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Summary

The Van Leer fluxsplittingis known to produce excessivenumerical dissipationfor
Navier-Stokes cMculations.One example isthe incorrectpredictionof boundary-layer
profiles.We attempt in thispaper to remedy thisdeficiencyby introducinga higher-

order polynomial expansion(HOPl_ for short)for the mass flux. In addition to Van
Leer'ssplitting,a term isintroduced so that the mass diffusionerrorvanishesat M = 0.
Several splittingsfor pressure are proposed and examined. The effectivenessof the
HOPE scheme isillustratedfor 1-D hypersonic conicalviscousflow and 2-D supersonic

shock-wave/boundary-layer interactions.Also,we givethe weakness and suggest areas

for furtherinvestigationof the scheme.

Introduction

In the past decade, upwind differencingschemes have gained considerableattention

for theiraccuracy and robustnessin Euler flows with discontinuieties,shock waves in

particular.Naturally,significantresearcheffortinthe CFD community has been focused

on maxmlzing the accuracy and e_ciency, among other objectives.Four popular but

conceptuallydifferentfluxsplittingideashave been utilizedfornearly 10 years:Steger

and Warming, Van Leer, Roe, and Osher. However, each scheme has an associated

weakness when numerical accuracy and e_ciency are considered.

In thispaper,we dealspecificallywith the improvement of Van Leer'sfluxvectorsplit-

ting[l].Besidesitssimplicity,Van Leer'ssplittinghas the followingproperties:(I)itcan

be interpretedas a specialmember ofa familyof second-orderpolynomial expanslons[2],

and (2)the associatedfluxJacobian and eigenvaluesare continuous at the sonicpoints.

Van Leer'schoiceallowsone vanishing eigenvaluein the case of an idealgas,thereby

resultingin a crispshock representation.Furthermore, the continuous differentiability

ishelpfulfor convergence acceleration,e.g.,in multigridschemes.

However, failingto recognizethe contact discontinuity,the Van Leer splitting[i]pro-

duces excessivenumerical diffusionand thus requiresa huge number ofceilsto correctly

resolvethe boundary-layer flow.Some improvements have been demonstrated recently

by H_.nelet al[2]and Van Leer[3]for I-D conical,hypersonic viscousflow,but a pressure

glitcharises.A new scheme by the present authors[4]has been proposed that not only

correctsthispressuredi_iculty,but alsoisremarkably simple to implement. Neverthe-

less,the above schemes[2-4]have alreadydeparted from the ideasoffluxvectorsplitting
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and infactbecome more likethe fluxdifferencesplitting.Since the differentiabilityand

simplicityare desirableproperties,one would stillwish to search for a bettersplitting

scheme that isstrictlybased on the fluxvectorsplitting.

In this paper, we propose a family of higher-order polynomial expansions for the mass

flux that diminishes the diffusionerror as M --40. We give a detailedstudy of the

accuracy of the scheme for 1-D conicalflow and 2-D 3hock wave/boundary-layer inter-

actions. The weakness of the scheme is alsopointed out and possibileimprovements

suggested.

Analysis

To exemplify the concept,letus considerthe quasitwo-dimensional system ofequations

for conicalflows:

OU OF

o--i-+ v,:s

where U T = (p,pu, pv, pE), F T = (pv,pvu,pv 2 + p, pvtt), E = e + 1/2(u 3 + v2), and

g = E + p/p. The flow considered consistsof a very thin shear layer at the wall

and a shock wave away from the wall. An algorithm must be capable of minimizing

the numerical smearing(diffusion)at the locationswhere an eigenvaluechanges sign or

approaches zero. For example, Van Leer'ssplitting[l]can representshock profilewell,

while greatlydiffusingthe boundary layer.The Van Leer splitmass fluxesare:

F1 = F + + F_'; F_ ='4-Pa14(M'4"l) 2 .

The net difference from the curve it approximates is largest at M = 0; its value equals

pa/2. This error, viz numerical diffusion, significantly broadens the boundary layer,

leading to incorrect velocity and temperature profiles. A simple way to remove the

diffusion at M = 0 is by adding an extra higher-order term that allows the split mass

fluxes to pass through the origin(Fig. 1), i.e.,

F_ = =hpa/4[(M .4- 1) _ + mI(M)(M 2 - 1)_1,

where the higher-order term has a coefficient m:, in general function of M. It should

have the following properties:

(1) rnl --+ -1 as M -+ O;

(2) ml(M) = ml(-M);

(3) ml --* 0 as M --* 4-1.

