View metadata,	citation and similar pape	ers at <u>core.ac.uk</u>	brough	t to you by TCORE
			provided by NASA Te	
			807	
	NASA Tech	inical Memorandum 105620	P.13	
			/ /~	
		· · · · · · · · · · · · · · · · · ·	·····	
			·····	
1	- m - A		lan et vene (Li	
	The Cy	yclic Oxidation Resistance at	· · · · · · · · · · · · · · · · · · ·	
	1200	C of β -NiAl, FeAl, and		· ·
	- CoAl A	Alloys With Selected		
	Third I	Element Additions	· ·	
			··· · · · · · ·	
	······			
	- C.A. Barret	t and R.H. Titran	· · · · · · · · · · · · · · · · · · ·	
	Cleveland,	Ohio		
· · · · · · · · · · · · · · · · · · ·		(NACA THE LOFEZO) THE CYCLIC DATION		N92-24554
		RESISTANCE AT 1200 C OF BETA-NIAL, FEAL, A	ND	
		APDITIONS (NASA) 13 p CSCL 1	1F G3/26	Unclas 0088807
	· · · · · · · · · · · · · · · · · · ·			
	April 1992		<u>.</u>	
·····	·····			
		Λ		
			. <u>.</u>	

······

ALLOYS WITH SELECTED THIRD ELEMENT ADDITIONS

C.A. Barrett and R.H. Titran National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135

SUMMARY

The intermetallic compounds β -NiAl, FeAl, and CoAl were tested in cyclic oxidation with selected third element alloy additions. Tests in static air for 200 1-hr cycles at 1200 °C indicated by specific weight change/time data and x-ray diffraction analysis that the 5 at % alloy additions did not significantly improve the oxidation resistance over the alumina forming baseline alloys without the additions. Many of the alloy additions were actually deleterious. Ta and Nb were the only alloy additions that actually altered the nature of the oxide(s) formed and still maintained the oxidation resistance of the protective alumina scale.

INTRODUCTION

The intermetallic compounds β -NiAl, FeAl, and CoAl are potentially attractive materials for high temperature use. The ordered structure provides the high temperature strength while the Al present would tend to form α -Al₂O₃ to provide oxidation resistance. Other investigations at this laboratory have focused on third element additions to these alloys and their effect on various high temperature strength properties (refs. 1 and 2). This investigation will study the cyclic oxidation resistance of a similar series of ternary alloys at 1200 °C in static air. The relative oxidation resistance among the alloys will be evaluated and compared with the binary alloys used here and in other studies.

PROCEDURES

The aluminides of Ni-, Fe-, and Co- with third element additions tested along with the basic binary alloy(s) are listed in table I. All these binary and ternary alloys were made by hot extrusion of blended binary powders with or without the third element powder additions. The Ta, Cr, etc., tend to be present as large inclusions in a lean aluminide matrix (i.e., these alloys tend to be nonhomogeneous). These ternary additions were all at the 5 atomic percent (at %) level. The microstructures are described in reference 3.

These extruded bars were machined into small disk samples approximately 10 mm in diameter by 2 mm in thickness with a 1.5 mm diameter hanger hole to suspend the sample(s) during cyclic testing. The samples with the as ground surface(s) with a 32 rms finish are suspended from Pt wire hanger hooks into a standard NASA vertical multitube cyclic oxidation furnace rig (ref. 4). The individual alloy samples were tested in groups of six for 200 1-hr cycles at 1200 °C. The samples were removed for weighing at selected intervals to generate specific weight change/time curves. The sample surfaces were analyzed by x-ray diffraction after 1, 100, and 200 cycles (hr).

