brought to you by DCORE

N92-2471

Unclas 0071430

wided by NASA Technical Reports Server

71430

P-1M

NASA Technical Memorandum 105358

Composition Dependence of Superconductivity in $YBa_2(Cu_{3-x}Al_x)O_y$

Narottam P. Bansal Lewis Research Center Cleveland, Ohio

(NASA-TM-105358) COMPOSITION DEPENDENCE OF SUPERCONDUCTIVITY IN YBa2(Cu(3-x)A1(x))Oy (NASA) 17 p CSCL 11C G3/27

December 1991

Notes a sec

un Norma († 1920) et al status († 1920) Al status († 1920) et al status († 1920) et al status († 1920) Al status († 1920) et al

· · · ·

COMPOSITION DEPENDENCE OF SUPERCONDUCTIVITY IN YBa₂ ($Cu_{3-x}Al_x$) O_y

NAROTTAM P. BANSAL

National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135

ABSTRACT

F E

Eleven different compositions in the system $YBa_2(Cu_{3-x}Al_x)O_y$ (x = 0 to 0.3) have been synthesized and characterized by electrical resistivity measurements, powder x-ray diffraction, and scanning electron microscopy. The superconducting transition temperature T_c (onset) was almost unaffected by the presence of alumina due to its limited solubilty in $YBa_2Cu_3O_{7-x}$. However, $T_c(R = 0)$ gradually decreased and the resistive tails became longer with increasing Al_2O_3 concentration. This was probably due to formation of $BaAl_2O_4$ and other impurity phases from chemical decomposition of the superconducting phase by reaction with Al_2O_3 .

INTRODUCTION

Since the discovery of high temperature superconductivity with an onset temperature of ~93 K in the Y-Ba-Cu-O system, a number of reports have appeared studying the effects of substitution by various ions directed at the rare $earth^{1,2}$, alkaline earth^{1,3}, copper^{1,4}, as well as $oxygen^{5,6}$ sites. In our earlier studies^{7,8} on $YBa_2Cu_3O_{7-6}$ thick films screen printed on alumina substrates, it was found that the superconducting transition temperatures (T_c) of the films corresponding to zero resistance were much lower than that of the bulk HTS. It was suggested that this may be caused by chemical interaction of the film and the alumina substrate at the interface followed by diffusion of alumina into the film during the high temperature sintering step. In order to verify this concept, the present investigation was undertaken where Y-Ba-Cu-O HTS materials doped with gradually increasing concentrations of alumina were prepared and characterized for their superconducting and other properties.

The objective of this study was to carry out a systematic investigation of the effect of the substitution of Al for Cu in $YBa_2Cu_3O_{7-\delta}$ on its superconducting properties. Samples with the nominal composition $YBa_2(Cu_{3-x}Al_x)O_y$, where x was varied from 0 to 0.3, were synthesized by the solid state reaction method. The resulting materials were examined by electrical resistivity measurements as a function of temperature, x-ray diffraction,

and microscopy.

EXPERIMENTAL METHODS

The starting materials used were Y_2O_3 (Molycorp 99.99%), BaCO₃ (ALFA, technical grade), CuO (ALFA, ACS grade), and Al₂O₃ (BAIKOWSKI, high purity grade). YBa₂Cu₃O_{7- δ} powder was synthesized by the solid state reaction method. Appropriate quantities of the powders were slurry mixed in acetone using a mortar and pestle, oven dried at ~110 °C for 2 hours, and calcined at ~920 °C for 16-18 hours in air in an alumina crucible. The mixture was cooled slowly, pulverized, and recalcined for 16-18 hours at 920 °C. The cycle of calcining, cooling and grinding was repeated two more times resulting in dark black powder. A master composition containing aluminum, YBa₂Cu₂Al₁O_z, was synthesized in a similar manner.

Aluminum-doped powders of eleven different compositions, $YBa_2(Cu_{3-x}Al_x)O_y$ (x = 0.0, 0.01, 0.02, 0.05, 0.08, 0.10, 0.12, 0.15, 0.20, 0.25, and 0.30), were prepared by mixing calculated amounts of $YBa_2Cu_3O_{7-\delta}$ and $YBa_2Cu_2Al_1O_z$ powders with a mortar and pestle, calcining for 16-18 hours at ~920 °C in air in alumina crucibles, and then furnace cooling to room temperature. The resulting mixtures were reground to fine powders, uniaxially dry-pressed into ~2.5x0.5x0.7 cm³ rectangular bars, and cold isostatically pressed at ~60,000 psi. The bars were heated at 5 °C/min to 945 °C, sintered for 10 h, cooled at ~3 °C/min to 450

^oC and held for 10 h, and finally furnace cooled to room temperature. The entire sintering and annealing cycle was carried out in flowing oxygen.

