
N92-24404

IGGy - AN INTERACTIVE ENVIRONMENT FOR SURFACE GRID GENERATION*

Nathan C. Prewitt

Sverdrup Technology Inc.

Eglin AFB, FL

SUMMARY

A graphically interactive derivative of the EAGLE boundary code is presented. This code allows

the user to interactively build and execute commands and immediately see the results. Strong ties

with a batch oriented script language are maintained. A generalized treatment of grid definition

parameters allows a more generic definition of the grid generation process and allows the generation

of command scripts which can be applied to topologically similar configurations. The use of the

graphical user interface is outlined and example applications are presented.

INTRODUCTION

The EAGLE code [1-3] was the first large-scale, widely accepted, multi-block, structured grid

generation code for general CFD applications. It is broken into two pieces: the EAGLE boundary

code [2] and the EAGLE grid code [3]. With the grid generation problem approached as the

solution to a boundary-value problem, the boundary code is used to generate surface grids which

define the boundaries and the grid code is used to generate the volume grid from these boundaries.

Both codes operate off of a series of batch oriented commands constructed from reading a

FORTRAN namelist. Together, these commands define a primitive language for grid generation.

Although it has been surpassed by more user-friendly interactive grid generation systems, EAGLE

still displays some advantages over these systems via its batch oriented command structure.

One of the advantages of the EAGLE code is its ability to build scripts of the grid generation

process using its language-like commands. The scripts not only serve as a convenient way of storing

or exchanging grids but also force the user to obtain a good mental picture of the grid generation

process. Command scripts are most powerful through the use of indirectly addressed parameters.

These parameters are in the form of three component vectors representing points in space, integer

values representing numbers of points on boundary segments, and real values representing grid

point spacings along segments. The use of these parameters allows the user to redimension the grid,

change the grid point distribution, or even alter the geometry of the physical boundaries by editing

only the commands which define these parameters. Once altered, the script is reprocessed, in a

*Work done under contract with the Air Force Development Test Center, Eglin AFB, Florida

87

https://ntrs.nasa.gov/search.jsp?R=19920015161 2020-03-17T12:07:01+00:00Z

batch mode, with the alterations propagating through both the surface and grid codes to produce

the final grid.

When given a new configuration about which a grid is to be generated, the first step is to plan

the grid topology. From the standpoint of block structured grids, this includes the number, location,

and connectivity of the grid blocks [4]. This topology definition is the basic input to the grid code.

In the construction of the boundaries of each block, it is necessary to specify certain points in space,

the number of points along the boundaries, and the distribution of these points [1]. The

specification of these parameters is the initial step in setting up input for the boundary code.

References [1] and [5] give several example applications and stress the advantages of using indirectly

addressed parameters in the efficient application of the EAGLE boundary code. In general,

however, the specification of grid parameters is not flexible enough to allow the generation of

generic scripts which can be applied to topologically similar configurations.

IGGy (Interactive Grid Generation sYstem) is a graphically interactive derivative of the EAGLE

boundary code which provides a more user-friendly, intuitive interface. It is an interactive front end

to the basic geometry engine that is found in the EAGLE boundary code and allows you to

interactively build and execute commands and immediately see the results. The definition of the

grid parameters has been generalized from point coordinates, numbers of points, and spacings to

include any vector, integer, or real values needed. This extension of the indirectly addressed

parameters allows a more generic definition of the grid generation process; thus, scripts can more

easily be applied to topologically similar configurations.

DESIGN PHILOSOPHY

IGGy is designed for the novice user who is familiar with the applicability of different grid

generation methods, but is not an expert at using the code. He/she may be new to grid generation,

or may be someone whose expertise lies in another area of computational simulation and who uses

grid generation only as a prerequisite to accomplishing another task. Thus the user interface is

designed to be easy to use and very intuitive.

IGGy uses a namelist-like command syntax which identifies each command with a descriptive

name. The commands may be entered at the console or selected from a menu system. When

building a command from the menu system, the user is prompted for all necessary input. To reduce

the amount of input required to accomplish a single task, IGGy commands have been patterned

after the operation of the UNIX operating system: commands do a single, well defined task and do

it well. It is up to the user to chain these basic commands together to create the desired effect. If

an additional capability is needed, a new command is created rather than adding additional input

variables to an existing command. This simplifies the command input, gives the user a stronger

sense of the command capabilities, and hopefully builds a more robust, more easily maintained

software system.

IGGy operates like a grid microprocessor with only one register. Many segments can be held in

88

memory, but only one can be operated on at a time. This segment is said to be in current position.

Most commands either generate a new current segment or operate on the current segment. These

commands fall into the two categories of geometry definition and geometry manipulation. The

geometry definition commands consist of the most basic Computer Aided Design (CAD)

capabilities. More complex curve and surface shapes need to be imported from an outside source.