RESULTS AND DISCUSSION OF RESULTS

The specific weight change/time data were divided into three oxidation groupings (classes A, B, and C, respectively). Class A data which includes the three binary alloys β -NiAl, FeAl, and CoAl and their ternary alloys, which behave and appear similar to their basic binary alloys are listed in table II. The class B alloys detailed in table III exhibited poorer cyclic oxidation resistances than their basic binary alloys but lasted 200 1-hr cycles without appreciable sample degradation. Table IV summarizes class C alloys which show catastrophic cyclic oxidation behavior either by sample cracking and breakage, severe oxide spalling, large sample growth where the metal actually appeared to grow along with the scale or some combination of all three failure modes. In most cases the sample failed prematurely some time during, or after, the first 1-hr cycle.

Most of the class A alloys appear similar after the 200 1-hr cycle exposure. All had a uniform dark gray scale with a slight powdery texture. Two of the alloys (Fe-46Al-5Cr and Co-50Al) showed minor edge thinning due to scale spalling. The (Co-49Al-5Ni) alloy had a glazed cracked gray scale. All of the alloys in this grouping formed α -Al₂O₃ as the primary oxide as determined by x-ray analysis. It is basically a thin protective scale which tends to spall slightly upon cooling. X-ray diffraction also detected the underlying aluminide alloy. In a few cases the aluminate spinel ($a_0 = 8.05$ to 8.10 Å) was also observed. The more interesting results with respect to cyclic oxidation resistance are for the alloys that contain Nb or Ta, in that they form the refractory metal oxides, AlNbO₄ or AlTaO₄, respectively, even though free metallic Nb or Ta was observed. In addition, the Ni-50Al-5Ta alloy forms the tri-rutile oxide, shown to be protective with Al₂O₃/aluminate forming superalloys (refs. 5 to 7). For this reason it is believed that the Ta alloy addition to binary aluminide alloys, particularly stoichiometric β -NiAl, is promising for further evaluation but at a lower Ta level, say in the 1 to 3 at % range.

The kinetic behavior of the class A alloys are quite similar. Of the 24 alloys listed in table II, 20 behave in a classic paralinear manner usually observed in cyclic oxidation as indicated by a maximum specific weight change, $\Delta W/A$, followed by a steady negative specific weight change finally giving negative values. This is typical of α -Al₂O₃ protective scale growth but with significant oxide spalling as well. The baseline binary β -NiAl alloys tested are plotted in figure 1 indicating the range of behavior. Figure 2 shows the $\Delta W/A$ versus time curves for the five third-element (Si, Co, Nb, Re, and Ta) additions showing similar behavior to the binary β -NiAl alloys. A typical β -NiAl alloy from figure 1 is also shown on this plot. Both Ta and Nb show high positive initial $\Delta W/A$ values due to the refractory metal oxides being formed along with the α -Al₂O₃.

The binary FeAl alloys shown in figure 3 behave similarly to the β -NiAl alloys. The FeAl specific weight change curves tend to flatten out slightly and in the case of the Fe-39.8 percent alloy tended to increase in weight after 100 cycles.

Alloy additions of Si, Ti, Ni, Cr, Re, and Nb to the FeAl system had little effect on the oxidation behavior of the binary material as indicated by the similar net change data plotted in figure 4. Again a typical FeAl binary alloy curve from figure 3 is plotted for comparison. In the FeAl system Nb appeared to change the nature of the oxide growth/spalling process as Nb and Ta did in the β -NiAl alloys. This was confirmed by the x-ray identification of niobates or tantalates.

Cyclic oxidation studies of the CoAl alloys indicate that only the Ni-third element CoAl alloy could be considered as a class A alloy based on specific weight changes. Still the scale appeared cracked and glazed and therefore would not be expected to be protective. Class B alloys listed in table III lasted the full 200 1-hr cycles and were mainly Al_2O_3 formers but spalled excessively to give large negative specific weight change values. The oxidation behavior was significantly poorer than their binary alloy standards and showed little promise.

The class C alloys listed in table IV showed catastrophic oxidation behavior in cyclic testing at 1200 °C. Roughly one-third of the alloys were so brittle they cracked and broke apart after the first cycle. The rest tended to shatter well under 200 cycles. Some samples actually showed massive growth with large linear specific weight change increases. This is particularly true with the 5 percent Zr additions which in the low percentage range (~0.1 to 0.2 wt %) is so beneficial in conferring oxidation resistance in the β -NiAl system (refs. 8 to 10).

