TRANSIENT THERMAL STRESS RECOVERY FOR STRUCTURAL MODELS

William Walls

McDonnell Douglas Space Systems Co.
Huntsville Alabama

Abstract

A method for computing transient thermal stress vectors from temperature vectors is described. The three step procedure involves the use of NASTRAN to generate an influence coefficient matrix which relates temperatures to stresses in the structural model. The transient thermal stresses are then recovered and sorted for maximum and minimum values. Verification data for the procedure is also provided.

1.0

INTRODUCTION
There are many occasions when the stresses produced by transient thermal events must be considered. The ascent, on-orbit, and descent phases of a Spacelab mission produce large temperature gradients on the Cargo Element. A method for recovering the thermal stresses produced by these events was developed by the Structural Analysis Group at McDonnell Douglas Space Systems Company-Huntsville (MDSSC-HSV), and has been used for more than six years in Spacelab Evaluation.
Because this method was somewhat unhandy to use, only a limited number of temperature distributions could be run. These were generally chosen on the basis of temperature or temperature difference extremes. Unfortunately, there is no proven relationship between "worst stresses" and "worst temperatures" or "worst temperature differences" for the complex models with which Spacelab has to deal. It was therefore decided to develop a process that would transform transient temperature vectors (which are separately calculated) directly into stress vectors that could then be sorted for maximum and minimum (Max/Min) values.

Section 2 presents the theory used in the procedure, section 3 describes the procedure, section 4 presents verification results, and section 5 contains the conclusions.

The method described assumes that the thermal strains, and hence stresses are linearly proportional to the temperatures. The method, therefore, is not applicable to models having temperature or stress dependent material properties.

An influence coefficient matrix, [TRAS], to transform the temperatures at a models n grids into m stresses can be developed as follows. A temperature of one unit above the reference is applied to a grid in the model while the remaining $\mathrm{n}-1$ grids are held at the reference temperature. The resulting m stresses are then recovered. This is repeated for all n grids in the model. The resulting n sets of stresses are then assembled as columns to form an m by n influence coefficient matrix, [TRAS], that can be used to transform temperature vectors into stress vectors. The transformation is as follows:

$$
\begin{equation*}
[\text { STMHST }]=\text { [TRAS] [TEMPS }] \tag{1}
\end{equation*}
$$

Where;

$$
\begin{aligned}
{[\text { STMHST] }=} & \begin{aligned}
\text { Stresses in the finite element model } \\
\text { (time history). }
\end{aligned} \\
\text { [TRAS] }= & \begin{array}{l}
\text { Linear transformation (influence } \\
\text { coefficient) from temperatures to } \\
\text { stresses. }
\end{array} \\
& \text { [TEMPS] }=
\end{aligned} \begin{aligned}
& \text { Temperatures at the grids (time } \\
& \\
& \text { history). }
\end{aligned}
$$

Equation (1) is used to recover transient stress vectors from transient temperature vectors.
3.0

PROCEDURE
The procedure used to recover maximum and minimum thermal stresses is divided into three steps. The first step is to generate the influence coefficient matrix [TRAS]. The transient stresses are recovered using equation (1) in the second step. The transient thermal stresses are then sorted for Max/Min data in the third step. Each of these three steps will be described below. Coefficient Matrix [TRAS]

NASTRAN is used to generate [TRAS] as described in section 2. NASTRAN Subcase commands are used to accomplish this step with each subcase corresponding to a grid in the model. It should be noted that NASTRAN can handle a maximum of sixty-six temperature load cases. A model having more than sixty-six grids will, therefore, require multiple runs and subsequent merging of the output data. An example of a NASTRAN control deck to generate [TRAS] for the verification model described in Section 4 is shown in Figure 1. The DUMMOD5 module is used to convert the OES1 table into a matrix data block which is then written to a file using the OUTPUT5 module. The extraneous rows (fiber distances, safety margins, etc.) of [TRAS] are then removed using a specially developed FORTRAN code.

3.2 Step 2 - Recover Transient Thermal Stress

 Vectors From Temperature VectorsThe transient temperature vectors must now be obtained. At MDSSC-Huntsville, the thermal analyses are performed using SINDA. A FORTRAN code has been written to access the SINDA output file and recover the desired temperatures along with the corresponding time vectors. The temperature and time data is written in OUTPUT5 format. Care should be taken to ensure that the row order of the temperature vectors is compatible with the column order of [TRAS].

