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EVALUATION OF MHOST ANALYSIS CAPABILITIES FOR A PLATE ELEMENT

Ho-Jun Lee
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135

and

Galib H. Abumeri and Helen C. Brown
Sverdrup Technology, Inc.
Lewis Research Center Group
Brook Park, Ohio 44142

SUMMARY

Results of the evaluation of the static, buckling, and free vibration analyses capabilities of
MHOST for the plate element are presented. Two large scale, general purpose finite element
codes (MARC and MSC/NASTRAN) are used to validate MHOST. Comparisons of MHOST
results with those from MARC and MSC/NASTRAN show good agreement and indicate that
MHOST can be used with confidence to perform the aforementioned analyses using the plate
element.

INTRODUCTION

MHOST (ref. 1) is a finite element code designed to perform nonlinear analysis of turbine
engine hot section components. It employs a mixed iterative finite element technology, as well
as an option for a standard displacement method, designed specifically for inelastic three-
dimensional solid and structural analysis. The MHOST element library contains 13 two- and
three-dimensional elements that can be used to solve various engineering problems. Typical
elements include the beam, plate, brick, plane stress, plane strain, and axisymmetric elements.
MHOST is capable of handling all types of boundary conditions, most kinds of loadings (i.e.,
concentrated, distributed, pressure, temperature, transient, etc.), isotropic and anisotropic
materials, elastic and inelastic analyses, as well as eigenvalue extraction for buckling and
vibration analyses.

MHOST was developed at MARC Research Corporation under a contract for NASA Lewis
Research Center. As well as being used to perform finite element analysis independently,
MHOST has also been integrated with different in-house micromechanics codes to produce
several stand alone structural analysis computer programs. Among these codes are
(1) CODSTRAN (ref. 2) which is used to simulate progressive fracture in polymer matrix
composites, (2) HITCAN (ref. 3) for performing structural analysis of metal matrix composites,
and (3) STAHYC (ref. 4) to optimally design composite structures for applications to hypersonic
propulsion ducts. Due to the wide in-house use of MHOST, the various analysis capabilities for
the different elements must be evaluated to use the code with confidence. In this study, two
large scale general purpose finite element codes, MSC/NASTRAN (ref. 5) and MARC (ref. 6), as
well as available theoretical results, are used to validate MHOST for the plate element for the
static, buckling, and vibration analyses. The purpose of this work is to check the different
analysis capabilities of MHOST in comparison to other existing finite element codes. As such,



issues regarding element formulation, convergence, different aspect ratios, etc are outside the
scope of this work and will not be addressed.

FINITE ELEMENT MODEL

The finite element model used throughout this study is a 5.0 in. square plate with a
thickness of 0.2 in. as shown in figure 1(a). The model consists of 121 nodes and 100 elements
as illustrated in figures 1(b) and (c). The element used is a four noded isoparametric
membrane-bending plate element, element 75 for MHOST and MARC, and CQUAD4 for
MSC/NASTRAN. The standard displacement option is used in MHOST, since MARC and
MSC/NASTRAN are both based on displacement formulations.

A total of 19 cases were examined for both isotropic and anisotropic materials, with a vari-
ety of boundary conditions for three analyses (static, buckling, and vibration). The material
properties of aluminum were chosen for the isotropic analysis, while the anisotropic material
properties were chosen from the composite properties of a [0/90], SiC/Ti-15-3 metal matrix
composite (fig. 2). For the purposes of this study, the temperature dependent nonlinear material
behavior of SiC/Ti-15-3 is not considered.

It should be noted that the choice of a square plate and a [0/90]_laminate for the aniso-
tropic material properties for the comparisons in this study may not result in the best test cases.
The square plate was chosen in order to have a reference for later studies on larger aspect ratios,
while the choice for the [0/ 90]3 laminate was due to the ready availability of material properties.

STATIC ANALYSIS

Twelve cases were studied in the static analysis for a variety of boundary conditions
(table I). Half the cases utilized isotropic material properties, while the other half used
anisotropic material properties. Loading conditions included concentrated forces, distributed
loads, uniform heating, temperature gradients through the thickness, and combinations of heat-
ing with either a concentrated force or distributed load. For the isotropic cases, displacements
and stresses at the center of the plate are presented, while for the anisotropic cases, displace-
ments, stress resultants, and moment resultants at the center of the plate are presented. For
some of the isotropic cases, theoretical solutions are listed when available instead of MARC
solutions.

The first two isotropic cases have all four edges simply supported. The first case has a
concentrated force applied at the center (fig. 3), while the second case has a distributed load
over the top surface (fig. 4). The next two cases involve uniform heating (fig. 5) and a tempera-
ture gradient through the thickness (fig. 6) with all four edges restrained. The two final cases
for the isotropic material properties involve a combination of uniform heating and a distributed
load with all edges pinned (fig. 7) and a temperature gradient through the thickness and an edge
load with all edges restrained (fig. 8).