CONCLUDING REMARKS

Additions at the nominal 5 at % were selected from a mechanical property viewpoint, however they tended to be extremely brittle particularly when tested in cyclic oxidation. To optimize the oxidative properties of these materials, third element additions of less than 1 at % would have been a better choice. The most dramatic case is Zr, which at the 5 percent level leads to catastrophic oxidation, while in the range of 0.03 to 0.1 at % results in the β -NiAl having the best cyclic oxidation resistance of all the alumina or chromia formers in the 1200 to 1300 °C range.

The 5 at % alloy additions that effectively maintained the cyclic oxidation resistance of the baseline binary alloys were Si, Co, Nb, Ta, and Re in the β -NiAl; Si, Ti, Ni, Nb, and Re in FeAl; and Ni in CoAl. Nb and Ta actually altered the nature of the external scale and would be of interest perhaps in the 1 to 2 at % range. From other studies at this laboratory, a 0.1 at % fourth element addition of Zr should significantly improve the cyclic oxidation resistance as well.

REFERENCES

- 1. Titran, R.H.; Vedula, K.M.; and Anderson, G.G.: High Temperature Properties of Equiatomic FeAl with Ternary Additions. NASA TM-86938, 1984.
- 2. Vedula, K., et al.: Alloys Based on NiAl for High Temperature Applications. NASA TM-86976, 1984.
- Vedula, K., et al.: P/M Processing of Intermetallic Compounds of CsCl Type for High Temperature Applications. Modern Developments in Powder Metallurgy: Proceedings of the 1984 International Powder Metallurgy Conference, E.N. Aqua and C.I. Whitman, eds., Vol. 16, Metal Powder Industries Federation, Princeton, NJ, 1985, pp. 695-704.
- 4. Barrett, C.A.; and Lowell, C.E.: High Temperature Cyclic Oxidation Furnace Testing at NASA Lewis Research Center. J. Test. Eval., vol. 10, no. 6, 1982, pp. 273-278.

- 5. Barrett, C.A.; Santoro, G.J.; and Lowell, C.E.: Isothermal and Cyclic Oxidation at 1000 and 1100 °C of Four Nickel-Base Alloys: NASA TRW VIA, B-1900, 713C, and 738X. NASA TN D-7484, 1973.
- 6. Barrett, C.A.: The Effect of Variations of Cobalt Content on the Cyclic Oxidation Resistance of Selected Ni-Base Superalloys. NASA TM-87297, 1986.
- 7. Barrett, C.A.: Effect of 0.1 At-Percent Zirconium On the Cyclic Oxidation Resistance of Beta-NiAl. Oxid. Met., vol. 30, no. 5-6, 1988, pp. 361-390.
- Barrett, C.A.: The Effect of 0.1 Atomic Percent Zirconium on the Cyclic Oxidation Behavior of β-NiAl for 3000 hr at 1200 °C. Oxidation of High Temperature Intermetallics; Proceedings of the Workshop, T. Grobstein and J. Doychak, eds., TMS, Warrendale, PA, 1989, pp. 67-82 (also, NASA TM-101408, 1988).
- Doychak, J.; Smialek, J.L.; and Barrett, C.A.: The Oxidation of Ni-Rich Ni-Al Intermetallics. Oxidation of High Temperature Intermetallics; Proceedings of the Workshop, T. Grobstein and J. Doychak, eds., TMS, Warrendale, PA, 1989, pp. 41-56 (also, NASA TM-101455, 1988).
- Doychak, J.; Barrett, C.A.; and Smialek, J.L.: Oxidation Between 1000 and 1600 °C and Limiting Criteria for the Use of Zr Doped Beta-NiAl and Beta/Gamma Prime Alloys. Corrosion and Particle Erosion, TMS, Warrendale, PA, 1989 pp. 487-514.