Equation (1) is then used to recover the transient thermal stress vectors. This is easily accomplished in a simple DMAP run using the MPYAD module. The resulting thermal stress vectors and time vector are written to a file using the OUTPUT5 module.

3.3

Step 3 - Sort Thermal Stress Vectors For Maximum and Minimum Data.

The transient thermal stress vectors are now sorted for Max/Min data. This step is performed using a specialized FORTRAN code. This code can search multiple time histories allowing composite Max/Min tables to be obtained. An example of output from this program for the Spacelab Multipurpose Experiment Support Structure (MPESS) is shown in Table 1. The data in Table 1 was obtained from actual temperature vectors for a Spacelab mission and encompasses ascent, orbit, and descent.

In order to verify that the procedure is working correctly, a test case was performed. A simple rectangular plate model was constructed using QUAD4 and BAR elements. A plot of the plate model is presented in Figure 2 and the Bulk Data is shown in Figure 3. The model has thirty-three grids and is homogeneous. A temperature gradient (see Figure 4) was applied to the model and the resulting stresses in four elements were recovered using NASTRAN directly. The results are presented in Figure 5. The transient thermal stress recovery procedure was then used to calculate stresses due to the same temperature gradient and the results are shown in Table 2.

It can be seen from Figure 5 and Table 2 that the results are the same. This indicates that using [TRAS] to perform the thermal stress recovery produces the same results as using NASTRAN directly.

A procedure has been developed to recover thermal stresses in a NASTRAN model directly from temperatures output by a thermal model. Because the procedure uses a linear transformation matrix rather than a computer program, entire thermal stress time histories may be efficiently obtained and scanned for Max/Min thermal stress data. Tabular output of the Max/Min data is then produced. A test case has been executed and the results indicate that the procedure functions correctly.

```
NASTRAN TITLEOPT=0
$
S RUN TO GENERATE INFLUENCE COEFF. MATRIX FOR THERMAL STRESS RECOVERY.
$
$
$
$
ID CHECKOUT PLATE
APP DISP
SOL 1,7
TIME 999
DIAG 13,14,21,22,26,42
$
$
S WHERE;
$ OES1=STRESSES
S OEFI=FORCES
$
$
ALTER 106
DUMMOD5 OES1,,,,/ELSEU,,,,/C,N,44/////C,N,1/C,N,1 $
OUTPUT5 ELSEU,,,,//0/15//0 $
OUTPUT5 ,,,,//-9/15//0 $
ENDALTER
CEND
$
TITLE = ANALYSIS OF PLATE
SUBTITLE = RUN TO GENERATE INFLUENCE COEFFICIENT MATRIX
LABEL = PLATE
MAXLINES = 99999999
    SPC=100
$
SUBCASE 1
    LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 1
    TEMP (LOAD) = 1
    ELSTRESS=ALL
$
SUBCASE 2
    LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 2
    TEMP(LOAD) = 2
    ELSTRESS=ALL
$
SUBCASE 3
    LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 3
    TEMP(LOAD) = 3
    ELSTRESS=ALL
$
    SUBCASE }
    LABEL = APPLY A l DEGREE ABOVE REF. TEMP. TO GRID 4
    TEMP (LOAD) = 4
    ELSTRESS=ALL
$
SUBCASE 5
LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 5
Figure 1. NASTRAN Control Deck to Generate [TRAS] for the
                                    Verification Plate Model
```

```
    TEMP(LOAD) = 5
    ELSTRESS=ALL
$
SUBCASE }
    LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 6
    TEMP(LOAD) = 6
    ELSTRESS=ALL
$
SUBCASE }
    LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 7
    TEMP(LOAD) = 7
    ELSTRESS=ALL
$
SUBCASE }
    LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 8
    TEMP (LOAD) = 8
    ELSTRESS=ALL
$
SUBCASE }
    LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 9
    TEMP(LOAD) = 9
    ELSTRESS=ALL
$
SUBCASE 10
    LABEL = APPLY A I DEGREE ABOVE REF. TEMP. TO GRID 10
    TEMP (LOAD) = 10
    ELSTRESS=ALL
$
SUBCASE 11
    LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 11
    TEMP(LOAD) = 11
    ELSTRESS=ALL
    $
    SUBCASE 12
    LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 12
    TEMP (LOAD) = 12
    ELSTRESS=ALL
$
SUBCASE 13
    LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 13
    TEMP(LOAD) = 13
    ELSTRESS=ALL
    $
    SUBCASE 14
        LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 14
        TEMP (LOAD) = 14
        ELSTRESS=ALL
    $
    SUBCASE 15
        LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 15
        TEMP (LOAD) = 15
        ELSTRESS=ALL
    $
    SUBCASE 16
        LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 16
Figure 1. NASTRAN Control Deck to Generate (TR
```

