
N92-24105

A Simple Implementation of the Viterbi
Algorithm on the Motorola DSP56001

Dion D. Messer and Sangil Park

Motorola Inc.

Digital Signal Processing Operations

Austin, TX 78735

ABSTRACT

As system designers design communication

systems with digital instead of analog compo-
nents to reduce noise and increase channel ca-

pacity, they must have the ability to perform
traditional communication algorithms digitally.

The use of Trellis Coded Modulation as well as

the extensive use of convolutional encoding for

error detection and correction requires an effi-

cient digital implementation of the Viterbi Al-

gorithm for real time demodulation and

decoding. Digital Signal Processors axe now fast

enough to implement Viterbi decoding in con-

junction with the normal receiver/ transmitter
functions for lower speed channels on a single

chip as well as performing fast decoding for

higher speed channels, if the algorithm is imple-

mented efficiently. The purpose of this paper is

to identify a good way to implement the Viterbi

Algorithm (VA) on the Motorola DSP56001,

balancing performance considerations with

speed and memory efficiency.

1.0 Introduction

The DSP56001 is a digital signal processing

chip which is well suited for communication ap-

plications and is also adaptable for Viterbi de-

coding because of it's dual data memory
structure, zero overhead modulo addressing,

and hardware do loop capability. The key obsta-

cles to implementing the VA on the 56001 are:
overflow in the "accumulated distance to each

state" calculation, and finite memory availabili-

ty for path storage. This paper discusses novel

solutions to these obstacles in implementing the
VA on the 56001 as well as an evaluation of the

performance of the decoder using this imple-

mentation. An example code is used to help ex-

plain the concepts in this paper. The example
code is the V.32 trellis, which is shown in Figure

1. Figure 2 shows the corresponding constella-

tion and Figure 3 is a block diagram of the en-
coder.

This 8 state trellis is used as an example be-

cause the short constraint length is a less com-

plicated structure to use for explanation than the

K=7 codes which are popular on satellite chan-

nels. However, the performance of K=7 codes

will be discussed in section 3.

2.0 Background

The Viterbi algorithm for decoding uses the

structure of the trellis (i.e. the allowed transi-

tions) and the input data to determine the most

likely path through the trellis. The output for

time to reflects a decision made by the decoder

on data received up to N time periods in the fu-

ture. This means that the output for time to is

necessarily delayed by N time periods, or that

the latency of the decoder is N time periods. N

is determined by the constraint length of the

code and for near-optimum decoding is 4 or 5

times the constraint length [9].

The most likely path through the trellis is de-

termined to be that one which is a minimum dis-

tance path for the input data, or the path closest
to the received data in Euclidean distance. In

other words, the Viterbi algorithm minimizes

the distance [1]:

International Mobile Satellite Conference, Ottawa, 1990

205

https://ntrs.nasa.gov/search.jsp?R=19920014862 2020-03-17T12:29:50+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42812745?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

N-1

d (r, v) = y__, d (r i, Vi) (1)
i=0

where r i and v i are the received and the decoded

signal sequence respectively.

Looking at Figure 3, there are 3 delays, (SI,

$2, and $3) and the data they contain at any

given time period is called the delay state in

this discussion. The output (YOn, Yln, and

Y2n) are referred to as the path state because

they refer to the state of the path.

At each time period, every delay state in the

trellis can have several paths (defined by each

trellis) going into it, but only one will be the

minimum distance for that delay state. Thus,

the delay state with the smallest accumulated

distance is the beginning point, at that time pe-

riod, to trace the minimum distance path

through the past N-1 time periods of the trellis.

The minimum distance paths to the next delay

state are then determined by evaluating the in-
put to determine which point on the constella-

tion in each path it is closest to, determining the

Euclidean distance to each of those points,
then, based on the trellis structure, and the min-

imum distance paths, determine the minimum

accumulated distance to each delay state. So,

after defining the trellis, the steps taken to de-

code the data are given below [1].

1) At each input compute the minimum dis-

tance path states and the corresponding
Euclidean distances and store them for

each path state.

2) Compute the accumulated distance to

each delay state by adding the distance

for each path state going into a delay

state to the distance of the delay state

where the path state originated, keeping
the smallest of these distances and stor-

ing the path state and the delay state from

which it came. Eliminate all other path

states going into that delay state.

3) Find the delay state with the smallest ac-
cumulated distance and trace it back N

times to read the path state, which is the

output of the decoder for that time peri-
od.

Figure 4 shows the possible paths to delay

state 010 for the V.32 trellis and how the mini-

mum distance to 010 is chosen from the possi-

ble paths.

