1.0

N92-24333 ·

TRANSIENT THERMAL STRESS RECOVERY FOR STRUCTURAL MODELS

William Walls McDonnell Douglas Space Systems Co. Huntsville Alabama

ABSTRACT

A method for computing transient thermal stress vectors from temperature vectors is described. The three step procedure involves the use of NASTRAN to generate an influence coefficient matrix which relates temperatures to stresses in the structural model. The transient thermal stresses are then recovered and sorted for maximum and minimum values. Verification data for the procedure is also provided.

INTRODUCTION

There are many occasions when the stresses produced by transient thermal events must be considered. The ascent, on-orbit, and descent phases of a Spacelab mission produce large temperature gradients on the Cargo Element. A method for recovering the thermal stresses produced by these events was developed by the Structural Analysis Group at McDonnell Douglas Space Systems Company-Huntsville (MDSSC-HSV), and has been used for more than six years in Spacelab Evaluation.

Because this method was somewhat unhandy to use, only a limited number of temperature distributions could be run. These were generally chosen on the basis of temperature or temperature difference extremes. Unfortunately, there is no proven relationship between "worst stresses" and "worst temperatures" or "worst temperature differences" for the complex models with which Spacelab has to deal. It was therefore decided to develop a process that would transform transient temperature vectors (which are separately calculated) directly into stress vectors that could then be sorted for maximum and minimum (Max/Min) values.

Section 2 presents the theory used in the procedure, Section 3 describes the procedure, Section 4 presents verification results, and Section 5 contains the conclusions.

THEORY

The method described assumes that the thermal strains, and hence stresses are linearly proportional to the temperatures. The method, therefore, is not applicable to models having temperature or stress dependent material properties.

An influence coefficient matrix, [TRAS], to transform the temperatures at a models n grids into m stresses can be developed as follows. A temperature of one unit above the reference is applied to a grid in the model while the remaining n-1 grids are held at the reference temperature. The resulting m stresses are then recovered. This is repeated for all n grids in the model. The resulting n sets of stresses are then assembled as columns to form an m by n influence coefficient matrix, [TRAS], that can be used to transform temperature vectors into stress vectors. The transformation is as follows:

$$[STMHST] = [TRAS][TEMPS]$$
(1)

Where;

[STMHST]	= Stresses in the finite element model (time history).
[TRAS]	= Linear transformation (influence coefficient) from temperatures to stresses.

[TEMPS] = Temperatures at the grids (time history).

Equation (1) is used to recover transient stress vectors from transient temperature vectors.

3.0 PROCEDURE

The procedure used to recover maximum and minimum thermal stresses is divided into three steps. The first step is to generate the influence coefficient matrix [TRAS]. The transient stresses are recovered using equation (1) in the second step. The transient thermal stresses are then sorted for Max/Min data in the third step. Each of these three steps will be described below.

Step 1 - Generation of The Influence Coefficient Matrix [TRAS]

NASTRAN is used to generate [TRAS] as described in Section 2. NASTRAN Subcase commands are used to accomplish this step with each subcase corresponding to a grid in the model. It should be noted that NASTRAN can handle a maximum of sixty-six temperature load cases. A model having more than sixty-six grids will, therefore, require multiple runs and subsequent merging of the output data. An example of a NASTRAN control deck to generate [TRAS] for the verification model described in Section 4 is shown in Figure 1. The DUMMOD5 module is used to convert the OES1 table into a matrix data block which is then written to a file using the OUTPUT5 module. The extraneous rows (fiber distances, safety margins, etc.) of [TRAS] are then removed using a specially developed FORTRAN code.

3.2 Step 2 - Recover Transient Thermal Stress Vectors From Temperature Vectors

The transient temperature vectors must now be obtained. At MDSSC-Huntsville, the thermal analyses are performed using SINDA. A FORTRAN code has been written to access the SINDA output file and recover the desired temperatures along with the corresponding time vectors. The temperature and time data is written in OUTPUT5 format. Care should be taken to ensure that the row order of the temperature vectors is compatible with the column order of [TRAS].

Equation (1) is then used to recover the transient thermal stress vectors. This is easily accomplished in a simple DMAP run using the MPYAD module. The resulting thermal stress vectors and time vector are written to a file using the OUTPUT5 module.