 TEMP(LOAD) = 16
 ELSTRESS=ALL
 \$
SUBCASE 17
LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 17
TEMP (LOAD) = 17
ELSTRESS=ALL
\$
SUBCASE }1
LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 18
TEMP(LOAD) = 18
ELSTRESS=ALL
\$
SUBCASE 19
LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 19
TEMP(LOAD) = 19
ELSTRESS=ALL
\$
SUBCASE 20
LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 20
TEMP(LOAD) = 20
ELSTRESS=ALL
\$
SUBCASE 21
LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 21
TEMP(LOAD) = 21
ELSTRESS=ALL
\$
SUBCASE 22
LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 22
TEMP(LOAD) = 22
ELSTRESS=ALL
\$
SUBCASE 23
LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 23
TEMP(LOAD) = 23
ELSTRESS=ALL
\$
SUBCASE }2
LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 24
TEMP (LOAD) = 24
ELSTRESS=ALL
\$
SUBCASE 25
LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 25
TEMP(LOAD) = 25
ELSTRESS=ALL
\$
SUBCASE 26
LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 26
TEMP (LOAD) = 26
ELSTRESS=ALL
\$
SUBCASE 27
LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 27
Figure 1. NASTRAN Control Deck to Generate [TRAS] for the
Verification Plate Model (Continued)

```

TEMP (LOAD) \(=27\)
ELSTRESS=ALL
\$
SUBCASE 28
LABEL \(=\) APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 28
\(\operatorname{TEMP}(\mathrm{LOAD})=28\)
ELSTRESS=ALL
\$
SUBCASE 29
LABEL \(=\) APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 29
TEMP (LOAD) \(=29\)
ELSTRESS=ALL
\$
SUBCASE 30
LABEL \(=\) APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 30
\(\operatorname{TEMP}(\) LOAD \()=30\)
ELSTRESS=ALL
\$
SUBCASE 31
Label = apply a 1 degree above ref. temp. TO GRID 31 TEMP (LOAD) \(=31\)
ELSTRESS=ALL
\$
SUBCASE 32
Label = apply a 1 degree above ref. temp. To Grid 32
\(\operatorname{TEMP}(\) LOAD \()=32\)
ELSTRESS=ALL
\$
SUBCASE 33
LABEL \(=\) APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 33
TEMP (LOAD) \(=33\)
ELSTRESS=ALL
\$
begin bulk
\$
SPC1 \(100 \quad 1234561\)
\$
\begin{tabular}{llll} 
& & & \\
TEMP & 1 & 1 & 71.0 \\
TEMPD & 1 & 70.0 & \\
TEMP & 2 & 2 & 71.0 \\
TEMPD & 2 & 70.0 & \\
TEMP & 3 & 3 & 71.0 \\
TEMPD & 3 & 70.0 & \\
TEMP & 4 & 4 & 71.0
\end{tabular}

TEMPD 4
TEMP 5
\(\begin{array}{ll}\text { TEMPD } 5 & 70.0\end{array}\)
\begin{tabular}{llll} 
TEMP & 6 & 6 & 71.0
\end{tabular}
\begin{tabular}{llll} 
TEMPD & 6 & 70.0 & \\
& 7 & 7 & 71.0
\end{tabular}

TEMP
TEMPD 7
TEMP 8
TEMPD 8
TEMP 9
TEMPD 970.0
Figure 1. NASTRAN Control Deck to Generate [TRAS] for the Verification Plate Model (Continued)
\begin{tabular}{llll} 
& & & \\
TEMP & 10 & 10 & 71.0 \\
TEMPD & 10 & 70.0 & \\
TEMP & 11 & 11 & 71.0 \\
TEMPD & 11 & 70.0 & \\
TEMP & 12 & 12 & 71.0 \\
TEMPD & 12 & 70.0 & \\
TEMP & 13 & 13 & 71.0 \\
TEMPD & 13 & 70.0 & \\
TEMP & 14 & 14 & 71.0 \\
TEMPD & 14 & 70.0 & \\
TEMP & 15 & 15 & 71.0 \\
TEMPD & 15 & 70.0 & \\
TEMP & 16 & 16 & 71.0 \\
TEMPD & 16 & 70.0 & \\
TEMP & 17 & 17 & 71.0 \\
TEMPD & 17 & 70.0 & \\
TEMP & 18 & 18 & 71.0 \\
TEMPD & 18 & 70.0 & \\
TEMP & 19 & 19 & 71.0 \\
TEMPD & 19 & 70.0 & \\
TEMP & 20 & 20 & 71.0 \\
TEMPD & 20 & 70.0 & \\
TEMP & 21 & 21 & 71.0 \\
TEMPD & 21 & 70.0 & \\
TEMP & 22 & 22 & 71.0 \\
TEMPD & 22 & 70.0 & \\
TEMP & 23 & 23 & 71.0 \\
TEMPD & 23 & 70.0 & \\
TEMP & 24 & 24 & 71.0 \\
TEMPD & 24 & 70.0 & \\
TEMP & 25 & 25 & 71.0 \\
TEMPD & 25 & 70.0 & \\
TEMP & 26 & 26 & 71.0 \\
TEMPD & 26 & 70.0 & \\
TEMP & 27 & 27 & 71.0 \\
TEMPD & 27 & 70.0 & \\
TEMP & 28 & 28 & 71.0 \\
TEMPD & 28 & 70.0 & \\
TEMP & 29 & 29 & 71.0 \\
TEMPD & 29 & 70.0 & \\
TEMP & 30 & 30 & 71.0 \\
TEMPD & 30 & 70.0 & \\
TEMP & 31 & 31 & 71.0 \\
TEMPD & 31 & 70.0 & \\
TEMP & 32 & 32 & 71.0 \\
TEMPD & 32 & 70.0 & \\
TEMP & 33 & 33 & 71.0 \\
TEMPD & 33 & 70.0 & \\
S & & & \\
& & & \\
& & & \\
\end{tabular}

\footnotetext{
Figure 1. NASTRAN Control Deck to Generate [TRAS] for the Verification Plate Model (Concluded)
}

Figure 2. Plate Model Plot
```

