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A TWO-DIMENSIONAL EULER SOLUTION

FOR AN UNBLADED JET ENGINE CONFIGURATION

Mark E. M. Stewart

Institute for Computational Mechanics in Propulsion
NASA Lewis Research Center

SUMMARY

A two-dimensional, nonaxisymmetric Euler solution in a geometry representative of a jet engine

configuration without blades is presented. The domain, including internal and external flow,

is covered with a multiblock grid. In order to construct this grid, a domain decomposition

technique is used to subdivide the domain, and smooth grids are dimensioned and placed in

each block. The Euler solution is verified by examining five theoretical properties. The result

demonstrates techniques for performing numerical solutions in complex geometries and provides

a foundation for complete engine throughflow calculations.
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NOMENCLATURE

drag coefficient
lift coefficient

artificial dissipation

total energy
surface normal

total enthalpy

pressure

flux integral approximation
surface area

t time

u,v velocity components
vol volume

w vector of dependent variables

a angle of attack

7 ratio of specific heats

p density

_ stage coefficients

f_ arbitrary region

INTRODUCTION

Numerical simulations have provided valuable insights into a wide range of important problems

in science and engineering. In aeronautical engineering these applications range from funda-

mental problems in fluid mechanics to practical problems in design. Simulations have helped

reduce design time while improving designs, and they are now an integral part of the design

process.

Traditionally, jet engine research and development has involved a substantial experimental com-

ponent. Engineering practice for engine development in the 1980's involved preliminary analysis

and computer modeling of the first-order physical effects followed by extensive experimental

testing of engine components in isolation. This effort was followed by engine integration based

on component performance and culminated in ground testing of the integrated engine. The

process is expedited by experience and extensive databases of test data, which allow estimates

of physical effects including endwall boundary layer losses and shock losses. However, this de-

velopment and integration can cost hundreds of millions of dollars, and it can be years before

the viability of a design is firmly established. In order to reduce the risks of this process, de-

sign changes are often incremental and build on experience, and because of these risks, radical

designs are difficult to fully test.



Computational methods are availablethat complementexperimental techniquesin the analy-
sis of engine flow phenomena. For isolatedblade rows inviscid and viscouscodeshave been
developed. Dawes1 as well as Chima and Yokota2 havereported codesfor three-dimensional
viscousflow in a blade row. Whitfield et al.3havedemonstratedtechniquesfor time-accurate
simulationsof counterrotating propfans.

In multistage compressorsand turbines today's algorithms and computers dictate the useof
physicalmodeling becauseof the geometricalcomplexitiesof relatively moving blade rowsand
the physical effectsof their interactions. A foundation of compressorthroughflow calculations
is the work of Wu4 who haspresentedan approachto solvingquasi-three-dimensionalflow by
using a meridional surfacecoupled with a blade-to-bladesurface. Jennionsand Stowes,6have
demonstrateda throughflow calculation for a turbine blade. Wisler et aI.7havementionedthe
useof circumferentially averagedthroughflow calculationsfor evaluatingcompressordesigns.
Recently,a number of techniques have been introduced for three-dimensional multistage calcu-

lations. Denton s has presented an Euter calculation for multistage turbomachines, and Dawes 9

has reported a three-dimensional viscous technique. To model flow in a multistage machine,

Adamczyk et ai.10 have developed a combination of space- and time-averaging operators in the
spirit of Reynolds averaging.

Despite the complexities of simulating components, they do not operate in isolation and their

interactions are important. Yet, in engine development, components are integrated on the

basis of their performance in isolation. With predictive tools largely limited to one-dimensional

analysis of complete engines, designs must be conservative even when there is a need for less

conservative designs that require consideration of these interaction effects.

The goal of the current work is to lay a foundation for complete engine throughflow calculations.

As a step in this task the current calculation deals with the geometrical and numerical problem

of solving for the external and internal flow in the inlet, bypass duct, core duct, and nozzle of the

engine configuration. The geometry is not axisymmetric in that there is a uniform depth over

the computational domain instead of radial variation. Given this foundation, determination of

the axisymmetric unbladed solution will follow, n A further step is modeling blade effects in the
solution.

First, the task of determining the contours for this geometrical configuration :is detailed. Then

the techniques for finding a multiblock grid within the domain are presented. Finally, the

numerical methods are explained and solution results and their verification are presented.

GEOMETRY MODELING

The geometry for this problem is based on the Energy Efficient Engine (E3), which was designed

and tested by General Electric for NASA in the early 1980's. In particular, the geometry is based

on the ground test of the integrated engine. The engine was designed for use in commercial

jets in the 1990's.