TABLE I.---NOMINAL ALLOY

CONTENT OF M-AI AND

M-AI-X ALLOYS TESTED

IN CYCLIC OXIDATION (at %)

Nickel base	
Ni-43.9Al	Ni-42AI-5Hf
-50AI	-42A1-5Si
-52.7Al	-42Al-5Zr
	-42Al-5Mn
	-50Al-5Co
	-50Al-5Cr
	-50Al-5Co
	-50Al-5Fe
	-50Al-5Nb
	-50Al-5Re
	-50Al-5Ta
Iron base	
Fe-39.8A1	Fe-39Al-5Ni
-41.7Al	-39Al-5Si
-48.7Al	-39Al-5Ti
-50Al	-39Al-5Zr
	-46Al-5Co
	-46Al-5Cr
	-46Al-5Nb
	-46Al-5Ni
	-46Al-5Mo
	-46Al-5Re
	-46Al-5Ta
	-46Al-5W
	-47Al-5Zr
Cobalt base	
Co-50Al	Co-49Al-5Fe
:	-49Al-5Mo
	-49Al-5Ni
	-49Al-5Ta
	-49Al-5W

-

TABLE II.-CLASSIFICATION OF CYCLIC OXIDATION BEHAVIOR OF M-AI AND M-AI-X ALLOYS TESTED FOR UP TO 200 ONE-HOUR CYCLES AT 1200 °C IN STATIC AIR-CLASS A

BEHAVIOR-THE TERNARY ALLOY BEHAVIOR SIMILAR TO

Alloy	Run	Fi	nal	XRD phases at 1, 100,	Final sample description
	number"	$\Delta W/A$	Time	and 200 hr	
Ni-50A1 -50A1 -52.7A1	628-1 628-2 630-1	-8.43 -8.66 -4.48	200	$Al_2O_3; \beta$ NiAl $Al_2O_3; \beta$ NiAl $Al_2O_3; \beta$ luminate spinel; β NiAl	Uniform dark grayish speckled scale
-50Al -43.9Al	660-5 630-2	-10.54 -7.69		$Al_2O_3; \beta NiAl Al_2O_3; \beta NiAl$	
Ni-42Al-5Si -50Al-5Co -50Al-5Nb -50Al-5Ta -50Al-5Re	628-3 629-1 629-2 629-4 629-6	-7.98 -9.47 -9.50 .86 -7.35	200	$ \begin{array}{l} Al_2O_3; \ \beta NiAl \\ Al_2O_3; \ \beta NiAl; \\ aluminate spinel at 1 hr \\ Al_2O_3; \ AlNbO_4; \ \beta NiAl^b \\ Al_2O_3; \ AlTaO_4; \ \beta NiAl^c \\ Al_2O_3; \ \beta NiAl^d \end{array} $	Uniform dark grayish speckled scale
Fe-41.7Al -48.7Al -39.8Al -50Al -50Al	630-5 630-6 631-1 631-2 660-6	-7.39 -2.30 -5.78 -3.47 -1.53	200	$Al_2O_3; FeAl^e$ $Al_2O_3; FeAl$ $Al_2O_3; FeAl$ $Al_2O_3; FeAl$ $Al_2O_3; FeAl$ $Al_2O_3; FeAl$	Uniform dark grayish speckled scale
Fe-39Al-5Si -39Al-5Ti -39Al-5Ni -46Al-5Cr -46Al-5Nb -46Al-5Re	631-4 631-5 631-6 635-3 635-5 636-3	-15.04 -10.42 -3.31 -1.44 6.13 -3.93	200	$Al_2O_3; FeAl^f$ $Al_2O_3; FeAl$ $Al_2O_3; FeAl$ $Al_2O_3; FeAl$ $Al_2O_3; FeAl$ $Al_2O_3^g$ $Al_2O_3; FeAl$	Uniform dark grayish speckled scale Uniform dark grayish speckled scale
Co-50Al -50Al	636-4 636-5	-15.78 -8.27	200 200	Al ₂ O ₃ ; CoAl Al ₂ O ₃ ; CoAl	Uniform dark grayish speckled scale Uniform dark grayish speckled scale ⁱ
Co-49Al-5Ni	636-6	-12.60	200	Al ₂ O ₃ ; CoAl ^h	Glazed cracked gray scale

THE BINARY BASE ALLOY

^aSequence run number with numbers 1 to 6 indicating each of six circumferential vertical tubes capable of holding one hanging test sample.

