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ABSTRACT

Automated schemes are needed to

classify multi-spectral remotely

sensed data. Human intelligence is

often required to correctly interpret

images from satellites and aircraft.

Humans succeed because they use

various types of cues about a scene

to accurately define the contents of

the image. Consequently, it follows

that computer techniques that

integrate and use different types of

information would perform better than

single source approaches.

This research illustrated that

multispectral signatures and

topographical information could be

used in concert. Significantly, this

dual source tactic classified a

remotely sensed image better than the

multispectral classification alone.

These classifications were

accomplished by fusing spectral

signatures with topographical

information using neural network

technology.

A neural network was trained to

classify Landsat multi-spectral

images of the Black Hills. Bands 4,

5, 6 and 7 were used to generate four

classifications based on the spectral

signatures. A file of georeferenced

ground truth classifications were

used as the training criterion. The

network was trained to classify

urban, agriculture, range and forest

with 65.7% correct. Another neural

network was programmed and trained to

fuse these multispectral signature

results with a file of georeferenced

altitude data. This topological file

contained i0 levels of elevations.

When this non-spectral elevation

information was fused with the

spectral signatures the

classifications were improved to

73.7% and 75.7%.

INTRODUCTION

Automated schemes are needed to

classify multi-spectral remotely

sensed data. For example, the

upcoming Earth Observing System (EOS)

will generate massive quantities of

data that must be managed quickly

(Dorfman, 1991; Short, 1991). Access

to the resulting data and information

should be quick and user friendly.

Campbell and Cromp (1990) call for a

user friendly system that is based on

user domain-specific knowledge and

goals. This concept requires that the

data system be based on object-

oriented storage and retrieval

procedures that incorporate

information about the image (Dorfman,

1991). Fekete has recommended a

sphere quadtree technique for

subdividing and relating spherical
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data into a data base. This technique
relies on the identification of image
contents such as coast lines.

If these recommendeddata base-
information systems are to be based
on content and knowledge about the
data, then real time classification
algorithms will be required. Data
storage techniques, such as the
sphere quadtree (Fekekte) or object
oriented information, are based on
the contents of the image/data. Data
storage will depend on access codes,
indexes, or keys specific to the
content of data. These codes and
indexes would be determined as the
data arrives and prior to storage
into the data base. An accurate and
automated classification technique
would be the basis for determining
these indexes that will be used for
cataloging and filing data. Due to
the large quantity of data coming
from the EOS, this classification-
indexing and storage process should
occur in real time or near real time
to avoid building a backlog. Not only
will it be necessary to transmit and
store EOSdata efficiently, but also
EOS data should be categorized
somehow during the transmit or
storage process.

While EOSdata managementwill
be important, rapid or near real time
multispectral remotely sensed data
classification is important in its
own right. There are potential
satellite image applications that
depend on rapid access to
classification results. Imagesshould
be classified without the delay
associated with most processing
techniques. The results would be
transmitted to the user in a timely
fashion. This rapid classification
and delivery would support the
feasibility of manynewapplications.
For example, fishermen could respond
quickly to recent current shifts.
Short term illegal wild cat mining or
deforestation could be identified and
arrested. Natural disasters such as

oil spills could be monitored as they
progress.

Real time classification
techniques do not exist; however,
neural network technology promises to
allow us to automatically classify
imagesin real time. The technique is
simple yet can be deployed with
parallel neural processing integrated
circuits. These processors are
relatively cheap and available for
multispectral analysis (Harston,
Zhant & Stewart, 1991; Kagel, 1991).

Theneural network approach has
classified various remotely sensed
multispectral images (Campbell, Hill
& Cromp, 1989; Benediktsson, Swain &
Ersoy, 1990; Cromp, 1991; Harston &
Schumacher, 1991; Kulkarni, 1990;
Eberlein & Yates, 1991; Decatur,
1989). Decatur's work was with the
synthetic aperture radar (SAR) HH,
HV, and VV componentsof the return
at the L band (1.225 GHz) and the
others were with visual and infrared
bands. Someof their results can be
seen in Table III. While the results
compare well with statistical
classification techniques, better
performance is desirable. It was
hypothesized that fusion of spectral
signatures with additional
information might improve
performance.

Human intelligence is often
required to correctly interpret
images from satellites and aircraft.
Humans succeed because they use
various types of cues about a scene
to accurately define the contents of
the image. Consequently, it follows
that computer techniques that
integrate and use different types of

information would perform better than

single source approaches. Work to

date in our laboratory supports this

supposition (Harston, 1991 a, b & c).

This research illustrated that

multispectral signatures and
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topographical information could be

used in concert. Significantly, this

dual source tactic classified a

remotely sensed image better than the

multispectral information alone.

These classifications were

accomplished by fusing spectral

signatures with topographical

information using neural network

technology.