Comparisons of the displacements and stresses predicted by the three codes for the isotropic
static analysis shows good agreement between the three codes. Generally, errors in displace-
ments and stresses between both MHOST-MARC and MHOST-MSC/NASTRAN are less than

3.0 percent, with many of the results being almost identical. The one exception is for the



problem in figure 3 (a concentrated load applied at the center of a simply supported plate) which
has differences in stresses of 13.4 percent between MHOST and MSC/NASTRAN (the reason for
these large differences will be discussed in a subsequent section).

The next set of six cases involves anisotropic material properties. The first case has a
concentrated force applied at the center of a plate with three edges simply supported and one
edge free (fig. 9). The second case has all four edges simply supported with a distributed load
on the top surface (fig. 10). Figure 11 models a uniform heating of a plate restrained on all four
edges, while figure 12 shows a temperature gradient through the thickness for a plate with three
simply supported edges and one edge free. The fifth and sixth cases both have three edges simply
supported and one free. The fifth case combines a concentrated force at the center with a uni-
form heating (fig. 13). The sixth case has the same concentrated force along with a temperature
gradient through the thickness (fig. 14).

Comparisons of the displacements and stress resultants for all six anisotropic cases again
show excellent agreement, with errors of less than 2.0 percent for both MHOST-MARC and
MHOST-MSC/NASTRAN. Generally, larger differences exists in predictions of the moment
resultants between the three codes. MHOST-MARC results show differences of less than
4.0 percent, while MHOST-MSC/NASTRAN errors are less than 13.0 percent.

- BUCKLING ANALYSIS

The buckling analysis is conducted on three cases (table II) under a compressive edge load.
The critical buckling load is determined for each case. The first case has two edges clamped and
the other two edges simply supported for an isotropic material. Results are presented in fig-
ure 15. The second case has the same configuration as the first case with the addition of a uni-
form heating effect (fig. 16). As expected, the addition of a thermal load dramatically reduces
the critical buckling load. The third case has all four edges simply supported for an anisotropic
material (fig. 17). For all three buckling cases, differences between MHOST-MARC and
MHOST-MSC/NASTRAN predicted critical buckling loads are less than 6.0 percent.

FREE VIBRATION ANALYSIS

In the free vibration analysis four cases are examined (table III) and the first three natural
frequencies predicted. The first two cases, figures 18 and 19, are for an isotropic material. The
first case has all four edges clamped, while the second case has two edges clamped and the other
two simply supported. The third and fourth cases use anisotropic material properties and have
the same boundary conditions as the two isotropic cases (figs. 20 and 21).

Comparisons between MHOST-MARC and MHOST-MSC/NASTRAN results for the free
vibration analyses show that for both isotropic and anisotropic materials, there is a reduction in
the natural frequencies for the two edges clamped-two edges simply supported case from the four
edges clamped case. Generally, predictions for the first natural frequency are more accurate
than the second and third frequencies and better agreement is obtained between MHOST and
MARC, with a maximum error of less than 1.2 percent, than between MHOST and
MSC/NASTRAN, which has a maximum error of 5.2 percent.
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DISCUSSION

Typically, differences between MHOST and MARC results are expected to be less than the
corresponding MHOST and MSC/NASTRAN results. This behavior is a consequence of the
similarities in the displacement based formulations of MHOST and MARC and is most readily
observed in the static anisotropic material property analysis. For the set of six cases involved
(figs. 9 to 15), moment resultant predictions between MHOST-MARC have differences of less
than 4.0 percent, while MHOST-MSC/NASTRAN differences are less than 13.0 percent.

A consequence of all three codes making use of a displacement based formulation is that the
best agreement is expected for predictions of displacement. Since stresses and moments are
derived from the displacements, errors for stresses should increase, and errors for moments
should become even larger. This implies that the most credible comparison lies in the displace-
ment predictions. Examining the 12 static cases (figs. 3 to 15), errors in displacements between
MHOST-MARC and MHOST-MSC/NASTRAN are typically under 3.0 percent. The errors in
stress and stress resultant predictions also happen to be generally under 3.0 percent, while
moment resultant predictions increase slightly between MHOST-MARC to under 4.0 percent and
increase by an order of magnitude between MHOST-MSC/NASTRAN to under 13.0 percent for
most cases. As noted previously, similarities in the displacement based formulation of MHOST
and MARC account for the smaller errors between these two codes.