The geometry manipulation commands provide the capability to distribute points on curves and

surfaces in a manner appropriate for CFD analysis. This formal separation of tasks simplifies the

command operation and reduces the input required for a given command.

COMMAND STRUCTURE

The IGGy input commands are of the following format:

E$INPUT ITEM = "operation", variable = value,... $

where the string assigned to ITEM identifies the command being executed, and the list of comma

separated assignments specify relevant quantities for the command. Arrays are assigned using a

comma separated list of values; while particular elements of an array are assigned using the array

name followed by the array element within parentheses. Since only one namelist (INPUT) is used

and each command is identified by a string assigned to the variable ITEM, the following shorthand
notation is available:

$"operation", variable = value, ... $

where the string immediately following the opening $ is assigned to ITEM.

To implement the more general definition of the parameters, a new parser has been written for

IGGy using the standard UNIX utilities yacc [6] and lez [7]. Yacc is a general purpose parser

generator; while lex performs low level lexical analysis. Lex identifies low level constructs, called

tokens, by matching user specified regular expressions. Yacc groups these tokens, according to user

specified context-free grammar rules, to build higher constructs. The output from these utilities is C

code which can be linked with the main routines and called whenever an input command is to be

parsed.

In IGCy's parser, lex recognizes variable names, integer values, floating points values, quoted

strings, parameter references, intrinsic functions, and punctuation symbols, and returns appropriate

tokens. Yacc uses these tokens to build integer expressions, real expressions, vector expressions, and

assignment constructs which conform to the syntax specified by the grammar rules. To complete

the parsing of a command, yacc evaluates all expressions and performs the assignments.

The syntax used to represent references to stored parameters are shown in Table 1, where indez

is any integer value. Any variable can access a parameter stored at the specified index if the variable

89

and storedparameterare of the sametype. After parsing,the variable will containthe valuestored
at the specifiedindex. This eliminates the need for special coding to recognize parameter references.

Table 1: Syntactic Constructs for Indirectly Addressing Parameters

-index vector storage reference

!index integer storage reference

#index real storage reference

Table 2 lists the valid syntactic constructs for generating integer expressions. Here, ival

represents any integer value, iexp represents any valid integer expression, and reap represents any

valid real expression. The capital letters and punctuation marks are part of the syntax. The use of

iezp in the definition of integer expressions denotes that this definition is recursive. The order of

precedence of the arithmetic operators is fashioned after FORTRAN or C; however, parentheses can

be used to alter the order of evaluation of integer subexpressions. Any integer variable or array can

be assigned a value using any of these constructs.

Table 2: Valid Integer Expressions

!ival integer parameter reference

ival integer value

ival:ival range of integers

ieap + iexp addition

leap - ieap subtraction

iezp • iexp multiplication

iexp / ieap division

MOD(ieap,iezp) modulus value

iexp ** iezp exponentiation

ABS(ieap) absolute value

MIN(iexp,iezp) minimum value

MAX(iexp,ieap maximum value

- iexp unary minus

(leap) subexpression grouping

INT(rexp) type conversion

Table 3 lists the valid syntactic constructs for generating real expressions. Here, ival represents

any integer value, rval represents any real value, leap represents any valid integer expression, reap

represents any valid real expression, and reap represents any valid vector expression. The capital

letters and punctuation marks are part of the syntax. This definition is also recursive and

parentheses are available for subexpression grouping. Any real variable or array can be assigned a

value using any of these constructs.

Table 4 lists the valid syntactic constructs for generating vector expressions. Again, ival

represents any integer value, rexp represents any real expression, and vexp represents any vector

9O

Table 3: Valid Real Expressions

#ival real parameterreference
rval real value

PI 3.14159265...

rexp + rexp addition

rexp - rexp subtraction

rezp * rexp multiplication

rexp / rexp division

rezp ** rezp exponentiation

SIN(rexp) sine

COS(rezp) cosine

TAN(rexp) tangent

ASIN(rexp) inverse sine

ACOS 'rexp) inverse cosine

ATAN(rexp) inverse tangent

LOG(rexp) natural logarithm

LOGlO(rexp) common logarithm

SQRT(rexp) square root

ABS(rexp) absolute value

MIN(rexp,rexp) minimum value

MAX(rexp,rexp maximum value

vezp.X x component

vezp.Y y component

vezp.Z z component

[vezp[vector magnitude

vezp.vezp dot product

-rezp unary minus

(rezp) subexpression grouping

REAL iezp) type conversion

91

expression.All other punctuation is part of the syntax. The definition of vector expressionsis also
recursive;however,bracesand bracketsareused to alter the evaluation of vector subexpressions. A

vector variable is any real array with three elements which correspond to the three Cartesian

coordinate directions. The most basic form of specifying a vector value is three, comma separated

real values enclosed in curly braces. If the curly braces are replaced with square brackets, the

specified vector will be normalized. The use of braces or brackets is required to obviate a context

sensitive ambiguity that would exist otherwise.

