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Abstract of " System Identifcation, Model Reduction and Deconvolutioll Fil*_'ril,:<

Using Fourier Based Modulating Signals and High Order Slatistics "" by .liaJJQii,i,,_,

Pan, Ph.D., Brown University, May 1992.

This research investigates several important problems in the fields of signal pro-

cessing and model identification, such as system structure identificaliol_, froqu<_cs"

response determination, high order model reduction, high resolution frequency an_l-

5,sis, deconvolution filtering, and etc. Each of these topics involves a wide rala_(' .t

applications and has received considerable attention.

Using the Fourier based sinusoida] modulating signals, it is dcll_ol:>tr_tl_'d 11,_,! _

discrete autoregressive model can be constructed for tho loasl s(l_l_'_,< i_t_,_lili__li,,_

of continuous systems. Some identification algorithms are i)rcscnlcd for I_o_1_ .SIS()

and MIMO systems frequency response determination utilizing ol_l\ tral_sieltl data.

Also, several new schemes for model reduction have been de\elopcd.

Based upon the complex sinusoidal modulating signals, a parametlic least squnr_>

algorithm for high resolution frequency estimation is proposed. Nulncrical CXall_-

ples demonstrate that the proposed algorithm shows better pcrforln,_Iice lIlall lilt'

well-known High-Order Yule-Walker Estilnation. Also, we have slll,liod tho l)rol,l('l_

of deconvolution and i)arameter identificaton of a general lloi_catlsal J_,_i_ _,

phase ARMA system driven bv non-Gaussian stationary rando_l/ t_lo,csscs, l_,.,,i-,.

cumulant and inverse polyspectra are introduced as generalizal tolls of' lh<' ill\ci>,' _-

tocorrelation and inverse power spectrum. Algorit.hms are presenled to1 estin_a_i_g

the inverse cumulants, both in the frequency domain via the FFT algorith_ns al_d i_

the time domain via the least squares algorithm. Sinmlalio_ rcsulls _e l_rO\ld_',! l<,

demonstrate the performance of the method.
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Chapter 1

Introduction

This research investigates several important problems in the fields of signal filtering,

model identification, such as system and structure identification, frequency response

determination, high-order model reduction, high resolution frequency analysis, de-

convolution filtering, and etc. All these topics involve a wide range of applications

and have received considerable attention.

System modeling and structure identification play a very important role in process

control and analysis. Much investigation has been carried out in modeling linear

systems, both in a deterministic and stochastic vein. In a deterministic setting, we

can use the classical state steady frequency domain approaches , or the time domain

approaches, like the Belhnan-Kalaba quasilinearization technique [Bell65, Kala82],

model adaptive observer , state variable filters , and etc. In a stochastic setting, we

could use the well-known Kalman filter technique , instrumental variable method.

least squares prediction error approach , and etc.[Astr81, YounS1].



In chapter 2, the modulating function approachis formulated for system iden-

tification, including order determination. Using the Fourier basedcommensurable

sinusoidsas modulating functions, it is demonstratedthat a discreteautoregressive

model for the leastsquaresidentification of continuousdifferential systemscanbecon-

structed in awayutilizing the computationallyefficientFFT techniquewhile avoiding

the complicatedproblem of estimating unknowninitial valuesof the system.We dis-

cussthe issueof input persistentexcitation basedupon the autoregressivemodel. It

is shown how an AR model can be constructed to estimate the systemparameters

and to determine the order of the system. It is proposedthat the choiceof sinusoidal

modulating functions can be basedon the heuristic notion of systembandwidth .

Determination of the frequencyresponseof a stable linear system from input-

output data is a classical problem of signal processing and system control, and is very

important for svstem synthesis, controller design and the Nyquist stability analysis.

Methods for solving this problem include the DFT technique, the cross correlation,

and etc.[Astr75, Ljun87, UnbeS7]. Requirements for employing these nonparametric

schemes are the statistical stationarity of the input and output data, or the steady

state operating condition of the system. In order to satisfy these assumptions, elim-

inate the initial value effects and achieve good accuracy, a long data record needs

to be collected. Good reviews of these approaches, as well as noise and finite data

effects, can be found in [Sgde89].