The larger differences between MHOST and MSC/NASTRAN for stress and moment pre-
dictions can be attributed to two factors. The first factor is the differences in the formulation of
the two codes, as noted above. The second factor arises due to the evaluation of forces and
stresses at different points in the element by MHOST and MSC/NASTRAN. For the plate ele-
ment, forces and stresses are extracted at the nodes by MHOST and at the center of the element
by MSC/NASTRAN. In problems involving a uniform loading of the plate, the difference in the
extraction points has a minimal effect. However, when a concentrated force is applied, this
effect is no longer negligible in the region of the force. Typically, the problems which have a
larger difference in stresses and moments between MHOST and MSC/NASTRAN contain a

concentrated force.

Two additional static analysis cases for a rectangular plate (table IV) are included to gauge
the effects of larger aspect ratios on the comparisons between the three codes. The dimensions
of the rectangular plate are 20 in. long, 5 in. wide, and 0.2 in. thick. The finite element model
for the rectangular plate consists of 400 isoparametric membrane-bending elements to maintain a
1:1 aspect ratio for each element. Both cases involve a distributed pressure load on a simply
supported plate. The first problem (fig. 22) makes use of isotropic properties, while the second
problem contains anisotropic properties. Comparisons of displacements and stresses for the
isotropic case indicates similarly good agreement as found in the square plate (fig. 4). The
anisotropic case for the rectangular plate shows slightly larger differences between for displace-
ments and the moment resultant around the x-axis from the square plate (fig. 10). However,
since the larger differences occur only for the anisotropic case, conclusions regarding the effect of
aspect ratio, as well as the effect of different material properties, cannot be made without
studying more cases.

In the free vibration analysis, MSC/NASTRAN predictions for the first three natural
frequencies are conservative of their respective MHOST and MARC values. This is an expected
consequence due to the use of the default lumped mass matrix in MSC/NASTRAN instead of
the consistent mass matrix which is employed by MHOST and MARC. The different mass



matrices employed also accounts for the larger differences obtained between MHOST and
MSC/NASTRAN results for the free vibration analysis.

The good agreement between the three codes in displacement predictions lends confidence
to the use of MHOST for the various analyses in this study. This confidence in MHOST is fur-
ther reinforced by the overall agreement between predictions of stresses, stress resultants, and
moment resultants in the static analysis, the predictions of critical buckling load in the buckling
analysis, and the determination of the first three natural frequencies in the free vibration
analysis.

CONCLUSIONS

Good agreement is found between MHOST-MARC and MHOST-MSC /NASTRAN results
for the static, buckling, and free vibration analyses of a plate element. In the static analysis,
differences of less than 3.0 percent exists between the three codes for predictions of displace-
ments. A difference of less than 6.0 percent is found for both the predictions of the critical
buckling load and the first three natural frequencies, in the buckling and vibration analyses,
respectively. The results of the evaluation indicate that MHOST can be used effectively and
with confidence to perform static, buckling, and free vibration analyses using the plate element.
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- 5.0 in.

(a) Schematic of plate model.
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(b) Finite element mesh showing node numbers.
Figure 1.—
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{c) Finite element mesh showing element numbers.



Isotropic material properties

Modulus of elasticity, E = 10x108 psi

Coefficient of thermal expansion, a = 1.3x1 0-8/°F

Poisson's ratio,v = 0.3
Density, p = 0.000284 Ibm/in.3

Anisotropic material properties
(SIC/T1-15-3-3-3)

Ply lay-up in z-direction

E

36 421 401 psl
25 653 132 psi

= 23 828 149 psil
Gy~ 8985000ps|
Gy, = 8917747 psi
Gy = 8959911 psi

Vyy = 0.264
Vyz = 0.329

vy, = 0.320

oy = 2.73x10°8/°F
= 2.84x10-6/°F
oy = 2.84x10°6/°F

Density, p = 3.65x10~4bm/In.?

Figure 2.—lsotropic and anisotropic material properties.

Geometry, Boundary Conditions, and Loading
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Displacement and Stress Results
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Figure 3.—Problem #1: Square plate, all edges simply supported, concentrated load at top center, isotropic material,

linear elastic constitutive model.

Geometry, Boundary Conditions, and Loading

Z y PRESSURE (4 psi)

I/l S
,x//i'vt

Material Properties

Modulus of elasticity, E = 10x106psi

Poisson's ratio, Y= 0.3
Donsity, f = 0.000284 fom/iri’

-6
Coefficient of thermal expansion, a = 1.3x10 /°F

Displacement and Stress Results

9% Difference
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! B
AT
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in 1 - diraction at 0001393 | 0001384 | cootas2 | 07 1 O3
certer of midplano
(inch)
Slress
at top centor, A
{psi)
in x - dirsction 718.5 7185 £98.9 01 29
in y - direction 7185 7185 698.7 o1 . 29

Figure 4.—Problem #2: Square plate, all edges simply supported, distributed load at top surface, isotropic material,
linear elastic constitutive model. (Reference: "Theory and Analysis of Plates” by R. Szilard, 1974, p. 650).
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Geomelry, Boundary Conditions, and Loading
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Material Properties