Table 4: Valid Vector Expressions

"ival vector parameter reference

{rezp,rezp} 2d vector

{rezp,rezp,rezp} 3d vector

[rezp,rezp] 2d normalized vector

[rexp,rezp,rezp] 3d normalized vector

rexp * vexp scalar/vector multiplication

vexp/rezp vector/scalar division

vezp + vezp vector addition

vezp - vezp vector subtraction

vezp ^vezp vector cross product

vezp * vezp component by component

multiplication

vezp/vezp component by component
division

- vexp unary minus

{vezp} vector grouping

[vezp] normalized vector grouping

USER INTERFACE

IGGy is written for use on Silicon Graphics IRIS workstations using IRIS Graphics Language

(GL) calls. The software development was started on an IRIS 3000 series workstation, and its use

has been extended to the line of IRIS 4D workstations. Compatibility with the older hardware

platform has been maintained through this version of the software.

Upon executing IGGy, a single graphics window is opened. This window is 1024 by 768 pixels in

dimensions, and therefore takes up the full screen on the lower resolution 3000 workstation and

most of the screen on the higher resolution 4D workstations. On the 4D machines, this window may

be expanded to fill the entire screen, or may be left at the default size to provide easier access to

other application windows.

Figure 1 shows the layout of the main window. To make the software easier to use, most of its

92

capabilitiesaredisplayedon the screen. The buttons, which are displayed, may be picked using the

cursor and the left mouse button. This is done by positioning the cursor over the button using the

mouse, and pressing and releasing the left mouse button. Some regions of the screen, which do not

appear as buttons, may also be picked. These regions are discussed where applicable.

As can be seen in Figure 1, the main window is broken into seven pseudo-windows. These are

not true windows with respect to the window manager but are merely reserved sections (viewports)

of the main window. They can not be resized independently, nor can they be moved relative to each

other. Each of these windows is described in greater detail in the following sections.

Current

r(L,L): O.O000Z+O0
0.0000E+00

O.O000E+O0

nix nj

Menu
view *y

view _=

view ux

rot&re •

rot&re y

rotate •

noom

tr&n|[ate

rexet vlew

BODY/GLOBAL [

FILE...

SET. , ,

CURVE...

C/sux...

SURFACE...

S/Aux...

Parsmetric...

Mite...

HELP

EXIT

Parame !ers

" VEC I)

1_ 51

more . .

! INT I)

D 51

more .

REAL I)

[_] 51

more . .

Status
CURVES: (BOUND/EDGE/TAB)

LOWER1 : none

UPPER1: none

LOWER2: none

UPPER2: none

CORNERS: none

AXIS: none

SPLINE

none

SURFACE

plane

FORM
unform

STYLE

xyz

JOURNAL

none

(_lore 5"torage
l

t. Lx

3

Lx

Console

Use the left mouse button to pick an option, or

Enter a command at the prompt ...

1-> H

Lx

Hints

Current window:

@
@
[]
[]

displays segment
in 'Current'

position.

Figure 1: Layout of IGGy's main screen.

Current Window

The Current window displays a wireframe drawing of the segment in current position. The

curvilinear coordinate lines which construct this segment are color coded, with green lines being in

93

the first coordinatedirection (linesof constant7/,or _ lines) and yellow linesbeing in the second
coordinatedirection (linesof constant_, or 7/lines). A crosshatchof red line segmentsis usedto
highlight a particular nodeon the segment.This highlight can bemovedwith the arrow keys. The
left and right arrow keysdecreaseand increase,respectively,the first index of the highlighted point;
while the up and down arrow keysincreaseand decrease,respectively,the secondindex. The
coordinatesof the nodethat is highlighted aredisplayedin the lower left cornerof the Current
window; and in the upper right cornerare displayedthe dimensionsof the current segment.

Menu Window

The menu window contains an array of buttons broken into three sections. The top section is

used to control the view of the current segment. These viewing manipulation buttons allow the user

to rotate the segment, translate the segment, scale the segment, and change viewing direction. The

last button in this section, labeled "BODY/GLOBAL", is used to toggle between different axes of

rotation. When BODY is highlighted in red, rotations are defined about the body axes. When

GLOBAL is highlighted, rotations take place about a global set of axes defined relative to the

screen. To use the rotation, translation, or zoom buttons, pick the appropriate button. The button

chosen will be highlighted in cyan and the cursor will disappear. Move the mouse horizontally for

rotating, vertically for zooming, and in both directions for translating. Once a new view is set, click

(press and release) any mouse button or keyboard key and the cursor will reappear.

The bottom section contains two buttons: HELP and EXIT. To access the help facility, pick the

HELP button. A prompt will request that a second button be picked. The HELP facility will then

display, in the Current window, all available information relating to the function represented by the

second button. Clicking a mouse button or pressing a keyboard key will close the HELP facility. To

exit execution of IGGy, pick the EXIT button. A prompt will request a Continue or Abort signal.