^b1 hr NbO₂ also detected; 200 hr NiNb₂O₄ + aluminate spinel also detected. ^c1 hr free Ta also detected; 200 hr tri-rutile, $a_0 = 3.29$ Å also detected.

 d_1 hr free Re also detected; 100 hr aluminate spinel also detected.

^e1 hr aluminate spinel also detected.

^f1 hr tri-rutile, $\mathbf{a}_0 = 3.23$ Å also detected.

 $^{5}1 + 100 \text{ hr AlNbO}_{4}$ also detected; FeAl also detected at 200 hr. ^h200 hr aluminate spinel also detected.

ⁱSome edge thinning.

TABLE III.—CLASSIFICATION OF CYCLIC OXIDATION BEHAVIOR OF M-AI AND M-AI-X ALLOYS TESTEDFOR UP TO 200 ONE-HOUR CYCLES AT 1200 °C IN STATIC AIR—<u>CLASS B BEHAVIOR</u>—THE TERNARY ALLOY SIGNIFICANTLY POORER THAN THE BINARY BASE ALLOY

Alloy	Run	Fin	al	XRD phases at 1, 100,	Final sample description
	number"	ΔW/A	Time	and 200 hr	
Ni-50Al-5Cr	628-5	-35.20	200	Al ₂ O ₃ ; aluminate spinel; Ni sol. sol. at 100 and 200 hr	Cracking and edge spall
-42Al-5Mn	630-3	-35.91	200	Al ₂ O ₃ ; βNiAl; aluminate spinel	Spotted, edge spall, and spall to bare metal
Fe-46Al-5Ni -46Al-5Co	635-2 635-4	-33.14 -34.59	200 200	Al ₂ O ₃ ; FeAl Al ₂ O ₃ ; FeAl	Uniform dark grayish speckled scale Uniform dark grayish speckled scale
Co-49Al-5Re	639-6	-44.22	200	Al ₂ O ₃ ; CoAl; aluminate spinel at 100 and 200 hr	Edge pest and spall to bare metal

^aSequence run number with numbers 1 to 6 indicating each of six circumferential vertical tubes capable of holding one hanging test sample.

TABLE IV.—CLASSIFICATION OF CYCLIC OXIDATION BEHAVIOR OF M-AI AND M-AI-X ALLOYS TESTED FOR UP TO 200 ONE-HOUR CYCLES AT 1200 °C IN STATIC AIR—<u>CLASS C BEHAVIOR</u>— THE TERNARY ALLOY BEHAVIOR CATASTROPHIC WHEN COMPARED TO

