is shown in figure 9. Currently evaluation studies of LEWICE are being

conducted by NASA, FAA, and several companies under cooperative programs.

The LEWICE code uses a simple control volume approach for calculating

local mass and energy balances which lead to local ice growth rate predictions.

Such a global approach is necessary because the fundamental physics of aircraft

icing are not that well understood. Fundamental in-house and university

research efforts are under way to improve the basic physics understanding and

incorporate this knowledge into later versions of LEWICE to improve the ice

shape predictions. One example of this research is shown in figure i0.
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Closeup flash pictures were taken of droplet impingement in the stagnation

region of a circular cylinder. Individual cloud droplet streaks can be seen as

well as water coalescence into much larger droplets and resulting movement on

the surface prior to freezing.

Improved values for impact ice structural properties as well as adhesion

strengths are required inputs to computer models of mechanical and thermal

deicing systems. Fundamental experiments are being conducted to acquire such

data, and a representative sample of the data being acquired is shown in fig-

ure II. The figure shows adhesive shear stress as a function of airstream

temperature. One important point to be gained from the figure is the consider-

able amount of scatter which exists with this type of data. Similar levels of

data scatter have been observed by other researchers.

The current emphasis in predicting aerodynamic performance degradation

due to icing is to extend and validate state-of-the-art airfoil analysis codes

to predict "iced airfoil" performance. Detailed flowfield data are required

to evaluate these codes, and the current approach being taken is shown in fig-
ure 12. A 21-1n. NACA 0012 airfoil model was fabricated with an idealized

leading edge ice accretion as shown. This initial ice accretion shape tested

was meant to be generally like an ice accretion but to have well-defined

cross-sectional characteristics and smooth continuous coordinates. This model

was tested in the Ohio State University 4- by 5-ft low-speed wind tunnel. As

the figure indicates, force and moment data were acquired as well as detailed

surface pressure distributions, boundary layer profiles on both surfaces, con-

centrating in the vicinity of the separation reattachment zones, and flow visu-

alization data. These data were used to compare with two state-of the-art

analysis codes - the ARC two-dimensional Navier-Stokes analysis code of NASA

Ames and the Interactive Boundary Layer (IBL) code of Cebeci (California State,

Long Beach). The lift and drag coefficient variations with angle of attack as

predicted by the codes are compared in figure 13 to the data previously

shown. Generally, the agreement is judged to be good for both codes although

the IBL code tends to underpredict drag at the higher angles of attack. The

activity is continuing, and, in particular, measurements and comparisons are

being made with more realistic ice shape geometries.

Icing instrument research is an important part of the NASA icing research

program. Figure 14 shows droplet size measurements made in the Icing Research

Tunnel (IRT) using various laser spectrometer probes compared with the volume

median droplet sizes determined from the facility calibration developed by

NACA. The wide spread of the data away from the line of perfect agreement sug-

gests the need for improvements in the accuracy of droplet sizing instrumenta-

tion. The data taken in this test program suggested current instrumentation

accuracies of no better than ±4 _un (on a volume median diameter (VMD) basis). The

effect of a ±4 _m variation of VMD on ice accretion shape and resulting

airfoil drag increase are shown in figure 15. The figure suggests that the

effects can be significant and that the accuracy of droplet sizing instrumenta-

tion must be improved.

A more accurate measurement of icing cloud properties (i.e., liquid water

content and droplet size distribution) is necessary for many icing R&D pur-

poses. Currently it is felt that the most severe problems exist for those

instruments that measure droplet sizes. As indicated, the accuracy of current

optical systems appears to be no better than ±4 _um out of 20 (on a VMD basis).

318



The current research activities to improve current drop sizing instruments

(fig. 16) include the following:

(I) Improved calibration devices

(2) Theoretical modeling of the optical characteristics of the instruments

and complimentary fundamental research

(3) Comparisons of available instruments in a simple, well-documented

spray

The NASA Icing Research Tunnel (IRT) is the largest refrigerated icing

wind tunnel in the world (fig. 17). It has played a key role in developing

technology to solve aircraft icing problems since it became operational in June

of 1944. As an indication of its importance and contributions, the American

Society of Mechanical Engineers (ASME) recently designated the IRT to be an

international mechanical engineering landmark facility, one of only 21 such

facilities in the world. A _3.6 million upgrade to the facility was recently

completed to ensure that the IRT will continue to play a key role in the future

in developing aircraft icing technology. Some of the key features of the new

IRT are shown here. Of particular interest to the research community is the

new spray bar system, which will allow a wider range of icing conditions to be

provided to users. The final goal is to be able to provide complete coverage

of the FAA/Icing envelopes.