3.3 Step 3 - Sort Thermal Stress Vectors For Maximum and Minimum Data.

The transient thermal stress vectors are now sorted for Max/Min data. This step is performed using a specialized FORTRAN code. This code can search multiple time histories allowing composite Max/Min tables to be obtained. An example of output from this program for the Spacelab Multipurpose Experiment Support Structure (MPESS) is shown in Table 1. The data in Table 1 was obtained from actual temperature vectors for a Spacelab mission and encompasses ascent, orbit, and descent.

VERIFICATION

In order to verify that the procedure is working correctly, a test case was performed. A simple rectangular plate model was constructed using QUAD4 and BAR elements. A plot of the plate model is presented in Figure 2 and the Bulk Data is shown in Figure 3. The model has thirty-three grids and is homogeneous. A temperature gradient (see Figure 4) was applied to the model and the resulting stresses in four elements were recovered using NASTRAN directly. The results are presented in Figure 5. The transient thermal stress recovery procedure was then used to calculate stresses due to the same temperature gradient and the results are shown in Table 2.

It can be seen from Figure 5 and Table 2 that the results are the same. This indicates that using [TRAS] to perform the thermal stress recovery produces the same results as using NASTRAN directly.

CONCLUSION

A procedure has been developed to recover thermal stresses in a NASTRAN model directly from temperatures output by a thermal model. Because the procedure uses a linear transformation matrix rather than a computer program, entire thermal stress time histories may be efficiently obtained and scanned for Max/Min thermal stress data. Tabular output of the Max/Min data is then produced. A test case has been executed and the results indicate that the procedure functions correctly.