A frequent critical situation is that the model is not initially at rest and the

available length of input and output signals is limited. Also the signal involves sensor

noise. In this case, the DFT and cross correlation algorithms will entail large error.

Chapter 3 deals with this more general situation by using the complex sinusoidal

modulating signals, see [PearAE, Pear91]. An algorithm for MIMO systems frequency



responsedetermination hasbeendeveloped.Numerical examplesare also presented

to showthe performance.

Based upon the algorithms developedin chapter 3, chapter 4 proposesan ap-

proachfor model reduction. The new method combinesthe model identification and

reduction together. There is nonecessityof knowingthe original systemor assuming

statistical stationarity of input-output data which is crucial to existing algorithms.

Some comparision with the balanced realization method and the P-L method have

been made.

Chapter 5 focuses on the problem of high resolution frequency estimation by us-

ing short time data and a simple linear least squares algorithm. An autoregressive

differential equation model is constructed to fit the received signal. Using the Fourier

based complex sinusiodal modulating signals, we can easily convert the differential

equation model into linear algebraic equations. Numerical examples demonstrate that

the proposed algorithm shows better performance than the well-known High-Order

Yule-Walker Estimation.

In chapter 6, we focus on the problem of deconvolution and parameter identificaton

of a general noncausal nonminimum phase ARMA system driven by non-Gaussian

stationary random processes. Inverse cumulant and inverse polyspectra are intro-

duced as generalizations of the inverse autocorrelation and inverse power spectrum

proposed in [Chat79, Clev72]. The original noncausal ARMA system is approximated

by a noncausal AR model; a direct relationship exists between the inverse cumulants

and the parameters of the deconvolution AR filter. The inverse system is then con-

structed directly by utilizing a gradient type nonlinear optimization algorithm for

matching the AR coefficients and the estimated inverse cumulants. Algorithms are



presentedfor estimatingthe inversecumulants,both in the frequencydomainvia the

FFT algorithms and in the time domainvia the least squaresalgorithm. In the time

domain estimation, wehave used the forward regressionorthogonal algorithm pro-

posedin [Bi1189]becauseit canbemodified to takeadvantageof the specificproblem

structure. Simulation results are provided to demonstratethe performanceof the

method.



Chapter 2

Input Persistent Excitation and Model

Structure Estimation

2.1 Linear Systems and Moment Functionals

In this section, we focus on linear systems and introduce the modulating functiona.ls

which can be used for system identification. A general input-output linear differential

system can be specified by :

n n-I

y_ a,__ipiy(t) = y_ b,__1_ip"u(t) (2.1.1)
i=0 i=0

The object is to estimate the structure and parameters of the system given input-

output data (u(t),y(t))on the time interval [0, T].

Shinbrot's method of moment functionals is one of the classical techniques for sys-

tem identification[Shin57]. It is also called the modulating function approach. We use

modulating functions to convert a differential equation into algebraic equations which



makesit easierto solvethe identification problems. Shinbrot's modulating function

techniqueavoidsdealingwith the unknowninitial conditionsovereachtime sequence

interval [ti, ti+l], and avoids differentiating the original data ; thereby avoiding the

noise sensitivity in estimating time derivatives of data.

Converting the differential equation into an algebraic equation is a big step, the

latter is much easier to handle. As introduced by Shinbrot, ¢(t) is a modulating

function of order N over a fixed time interval [0, T] if ¢(t) is sufficiently smooth and

satisfies the end point conditions :

0(0(0) = ¢(i)(r) = 0,

where,

i = 0,1,...,N- 1

d i

The significance of using this property for the model identification relates to the

following fact. Ifequ.(2.1.1 ) is multiplied by O(t) on both sides and integrated by parts

n times over [0, T], while using the end point conditions, the result is the following

functional equation:

° /[ian_ iE(--I O(i)(t)y(t)dt
i=0

n--1 T

) b._,fo ° (t)tt(t)dt (2.1.2)= (- 1 ' ¢(')
i=O

Here we assume ¢(t) is a N th order modulating function, N _> n. Furthermore, if

{¢,(t)}, i = 1,2,...,2M + 1 is a set of linearly independent modulating functions,

then a set of algebraic equations result. From these vector algebraic equations we can

use standard least squares techniques to estimate the parameters.