Natural icing flight testing is also a key part of the aircraft icing

research program. Currently, the aircraft being used for these tests is a

deHavilland DHC6 Twin Otter. The prime emphasis of the flight tests has been

to acquire an icing simulation data base, as indicated in figure 18. The pri-

mary parts of this data base are (i) the icing cloud properties (liquid water

content (LWC) and droplet size spectra) measured by using the vast array of

instruments on the aircraft, (2) main wing ice accretion shapes documented with

a stereo photography system, and (3) wing section drag measured with a heated

wake survey probe. This data being acquired over a wide range of natural icing

conditions will be compared with IRT results from tests of a full-scale Twin

Otter wing section and with icing analysis code predictions.

Studies of aircraft performance/stability and control changes due to icing

are also being conducted with the Twin Otter. Representative performance and

stability and control data are shown in figures 19 and 20. These data are also

being compared with computer predictions.

Emphasis in the aircraft icing research program will eventually shift from

the fixed wing to the rotary wing since some of the most difficult icing prob-

lems are faced by the rotorcraft community. Currently, the rotorcraft icing

activities are focused on evaluating the model rotor icing test technique, that

is, determining what use can be made of testing scale-model rotors in a large

icing wind tunnel such as the IRT. To date, no such tests have been conducted

in the U.S., and U.S. manufacturers must rely primarily on artificial/natural

icing flight testing which is extremely costly and time consuming. In order to

evaluate the model rotor test technique, NASA has teamed with the four major

U.S. helicopter manufacturers and Texas A&M University to carry out all the

activities required to test in the IRT a fully instrumented, powered-force

model provided by Sikorsky and shown in figure 21. Prior to this test, several
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supporting test techniques must be developed, and for these preliminary activi-
ties, an 0H58 tail rotor rig shownhere will be used. The 0H58 is a much
sturdier rig and therefore should be more forgiving to any unexpected surprises
which might be encountered during the initial IRT test.

Once this initial evaluation is completed, it is envisioned that follow-on
tests will be conducted, especially for comparison with full-scale, natural
icing flight test results. Initial full-scale rotor icing test results were
acquired in the recent NASA/ArmyHelicopter Icing Flight Test Program. The
various activities in this multiphase program are shown in figure 22. This
test program was a multiphase effort to acquire unprotected helicopter rotor
ice accretion and aerodynamic performance data for both hover and forward
flight conditions. The techniques developed will be used in proposed future
programs to acquire flight data for comparison with the scale-model rotor data
which will be acquired in follow-on IRT Tests.

Nowthat somehighlights of the NASAaircraft icing research program have
been reviewed, it is appropriate to consider figure I and indicate the future
directions of the program.

The generic activities will continue as indicated:

(I) The icing analysis codes will becomemore robust and sophisticated as
to the problems which can be analyzed.

(2) New instrumentation concepts will be investigated which will offer

improved accuracy levels over current instruments.

(3) Research will continue to look for alternate ice protection concepts

which look attractive from weight, power requirement, and efficiency

standpoints.

Future emphasis as related to fixed-wing aircraft will be to couple the

codes together to form more comprehensive icing-effects-simulation computer

models. Such models, once validated against icing flight data, could be used

in pilot training simulators, for preliminary design studies, and possibly as

part of certification/qualification programs.

(I) Investigations will be conducted of potential icing problems for

unique military aircraft configurations of the future with emphasis on the ice

protection design requirements for such aircraft.

(2) NASA is also developing jointly with the major U.S. airframe and

engine manufacturers a proposed research program to investigate the ice protec-

tion requirements for the advanced propfan engine configurations which will be

flying in the early 1990's. A major component of this proposed program would

be natural icing flight tests of a propfan configuration, and it is felt that

the so-called PTA aircraft would be the ideal research aircraft to conduct

these studies.

The longer term emphasis of the NASA icing research program will shift to

the helicopter, with the areas of emphasis shown in figure I. In the shorter

term, the majority of activities will be to evaluate the model rotor icing

test technique.
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A bibliography of icing reports generated by the NASA Aircraft Icing

Research Program is included in the appendix.
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Figure 7. - Twin Otter trajectory analysis.
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Figure 20. - Reduction of aircraft static longitudinal stability due to icing.
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