4.0

```
NASTRAN TITLEOPT=0
  $ RUN TO GENERATE INFLUENCE COEFF. MATRIX FOR THERMAL STRESS RECOVERY.
  Ş
  S
  Ş
  S
  ID CHECKOUT PLATE
  APP DISP
  SOL 1,7
  TIME 999
  DIAG 13,14,21,22,26,42
  Ŝ
      WRITE OUT ELEMENT STRESS/FORCE MATRICES
  $
  S
        WHERE;
         OES1=STRESSES
  Ş
         OEF1=FORCES
  Ş
          I=# OF ELEMENTS FOR WHICH STRESSES/FORCES ARE BEING RECOVERED
   Ş
   $
   ALTER 106
  DUMMOD5 OES1,,,,/ELSEU,,,,/C,N,44/////C,N,1/C,N,1 $
   OUTPUT5 ELSEU,,,,//0/15//0 $
   OUTPUT5 ,,,,//-9/15//0 $
   ENDALTER
   CEND
   Ŝ.
   TITLE = ANALYSIS OF PLATE
   SUBTITLE = RUN TO GENERATE INFLUENCE COEFFICIENT MATRIX
   LABEL = PLATE
   MAXLINES = 99999999
     SPC=100
   S
   SUBCASE 1
     LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 1
     \text{TEMP}(\text{LOAD}) = 1
     ELSTRESS=ALL
   S
   SUBCASE 2
     LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 2
     \text{TEMP}(\text{LOAD}) = 2
     ELSTRESS=ALL
   $
   SUBCASE 3
     LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 3
      TEMP(LOAD) = 3
     ELSTRESS=ALL
    S
    SUBCASE 4
      LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 4
      TEMP(LOAD) = 4
      ELSTRESS=ALL
    S
    SUBCASE 5
      LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 5
            NASTRAN Control Deck to Generate [TRAS] for the
Figure 1.
             Verification Plate Model
```

```
\text{TEMP}(\text{LOAD}) = 5
   ELSTRESS=ALL
 $
 SUBCASE 6
   LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 6
   \text{TEMP}(\text{LOAD}) = 6
   ELSTRESS=ALL
 S
 SUBCASE 7
   LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 7
    TEMP(LOAD) = 7
   ELSTRESS=ALL
  S
  SUBCASE 8
    LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 8
    TEMP(LOAD) = 8
    ELSTRESS=ALL
  S
  SUBCASE 9
    LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 9
    TEMP(LOAD) = 9
    ELSTRESS=ALL
  S
  SUBCASE 10
    LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 10
    \text{TEMP}(\text{LOAD}) = 10
    ELSTRESS=ALL
  Ś
  SUBCASE 11
    LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 11
    \text{TEMP}(\text{LOAD}) = 11
     ELSTRESS=ALL
   Ś
   SUBCASE 12
     LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 12
     TEMP(LOAD) = 12
     ELSTRESS=ALL
   S
   SUBCASE 13
     LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 13
     \text{TEMP}(\text{LOAD}) = 13
     ELSTRESS#ALL
   Ś
   SUBCASE 14
     LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 14
     \text{TEMP}(\text{LOAD}) = 14
     ELSTRESS=ALL
   Ŝ
   SUBCASE 15
     LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 15
      \text{TEMP}(\text{LOAD}) = 15
      ELSTRESS=ALL
    $
    SUBCASE 16
      LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 16
Figure 1. NASTRAN Control Deck to Generate [TRAS] for the
              Verification Plate Model (Continued)
                                       139
```

```
\text{TEMP}(\text{LOAD}) = 16
     ELSTRESS=ALL
   Ś
   SUBCASE 17
     LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 17
     \text{TEMP}(\text{LOAD}) = 17
     ELSTRESS=ALL
   S
   SUBCASE 18
     LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 18
     \text{TEMP}(\text{LOAD}) = 18
     ELSTRESS=ALL
   $
   SUBCASE 19
     LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 19
      \text{TEMP}(\text{LOAD}) = 19
     ELSTRESS=ALL
   Ŝ
   SUBCASE 20
     LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 20
      \text{TEMP}(\text{LOAD}) = 20
      ELSTRESS=ALL
   S
   SUBCASE 21
      LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 21
      \text{TEMP}(\text{LOAD}) = 21
      ELSTRESS=ALL
    S
    SUBCASE 22
      LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 22
      \text{TEMP}(\text{LOAD}) = 22
      ELSTRESS=ALL
    Ŝ
    SUBCASE 23
      LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 23
      \text{TEMP}(\text{LOAD}) = 23
      ELSTRESS=ALL
    S
    SUBCASE 24
      LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 24
      TEMP(LOAD) = 24
      ELSTRESS=ALL
    S
    SUBCASE 25
      LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 25
      \text{TEMP}(\text{LOAD}) = 25
      ELSTRESS=ALL
    S
    SUBCASE 26
      LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 26
       \text{TEMP}(\text{LOAD}) = 26
       ELSTRESS=ALL
     Ŝ
     SUBCASE 27
       LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 27
              NASTRAN Control Deck to Generate [TRAS] for the
Figure 1.
               Verification Plate Model (Continued)
```

```
\text{TEMP}(\text{LOAD}) = 27
   ELSTRESS=ALL
 $
 SUBCASE 28
   LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 28
   TEMP(LOAD) = 28
   ELSTRESS=ALL
 S
 SUBCASE 29
   LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 29
   TEMP(LOAD) = 29
   ELSTRESS=ALL
 S
 SUBCASE 30
   LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 30
   \text{TEMP}(\text{LOAD}) = 30
   ELSTRESS=ALL
 S
 SUBCASE 31
   LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 31
    \text{TEMP}(\text{LOAD}) = 31
   ELSTRESS=ALL
  Ś
  SUBCASE 32
    LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 32
    TEMP(LOAD) = 32
    ELSTRESS=ALL
  S
  SUBCASE 33
    LABEL = APPLY A 1 DEGREE ABOVE REF. TEMP. TO GRID 33
    \text{TEMP}(\text{LOAD}) = 33
    ELSTRESS=ALL
  $
  BEGIN BULK
  S
                  123456 1
          100
  SPC1
  Ŝ
                           71.0
                   1
           1
  TEMP
                   70.0
          1
  TEMPD
                            71.0
                   2
           2
  TEMP
                   70.0
           2
  TEMPD
                            71.0
                   3
           3
  TEMP
                   70.0
           3
  TEMPD
                            71.0
           4
                   4
  TEMP
                  70.0
           4
  TEMPD
                            71.0
           5
                   5
  TEMP
                   70.0
           5
   TEMPD
                            71.0
                   6
           6
   TEMP
                   70.0
   TEMPD
           6
                            71.0
                    7
   TEMP
           7
                   70.0
          7
   TEMPD
                            71.0
                    8
           8
   TEMP
                    70.0
   TEMPD
           8
                            71.0
           9
                    9
   TEMP
             NASTRAN Control Deck to Generate [TRAS] for the
   TEMPD 9
Figure 1.
             Verification Plate Model (Continued)
```