Pressing the Enter key represents Continue and will cause execution to cease; while the Esc key

represents Abort and will cause normal operations to resume.

The middle section displays the menu system. If a menu item represents a submenu, the

submenu name with following ellipsis is displayed. Any menu item may be selected by picking the

appropriate button. Picking a submenu displays the items of the submenu. To traverse back up one

level in the menu system, you may either press Esc or pick the background area above or below the

presently displayed menu options. If a submenu contains more options than can be displayed at

once, the last menu button will display "more... " and the remaining options are displayed as a
submenu of this button.

The menu system is organized into eight primary menus: "File..." contains all of the i/o

commands; "Set... " contains all commands for setting parameters; "Curve... " contains all

commands which generate curves; "C/aux... " contains all commands which operate on or alter

curves; "Surface... " contains all commands which generate surfaces; "S/aux... " contains all

commands which operate on or alter surfaces; "Parametric..." contains all commands which deal

with parametric space; and "Misc..." contains all other commands or IGGy specific functions

which do not fit into one of the other menus. Some commands operate on both curves and surfaces,

and thus have been duplicated in the menu system. If a curve is displayed in current position,

94

picking C/aux... will display all of the commands appropriate for altering it; likewise, if a surface is

in current position, picking S/aux... will display all of the commands appropriate for altering it.

When using the menu system to build commands and a character value is being prompted for,

the legal responses are displayed in a menu. Some non-character variables may also be assigned

character values. In this case, a menu of the legal responses is displayed. Picking any of these menu

choices causes the appropriate response to be entered into the command being built.

Parameters Window

The Parameters window displays lists of all the indirectly addressable parameters that have been

set by the user. The window is separated into three sections corresponding to the three types of

parameters: vector, integer, and real. Along the left side of each section is a pair of up and down

arrow buttons. These buttons are used to scroll through the parameter lists. When building

commands using the menu system, and a vector, integer, or real value is being prompted for,

picking a value of the appropriate type from the parameter lists causes the corresponding storage

index to be referenced using the proper syntax.

Status Window

The Status window displays the status of various variables and parameters which affect the

operation of IGGy. Displayed are the current value of SURFACE, which controls the operation of

parametric mode, the current values of FORM and STYLE, which specify the format for file i/o,

and the name of the journal file currently being processed. Also displayed are flags to denote that

edge curves, bounding curves, or tab curves have been set; corner points have been set; and an axis
curve has been set.

When building commands using the menu system, and an integer value is being prompted for,

the Status window is cleared and a slider for specifying integer values is displayed as shown in

Figure 2. Likewise, whenever a real or vector value is being prompted for, the Status window is

cleared and a calculator is displayed as shown in Figure 3. These two facilities allow commands to

be entered without switching between using the mouse and using the keyboard.

To operate the slider, pick the slider knob and move the mouse horizontally, while keeping the

left mouse button depressed. The present value of the slider is displayed in the small outline, that is

centered near the bottom of the window. The knob will wrap around the ends of the slider to allow

specification of integers beyond the range displayed. Pressing the Enter key, after moving the slider

knob, will cause the value of the slider to be entered into the command being built.

To operate the calculator, numbers are entered by picking the buttons of the numeric keypad,

located on the right side of the window, and picking the Enter button. Since the calculator is based

on Reverse Polish Notation (RPN), two values must be entered before a binary operator is specified.

Values are entered from the bottom of the stack, which is displayed on the left side of the window

and which contains three vector registers (only two of which are displayed) and thus nine scalar

95

registers(three componentsfor eachvector). The centersectionof the calculatorwindow displays
the function keys. The tilde button in the upper left cornerof the function keystogglesbetweenthe
scalarfunctions and the vector functions and alsodesignatesa vectorEnter from a scalarEnter.
Valuesand vectorscan beenteredinto the calculatorby picking an index from the parameter lists
or by picking the coordinatedisplaysectionof the Current window. To designatethat thesevalues
shouldbe enteredinto the calculator rather than into the commandwhich is currently beingbuilt,
this picking shouldbe doneusing the right mousebutton insteadof the left mousebutton. Once
the desiredvalue is calculated,pressingthe Enter key will causethe valueto beenteredinto the
commandbeingbuilt.

'lider

Numberof Points

0 2O

Figure 2: Integerslider.

Core StorageWindow

The Core storagewindow displayswire frame drawingsof the segmentsin corestorage.This
window is divided into six smallerviewports representinga small rangeof the corestorageindices.
The corestorageindex correspondingto eachsegmentis displayedin the upper left cornerof the
appropriateviewport. When usingthe menu system,picking the appropriateviewport causesthe
correspondingcorestorageindex to be inserted into the commandbeingbuilt. Sinceonly six
segmentsaredisplayedat once,four buttons aredisplayedalong the right sideof the Corestorage
window: up arrow, down arrow, left arrow,and right arrow. The left and right arrows stepthrough
corestorage,oneindex at a time. The up and down arrowsshift through corestorage,six indicesat
a time.