Modulus of elasticity, E = 10x10psi
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Coefficient of thermal expansion, a = 1.3x10 /°F
Polsson’s ratio, = 0.3

Displacement and Stress Results
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Density, £ = 0.000284 bm/in®

Figure 5.—Problem #3: Square plate, all edges restrained (displacements not allowed, rotations allowed) uniform

heating, Isotropic material, linear elastic constitutive model. (Reference:

B. A. Boley and J. H. Weiner, 1960, p. 396).

Geometry, Boundary Conditions, and Loading
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Figure 6.—Problem #4: Square plate, all edges restrained to prevent rotations (middie plane free to expand), nonuniform
heating through thickness in z-direction, isotropic material, linear efastic constitutive model.



Geometry, Boundary Conditions, and Loading
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Figure 7.—Problem #5: Square plate, edges restrained for normal displacement, and rotations, distributed load at
top surface + uniform heating, isotropic material, linear constitutive model.
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Figure 9.—Problem #7: Square plate, 3 edges simply supported and 1 edge frée, concentrated load at top center,
anisotropic 4-layered (0/90), composite metal matrix material SiC/Ti-15-3-3-3, linear elastic constitutive model.
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Figure 10.—Problem #8: Square plate, all edges simply supported, distributed load surface anisotroptic 4-layered (0/90),
composite metal matrix material SiC/Ti-15-3-3-3, linear elastic constitutive model.
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Figure 11.—Problem #9: Square plate, alledges restrained to prevent rotations (middle plane free to expand), uniform
heating, anisotroptic 4-layered (0/90), composite metal matrix material SiC/Ti-15-3-3-3, linear elastic constitutive

model.
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Figure 12.—Problem #10: Square piate, 3 edges simply supported and 1 edge free, nonuniform heating through

thickness in z-direction, anisotroptic 4-layered (0/90), composite metal matrix material SiC/Ti-15-3-3-3, linear

elastic constitutive model.
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Figure 13.—Problem #11: Square plate, 3 edges simply supported and 1 edge free, concentrated load + uniform heating,
anisotroptic 4-layered (0/90), composite metal matrix material SiC/Ti-15-3-3-3, linear elastic constitutive model.
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Figure 14.—Problem #12: Squara plate, 3 edges simply supported and 1 edge free, concentrated load + nonuniform
heating through thickness in z-direction, anisotropic 4-layered (0/90), composite metal matrix material
SiC/Ti-15-3-3-3, linear elastic constitutive model.
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Geometry, Boundary Conditions, and Loading
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Figure 15.—Problem #13: Square plate, 2 edges simply supported and 2 edges clamped, compressive edge load, at
right edge, isotropic material, linear elastic constitutive model.
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Figure 16.—Problem #14: Square plate, 2 edges simply supported and 2 edges clamped, compressive edge load at right
edge + uniform heating isotropic material, linear elastic constitutive model.
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Figure 17.—Problem #15: Square plate, all edges simply supported, compressive edge load at right edge, anisotroptic
4-layered (0/90), composite metal matrix material SiC/Ti-15-3-3-3, linear constitutive model.
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Figure 18.—Problem #18: Square plate, all edges clamped, free vibration, isotropic material, linear constitutive model.
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Geometry and Boundary Conditions

clamped

Material Properties

Modiulus of elasticity. E = 10x10psi

Poisson’s ratio, Y= 0.3
Density, # = 0.000284 brrvir

Coefficient of thermal expansion, a = 1.

[}
3x10 /°F

Natural Frequency Results

Source —e=
Result MHOST MARC WMSMC‘

‘ (cyclas/sec] :
Mode 1 210020 | 21149 2070.4 i
Mode 2 4028.60 40520 a8ea 2 06 | 85
Mode 3 52301 5261.5 a7 | 05 52

Figure 19.—Problem #17: Square plate, 2 edges simply supported and 2 edges clamped, free vibration, isotropic
material, linear elastic constitutive model.
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Figure 20.—Problem #18: Square plate, all edges clamped, free vibration, anisotropic 4-layered (0/90), composite metal
matrix material SiC/Ti-15-3-3-3, linear elastic constitutive model.
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Figure 21.—Problem #19: Square plate, 2 edges simply supported and 2 edges clamped, free vibration, anisotropic
4-layered {0/90), composite metal matrix material SiC/Ti-15-3-3-3, linear elastic constitutive model.
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Figure 22.—Problem #20: Rectangular plate, all edges simply supported, distributed load at surfacs, isotropic
material, linear elastic constitutive model.
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Figure 23.—Problem #21: Rectangular plate, all edges simply supported, distributed load at surface, anisotropic 4-layered
(0/90), composite metal matrix material SiC/Ti-15-3-3-3, linear elastic constitutive model.
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