A part of each sintered bar was ground to powder. Powder X-ray diffraction (XRD) patterns were recorded in the 20 range of 10° to 90° at room temperature using a step-scan procedure $(0.03^{\circ}/20 \text{ step})$, count time 0.4 s) on a Philips ADP-3600 automated diffractometer equipped with a crystal monochromator employing copper K_a radiation.

Electrical resistivity measurements as a function of temperature were performed in the standard four-probe configuration. Silver paint was used to attach the leads and the current density used was ~0.1 A/cm². Fracture and polished surfaces of the specimens were observed in a JEOL JSM-840A scanning electron microscope (SEM). X-ray dot mapping of various elements was carried out using a Kevex Delta class analyzer.

RESULTS AND DISCUSSION

Although resistivity data only around T_C will be reported, the resistivity of all samples was measured from room temperature to temperatures below T_C . Temperature dependence of electrical resistivity normalized to its value at 100K for some typical compositions is shown in Fig. 1. All the samples exhibited metallic behavior in the normal state as seen from the R vs. T curves in Fig. 1. All the compositions were

superconducting. The values of transition temperature $T_C(onset)$, $T_C(R=0)$, and the transition width (10-90%), ΔT_C , for various compositions are listed in Table I. Variations in T_C and ΔT_C as a function of x are presented in Figures 2 and 3, respectively. The undoped superconductor has a $T_C(onset)$ of 91 K, $T_C(R=0)$ of 89.5 K, and ΔT_C of 1.4 K. The $T_C(onset)$ of the doped samples is -91 ± 0.8 indicating no effect of Al substitution as born out out by statistical analysis. However, $T_C(R=0)$ systematically decreases with increase in Al concentration (to 60.9 K for x = 0.3). Also, the resistive tails become larger and the transition width gradually broadens with increase in x (Fig. 3). This is probably due to an increase in the fraction of the nonsuperconducting phases. Our $T_C(R=0)$ values for x = 0.05 and 0.10 compositions are in good agreement with the results of Siegrist et al.⁹

The powder x-ray diffraction spectra of some typical compositions are given in Fig. 4. An analysis of the peak positions and intensities shows that the parent undoped compound has an orthorhombic structure with lattice parameters, a = 3.827 Å, b = 3.885 Å, and c = 11.679 Å, in good agreement with the values given in the literature¹⁰. The Al-doped materials preserve the basic orthorhombic structure, though some modifications in the diffraction patterns are observed. Values of lattice parameters calculated on the basis of an orthorhombic unit cell for various compositions are given in Table I.

Diffraction peaks for $BaAl_2O_4$ are also present in XRD patterns of samples having ~3% or higher substitution of Al for Cu (x \ge 0.08). The following chemical reaction has been proposed¹¹ between YBa₂Cu₃O₇ and Al₂O₃ in the sintered powder form at an annealing temperature of 945^oC in oxygen:

 $4YBa_2Cu_3O_7 + 6Al_2O_3 \longrightarrow 2Y_2BaCuO_5 + 10CuO + 6BaAl_2O_4 + O_2$

However, formation of Y_2 BaCuO₅ and CuO phases was not detected by XRD in the present study.

SEM micrographs taken from the polished and fracture surfaces of HTS specimens of different compositions are presented in Fig. 5 and 6, respectively. Pores, a few microns in size, are present indicating the samples are not fully dense.

The SEM images and the X-ray dot maps of various constituent elements taken on the polished surfaces of the HTS samples with x = 0.1 and 0.2 are presented in Fig. 7 and 8, respectively. Distribution of Al as well as of all other elements is seen to be uniform throughout the specimen (Fig. 7) with x = 0.1. However, in the HTS with higher Al content, x = 0.2 (Fig. 8), a large grain rich in Cu but deficient in Ba and Y is present. A few small particles rich in Al or Y are also detected.