The segmentsdisplayedin the Corestoragewindow arescaledglobally. This ensuresthat all
segmentsare visible, but causessomesegmentsto becomeindistinguishableby sight if there existsa
greatdisparity amongthe sizeof the segments.In the upper right cornerof eachsmall viewport are
displayedthe dimensionsof the segmentstoredat that index. This canbehelpful in identifying
smallersegments.

The only viewing manipulations availablefor the corestorageare rotations of 90degrees.
Picking a coresegmentusing the middle mousebutton causesa horizontal rotation. Picking a core
segmentusing the right mousebutton causesa vertical rotation. The symbol in the lower left corner

96

Calculator

x

u
,_y

0.00000E+00

0.00000E÷00

0.00000E+00

0.00000E+00

0.00000E+00

0.00000E+00

Function
Keys

I 0

Scalar
Functions

Vector
Functions

Figure 3: RPN vector/scalar calculator.

of each viewport displays the orientation of the axis of each viewport.

Console Window

The Console window is a text port which allows the user to enter any legal command from the

keyboard. When executing commands from the menu system, the Console window is also used to

prompt the user for input. For any input variable, the user may use the mouse to access the slider,

calculator, or menu choices, or may type the appropriate response from the keyboard.

A command history facility is accessible using Ctrl-up arrow and Ctrl-down arrow. Holding

down the Ctrl key and pressing the up arrow key displays the command line previously entered.

Successive presses of the up arrow displays commands from earlier in the execution process. Holding

down the Ctrl key and pressing the down arrow key displays commands from later in the execution

process.

Table 5 shows the line editor commands available from the Console window. All of the

commands are implemented as single key control sequences.

97

Table 5: Command Line Editor Keystrokes

Ctrl-a move to beginning of line

Ctrl-b move back one character

Ctrl-d delete character below the cursor

Ctrl-e move to end of line

Ctrl-f move forward one character

Ctrl-h delete character to left of cursor

Ctrl-k kill from character to end of line

Ctrl-u delete the entire line

Hints Window

The Hints window is used to display hints about the operation of IGGy. The text displayed is

controlled by the placement of the cursor on the screen. As the cursor is moved around the screen,

the message displayed describes the button or window beneath the cursor.

Whenever the slider or calculator is displayed in the Status window, the Hints window is also

cleared and two buttons are displayed as shown in Figure 4. These buttons are the graphical

equivalents to the Enter and Esc keys. The Abort button can be picked at any time that it is

displayed to abort the command currently being built and to force a return to normal operations.

Hints

Cont Abort

Figure 4: Continue or abort buttons.

EXAMPLE APPLICATIONS

NACA 0012 Airfoil

The following example script generates a simple two-dimensional C-type grid about a symmetric

airfoil. This example corresponds to the first example given in reference [1] and is presented to

highlight the advantages of using the generalized parameters. The script closely imitates the

original example for comparison purposes.

98

Figure 5 shows the boundaries of the configuration used. The vector parameters that are used as

point locations are designated by the appropriate indices inscribed in circles. Each pair of points

delineate a boundary segment that is created in the script. Throughout the script, integer

parameters are used to define the number of points along the boundary segments and the point

distributions are defined using spacings stored in real parameters. In addition to these parameters,

two real parameters are used to define the distances from the airfoil to the outer boundary.

®

O

@

@

O

@

Figure 5: Boundaries of C grid about symmetric airfoil.

Looking at Figure 6, the comments at the beginning of the script show that the real value stored

at index 5 defines the radius of the circular arc segment used in defining the outer boundary, and

the real value stored at index 6 defines the distance from the trailing edge of the airfoil to the exit

plane. The use of these parameters allows the user to alter the distance to the outer boundary. The

remaining parameter setting commands allow the grid to be redimensioned and allow grid point

clustering to be altered as with EAGLE.

After the initial parameters setup, the shape of the symmetric airfoil is read in. The first and

last points on this airfoil shape are then extracted to define points number 2 and 3. The locations of

points 1, 5, and 6 are then calculated relative to the trailing edge of the airfoil. Note, the distance

stored in real index 6 is used to define the offset of point 1 in the x direction, and the radius stored

in real index 5 is used to define the offset of points 5 and 6 in the +y and -y directions, respectively.

Without the use of vector expressions, points 1, 5, and 6 would have been defined explicitly.

The circular arc segment used in defining the outer boundary is generated at the beginning of

Figure 7. Without the use of the generalized parameters, an explicited value would have been given

for 'RADIUS'. With this key parameter buried in the interior of the script, the possibilities for

producing errors, when altering the grid, are increased.