When the minimum distance path is found

at each delay state, the path state taken to get
there from the last delay state must also be

stored (i.e., 001 in Figure 4 assuming C + _,

was the minimum) so that in N time periods,

the output can be determined from the endpoint

of the minimum distance path at time to+N. By

storing the minimum distance path state (YOn,

Yln, Y2n) to each delay state, as well as the de-

lay state (SI, $2, $3) the path originated from,
the most likely path can be traced. This is done

by starting at the minimum accumulated dis-

tance state, going to the state it came from, and

repeating this process N-I times. That is, the

minimum accumulated distance for all eight
states identifies the state to be used as the start-

ing point from which to trace back N time peri-

ods. Once the state for to is found, the path

taken to get to that state becomes the output of

the decoder for the time period to. For instance,

in Figure 4, if at to , the end point of the mini-

mum distance path turned out to be 010 then

the output of the Viterbi decoder would be 001.

In summary, at every time period, the accu-

mulated distance to each delay state is calculat-

ed and updated and the minimum distance path

state (YOn, Yln, Y2n) to each delay state is

stored, as well as the delay state it came from

(SI, $2, $3). This creates a history so that it is

possible to trace back in time to get the correct

output of the decoder.

A block diagram of the V.32 decoder show-

ing inputs and outputs is shown in Figure 5. It

can be compared to the block diagram of the

encoder shown in Figure 3 to keep track of the

input and output bit order. Decoding must be

done by performing each decoder function in
the reverse order in which it was encoded. In

this case, the trellis decoding is done first and

then the differential decoding is done.

3.0 Performance Parameters

The three basic parameters which affect the

performance of the Viterbi algorithm are dis-
cussed in this section.

206
International Mobile Satellite Conference, Ottawa, t990

3.1 The Accumulated Distance Calculation

At every input, the accumulated distance to

each state must be recomputed by adding pre-

vious accumulated distances to current path

distances. Since the DSP56001 is a fixed point

processor, this cannot occur continuously with-

out resulting in an overflow problem. Thus, an

alternate way to obtain the accumulated dis-

tance measurement is a weighted accumulation

method which can be expressed as [10]:

dne w = [_dol d + (1 - 13) dpath (2)

where O << 13 < 1 denotes the smoothing pa-

rameter. This method (essentially a low pass

filter) ensures that the new accumulated dis-
tance is a bounded arithmetic value. It has also

been shown that this method gives unbiased es-

timates [10]. Although (2) uses all past values

to compute a current accumulated distance, the

value of [_ is directly related to the time con-

stant, x, which gives the number of recent past
values to estimate the accumulated distance as:

2
x - (3)

1-13

Using this equation, 85% of dne w comes

from the points in the time constant, x, and the

remaining 15% is contributed by points previ-

ous to x. In testing this implementation, values

of 13which fall in the range,.9 < 13<.99 provid-

ed very good results in that there was no change
in bit error rate (BER) with blocks of 104 data

bits. Comprehensive tests using larger blocks

of data are planned to chart the BER as 13is var-

ied over the same range. It is expected that this

will produce an optimum value of 13for differ-

ent constraint length codes.

3.2 Path Memory Length

As stated previously, the number of time pe-

riods for near-optimum decoding is 4 or 5 times

the constraint length K. The objective is to de-

termine a path memory length which gives an

optimum BER, decodes at an acceptable speed,

and which conserves memory. Because of the

looping capability of the DSP56001 and the

modulo addressing scheme, each time period of

path memory only requires 4 instruction cycles

to trace. Therefore, in the case of V.32, time pe-

riods of 16 and 20 only take 60 and 80 instruc-

tion cycles respectively to determine the output

when tracing through the trellis. The difference

of 20 instruction cycles has a minimal affect on

the total instruction cycle count needed for the

decoding process. Since each time period re-

quires only 4 instruction cycles, the extra pro-

cessing time is not an issue in determining the

path length.

Each additional time period does require

extra memory locations for each state in the

trellis. When the constraint length is short, the
number of states are fewer and fewer extra

memory locations are needed. As the constraint
length increases to K=7, there are 2 K-1 °r 64

states, this means for each extra time period

there needs to be 64 extra memory locations. In

the K=7 case, the path length at 4 times K is 28

time periods and at 5 times K it is 35 time peri-

ods. For the difference of 7 time periods there

would have to be 448 additional memory loca-

tions. When memory is scarce, this could be the

decision factor in determining the path length

used with this implementation.

Testing path memory lengths of 4 and 5

times the constraint length revealed no differ-
ence in BER performance. Again, blocks of 104

data bits were used for this testing. Additional

testing of larger blocks of data is expected to

reveal that the longer the path memory the bet-

ter the performance of the decoder.

3.3 Maximum Data Rate

The Motorola DSP56001 currently operates

at 27 MHz with an instruction cycle of 75 ns.

700 instruction cycles are all that is needed to

decode on input symbol (4 output bits) for the

V.32 case. This is only 15% of the processor

capability, allowing time to perform the mo-
dem transmit and receive functions if desired.

If the processor is used only as a stand alone de-

coder for this code, a data rate of 76Kbs can be

achieved using 100% of the processor!