Several researchers have already investigated similar topics using a variety of mod-

ulating functions such as Hermite polynomials and splines. However, using these

6



modulating functions has not significantly reduced the computational cost because

they lack some kind of fast algorithm. Motivated by this fact we use modulating

functions comprised of linear combinations of commensurable sinusoids because the

FFT algorithm can be applied to calculate the following integrals efficiently:

TZ(t)[sin(m,,ot) or cos(ma, ot)]dt, _Oo= -ff

especially for large M. Note that w0 plays the role of a "resolving frequency " in the

system idenfication scheme. The saving in computation time is significant, and the

use of the FFT makes the procedure possibly to be an on-line algorithm.

With this advantage of using the FFT fast algorithm, we consider the set of

commensurable sinusoids {cos(ma_0t), sin(mw0t)} definedon the time interval [0, T],

wo = 27r/T, rn = 0, 1,...,M. Let f(t) be the sinusoid vector defined as:

f(t) = col[l, cos ..'or, sin -J0t,..., cos Mwot, sin M.Jot] (2.1.3)

It could be expected that if we form the appropriate linear combinations of these

sinusoids subject to the end point conditions then we can get a set of linear indepen-

dent trigonometric modulating functions.

For constructing the N th order modulating functions, using the off-line procedure

specified in [LeeF84], we can get 2M+I-N linearly independent modulating functions

¢i(t), i = 1, 2,..., 2M + 1 - N, which can be represented as the vector-matrix form:

,(t) = c f(t), o < t < T (2.1.4)

where C is a (2M + 1 - N) by (2M + 1) matrix constructed to make ¢(t) satisfy the

end point conditions:

a(0(0) = a(0(T) = 0, i = 0, 1, .... N - 1 (2.1.5)



The rowsof matrix C are determined by the solution of a Vandermonde type matrix

equation. Moreover, the matrix C has full rank .

Because ¢(t) is a vector of the N th order modulating function, from equations

(2.1.3) and (2.1.4), the time derivatives of ¢(t) can be easily computed in the form

of :

¢(0(t) = (-1)iCDif(t), i=0,1,2,... (2.1.6)

where D is a matrix defined by the block diagonal structure:

0

0 1

-1 0

D = _'o . (2.1.7)

0 M

-M 0

We assume D O = I, the identity matrix.

For identi_,ing a linear time invariant system (2.1.2), multipling both sides by ¢(t),

and integrating by parts n times results in the following algebraic vector equation:

'_ fo r_--]_(- 1 (t)y(t)dt)ian_i ¢(i)
i=0

n-1 T

' fo= -i) b_-,-i o(i)(t)u(t)dt
i=0

ao:l (2.1.8)

Noting equ.(2.1.6), (2.1.8) can be expressed as:

n n--1

E a'_-iCDiY = E bn-l-iCDiU
i=0 i=0

ao=l (2.1.9)



(/if, Y) are corresponding finite Fourier series coefficient vectors of the input and

output signals:

_0 TU = u(t)f(t)dt

Y = y(t)f(t)dt (2.1.10)

Define a parameter vector 0 and coefficient matrix r as :

0 = col[-al,...,-a,_,bo,...,b,_a]

F= [D'_-'Y,...,Y,D'_-Iu,...,U] (2.1.11)

Then, equ.(2.1.9) can be written equivalently in a regression form as •

CFO = CD'_Y (2.1.12)

We can use the standard least squares technique to solve equation (2.1.12). The

dimension of the parameter vector 0 for (2.1.12) is 2n. The normal equation is:

(CF )T (cF )o = -( CI')T C D'_Y (2.1.13)

If we choose (M, N) such that :

2M + 1 - N >_ 2n (2.1.14)

then there exists a unique solution for a one-shot least squares estimation if and only

if we can find input-output data for which CF has full rank. Although the matrix C

has full rank 2M + 1 - N, it does not guarantee that CF will have full rank. Thus

we have to consider C and I" together.

Now there are still some questions which have not been answered. For any general

system, can we always find some conditions which involve input signals only and



guaranteethat CI" has full rank? Can we find some good input signal which enable

us to use some efficient algorithms to estimate 0 in a robust way? How can we use

equ.(2.1.12) to estimate the order of a system? All these questions are related to the

existence and uniqueness of a one-shot estimation. These issues will obviously involve

the notions of system identifibility, persistent excitation of the system active modes,

appropriate structure of the model, and etc. In the following sections we mainly

investigate these related issues.