METHOD

The data came from a Landsat

Multispectral Scanner (MSS) image of

the Black Hills. Thematic mapper (TM)

spectral bands 4, 5, 6 and 7 were

represented as intensity values from

0 to 255 in 512 by 512 byte image

files. Additionally, files of

elevation and ground truth data were

available. The ground truth showed

that broad contiguous areas were

assigned to single classifications.

There were 22 potential

classifications, which covered urban,

farm, range, forest, and water as

major groupings. The four classes of

data used in this study were urban,

farm, range, and forest. These and

the other data files were

georeferenced.

The type of neural network used

was the three layer feedforward

networks with one layer as the

hidden layer. The delta rule was used

to train the output layer and

backpropagation was used to train the

hidden layer. All work was done on

MS-DOS 386/486 VGA microcomputers and

the code was written in C.

One neural network was trained

to classify Landsat multi-spectral

images of the Black Hills. Bands 4,

5, 6, and 7 were used to generate

four classifications based on the

spectral signatures. These classes

included or collapsed several of the

classifications found in the ground

truth into urban, farm, range, and

forest categories. The file of

condensed georeferenced ground truth

classifications was used as the

training criterion. This network was

called the spectral signature

network.

Another neural network was

trained with the four bands of TM

data and a topography file of

altitude or elevation data. This

topological file contained i0 levels

of elevations. These images/files

were georeferenced to each other, and

the ground truth file was used for

training. This network was referred

to as the fusion network.

Training for both networks

consisted of hand picked samples from

the larger image. The experiment was

conducted twice, resulting in two

spectral signature networks and two

fusion networks. The second set of

networks was tested with additional

samples taken from the same image.

These samples were taken from

intersection points of a grid taken

at 50 pixel (horizontal) and 25 pixel

(vertical) locations on the upper

part of the image. There were 25 test

points taken from urban, farm, range,

and forest areas that resulted in

only one range and one urban testing

sample. This kind of grid sampling

and random sampling may be roughly

representative of the types of data

in the image but does not obtain

equal numbers of cases for each

category.

RESULTS

Both spectral signature

networks learned 65.7% of the

training sets (60,021 training trials

for the second network). The first

fusion network learned 73.7% of the

training set, and the second fusion

network learned 75.8% at 63,035

training trails. Further training

resulted in decreased levels of

performance.



The second set of networks,
both spectral and fusion, were tested
with other data taken from the
multispectral image. The spectral
signature network generalized to
these novel data points at 52%, and
the fusion network correctly
classified 60%of these test cases.

These results (see Table i for
results) were carefully reviewed with

the image in view. Sixteen percent of

the errors appeared to be correctly

classified. That is, the ground truth

did not appear to be correct from the

visual examination of the image.

Additionally, 4% of the errors were

not clear from the visual image, and

the ground truth classification could

be debated. The results improved 16%

for both the signature and fusion

network test results when the scores

were corrected for the obvious (not

the 4% border line) ground truth

errors.

Regardless of the corrections,

it is clear that the fusion of

altitude information with spectral

signatures improved the learning.

This improvement was 8% in the first

set of networks and 10% in the second

set of networks. Even the testing

results improved by 8% with the

second set of networks.

A detailed analysis of the

errors indicated that the greatest

number of errors came from

misclassified farm data. Keep in mind

that there were more test samples

from farm areas than from other

areas. The performance in each class

can be seen in Table If. There was

only one range test sample and that

one was misclassified. This resulted

in a 100% error rate for the range

class.

The fusion with elevation data

improved the farm scores from 60% to

80%. Unfortunately the forest

performance was decreased from 87.5%

to 75%. The test sample size was

small at 25 cases so interpretation

of the results may be limited. The

misclassified range sample was one of

the debatable or border line cases.

These results are also found in Table

If.

CONCLUSIONS

The use of altitude data with

the spectral signatures improved the

performance. This fusion of image and

topographic data was simple to do

with the neural networks. The

elevation data improved the farm land

classification but degraded the

forest classification to a lesser

extent. However, the results were

positive overall and suggest that

classification performance could be

further improved if other types of

data were included in the neural

classification process.

The initial impression that the

learning and test results were low

should be interpreted in relationship

to the results from similar

classifications. For example, as seen

in Table III, other types of

statistical classification are also

low (Benediktsson, Swain & Ersoy,

1990; Duda & Hart, 1973). In general,

the neural techniques performed

better, except with the multisource

technique that used information in

addition to the spectral data

(Senediktsson, Swain & Ersoy, 1990).

This multisource statistical

technique included Landsat MSS,

elevation, slope, and aspect data.

This additional data improved the

classification technique to 61%.

Clearly, this result argues for the

fusion with, or inclusion of,

additional cues, regardless of the

classification technique used.