Studies of the effects of various substituents on superconductivity of $YBa_2Cu_3O_7$ have been reported¹⁻⁶. Most of the elements, other than rare earths, which substitute into the

cuprate perovskite lattice reduce the superconducting onset temperature. In the present study the ${\rm T}_{\rm C}({\rm onset}){\rm was}$ almost unaffected by the substitution of Cu by Al. This is in agreement with the findings of Yan et al.¹ that the presence of alumina did not have any significant effect on the T_C of $YBa_2Cu_3O_7$. However, from XRD the heavily doped materials showed¹ the presence of appreciable amounts of second phases. The material doped with 23.1 mole % of $Alo_{1.5}$ (x = 0.273) was found to contain 4% of BaAl₂O₄. Grains having high concentrations of Ba and Al were also detected by SEM and EDAX. The amount of BaAl204 increased and another impurity phase Y2BaCuO5 formed at higher concentrations of AlO_{1.5}. These results show that alumina doping does not affect the superconductivity of the $YBa_2Cu_3O_{7-\delta}$ phase due to its limited solubility in the HTS. However, it does induce decomposition of the superconducting phase by leaching out some components of the HTS. In another study 12 , substitution of aluminum in YBa₂Cu₃O₇ ceramic samples was found to suppress T_{c} by ~6 K/atom % and to shift the crystal symmetry from orthorhombic to tetragonal. The effects of aluminum doping on properties of single crystals of $YBa_2(Cu_{3-x}Al_x)O_7$ (x = 0 - 0.22) compositions have also been studied⁹. Al substitutes for copper in the Cu-O chains only, whereas the CuO2 planes remain unperturbed. The T_c, determined from dc diamagnetic susceptibility measurements, changed from 92 K for x = 0.0 to ~80 K for x = 0.1, and then dropped sharply for higher x. Single

phase polycrystalline ceramic samples could be prepared⁹ for only low Al content.

In the case of polycrystalline $YBa_2(Cu_{3-x}Al_x)O_y$, it has been shown^{9,13,14} that Al substitutes at the Cu-O₁ chain sites resulting in a slow decrease in T_c. Also the structure changes from orthorhombic to tetragonal for x > 0.1. For these materials it is known^{13,15} that doping at the Cu(2) site by ions such as Zn^{2+} , and Ni²⁺ is most effective in reducing the T_c, whereas doping at the Cu(I) sites by ions such as Al³⁺, Ga³⁺, Fe³⁺ and Co^{3+} is most effective in promoting the orthogonal to tetragonal structure transformation. In these chemically complex materials, charge selectivity may control¹⁵ the site selectivity.

SUMMARY

Materials of nominal composition $YBa_2(Cu_{3-x}Al_x)O_y$ (x = 0 to 0.3) have been prepared and characterized by electrical resistivity measurements, x-ray diffraction and microscopy. The temperature corresponding to the onset of superconducting transition was unaffected by the presence of alumina due to its limited solubility in the HTS phase. However, the resistive tails became longer and $T_C(R = 0)$ decreased with increase in the dopant concentration probably due to the formation of $BaAl_2O_4$ and other impurity phases from chemical reaction between HTS and alumina.

CONCLUSIONS

 $YBa_2Cu_3O_{7-\delta}$ reacts chemically with alumina. Interfacial diffusion barrier coatings need to be developed for successful use of alumina as a substrate material for HTS films in order to circumvent its chemical reaction with the $YBa_2Cu_3O_{7-\delta}$ superconductor.

ACKNOWLEDGMENTS

1

Thanks are due to Professor D. E. Farrell, Physics Department, Case Western Reserve University, for the resistivity measurements. Nancy Gilbert, a summer student intern from Illinois Institute of Technology, helped with the sample preparation. Ralph Garlick carried out the X-ray diffraction measurements and John Setlock assisted with the SEM.