99

/
* sot radius of circular arc

E$I|PUT ITEM=_SETRE/L_, IIDEI= 5, RVlL=30. $

* sat distance to downstre_ boundary
*

E$1|PUT ITE_=_SETRELL _ , I|DEX= 6, RVlL=29. $

* set appropriate integer values for use as n_uabers of points

e

E$I|PUT ITEM='SETI|T _ , I|DEI=

E$IIPUT ITEM='SETI|T', I|DEI=

E$I|PUT ITEM='SETI|T', I|DEI=

E$I|PUT ITEM='SETI|T _ , I|DEI=

E$I|PUT ITEM='SETI|T', I|DEI=

E$I|PUT ITEN='SETI|T _ , I|DEI=

E$I|PUT ITEN='SETI|T _ , INDEX=

E$I|PUT ITEM='SETI|T _ , I|DEI=

* set appropriate real values

E$I|PUT ITEN='SETRELL', IEDE%=

E$1|PUT ITEM='SETREkL _ , I|DEI=

E$I|PUT ITEM=_SETRELL _ , I|DEI=

E$I|PUT ITER='SETRELL _ , I|DEI=

* read airfoil shape

e

9, IVIL=81 $

1, IVIL=!9+!9-1 $

2, IVIL=31 $

3, IVIL=20 $

7, IVIL=141 $

6, IVlL=41 $

5, IVIL=!2+!1+!2-2 $

8, IVIL=!5-!6-!7+2 $

for use as spacings

1, RVAL=.O01 $

2, RVAL=.O1 $

3, RVAL=.O001 $

4, RVAL=.O015 $

E$1|PUT ITEM=_CURRE|T ', FILEIM=I2, FOPJq='LIST', STYLE='IYZ', POI|TS=IO0 $

* extract points 2 and 3 froa the airfoil definition

E$IIPUT ITEM-'GETVEC _, POIIT-'FIRST _ , I|DEI= 3,

VECTYP='POI|T _ $

E$I|PUT ITEM=JGETVEC _ , POI|T='LAST J , I|DEX= 2,

VECTYP='POI|T' $

* calculate location of points 1, 5, and 6

*

E$I|PUT ITEN=_SETVEC', I|DEI = 1, VVAL=-2+{,6,0.,O.} $

E$I,PUT ITEN=_SETVEC ', I|DEI= 5, VVAL='I+{O.,,5,0.} $

E$I|PUT ITEM=JSETVEC ', I|DEX= 6, VVlL='I-{O.,,5,O.} $

* distribute points on the airfoil

$

E$I|PUT ITEM=JCURDIST ' , POI|TS=! 9, DISTYP='BOTH _, SPLTYP='qUAD',

SPACE=, 4,' 2, RELATIV='|O_,'|O ' $

E$I|PUT ITEN='OUTPUT', COREOUT= 9 $

E$I|PUT ITEM=_SWITCH', REORDER='REVERSE1 ' $

E$I|PUT ITEN='SCkLE J, SCALE={1.,-1.,1.} $

E$I|PUT ITEN='I|SERT ' , COREI|= 9 $

E$I|PUT ITEN='OUTPUT', COREOUT= 1 $

\

J

Figure 6: IGOy script for C grid about symmetic airfoil.

100

f.
• generate circular arc segment

E$IIPUT ITEN=_COIICUR ' , TYPE='CIRCLE'. POIITS=IO0, RADIUS=S 5,

AIGLE=270.,90. $

E$IIPUT ITEN='CURDIST', POIITS=! 7, DISTYP='BOTB ' , SPLTYP='QUAD ' ,

SPICE=# 3,# 3, RELATIV=_YES_,JYES' $

E$1|PUT ITEN='OUTPUT', COREOUT= 7 $

• extract points 4 and 7 from ends of circular arc segment

*

E$1|PUT ITEN=JGETVEC ' , POI|T=_FIRST ' , I|DEI= 7,

VEC_rYP=_POI|T ' $

E$1|PUT ITEN=_GEIWEC', POI|T=JLAST _, I|DEI = 4,

VECTYP='POI|T _ $

* extract the spacing generated at the ends of the circuXar are segment

E$1|PUT ITEN='GETSP£ _, E|D='FIRST _, I|DEI= 7 $

E$1|PUT ITEM='LI|E _, POI|TS=! 6, RI=" 7, R2 =" 6 $

E$1|PUT /TEH='CURDIST ', POI|TS=! 6, DISTYP=JTA|H ', SPLTYP='LI|EAR J,

SPICE=# 7, RELATIV='HO _ $

E$1HPUT ITEH='SWITCB _, REOHDER=_REVERSE1 _ $

E$1HPUT ITEN='OUTPUT _ , COREOUT = 6 $

E$1HPUT IT_='LIHE _, POIITS=IO, Rl =- 4, R2=- S $

8, DISTYP=JTA|H _, SPLTYP=JLI|EAR J,E$IHPUT ITEH='CURDIST J , POIITS=!