Classification of raw spectral

data without any clean up is also

poor as seen in Table I with 55%

(Campbell, Hill & Cromp, 1989) and

52% or 60% in this study. Neural
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studies often correct or select the

data in some way. Campbell, Hill, &

Cromp (1989) used only non-boundary

pixels for training. Homogeneous

fields were developed for training

and testing by Benediktsson, Swain,

& Ersoy, 1990. In the present case,

the classification was corrected by

visual inspection of the test cases.

Some of these selection or correction

procedures resulted in respectable

test scored at 70% (Campbell, Hill &

Cromp, 1990) and 76% in this study.

Given the improved

classifications by fusing non

spectral data with the spectral

signature, possibly other

supplementary information can be used

by the neural network system to

improve performance. A shadow file

might be used to improve the

classification of forests on both

sides of the mountain. In another

study, pixel patterns based on

brightness and texture were

classified within each MSS TM band

(Harston, 1991d) . These

classifications were fused with an

add it iona I neu ra I network t hat

resulted in improved performance.

Possibly, the texture, signature,

altitude, and other data can be fused

with neural technology to obtain even

higher test performance.

The potential for classifying

incoming Earth Observing System (EOS)

data in real time is genuine. See

papers authored by Short, Campbell,

Fekete, Dorfman, and Cromp at the

GSFC for a description of the

importance of this problem. As

indicated in our multi-spectral work

to date, meaningful results are

possible; however, higher levels of

performance may be possible. It seems

reasonable that more can be done with

multi-spectral data when additional

non-spectral information is

integrated with the spectral results.

Further work with seasonal, urban,

hazy, and cloudy images is needed.

Ultimately, a system that could

classify regardless of variations or

conditions could categorize incoming

data in real time. Such

categorizations would be useful for

the Intelligent Data Management (IDM)

project as a basis for defining,

cataloging, and referencing images

for a data base.
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TABLE I

NEURAL NETWORK TEA ! N I NO
AND TESTING RESULTS

EXPERXMENT Z •

TRZALS TRAZN TEST CORRECT

SPECTRAL NN 6S. 7R

FUSZON NN 73. 7X

mXPERXMENT ZZ •

SPECTRAL NN 60, e2 I 65. 7X 52R 68X

FUSXON NN 65 o e3S 7S. 8R 6SR 76R

TABLE II

CORRECTED PERFORMANCE FOR EACH CLASS

SPECTRAL SXGNATURE NEURAL NETWORK

C_RECTED NEURAL NETWORK CLASSXPZCATZON
GR_ND
T_TH UmAN FARM RA_E F_[ ST

URBAN IGOR -

FARM 26. 8R 6eR 6. 7R 6. 7R

RANGE - leer OR

FOREST - - I 2. SX 87. 5R

ELEVATION FUSION NEURAL NETWORK

C_RECTED NEURAL NETWORK CLASSIFXCATZON
GR_
TRUTH URBAN F_M RA_E F_EST

URBAN leer - - -

FARM 2eX 8eR = =

RANGE - leer ex -

FOREST - I 2. SR I 2. SX 75R
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TABLE I I !

UULTISPECTRAL IMAGE

CLASS IF ! CAT I ON PERFORMANCES

NEURAL NETWORKS

CAMPBELL, HZLL
& CROMP, 1989

WASHINGTON, DC
W/ GROUND TRUTH

TRAZNZNG TESTZNO

ANYPim 48Z 557.

"oR- 66_ 70_GOUNDRY
PIXELS

BENEDZKTSSON,
SWAZN & ERSOY,
1990

COLORADO MOUNTAINS

CROMP , 1991

BLACK HILLS LANDSAY MSS

HOMOGENEOUS,.LOS 95Z

HARSTON , 199 I

liURFREESBORO LANDSAT MSS
HULTISPECTRAL FUSION SYSTEM

HARSTON &
$CHUMACHER,
1991

TillS I IV,OE S

HARSTON &
SCHUMACHER,
1991

BLACK HILLS LANDSAT MSS

IILC Wl NH

I SAMPLE
/CLASS SET

BRIGHTNESS

BRIGHTNESS
& TEXTURE

SPECTRAL
SIGNATURE
W/ ROAD
DETECTOR
NN SYSTEH

SPECTRAL
SIGNATURE

SPECTRAL
SIGNATURE
W/ALTITUDE

100Z

100Z

85Z

75Z

95Z

Wl GROUND
TiM,ITH

65.7Z

75.8Z

m EDt MINIMUM EUCLIDEAN DISTANCE
MLs MAXIMUM LIKELIHOOD IIETHOD
lidos MINIMUM HAHALANOBIS DISTANCE

HULT|SOURCE: STATISTICAL NULTISOURCE ANALYSIS

52.5Z

60Z

6IZ

43Z

63Z

STATZST ZCAL
CLASSZ_ZCATZON

ED ilL lid HULTI-
SOURCE

47Z 49Z 50Z 61Z

CORRECTED
FOR VISUAL
INTERPRETATION

68Z

76Z

1S8