REFERENCES

- M.F.Yan, W.W.Rhodes, and P.K.Gallagher, "Dopant Effects on the Superconductivity of YBa₂Cu₃O₇ Ceramics", J. Appl. Phys., <u>63</u>, 821 (1988).
- 2. J.M.Tarascon, W.R.McKinnon, L.H.Greene, G.W.Hull, and E.M.Vogel, "Oxygen and Rare-Earth Doping of the 90-K Superconducting Perovskite YBa₂Cu₃O_{7-x}", Phys. Rev. B, <u>36</u>, 226 (1987).
- 3. Y.Zhao, H.Zhang, T.Zhang, S.F.Sun, Z.Y.Chen, and Q.R.Zhang, "Doping Effect of Sr or Ca on Single Phased YBa₂Cu₃O_{7-y}", Physica C, <u>152</u>, 513 (1988).
- 4. G.Xiao, M.Z.Cieplak, A.Gavrin, F.H.Streitz, A.Bakhshai, and C.L.Chien, "Superconductivity and Structure of YBa₂(Cu_{0.9}A_{0.1})₃O₇ (A = Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn,)", Rev. Solid St. Sc., <u>1</u>, 323 (1987).
- N.P.Bansal, A.L.Sandkuhl, and D.E.Farrell, "Effect of Fluoride Doping on the Transition Temperature of YBa₂Cu₃O_{6.5+6}", Appl. Phys. Lett., <u>52</u>, 838 (1988).
- 6. N.P.Bansal, D.Boyne, and D.E.Farrell, "Doping Directed at the Oxygen Sites in $Y_1Ba_2Cu_3O_{7-\delta}$ ", J. Supercond., <u>1</u>, 417 (1988).
- 7. N.P.Bansal, R.N.Simons, and D.E.Farrell, "High T_C Screen-Printed YBa₂Cu₃O_{7-x} Films: Effect of the Substrate Material", Appl. Phys. Lett., <u>53</u>, 603 (1988).
- N.P.Bansal, R.N.Simons, and D.E.Farrell, "Synthesis and Characterization of High-T_C Screen-Printed Y-Ba-Cu-O Films on Alumina", in Ceramic Superconductors II (M.F.Yan, Ed.), The Am. Ceram. Soc., Westerville, OH, p. 474 (1988).
- 9. T.Siegrist, L.F.Schneemeyer, J.V.Waszczak, N.P.Singh, R.L.Opila, B.Batlogg, L.W.Rupp, and D.W.Murphy, "Aluminum Substitution in Ba₂YCu₃O₇", Phys. Rev. B, <u>36</u>, 8365 (1987).
- R.J.Cava, B.Batlogg, R.V.van Dover, D.W.Murphy, S.Sunshine, T.Siegrist, J.P.Remeika, E.A.Rietman, S.M.Zahurak, and G.P.Espinosa, "Bulk Superconductivity at 91 K in Single-Phase Oxygen-Deficient Perovskite Ba₂YCu₃O_{9-δ}", Phys. Rev. Lett., <u>58</u>, 1676 (1987).
- 11. C.T.Cheung and E.Ruckenstein, "Superconductor-Substrate Interactions of the Y-Ba-Cu Oxide", J. Mater. Res., <u>4</u>, 1 (1989).

- 12. J.P.Franck, J.Jung, and M.A.-K.Mohamed, "Superconductivity in the System $(Al_XY_{1-X})Ba_2Cu_3O_{6.5+\delta}$ ", Phys. Rev. B, <u>36</u>, 2308 (1987).
- 13. J.M.Tarascon, P.Barboux, P.F.Miceli, L.H.Greene, G.W.Hull, M.Eibschutz, and S.A.Sunshine, "Structural and Physical Properties of the Metal (M) Substituted YBa₂Cu_{3-x}M_xO_{7-y} Perovskite", Phys. Rev. B, <u>37</u>, 7458 (1988).
- 14. R.Suryanarayanan, O.Gorochov, M.Rateau, and H.Pankowska, "Structual, Electrical and Magnetic Properties of Al and In Substituted YBa₂Cu₃O_y", Physica C, <u>153-155</u>, 874 (1988).
- 15. T.J.Kistenmacher, "Substitution for Copper in YBa₂Cu₃O_y: The First 3%", Phys. Rev. B, <u>38</u>, 8862 (1988).