Several modifications were made to the geometry; the most important was neglecting blade

effects in the compressor and turbine sections. The compressor does work and compresses the

air passing through the engine core, and for the actual engine the pressure ratio is 23:1. After

passing through the Combustor, where there is an enthalpy increase, the fl-ow expands through

turbine blades, which remove energy from the flow to drive the compressor and the fan. In this



solution theseeffectswereneglected,an(] the compressor,combustor,and turbine sectionswere
replacedwith a duct. However,a duct with a comparablearearatio through thesesectionswill
producesonicflow at the throat evenat relatively low Mach numbers. A shockat the throat
limits massflow through the enginecore,and changesthe streamlinesthroughout the engine.
In order to reducethis problem the corearea ratio waschangedto 2:1 by raising the splitter

plate.

Several other modifications were made to the geometry contours. Since the geometry was for a

ground test, an external nacelle was designed by using standard design practices. Furthermore,

a small splitter island near the core bypass was excluded. Since surface pressure is very sensitive

to the smoothness of the surface contours, every effort was made to ensure continuity of the

surfaces and their derivatives. In particular, least-squares curve fitting to a set of sine and

cosine basis functions has been used to remove high-frequency errors in the coordinate data.

GRID GENERATION

The grid on which the calculation is done is a multiblock grid that consists of block-structured

grids which cover the domain without overlapping. The interfaces between blocks are matched

so that coordinate lines pass from one block to another continuously without a slope discon-

tinuity. These grids are generated by using the TOPOS program 12, which finds a domain

decomposition, dimensions the grids within the blocks, and places smooth grids within each
block.

The domain decomposition is determined with an algorithm that finds boundary-conforming

regions within a domain. In a way analogous to how the skin of a balloon conforms to neigh-

boring walls when blown up in a confined space, this algorithm finds topologically rectangular

regions within the domain. If this region is removed from the domain to produce a truncated

domain, the algorithm may be applied again to find a further block. By repeated application

of the algorithm, the domain is reduced until it is covered.

Once a domain decomposition has been found, transformations may be applied to cut and split

the decomposition and change its topology. The transformations are isomorphic with respect to

the data structures used to represent the domain decomposition. These transformations, with

their isomorphic properties, provide a valuable tool for manipulating domain decompositions.

The dimensions of each grid block are found so that coordinate lines continue through each block

interface. Since the block topology is globally unstructured, this interface property places a

nontriviai constraint on the grid dimensions. However, these properties may be formulated as

a system of underconstrained linear equations with constant, integer coefficients that require
positive integer solutions. If the system of equations admits a solution, this solution can be

found with the simplex linear programming algorithm. 13 Furthermore, the simplex method

specifies some of the parameters in this system of equations that may be varied to adapt the

grid. Smooth grids are then placed in these dimensioned blocks by using a Coons patch followed

by smoothing with an elliptic grid generator.



NUMERICAL METHODS

The two-dimensionalEuler equationsmodel inviscid, compressibleflow and are givenby

w dVol = - F. nds
_1 0f_

where F = (/, g) and

W /puv I g(w) = Pv 2 + p

pull / pv H

(1)

where M and N are cells adjacent to the face. The discretized equations for each cell are

advanced to a steady state by a multi-stage scheme,

W (1) = Wi @ (YlAt[O(wi) _-

w (2) = wi + a_At[Q(w 0)) +

= w, + +

w (4) = wi + a4At[Q(w (a)) +

D(_I)]

D(w(:))]

D(w(1))]

wi+: = wi + asAt[Q(w (4)) + D(wO))]

where a_ are stage coefficients, Q(w) is the convective flux approximation for the cell given in

equation (2), and D(w) is an artificial dissipation. The artificial dissipation consists of third-

order dissipation, which stabilizes the time-stepping scheme, and first-order dissipation, which
is switched On near shocks to capture then::

(3)

Three types of boundaries can occur in a grid. First, at solid surfaces a free-slip, tangential

flow condition is applied. Second, at the truncation boundary in the far field the free-stream

conditions are matched to internal conditions by matching incoming and outgoing Riemann

invariants. Third, at the interface boundary between blocks information must be exchanged.

Since coordinate lines pass through these boundaries continuously, the continuation of one grid

into its neighbor is trivial. Each grid in computational space has a layer of cells surrounding

it, where dependent variable values from the continuation onto the neighboring grid may be

placed. Then the convective flux Q(w) and the artificial dissipation D(w) are calculated, as usual,

in each cell within the grid. By using this scheme and passing dependent variables across block

interfaces at each stage of equation (3), the solution is not influenced by these block interfaces

regardless of how the domain is decomposed.