SPACE=| 7, RELATIV='HO' $

E$I|PUT ITEM='OUTPUT ' , COREOUT= 8 $

E$IHPUT ITEN='CURREHT', COREI|= 6 $

E$IHPUT ITEM=_IISERT _, COREI|= 7 $

E$IHPUT ITEM=JI|SERT _, COREIH= 8 $

E$I|PUT ITEN=JOUTPUT _ , COREOUT= 5 $

E$11PUT ITEN=JLI|E ', POIITS=IO, RI =" 2, R2=" I $

E$I|PUT ITEM=_CURDIST j, POI|TS=! 2, DISTYP=_TA|H _, SPLTYP=JLI|EAR _,

SPACE=S 2, RELATIV=_|O _ $

E$1|PLF[ITEM=_SNITCH _ , REORDER=_REVERSEI j $

E$I|PUT ITEM=J0UTPUT j , COREOUT= 2 $

E$IHPUT ITEM=_LIIE _, POIITS=IO, RI=" 1, R2=- 6 $

E$1|PUT ITEN=_CURDIST ', POIITS=_ 3, DISTYP='TA|B _, SPLTYP=JLI|EAR _,

SPACE=# I, RELATIV=_|O _ $

E$IHPUT ITEN=_OUTPUT _ , COREOUT= 3 $

E$1|PUT IT_=_LI|E _, POI|TS=IO, RI=- I, R2=" 5 $

E$IIPUT ITEN=_CURDIST', POIITS=! 3, DISTYP=)TAIH _, SPLTYP=_LI|EAR _,

SPACE=# 1, RELATIV=_|O _ $

E$I|PUT ITEN=_OUTPUT _ , COREOUT= 4 $

E$I|PUT ITF_q=_CO_SIHE _, FILEOUT=I, COREI|=I,2,3,4,5, FOIIN=_E _,

STYLE=_CO|TE_T _ $

E$IHPUT ITEN='E|D: $

J

Figure 7: Continuation of IGGy script above.

101

As seen in the 'CURDIST' statement following the 'CONICUR' statement, relative spacings are

used to define the distribution of points along this circular arc segment. To match this spacing

when generating neighboring segments, a 'GETSPA' command is used to extract the resulting

absolute spacing at the ends of the segment and to store the spacing at real index 7. The remainder

of the boundary segments are then generated using the defined parameters and are written to a file

for importing to the grid code.

Multi-Store Interference Configuration

The following example addresses a multi-block grid about generic missile shapes in the mutual

interference configurations whose frontal views are shown in Figure 8. Assuming a zero angle of

attack and no interference from outside sources, the flow analysis can be performed on a small

segment of the entire geometry. The dotted lines of Figure 8 can be drawn due to geometric

symmetry; the dashed lines can be drawn due to the assumption of zero angle of attack. This

reduces the flow field to a 90 degree wedge for the two store case and a 60 degree wedge for the

three store case. With such a configuration, effects of separation distance and toe in or toe out

angle can be investigated.

J

Figure 8: Two and three store configuration.

The script used to produce the boundary segments for this configuration is too long to be

included in its entirety; however, Figure 9 shows the parameter definitions that are placed at the

beginning of this script. The real value parameter stored at index 16 defines the angle between the

planes of symmetry and thus allows the two and three store cases to be generated from the same

script. As the comments imply, other real value parameters are used to control the location of the

outer boundary, the separation distance between stores, and the toe in or toe out angle. No point

locations are specified explicitly; rather, all necessary points are defined relative to the geometric
definition of the store.

Figures 10 and 11 display perspective views of example boundary grids generated using IGGy.

Figure 10 is the two store configuration; while, Figure 11 is the three store configuration. These

grids consist of two blocks; and the outer boundaries are moved in close to the store for plotting

102

/
this runstremagenerates the boundary surfaces for a tee block

grid about a ogive/cylinder/ogivs/sting missile configuration.

two store or three store configurations are possible

* length of the sting

E$INPUT ITEH=JSEI_EIL _, INDEX= 11, RVAL=60. $

* length of the stagnation iine

E$INPUT ITER='SETREAL J, INDEX= 12, RVAL=60. $

e

e distance from reflection plane to centerline of missile

e

E$IIPUT ITEM='SETREAL', INDEX= 13, RVAL=I.8 $

* toe in or toe out angle, toe in is positive, abe(angle) 1= 5 deN.

E$IIPUT ITEN='SETRELL ', INDEI= 14, RVAL=O.*pi/180. $

* distance from inner block to outer boundary

E$IIPUT ITEN=_SETREIL j, INDEX= 15, RVAL=60. $

e

* angle of rotation of vertical plane of syxmetry, this angle is

* zero for the tee store configuration and 30 den for three stores.