\$

SPC1	100	123456	1
\$			
TEMP	55	1	100.0
TEMP	55	2	300.0
TEMP	55	3	600.0
TEMP	55	4	600.0
TEMP	55	5	300.0
TEMP	55	6	100.0
TEMP	55	7	600.0
TEMP	55	8	300.0
TEMP	55	9	100.0
TEMP	55	10	100.0
TEMP	55	11	300.0
TEMP	55	12	600.0
TEMP	55	13	200.0
TEMP	55	14	450.0
TEMP	55	15	600.0
TEMP	55	16	450.0
TEMP	55	17	200.0
TEMP	55	18	350.0
TEMP	55	19	325.0
TEMP	55	20	300.0
TEMP	55	21	325.0
TEMP	55	22	350.0
TEMP	55	23	350.0
TEMP	55	24	350.0
TEMP	55	25	325.0
TEMP	55	26	300.0
TEMP	55	27	325.0
TEMP	55	28	350.0
TEMP	55	29	450.0
TEMP	55	30	200.0
TEMP	55	31	100.0
TEMP	55	32	200.0
TEMP	55	33	450.0
TEMPD	55	70.0	
TEMPD	60	70.0	

```


Figure 3. Plate Model Bulk Data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline GR ID & 13 & & 25.0 & 0.0 & 0.0 & & & \\
\hline GR ID & 14 & & 75.0 & 0.0 & 0.0 & & & \\
\hline GRID & 15 & & 125.0 & 0.0 & 0.0 & & & \\
\hline GRID & 16 & & 175.0 & 0.0 & 0.0 & & & \\
\hline GRID & 17 & & 225.0 & 0.0 & 0.0 & & & \\
\hline GRID & 18 & & 0.0 & -25.0 & 0.0 & & & \\
\hline GRID & 19 & & 25.0 & -25.0 & 0.0 & & 6 & \\
\hline GRID & 20 & & 50.0 & -25.0 & 0.0 & & 6 & \\
\hline GRID & 21 & & 75.0 & -25.0 & 0.0 & & 6 & \\
\hline GRID & 22 & & 100.0 & -25.0 & 0.0 & & 6 & \\
\hline GRID & 23 & & 125.0 & -25.0 & 0.0 & & 6 & \\
\hline GRID & 24 & & 150.0 & -25.0 & 0.0 & & 6 & \\
\hline GRID & 25 & & 175.0 & -25.0 & 0.0 & & 6 & \\
\hline GRID & 26 & & 200.0 & -25.0 & 0.0 & & 6 & \\
\hline GRID & 27 & & 225.0 & -25.0 & 0.0 & & 6 & \\
\hline GRID & 28 & & 250.0 & -25.0 & 0.0 & & & \\
\hline GRID & 29 & & 25.0 & -50.0 & 0.0 & & & \\
\hline GRID & 30 & & 75.0 & -50.0 & 0.0 & & & \\
\hline GRID & 31 & & 125.0 & -50.0 & 0.0 & & & \\
\hline GRID & 32 & & 175.0 & -50.0 & 0.0 & & & \\
\hline GRID & 33 & & 225.0 & -50.0 & 0.0 & & & \\
\hline CBAR & 1 & 1 & 1 & 13 & 0.0 & 0.0 & 1.0 & 1 \\
\hline CBAR & 2 & 1 & 13 & 2 & 0.0 & 0.0 & 1.0 & 1 \\
\hline CBAR & 3 & 1 & 2 & 14 & 0.0 & 0.0 & 1.0 & 1 \\
\hline CBAR & 4 & 1 & 14 & 3 & 0.0 & 0.0 & 1.0 & 1 \\
\hline CBAR & 5 & 1 & 3 & 15 & 0.0 & 0.0 & 1.0 & 1 \\
\hline CBAR & 6 & 1 & 15 & 4 & 0.0 & 0.0 & 1.0 & 1 \\