In the case of the constraint length K=7
codes often used for satellite channels, there are

64 delay states which pushes the processing for

each input to 1300 instruction cycles. Using

100% of the processor, a data rate of 10Kbs can

be achieved with present processor speeds. Ad-

International Mobile Satellite Conference, Ottawa, 1990

207

vances in VLSI technology will push the pro-

cessor speeds faster in the near future, allowing

an even higher data rate for decoding on the
DSP56001.

4.0 Summary

As shown, the Motorola DSP56001 offers a

flexible solution to the Viterbi decoding task in

a communications channel. Since it is program-

mable, it is possible to decode any number of

different codes with varying constraint lengths

by boot loading the software for the desired

code. Using the DSP56001 can help in making

designs compact by eliminating special pur-

pose chips for decoding, echo cancellation,

PLL, timing recovery, equalization, modula-
tion and demodulation. All of these tasks can

be performed on the DSP56001 for low data
rate channels. As DSP's are used more and

more in communication systems, Viterbi de-

coding as a software solution will become a ne-

cessity for efficient system designs.

The software for the example given is avail-
able on the Motorola DSP bulletin board (512-

891-3771), or by contacting the authors at the

address given.

REFERENCES

[1] S. Lin and D. Costello, Error Control Cod-

ing: Fundamentals and Applications, Pren-

tice Hall, 1983.

[2] B. Sklar, Digital Communications Funda-

mentals and Applications, Prentice Hall,

1988, p. 319.

[3] G. Ungerboeck, "Trellis Coded Modulation

with Redundant Signal Sets Part l:Introduc-

tion," IEEE Communications Magazine

25(2) (February 1987).

[4] A. J. Viterbi, "Error Bounds for Convolu-

tional Codes and An Asymptotically Opti-

mum Decoding Algorithm," IEEE Trans.

Inf. Theory, vol IT13, April 1967, pp. 260-
269.

[5] DSP56000 Digital Signal Processor User's

Manual, Motorola Inc., 1989.

[6] L. -f. Wei, "Rotationally Invariant Convo-

lutional Channel Coding with Expanded

Signal Space - Part 1:180," IEEE Journal on
Selected Areas in Communications SAC-

2(5) p. 661 (September 1984)

[7] CCITT, The International Telegraph and

Telephone Consultative Committee, Red

Book. Volume 8. 1985. p.222.

[8] A. Fagen, et AI., "Single DSP Implementa-

tion of a High Speed Echo Cancelling Mo-

dem Employing Trellis Coding," Proc. Of

the Intnl. ESA Workshop on DSP Tech-

niques Applied to Space Communications,

Noordwijk, November 1988.

[9] J.A. Heller, and I.W. Jacobs, "Viterbi De-

coding for Satellite and Space Communica-

tion," IEEE Trans. Commun. Technol., vol.

COM19, no 5, October 1971, pp. 835-848.

[10] N. Magotra, et AI., "A Comparison of Two

Parametric Estimation Schemes," Proc.

IEEE, vol. 74, No. 5, pp.760-761, May
1986.

[11] E.A. Lee and D.G. Messershmitt, Digital

Communication, Kluwer Academic Pub-

lishers, 1988.

F/_T DELAY $TJLTE NEW DEL.AY STATE

0

PAT_ STATES • YO _'_ _q

Figure I. Trellis Diagram

208
International Mobile Satellite Conference, Ottawa, 1990

180"

00OO0

I
4

00111

IIMAGINAJqY)

gO"

"'t11111

0OO1O

11110

01111

110(]1 ,2

01001

_0000

01110

00110

• 2 I
10111

• -4 t

270"

B_t sequence - YOn, Y1 n,Y2 n Q3 r,,C_4n

!_000

01010

1_Cll 10100

01101 00011

_ _ : _ 0" (REAL)
1:010 2 11101 4

01011 00100

• •
10(0)I 10110

01100

11011

Figure 2. V.32 Constellation

OLD
ACCUI&JLATEO P63T STATE PRESENT STATE

_,STAJ',ICE S' S2 $3) ,$1 S2 $3}

A 300 _"-'_nu3YO¥I Y2 • O_

O 301 e-----_-_ • 001

0 O_ _ • 011

E _00 • • 100

F "01 • • !01

G '_0 • • 110

H _I_ • • I_I

NEW ACCUMULATED OlSTA/_

TO 010 IS MINIMUM OF

A,OK

C,.y

O*&

NOTE a. _. y, 8 ==repath d,stances

Figure 4. Possible Paths to State 010

O'n t
SEE

TABLEIII i I I .

II1", I

Q3n
DIFFERENTIALENCOOER

I
I

I

Oln

Q4 n

_n

CONVOLU'TIONALENCOOER

Y2n L._.),

Yln _._

r

L J

Figure 3. V.32 Encoding Diagram

SIGNAL
ELEMENT
MAPPING

INPHASE

OUTPUT
v

OUADRATURE

OUTPUT

O

r

v

VITERB
DECOOER Y2

Y1

O4
v

O3
v

j IDIFFERENTIAL
DECODER O1

v I r

Figure 5. V.32 Decoder Block Diagram

International Mobile Satellite Conference, Ottawa, 1990

209