EIIIPUT ITEN=_SETRELL _ , INDEX=

e

* set nmabers of points along

16, RVALfO.*pi/180. $

segments

INDEX = 1, IVIL=24 $ along the nose

INDEI = 2, IV&L=30 $ along the shaft

INDEX = 3, IVAL=15 $ along the tail

IIDEX = 4, IVAL=23 $ along the sting

INDEI= 5, IVAL=15 $ 1/3 around missile

INDEI= 6, IVAL=15 $ 2/3 around missile

INDEX= 7, IVAL=!5+!6-1 $ total around missile

INDEX = 8, IVAL=32 $ normal to missile

INDEX= 9, IViL=25 $ along stagnation line

INDEI = I0, IVAL=!9+!I+!2÷!3+!4-4 $ total along i-axis

I|DEI = 11, IVAL=20 $ j direction of outer blk

IIDEI= 1, EVIL=.04 $ tip of nose

INDEI= 2, EVIL=.08 $ base of nose

INDEX= 3, EVIL=.08 $ base of shaft

INDEX= 4, RVAL=.I $ base of tail

IIDEI= 5, RVAL=.OOS $ normal to missile

IIDEI = 6, RVAL=5. $ beKn N end i dir outr bndry

INDEX = 7, RVAL=.I $ normal to v reflec pln

E$IIPUT ITEN=JSETIIT '

EIIIEUT ITEM='SETIIT j

EIIIPUT ITEM='SETIIT'

E$IIPUT ITEM=JSETIIT '

E$IIPUT ITEN=_SETIIT J

E$IIPUT ITEM=_SETIIT _

Eli|PUT ITEN='SETIIT'

E$IIPUT ITEM='SETIIT'

E$1IPUT ITEM='SETIIT J

EIIIPUT ITEN='SETIIT _

E$IIPUT ITEN='SETIIT _

* set spacings

*

E$IIPUT ITEN=_SETKEIL _

E$IIPUTITEN=JSETKEELJ

E$IIPUT ITEN='SETltEIL '

E$IIPUT ITEN=JSE13tEIL _

E$IIPUT ITER='SETItEEL _

E$IIPUT ITEN='SETltEAL _

E$IIPUT ITEN=JSEI1tEIL _

Figure 9: Parameter definitions for multi-store configuration.

103

Figure 10: Example boundary grids for two store configuration.

Figure 11: Example boundary grids for three store configuration.

104

purposes. Both of these grids were generated by altering only the parameters shown in Figure 9,

with the only difference between the two being the value assigned to the real parameter stored at

index 16.

CONCLUSIONS AND RECOMMENDATIONS

Many of the ideas relating to the generation of the needed parser and the syntax of the scalar

and vector expressions were taken from SDL [8], a general purpose language for surface grid

generation. Whereas EAGLE provides a user-friendly command structure with limited flexibility,

and SDL provides the complete flexibility of a programming language (including looping constructs,

conditional statements, and subroutines), IGGy has sought a compromise in flexibility and power

while retaining the user-friendly command structure and providing a user-friendly graphical

environment.

The recent trend in extensions to the EAGLE code has involved the generation of new commands

which are built around the capabilities of the original commands. These new commands essentially

automate some function which would have previously taken several commands to accomplish. This

trend goes against the philosophy taken in IGGy. Rather, it would be preferable to produce a macro

language which would allow the user to produce such capabilities from the commands which already

exist. Such a macro language would not produce the flexibility of a programming language but

would give the user the added flexibility to tailor the code to a particular application.

REFERENCES

.

.

.

.

,

Lijewski, L. E., Cipolla, J., et. al., "Program EAGLE User's Manual Volume I - Introduction

and Grid Applications", AFATL-TR-88-117, September 1988.

Thompson, J. F. and Gatlin, B., "Program EAGLE User's Manual Volume II - Surface

Generation Code", AFATL-TR-88-117, September 1988.

Thompson, J. F. and Gatlin, B., "Program EAGLE User's Manual Volume III - Grid

Generation Code", AFATL-TR-88-117, September 1988.

Eiseman, Peter R., "Applications of Algebraic Grid Generation", AGARD Fluid Dynamics

Panel Specialists' Meeting on Applications of Mesh Generation to Complex 3-D

Configurations, Loen, Norway, May 1989.

Thompson, J. F., Lijewski, L. E., and Gatlin, B., "Efficient Applications Techniques of the

EAGLE Grid Code to Complex Missle Configurations", AIAA-89-0361, 27th Aerospace

Sciences Meeting, Reno, Nevada, January 1989.

105

6. Johnson, S. C., "Yacc: Yet Another Compiler Compiler", Computing Science Technical

Report No. 32, Bell Laboratories, Murray Hill, New Jersey, 1975.

7. Lesk, M. E., "Lex - A Lexical Analysis Generator", Computing Science Technical Report No.

39, Bell Laboratories, Murray Hill, New Jersey, October 1975.

8. Maple, Raymond C., "SDL - A Surface Description Language", NASA Workshop on Software

Systems for Surface Modeling and Grid Generation, NASA CP- 3143 , 1992.

106