A formula satisfyingthose propertiesischosen as:

ml = (M 2-1)/(M 2+1) s,

where the exponent S is a free parameter; also shown in Fig. 1 is ml vs M with S = 4.
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Fig. I. Mass Flux Splitting in HOPE. Fig. 2. Pressure Splitting.

In the conical flow calculations,the accuracy and convergence appear to be insensitive

to the specified values of S = 2,4,6. Now, regarding the flux as s sum of convective and

pressure terms, we can write the splittingformula for the flux vector:

I,) ()(0)0F2 = iovll = f i ll + P"Fs pvv + p v
F4 pv ]I 11 0

With the realization in [5] that the pressure splittingcould be considered separately in

the Van Leer formula[I], a whole host of freedoms for the pressure splitting becomes

possible. FoLlowing isthe llstof formulas tested:

and

(pl):

(p2):

(p3):

(p4) :

pi = :FI/4(M 4. 1)_(M :F2)p,

pi = (pl) :F314M(M' - 1)'p,

p:i:= (pl) ::k314m,M(M' - 1)'p,

p+ = 1/2(1 + 7M)p.

Figure 2 displays the distribution of the split pressure vs M. The first formula is that

used by Van Leer[l]. The second and third splits, (p2) and (p3), yield vanishing

slope at M = 0, thus corresponding to central dit_erencing. However, no instability

was encountered in the conical fiow problem with the (p2) or (p3) split used in an

implicit code. The fourth split(p4) is obtained from an approximate integration along

characterics. As will be seen later, the four formulas give essentially the same results

for the conical fiow calculated.

Resultl And Discussion

In this paper, two cases were tested to check the accuracy and convergence of the

HOPE scheme. The first case is the I-D self-similarconical fiow over a 10-degree

half cone at hypersonic speed, for which a detailed comparison study was conducted.

148



The flow conditions are: M= = 7.95, and Re= = 4.2 × 10 _. Since P, = 1.0, exact

solution gives adiabatic wall temperature, 13.64T.... The second case is the 2-D shock

wave/laminar boundary-layer interactions, for which experimental measurements were

available[6]. The conditions are: M= = 2.0, Re= = 2.96 × 10 a, and oblique shock

angle _ = 32.585 degrees. In both cases, the results from the Roe splitting are also

included for comparison. An implicit Newton iteration procedure was used to achieve

steady-state solution with L= residual dropped by five orders of magnitude.

Figures 3 and 4 show the pressure and temperature distributions from the first- and

second-order solution on a 65-grid; little difference is seen• A monotone solution across

the shock is obtained with the first-order scheme while oscillation appears in the second-

order scheme, which can be eliminated by a TVD procedure. It is noted that the first-

order pressure is smooth at the edge of the boundary layer, unlike the ttoe solution which

shows a slight discontinuity(not shown here). Although the boundary layer exhibits a

steep temperature gradient, the HOPE scheme predicts the wall temperature correctly,

indicating removal of the numerical diffusion associated with the original Van Leer

splitting.
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Fig. 3. Pressure Profile of Conic Flow. Fig. 4. Temperature Profile of Conic Flow.

Figure 5 displays the results using various pressure splittings; they are practically iden-

tical except the Van Leer pressure split (pl) shows some minor oscillation near the wall.

However, the pressure splittings show significant effect on the convergence rate. The

(p3) and (p4) splits are the best, comparable to the Roe splitting, while the other two

are roughly two to three times slower. These may indicate possible instability in a more

complex case.

Finally, for the 2-D case, the surface pressure and friction coefficient are plotted in

Figs. ? and 8. The first-order HOPE results compare fairly with R,oe's splitting and

experimental data. However, the second-order calculation experienced difficulty in con-

vergence in which the residual was reduced by only two orders of magnitude and the

result is not presented here.
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We suspect that a further investigation on other pressure splittings may lead to success

in stability and convergence. Nevertheless, a systematic study of the eigenv_lues of

the split fluxes and the complete discretized system will prove to be a useful endeavor.

Above all, the present research suggests that there are still possibilities in flux-vector

spirting after Van Leer's appeared nearly I0 years ago. The possibilities may very well

still lie in the mass-flux splitting.
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