Value	Lattic	e Paran	eters (Å)	Transition	Temp. (K)	ΔT _c (10-90%)
of X	a	b	C	T_{c} (onset)	$T_{c}(R=0)$	(K)
0.0	3.827	3.885	11.679	91.0	89.5	1.4
0.01	3.824	3.887	11.67	91.0	89.5	1.8
0.02	3.837	3.892	11.68	91.2	88.7	2.0
0.05	3.828	3.88	11.66	90.7	88.2	4.0
0.08	3.839	3.88	11.69	90.8	86.2	4.1
0.10	3.833	3.862	11.66	90.2	84.3	5.1
0.12	3.837	3.882	11.673	90.2	80.2	8.6
0.15	3.852	3.869	11.676	93.2	73.9	16
0.20	3.829	3.877	11.67	91.3	73.0	14
0.25	3.86	3.88	11.64	91.0	65.8	20.4
0.30	3.83	3.90	11.66	91.8	60.9	25.6

Table I. Lattice Parameters, Transition Temperatures, and Transition Widths of Superconducting YBa₂ (Cu_{3-x}Al_x)O_y Compounds Doped With Various Al³⁺ Concentrations

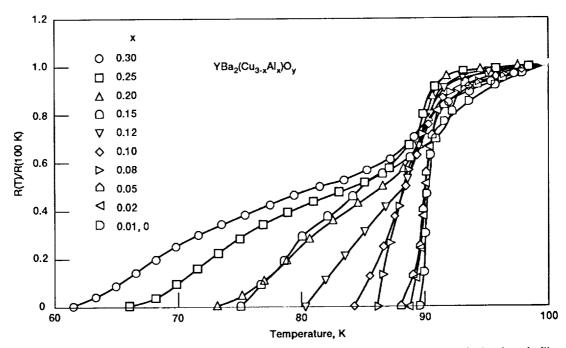
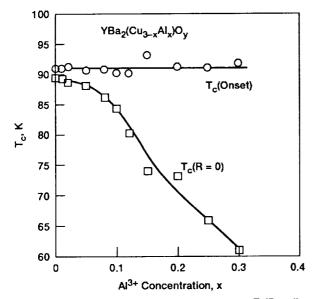



Figure 1.—Temperature dependence of normalized resistance of YBa₂(Cu_{3-x}Al_x)O_y superconductor doped with various Al³⁺ concentrations.

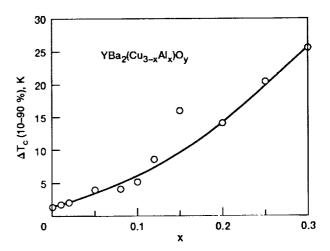
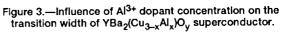



Figure 2.—Variations in transition temperatures, T_c (Onset) and T_c (R = 0), of YBa₂(Cu_{3-x}Al_x O_y superconductor as a function of Al³⁺ dopant concentration.

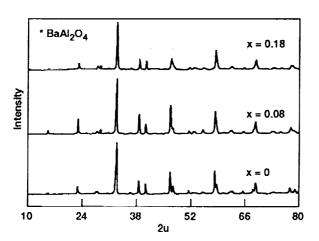


Figure 4.—Typical powder x-ray diffraction spectra of $YBa_2(Cu_{3-x}Al_xO_y$ superconducting compounds of three different compositions.

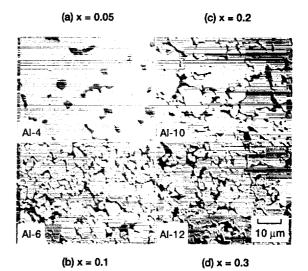


Figure 5.—Scanning electron micrographs taken from the polished surfaces of $YBa_2(Cu_{3-x}AI_x)O_y$ superconductors having different aluminum contents.

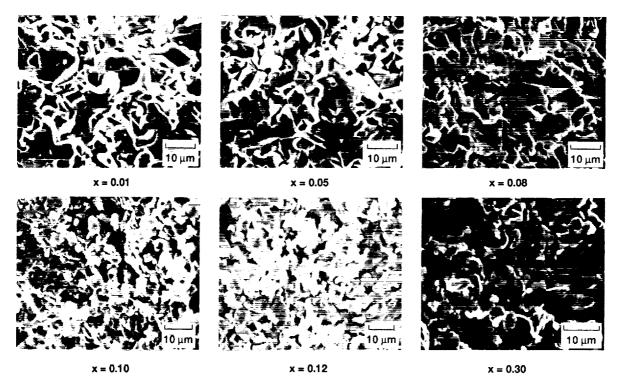


Figure 6.—SEM micrographs of fracture surfaces of YBa2(Cu3-xAlx)Oy compounds of different compositions.