TEMP	10	10	71.0
TEMPD	10	70.0	
TEMP	11	11	71.0
TEMPD	11	70.0	
TEMP	12	12	71.0
TEMPD	12	70.0	
TEMP	13	13	71.0
TEMPD	13	70.0	
TEMP	14	14	71.0
TEMPD	14	70.0	
TEMP	15	15	71.0
TEMPD	15	70.0	
TEMP	16	16	71.0
TEMPD	16	70.0	
TEMP	17	17	/1.0
TEMPD	17	70.0	71 0
TEMP	18	18	/1.0
TEMPD	18	/0.0	71 0
TEMP	19	19	/1.0
TEMPD	19	70.0	71 0
TEMP	20	20	/1.0
TEMPD	20	70.0	71 0
TEMP	21	21	/1.0
TEMPD	21	70.0	71 0
TEMP	22	70 0	/1.0
TEMPD	22	70.0	71.0
TEMPD	23	70 0	,
TEMP	23	24	71.0
TEMPD	24	70.0	
TEMP	25	25	71.0
TEMPD	25	70.0	
TEMP	26	26	71.0
TEMPD	26	70.0	
TEMP	27	27	71.0
TEMPD	27	70.0	
TEMP	28	28	71.0
TEMPD	28	70.0	
TEMP	29	29	71.0
TEMPD	29	70.0	
TEMP	3 0	3 0	71.0
TEMPD	3 0	70.0	
TEMP	31	31	71.0
TEMPD	31	70.0	_
TEMP	32	32	71.0
TEMPD	32	70.0	
TEMP	33	33	71.0
TEMPD	33	70.0	
\$			

Figure 1. NASTRAN Control Deck to Generate [TRAS] for the Verification Plate Model (Concluded)

Ş					
SPC1	100	123456	1		
\$					
TEMP	55	1	100.0		
TEMP	55	2	300.0		
TEMP	55	3	600.0		
TEMP	55	4	600.0		
TEMP	55	5	300.0		
TEMP	55	6	100.0		
TEMP	55	7	600.0		
TEMP	55	8	300.0		
TEMP	55	9	100.0		
TEMP	55	10	100.0		
TEMP	55	11	300.0		
TEMP	55	12	600.0		
TEMP	55	13	200.0		
TEMP	55	14	450.0		
TEMP	55	15	600.0		
TEMP	55	16	450.0		
TEMP	55	17	200 0		
TEMP	55	19	350.0		
TEMP	55	10	325 0		
TEMP	55	19	300 0		
TEMP	55	20	225 0		
TEMP	55	21	323.0		
TEMP	55	22	350.0		
TEMP	55	23	350.0		
TEMP	55	24	350.0		
TEMP	55	25	325.0		
TEMP	55	26	300.0		
TEMP	55	27	325.0		
TEMP	55	28	350.0		
TEMP	55	29	450.0		
TEMP	55	30	200.0		
TEMP	55	31	100.0		
TEMP	55	32	200.0		
TEMP	55	33	450.0		
TEMPD	55	70.0			
TEMPD	60	70.0			
S					
ŝ					فأوطو ملومات والروان والروان والروان
ŝ		**	*******	PLATE	******
Š					
GRID	1		0.0	0.0	0.0
GRID	2		50.0	0.0	0.0
GRID	3		100.0	0.0	0.0
GRID	4		150.0	0.0	0.0
CRID	5		200.0	0.0	0.0
CDID	6		250.0	0.0	0.0
CRID	7		0.0	-50.	0.0
GRID	, Q		50.0	-50.	0.0
GRID	0		100.0	-50.	0.0
GKID	7 10		150.0	-50.	0.0
GRID	10		200.0	-50.	0.0
GRID	11		250.0	-50	0.0
GRID	12		230.0	50.	