\hline CBAR & 7 & 1 & 4 & 16 & 0.0 & 0.0 & 1.0 & 1 \\
\hline CBAR & 8 & 1 & 16 & 5 & 0.0 & 0.0 & 1.0 & 1 \\
\hline CBAR & 9 & 1 & 5 & 17 & 0.0 & 0.0 & 1.0 & 1 \\
\hline CBAR & 10 & 1 & 17 & 6 & 0.0 & 0.0 & 1.0 & 1 \\
\hline CBAR & 11 & 1 & 6 & 28 & 0.0 & 0.0 & 1.0 & 1 \\
\hline CBAR & 12 & 1 & 28 & 12 & 0.0 & 0.0 & 1.0 & 1 \\
\hline CBAR & 13 & 1 & 12 & 33 & 0.0 & 0.0 & 1.0 & 1 \\
\hline CBAR & 14 & 1 & 33 & 11 & 0.0 & 0.0 & 1.0 & 1 \\
\hline CBAR & 15 & 1 & 11 & 32 & 0.0 & 0.0 & 1.0 & 1 \\
\hline CBAR & 16 & 1 & 32 & 10 & 0.0 & 0.0 & 1.0 & 1 \\
\hline CBAR & 17 & 1 & 10 & 31 & 0.0 & 0.0 & 1.0 & 1 \\
\hline CBAR & 18 & 1 & 31 & 9 & 0.0 & 0.0 & 1.0 & 1 \\
\hline CBAR & 19 & 1 & 9 & 30 & 0.0 & 0.0 & 1.0 & 1 \\
\hline CBAR & 20 & 1 & 30 & 8 & 0.0 & 0.0 & 1.0 & 1 \\
\hline CBAR & 21 & 1 & 8 & 29 & 0.0 & 0.0 & 1.0 & 1 \\
\hline CBAR & 22 & 1 & 29 & 7 & 0.0 & 0.0 & 1.0 & 1 \\
\hline CBAR & 23 & 1 & 7 & 18 & 0.0 & 0.0 & 1.0 & 1 \\
\hline CBAR & 24 & 1 & 18 & 1 & 0.0 & 0.0 & 1.0 & 1 \\
\hline \$ & & & & & & & & \\
\hline CQUAD4 & 1 & 1000 & 18 & 19 & 13 & 1 & & \\
\hline CQUAD4 & 2 & 1000 & 19 & 20 & 2 & 13 & & \\
\hline CQUAD4 & 3 & 1000 & 20 & 21 & 14 & 2 & & \\
\hline CQUAD4 & 4 & 1000 & 21 & 22 & 3 & 14 & & \\
\hline CQUAD4 & 5 & 1000 & 22 & 23 & 15 & 3 & & \\
\hline CQUAD4 & 6 & 1000 & 23 & 24 & 4 & 15 & & \\
\hline CQUAD4 & 7 & 1000 & 24 & 25 & 16 & 4 & & \\
\hline CQUAD4 & 8 & 1000 & 25 & 26 & 5 & 16 & & \\
\hline CQUAD4 & 9 & 1000 & 26 & 27 & 17 & 5 & & \\
\hline
\end{tabular}

Figure 3. Plate Model Bulk Data (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline CQUAD4 & 10 & 1000 & 27 & 28 & 6 & 17 & \\
\hline CQUAD4 & 11 & 1000 & 7 & 29 & 19 & 18 & \\
\hline CQUAD4 & 12 & 1000 & 29 & 8 & 20 & 19 & \\
\hline CQUAD4 & 13 & 1000 & 8 & 30 & 21 & 20 & \\
\hline CQUAD4 & 14 & 1000 & 30 & 9 & 22 & 21 & \\
\hline CQUAD4 & 15 & 1000 & 9 & 31 & 23 & 22 & \\
\hline CQUAD4 & 16 & 1000 & 31 & 10 & 24 & 23 & \\
\hline CQUAD4 & 17 & 1000 & 10 & 32 & 25 & 24 & \\
\hline CQUAD4 & 18 & 1000 & 32 & 11 & 26 & 25 & \\
\hline CQUAD4 & 19 & 1000 & 11 & 33 & 27 & 26 & \\