P = (7 - 1)(pE p(u2 + v2) ) H - 7 P
2 :)p

Here 7 = 1.4. The numerical approximation and solution techniques are based on the FLO52

program of Jameson et al. :4 The discretization of these equations on the grid takes f_ to be a cell,

and the flux through each face is approximated from the ce'ntroid-based dependent variables as
:!

/ 1fay - gaz -_ }(/_ + !._,g_ + g_).(zxy s .... -AxI°o_) (2)
]aC_



Several techniques are used to enhance the convergence of equation (3). Since there are no blades

that do work on the flow, the solution is isenthalpic and enthalpy damping _ may be used to

enhance convergence. Since a steady-state solution to equation (1) is sought, the maximum

local time step permitted by the CFL condition is used. Consequently, the simulation is not

limited by a small time step determined by the smallest cell in the grid.

A multigrid algorithm 16 is used to accelerate convergence further. The multigrid levels are

constructed by finding the coarsest grid that does not have excessive stretching or high aspect

ratios due to the nonuniformity of the decomposition topology. Each dimension of this coarse

grid is multiplied by a power of 2 to construct finer grid levels. In the current calculation the

grid topology and coarsest grid allow three grid levels to be used and this improves convergence

considerably. For each grid level added, the convergence rate, measured by the average density
residual, increases by about a factor of 2.

RESULTS

The grid on which the calculation has been done is shown in figure 1, where the bold lines

indicate the interfaces between blocks. The grid contains 16800 cells in 10 blocks that cover

the external field, inlet, bypass duct, core duct, and nozzle of the nonaxisymmetric engine
configuration.

7-
r

,.r

. o

t v

%/5

4--

V

Figure 1: Inner grid for jet engine configuration.



The geometryis symmetric about the meanlineof the hub, but the grid is not sincethere is no
symmetry condition appliedto the grid betweenthe two halves.With a symmetricgrid at zero
angleof attack the solution would be exactly symmetric and measuresof the solution, suchas
the lift coefficient would exactly cancel. However,with an asymmetricgrid the solution will
not necessarilybesymmetric, andthe lift coefficientwill not necessarilybezero. Consequently,
this grid asymmetry canbe exploited to verify the resolutionof the solution.

The simulation was run 2500 iterations at Mach 0.3 and 0° angle of attack. The convergence

history is shown in figure 2. The single-grid convergence history is also shown to demonstrate

the speedup due to multigrid.
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Figure 2: Convergence histories of average density residual

with two multigrid levels (solid line) and without multigrid (dashed line).

There are no known experimental results for comparison, but the simulation may be verified

on the basis of five theoretical quantities. First, the solution conserves mass and energy. Con-

servation of mass is directly demonstrated in figure 2 by the convergence of the average density

residual t_] Over the domain. Conservation of energ-y follows from convergence Of the_average

total energy residual j_a___t I over the domain. Second, since the angle of attack, a, is zero and

the geometry is symmetric, the lift coefficient, CL, should be zero. It is calculated to be CL

= -0.0031. The deviation from zero is due to the asymmetry of the grid, the truncation error

in the convective flux approximation O(w), and the artificial dissipation D(w). Third, since the

solution is Subcritical, the drag coefficient CD should be zero. It is calculated to be CD = 0.0045.

Again, the deviation from zero is due to the asymmetry of the grid, error in the approximation

of Q(W), and the artificial dissipation D(w). Fourth, since inviscid, adiabatic flow is isentropic,

deviations from constant entropy are a further test. Over the surfaces of the body the entropy

deviations are less than 0.5 percent. The large deviations are at the leading edge of the splitter

plate with its small leading-edge radius, at the curved inlet to the core passage, and at the
leading edge of the nacelles.



Fifth, the asymmetry of the grid does not guarantee a symmetric solution. Figure 3 shows the

pressure distributions over the symmetric surfaces of the components. Surface pressure is sensi-

tive to errors, and the result shows symmetry since surface pressure overplots on the symmetric

surfaces. The largest deviation is in the core passage and is attributed to an accumulation of

error as the flow passes through the core duct.
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Figure 3: Normalized pressure distributions over the symmetric surfaces. Clockwise from top left,

the components are the hub, the splitter plate, and the nacelle.

CONCLUSIONS

A two-dimensional, nonaxisymmetric Euler solution for a jet engine geometry has been pre-

sented. The multiblock grid is generated by using techniques that find a domain decomposition

and a grid within the domain. The solution has been verified on the basis of five theoretical

quantities. These results demonstrate a foundation on which further simulations can be built,

including solutions for axisymmetric configurations and solutions with blade effects included.
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