Figure 3. Plate Model Bulk Data

		Figure 3.	Plate	Model	Bulk	Data (Co	ontinued)
CQUAD4	9	1000	26	27	17	3		
CQUAD4	8	1000	25	20	5 17	10		
CQUAD4	/	1000	24 25	22	۲0 ۲0	16		
CQUAD4	07	1000	23	27	16	4		
CQUAD4	ך ∠	1000	22	23	4	15		
CQUADA	5	1000	22	23	15	3		
COLLADA	4	1000	21	22	3	14		
COUAD4	3	1000	2 0	21	14	2		
COUAD4	2	1000	19	20	2	13		
COUAD4	1	1000	1 8	19	13	1		
\$	•							
CBAR	24	1	18	1	0.0	0.0	1.0	1
CBAR	23	1	7	18	0.0	0.0	1.0	1
CBAR	22	1	29	7	0.0	0.0	1.0	1
CBAR	21	1	8	29	0.0	0.0	1.0	1
CBAR	2 0	1	30	8	0.0	0.0	1.0	1
CBAR	19	1	9	30	0.0	0.0	1.0	1
CBAR	18	1	31	9	0.0	0.0	1.0	1
CBAR	17	1	10	31	0.0	0.0	1.0	1
CBAR	16	1	32	10	0.0	0.0	1.0	1
CBAR	15	1	11	32	0.0	0.0	1.0	1
CBAR	14	1	33	11	0.0	0.0	1.0	1
CBAR	13	1	12	33	0.0	0.0	1.0	1
CBAR	12	1	28	12	0.0	0.0	1.0	1
CBAR	11	1	6	28	0.0	0.0	1.0	1
CBAR	10	1	17	6	0.0	0.0	1.0	1
CBAR	9	1	5	1/	0.0	0.0	1.0	1
CBAR	8	1	16) 17	0.0	0.0	1 0	1
CBAR	7	1	4	10	0.0	0.0	1 0	1
CBAR	6	1	15	4 16	0.0	0.0	1 0	1
CBAR	5	1	う 15	15	0.0	0.0	1.0	1
CBAR	4	1	14	5 1 E	0.0	0.0	1 0	1
CBAR	3	1	2	14	0.0	0.0	1.0	1
CBAR	2	1	10	۲ ۱/۱	0.0	0.0	1.0	1
CBAR	1	1	1 1 3	2	0.0	0.0	1.0	1
GKID	33	1	1	13	0.0	0.0	1.0	1
GRID	22		225 0	-50.0	0.0			
CRID	27		175.0	-50.0	0.0			
CRID	21		125.0	-50.0	0.0			
CRID	30		75.0	-50.0	0.0			
	20 20		25.0	-50.0	0.0			
GRID	27 28		250.0	-25.0	0.0			
CRID	20		225.0	-25.0	0.0		6	
CRID	25		200.0	-25.0	0.0		6	
CRID	24		175.0	-25.0	0.0		6	
	23 21		150.0	-25.0	0.0		6	
	22		125.0	-25.0	0.0		6	
GRID	21 22		100.0	-25.0	0.0		6	
GRID	20		75.0	-25.0	0.0		6	
	17 70		50.0	-25.0	0.0		6	
	10		25 0	-25.0	0.0		6	
CRID	⊥/ 19		0.0	-25.0	0.0			
GKID	10		225 A	0.0	0.0			
GRID	15		175 0	0.0	0.0			
GRID	14		12.0 125 0	0.0	0.0			
GRID	13		25.0	0.0	0.0			
	10		26 0	0 0	0 0			

COUAD4	10	1000	27	28	6	17	
COUADA	11	1000	7	29	19	18	
	12	1000	29	8	20	19	
COUAD4	13	1000	8	3 0	21	2 0	
COUAD4	14	1000	3 0	9	22	21	
COUAD4	15	1000	9 .	31	23	22	
COUAD4	16	1000	31	10	24	23	
COUAD4	17	1000	10	32	25	24	
COUAD4	18	1000	32	11	26	25	
COUAD4	19	1000	11	33	27	26	
CQUAD4	20	1000	33	12	28	27	
\$ PSHELL	1000	4000	.7	4000		4000	
Ş DRAD	1	4000	1.9375	4.85	4.85	7.27	
S	1	4000	11,55,0				
MAT1 \$	4000	1.0+7		. 33	.000371	13.3-6	70.0
ENDDATA							