\hline CQUAD4 & 20 & 1000 & 33 & 12 & 28 & 27 & \\
\hline \$ & & & & & & & \\
\hline PSHELL & 1000 & 4000 & . 7 & 4000 & & 4000 & \\
\hline \$ & & & & & & & \\
\hline PBAR & 1 & 4000 & 1.9375 & 4.85 & 4.85 & 7.27 & \\
\hline \$ & & & & & & & \\
\hline MAT1 & 4000 & \(1.0+7\) & & . 33 & . 000371 & 13.3-6 & 70.0 \\
\hline \$ & & & & & & & \\
\hline EndDATA & & & & & & & \\
\hline
\end{tabular}

Figure 3. Plate Model Bulk Data (Concluded)


\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{\begin{tabular}{l}
aNALYSIS OF plate mool \\
RUN TO GENERATE THERMAL STRESSES
\end{tabular}} \\
\hline \multicolumn{9}{|l|}{} \\
\hline \[
\begin{aligned}
& \text { ELEMENT } \\
& \text { ID. }
\end{aligned}
\] & FIbRE distance & StRESSES normal-x & \(\qquad\) & \begin{tabular}{l}
SYSTEM \\
SHEAR-XY
\end{tabular} & angle & \begin{tabular}{c} 
STRESSES (ZERO \\
MA \\
\hline
\end{tabular} & SHEAR) MINOR & \[
\max _{\text {SHEAR }}
\] \\
\hline & & & & & -1.5315 & \(2.710935 E+03\) & 4.489755E+02 & 1. \(130980 \mathrm{E} \times \mathbf{0 3}\)
\(1.130980 \mathrm{ta3}\) \\
\hline 1 & \[
\begin{array}{r}
-3.500000 \mathrm{E}-\mathrm{O1} \\
\text {-3.500000 }-\mathrm{O}^{\prime} .50
\end{array}
\] & \(2.709319 E+03\)
\(2.709319 E+03\) & \[
\begin{aligned}
& \text { 4. } 505912 \mathrm{E}+02 \\
& 4.505912 \mathrm{O}
\end{aligned}
\] & -6.043338E + O & -1.5315 & \(2.710935 \mathrm{E}+03\) & 4.489755E+02 & \\
\hline 2 & \[
\begin{array}{r}
-3.500000 E-01 \\
3.500000 \mathrm{E}-01
\end{array}
\] & \[
\begin{aligned}
& \text { B. } 944683 E+02 \\
& \text { B. } 944683 E+02
\end{aligned}
\] & \[
\begin{aligned}
& \text { 2. } 615569 E+02 \\
& 2.615569 E+02
\end{aligned}
\] & \(-1.671155 E+02\)
\(-1.671155 E+02\) & \[
\begin{array}{r}
-13.9189 \\
-13.9189
\end{array}
\] & \begin{tabular}{l}
9. \(358833 \mathrm{E}+\mathrm{O2}\) \\
-. 35ee3ef +02
\end{tabular} & 2. \(201414 E+02\)
\(2.201414 E+02\) & \[
\begin{aligned}
& 3.578712 E+02 \\
& 3.578712 E+02
\end{aligned}
\] \\
\hline
\end{tabular}
Figure 5. Thermal Stresses from a Direct NASTRAN Solution of

Figure 6. MPESS Finite Element Model


```