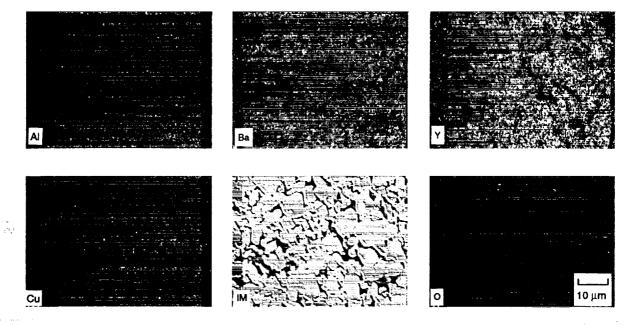


Figure 7.—SEM image and x-ray dot maps of different constituent elements taken from polished surface of the YBa₂Cu_{2.9}Al_{0.1}O_y superconductor.

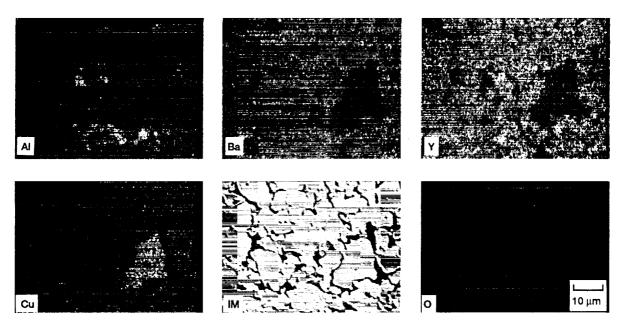


Figure 8.—SEM image and x-ray dot maps of various elements taken from polished surface of the YBa₂Cu_{2.8}Al_{0.2}O_y superconductor.

REPORT I	Form Approved OMB No. 0704-0188			
nathering and maintaining the data needed, ar	nd completing and reviewing the collection of for reducing this burden, to Washington Hea	information. Send comments regard adjuarters Services, Directorate for in	ewing instructions, searching existing data sources, ling this burden estimate or any other aspect of this formation Operations and Reports, 1215 Jefferson oject (0704-0188), Washington, DC 20503.	
1. AGENCY USE ONLY (Leave blank)		3. REPORT TYPE AND	ND DATES COVERED	
	December 1991		chnical Memorandum	
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS	
Composition Dependence o	f Superconductivity in YBa ₂ (C	$I_{3-x}AI_xO_y$		
6. AUTHOR(S)	1999 - 200 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1		WU-307-51-00	
Narottam P. Bansal				
7. PERFORMING ORGANIZATION N	AME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION	
National Appropriation and St	nana Administration		REPORT NUMBER	
National Aeronautics and S Lewis Research Center	pace Auministration		E-6737	
Cleveland, Ohio 44135-31	.91		E = 0757	
			10. SPONSORING/MONITORING AGENCY REPORT NUMBER	
National Aeronautics and S	pace Administration			
			NASA TM - 105358	
11. SUPPLEMENTARY NOTES				
Responsible person, Narotta	m P. Bansal, (216) 433-3855.			
12a. DISTRIBUTION/AVAILABILITY S	STATEMENT	1	2b. DISTRIBUTION CODE	
Unclassified - Unlimited				
Subject Category 27				
13. ABSTRACT (Maximum 200 words	5)			
by electrical resistivity meas ducting transition temperatu in YBa ₂ Cu ₃ O _{7-x} . However, concentration. This was pro-	surements, powder x-ray diffractive T_c (onset) was almost unaffect T_c (R=0) gradually decreased a	tion, and scanning electro eted by the presence of all and the resistive tails becau	een synthesized and characterized on microscopy. The supercon- umina due to its limited solubility me longer with increasing Al ₂ O ₃ hases from chemical decomposi-	
14 SUBJECT TERMS			15. NUMBER OF PAGES	
14. SUBJECT TERMS High-Tc superconductors; S	uperconductivity; Perovskites:	Doping	16	
	uperconductivity; Perovskites;	Doping	16 16. PRICE CODE	
High-Tc superconductors; S		Doping	16 16. PRICE CODE A03	
High-Tc superconductors; S 17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICAT OF ABSTRACT	16 16. PRICE CODE A03	
High-Tc superconductors; S	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICAT	16 16. PRICE CODE A03	

•

٠

•

Prescribed by ANSI Std. Z39-18 298-102