Alloy	Run	Fin	al	XRD phases at 1, 100,	Final sample description
	number"	ΔW/A	Time	and 200 hr	
Ni-42Al-5Zr	628-4	135.04	30	Al ₂ O ₃ ; ZrO ₂ ; aluminate spinel; Ni sol. sol. at 1 and 30 hr	Sample growth and severe cracks
-50Al-5Fe	628-6	.40	60	Al ₂ O ₃ ; BNiAl	Cracked and broke
-50Al-5Mo	629-3	-145.11	15	Al_2O_3 ; β NiAl; aluminate spinel and free Mo at 1 hr	Two large pieces broke off, liquid spots after 1 hr
-50Al-5W	629-5	-2.99	1	NiWO ₄ ; Al ₂ O ₃ ; VNiAl; free W	Liquid spots and pieces broke off
-42Al-5Hf	630-4	5.93	60	HfO ₂ ; β NiAl; aluminate spinel at 1 hr; Al ₂ O ₃ + Ni sol. sol. at 60 hr	Sample cracked and broke
Fe-47Al-5Zr	631-3	209.4	200	Al ₂ O ₃ ; FeAl at 1 hr; Fe ₂ O ₃ and ZrO ₂ at 100 hr; Fe ₂ O ₃ at 200 hr	Large uniform growth
-39Al-5Zr	635-1	99.40	75	ZrO2; Al2O3; FeAl	Large growth and radial cracks
-46Al-5Mo	635-6	-3.74	30	Al_2O_3 ; FeAl; free Mo at 1 hr	Large crack 1 hr and sample broke in two
-46Al-5Ta	636-1	.84	1	AlTaO ₄ ; Al ₂ O ₃ ; FeAl	Sample broke
-46Al-5W	636-2	-60.94	1	Al ₂ O ₃	Large piece broke off
Co-49Al-5Fe	639-1	-10.28	130	Al-O-: CoAl	Large crack to hanger hole
-49Al-5Nb	639-2	188.5	200	CoAl; AlNbO ₄ ; Al ₂ O ₃ at 1 hr; aluminate spinel; CoNb ₂ O ₆ at 100 hr	Large uniform growth
-49Al-5Mo	639-3	-30.44	1	Al ₂ O ₃ ; aluminate spinel; CoMoO ₄ , CoAl	Piece broke off and severe "pest"
-49Al-5Ta	639-4	-38.72	100	Tri-rotile; Al ₂ O ₃ ; CoAl; at 1 hr aluminate spinel; AlTaO ₄ ; CoTa ₂ O ₆ at 100 hr	- One large crack and severe edge spall
-49A1-5W	639-5	116.6	75	CoWO ₄ ; at 75 hr aluminate spinel; CoAl	- Large growth and radial cracks

THE BINARY BASE ALLOY

^aSequence run number with numbers 1 to 6 indicating each of six circumferential vertical tubes capable of holding one suspending test sample.

Figure 4.—Specific weight change versus time curve for class A behaving Fe-AI-X alloys compared to an Fe-AI alloy from figure 3. One hour exposure cycles in 1200 °C static air.

Figure 5.—Specific weight change versus time curve for class A behaving Co-Al-X alloys compared to an Co-Al binary alloys. One hour exposure cycles in 1200 °C static air.