Figure 3. Plate Model Bulk Data (Concluded)

of	
Solution	
NASTRAN	
Direct	
g	
from	
Thermal Stresses the Plate Model	
Figure 5. 1	

,	MAX	1, 130980E+03	3.578712E+02
,	Shear	1, 130980E+03	3.578712E+02
(C O U A D	SHEAR)	4 , 489755E+02	2.201414E+02
	MINOR	4 , 489755E+02	2.201414E+02
LEMENTS	AL STRESSES (ZERO	2.710935E+03	9 . 358838E +02
	Major	2.710935E+03	9 . 358838E +02
ERAL E	PRINCIP	-1.5315	919,919,91
	ANGLE	-1.5315	- 13,9189
U A D R I L A 1	SYSTEM	-6.043338E+01	-1.671155E+02
COORDINATE SYS	Shear-Xy	-6.043338E+01	-1.671155E+02
NERAL 0	N STRESS COORD.	4.505912E+02	2 . 6 15569E +02
(IN STRESS	Normal-Y	4.505912E+02	2 . 6 15569E +02
ES IN GE	STRESSES 1	2 709319E+03	8,944683E+02
	Normal-X	2 709319E+03	8,944683E+02
STRESS	F 18RE Distance	-3.500006-01	3.500006-01 3.500006-01
	ELEMENT	÷	8

1/13/92 RPK CRAY (UNICOS) 1989 NASTRAN (04/18/90) PAGE

2

ANALYSIS OF PLATE MODEL Run to generate thermal stresses

148

24

M.S.-T M.S.-C

SA-MIN SB-MIN

(CBAR) Sa-max Sb-max

STRESSES IN BARELEMENTS SA2 SA3 SA4 AXIAL SB2 SB3 SB4 STRESS SB2 SB3 SB4

4 . 8 15285E+03 4 . 8 15285E+03 1. 158353E+03 1. 158353E+03

4.815285E+03 4.815285E+03

4.8152856+03

1. 158353E+03 1. 158353E+03

1. 158353E+03

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

~

AMALYSIS OF PLATE MODEL Run to generate thermal stresses

SA1 SB1

ELEMENT ID. -

1/13/92 RPK CRAY (UNICOS) 1969 NASTRAN (04/19/90) PAGE

Figure 6. MPESS Finite Element Model

MPESS THERMAL STRESS ON ORBIT

MPESS BAR 106 (SINDA Node 6000) Axial Stress Time History Figure 7.

MPESS BAR 106 (SINDA Node 6000) Temperature Time History

				******		* • • • • • • • •				* * * * * * * * * *	
• • •	DESCRIPTION	STRESS TYPE	EID	•••	XVW	T IME	CASE	• • •	NIW	T 1 ME	CASE
:::				••••••	******						
٠			ž	•	111 00	92.500	04811	•	- 1574. 153	89.950	1840
•	CBAR		3	• 4	16 207	41 000	08811	٠	- 1087.696	91.000	ORBIT
•		282	3	•	74 153	0.10 0.8	ORBIT	•	- 799. 737	92.500	08811
•		EV3	5	2 9			T L B D D	•	-616.297	41.000	08811
•		SA4	5	2:		002.14	UPR I T	•	-2810.078	91.500	0RB11
•		AXIAL	2				11 ado	•	-815.012	89.950	ORBIT
٠		SB 1	90	•	108.901	20.00		•	-757 511	008.06	0RB11
٠		SB2	9	•	186.111	8		•	576 907	500	02817
•		583 3	ğ	•	115.012	89.950		• •			OPR11
•		584	9 0	•	152.511	90.800	OKB11	•			11BOO
	0480		101	•	280.820	93.700	08811	•	- 134. 505 		TIBOO
•		643	101	•	191.191	93.700	ORBIT	•	-2/1.6/3		
•			Ģ	•	134 335	42.800	0RB17	•	- 280.820	001 · E6	
•			5	•	071 673	43 700	08811	·	- 398.181	93 .700	1940
•			5	•	010	025 58	08811	•	- 1464 .976	94.200	04811
•		AXIAL	2				1 I BOO	•	- 379 . 209	89.950	ORBIT
•		SB 1	101		201 214	86. 76		•	- 36.7 067	000011	0R811
*		582	101		109.960	8.0		•	-412 152	92.900	02817
•		SB3	107	•	979.209	008.88		•		10	ORBIT
•		584 584	101	•	362.067	41.300		• •		0 0 0	DESCEI
•	CBAR	SA 1	1 08	*	122.223	006.69		•	106 101	002	ORBIT
•		SA2	9 0	•	370.978	41.100	1920				DRBIT
•			B Õ	•	900,599	0.020	DESCE	HIN	577 77/1 -		11800
			108	•	395.292	91.500	08811	•	8/6.0/2-	3	
• •	_		10	•	574.609	91.200	ORBI	•	-1176 477	41.300	
•	_		5	•	SO1 320	40.500	0881	•	- 1290 . 434	90.400	
•		281	5	•		0.570	DESCI	ENTC .	- 398 . 063	006 GE	0RB [T
• •	_	582	3				1 BOC	•	-501.320	40.500	ORBIT
•		583		•	290.434			•	PEC ORC.	0.570	DESCE
•	_	584	0	•	398,063	006 · 6E	1910			•	
•				•				•			
*				٠				•			
•				•				•			
•				•				•			
				•				•			
				•				•			
				•				•			
				•				•			
~ 1				•				•			
-	•			•				•			
-	•			•				•			
Ĩ	•			• •				•			
-	•			• •				•			
				•							