. • •

•

REPUR	F DOCUMENTATION	PAGE	Form Approved
Public reporting burden for this collection gathering and maintaining the data neede collection of information, including sugges Davis Highway, Suite 1204, Arlington, VA	of information is estimated to average 1 hour d, and completing and reviewing the collection tions for reducing this burden, to Washington F 22202-4302, and to the Office of Managemer	per response, including the time for r of information. Send comments reg Headquarters Services, Directorate fo and Budget, Paperwork Reduction	eviewing instructions, searching existing data sources arding this burden estimate or any other aspect of thin r information Operations and Reports, 1215 Jefferson Project (0704-0188), Washington, DC 20503.
. AGENCY USE ONLY (Leave bla	ank) 2. REPORT DATE	3. REPORT TYPE AN	ID DATES COVERED
	April 1992	Т	echnical Memorandum
. TITLE AND SUBTITLE			5. FUNDING NUMBERS
The Cyclic Oxidation Re Alloys With Selected Th	esistance at 1200 °C of β-NiAl, F ird Element Additions	FeAl, and CoAl	
AUTHOR(S)			WU-505-63-01
C.A. Barrett and R.H. Tit	tran		
PERFORMING ORGANIZATION	NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION
National Aeronautics and	Space Administration		ALFORT NOMBER
Lewis Research Center	opuoo numunuu on		F_5326
Cleveland, Ohio 44135-	-3191		L-3320
	CENCY NAMERICALAND ADDRESS (
SFUNSURING/MUNITUHING A	GENUT NAMES(S) AND ADDRESS(E	5)	10. SPONSORING/MONITORING AGENCY REPORT NUMBER
National Aeronautics and	Space Administration		
Washington, D.C. 20546	-0001		NASA TM-105620
. SUPPLEMENTARY NOTES			
Responsible person, Char	les A. Barrett, (216) 433–3163.		
a. DISTRIBUTION/AVAILABILIT	Y STATEMENT		12b. DISTRIBUTION CODE
a. DISTRIBUTION/AVAILABILIT Unclassified - Unlimited Subject Category 26	Y STATEMENT		12b. DISTRIBUTION CODE
 Pa. DISTRIBUTION/AVAILABILIT Unclassified - Unlimited Subject Category 26 ABSTRACT (Maximum 200 wo 	Y STATEMENT		12b. DISTRIBUTION CODE
 a. DISTRIBUTION/AVAILABILIT Unclassified - Unlimited Subject Category 26 ABSTRACT (Maximum 200 wo The intermetallic compou alloy additions. Tests in s x-ray diffraction analysis the alumina forming basel and Nb were the only allo oxidation resistance of the 	Y STATEMENT inds β-NiAl, FeAl, and CoAl we static air for 200 1-hr cycles at 12 that the 5 at % alloy additions di line alloys without the additions. y additions that actually altered to protective alumina scale.	re tested in cyclic oxidatio 200 °C indicated by specif d not significantly improv Many of the alloy additi the nature of the oxide(s)	12b. DISTRIBUTION CODE on with selected third element ic weight change/time data and ve the oxidation resistance over ons were actually deleterious. Ta formed and still maintained the
 a. DISTRIBUTION/AVAILABILIT Unclassified - Unlimited Subject Category 26 ABSTRACT (Maximum 200 wo The intermetallic compou alloy additions. Tests in s x-ray diffraction analysis the alumina forming basel and Nb were the only allo oxidation resistance of the oxidation resistance of the SUBJECT TERMS Cyclic oxidation; Intermet 	Y STATEMENT rds) inds β-NiAl, FeAl, and CoAl we itatic air for 200 1-hr cycles at 12 that the 5 at % alloy additions di line alloys without the additions. y additions that actually altered to protective alumina scale. allics; Aluminides	re tested in cyclic oxidatio 200 °C indicated by specif d not significantly improv Many of the alloy additi the nature of the oxide(s)	12b. DISTRIBUTION CODE on with selected third element ic weight change/time data and ic weight change/time data and ve the oxidation resistance over ons were actually deleterious. Ta formed and still maintained the 15. NUMBER OF PAGES 14 16. PRICE CODE A03 TON 20. LIMITATION OF ABSTRACT
 a. DISTRIBUTION/AVAILABILIT Unclassified - Unlimited Subject Category 26 ABSTRACT (Maximum 200 wo The intermetallic compou alloy additions. Tests in s x-ray diffraction analysis the alumina forming basel and Nb were the only allo oxidation resistance of the oxidation resistance of the SUBJECT TERMS Cyclic oxidation; Intermet SECURITY CLASSIFICATION OF REPORT 	y STATEMENT rds) nds β-NiAl, FeAl, and CoAl we static air for 200 1-hr cycles at 12 that the 5 at % alloy additions di line alloys without the additions. y additions that actually altered to protective alumina scale. allics; Aluminides 18. SECURITY CLASSIFICATION OF THIS PAGE	re tested in cyclic oxidatio 200 °C indicated by specif d not significantly improv Many of the alloy additi the nature of the oxide(s) 19. SECURITY CLASSIFICAT	12b. DISTRIBUTION CODE on with selected third element ic weight change/time data and ic weight change/time data and ve the oxidation resistance over ons were actually deleterious. Ta formed and still maintained the 15. NUMBER OF PAGES 14 16. PRICE CODE A03 TION 20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102 Ξ

Ξ