ELEMENT 1476						• • • •			• • • • •	
22 ≪ 80 U U	STRESS COMPONEN	T EIC	•••	X VH	T I ME	CASE	• • •	NIW	TIME	CASE
	**********************		••••••		• • • • • • •	•				
C 68 A 7		·	•	000.0	000.0	N/A	•	0000	000.0	
			•	000 0	000.0	N/A	٠	000.00	000.0	
	SA2				000 0	N/N	•	00.00	000.00	A /Z
	E VS		•		000	N/A	٠	000.00	0.00	N/ N
	SA4					CASE	•	4815.285	8	CASE
	AXIAL		• •			N/N	•	0.000	000.00	N/A
	581 581		•	8			٠	000.0	000	1</td
• •	582 582		•	0.00	80.0		•	000 0	0.00	N/A
•	CB3		•	000	200		•			N/A
	CRA CRA		•	000.0	000.0					N/A
			•	000.0	000.0					N/A
* CBAR			•	0.00	000	N/A	•	38		V/N
•			•	000	000	A/A	•	8.0	88	
•			•	000.0	0000	N/N	•	0000	8	
•	SAA		•	1158 353	000	CASE 1	•	1158.353	000	Case
•	AXIAL				000 0	A/A	·	000	000.0	
•	581		•		000 0	N/A	٠	0000	000	Z
•	582				000	N/A	•	0.00	00.00	
•	583					N/N	٠	000.00	000.00	N/A
•	584				200	CASE	•	2709.319	, 80.	CASE
+ CQUAD4	NDRMAL-X AT	12				CASE 1	٠	450.591	80	CASE
•	NORMAL-Y AT	12				CASE 1	•	-60.433	80 -	CASE
•	SHEAR-XY AT	21	• •			CASE	•	2709.319	00	CASE
•	NORMAL-X AT	22	-		8	CASE	•	450.591	8 0.₽	CASE
•	NORMAL-Y AT	22	•	180.064	88		•	-60.433	1.000	CASE
•	SHEAR-XY AT	22	-	004.00-	38		٠	894,468	000.1	CASE
+ COUAD4	NORMAL-X AT	12	•		38		•	261.557	1.000	CASE
	NORMAL-Y AT	12	•	261.557	8		•	- 167 116	000	CASE
. 4	SHEAR-XY AT	21	•	- 167 . 116	8		•	DOA AGR	60	CASE
•	ADDMA! = X AT	22	•	894.468	80.	CASE				1 A C F
•			•	261.557	600	CASE1	•	100.107	8	
•		::	•	- 167.116	80 -	CASE 1	•	- 167 . 116	8	
•	SHEAK-XY AT	77	•				•			
•			•				٠			
•			• •				٠			
•			• •				٠			
•			•				•			
•			•				•			
			•				•			
			•				•			
			•				• •			
•			•				•			
•			•				•			

)