2.2 System Persistent Excitation

If we choose the Fourier based modulating functions (2.1.4), then equ.(2.1.2) becomes

(2.1.12) and there exists a unique least squares estimation iff the matrix CF has full

rank. From a practical point of view, we are interested in some conditions which

involve the input u(t) only.

The idea is quite simple. If l,(t) is an N *h order modulating function, then _,{k)(t)

is also an (N - k) *h order modulating function for an)' k, N - k _> n. Based on

the off-line algorithm[Pear85], for fixed (M, N), we form the 3,_h order modulating

functions by computing the (231 + 1 - N) x (2M + 1) matrix C in equ.(2.1.4). For

the linear time invariant system(2.1.1), multipling both sides by _,(k)(t), and taking

intergration-by-parts n times, the results are the algebraic equations:

n n-1

__, a,_-iCD_+kY = Y_ b,_-l-iCD'+kU
i=0 i=0

a0=l, k=0,1,...,N-n (2.2.1)

where D, Y, U are defined in the equ.(2.1.7 and (2.1.10).

10



Define:

then (2.2.1) can bewritten as:

W(rn) = CD"Y,

v(m) = CDmU,

n n-I

(_ aiq-i)W(rn) = (_" biq-i)V(m - 1)
i=0 i=0

rn = n,n + l,...,N

where q-i is the unit delay operator, i.e. q-lW(ra) = W(rn - 1).

(2.2.2)

(2.2.3)

In equ.(2.2.3) W(rn) depends on the output signal, V(m) depends on the input

signal. The dimension of both W(rn) and V(rn) is 2M + 1 - N. So instead of

using the n t_ order modulating functions and getting one set of algebraic equations

having high dimension of order 2M + 1 - n, here we use the N th order modulating

functions and obtain a sequence of algebraic equations but having the low dimension of

2M + 1 - N. Furthermore, if we choose N = 2M, we get a sequence of scalar algebraic

equations. The essential information about the system parameters contained in these

two algebraic equation sets is the same . The advantage of using (2.2.3) is that it

has the sequence structure that makes it easy to get some conditions on good input

signals and develop some recursive algorithms for identifing the system parameters

and estimating the order of the system in a robust manner.

Realizing that if the data involve some measurement noises, equ.(2.2.3) should be

replaced by the linear regression model:

W(m)= r(m)O+4m)

where:

0 = (aa, as,..., a,_, bo, bl,..., bn-l) T

(2.2.4)

11



g,(m) = (-W(m-1),-W(rn-2),...,-W(m-n),V(rn-1),...,I/(m-n)) T (2.2.5)

Denote:

A(q -1) = Y_ aiq -i
i=0

n-1

B(q -1) = _ biq -i
i=0

(2.2.6)

Now, the standard model persistent excitation analysis tool can be used for the

linear regression model (2.2.4). See [Sode89] for more details regarding the analysis

we employ in the following.

The condition that there exists a unique solution to the least squares estimation

problem of (2.2.4) will be asymptotically equivalent to the nonsingularity of a conva-

riance matrix:

R = Eg, f_r > 0 (2.2.7)

i.e., R must be positive definite. So R > 0 will be relevant to the persistent excitation

property of input. Actually, R can be estimated using the following equation:

/)_ 1 N

Now we consider two different cases, ¢(m) = 0, i.e., the system is free of noise, and

e(rn) # 0, i.e., the system is contaminated by a significant measurement noise.

Case 1. e(m) = 0

12



For _ = 0, we can make the following analysis similar to [Sode89]. Rewrite:

¢(m) =

-bl • . o _bn_ 1

°°° °°°

i

- bl ... - b,__l [

.,. a n

"., ",.

1 ... (_n,

1 ,, 1),(q-__) _ (rn -

J
¢(_) = %(m) (2.2.s)

where,

1 V(m - 1) )

A(q -1 )

i;(._) =

_V(rn- 2n- 1)

(2.2.9)

_--, the matrix of system coffecients, is the Sylvester matrix associated with the

polynomials -B(q -1) and A(q-1). So if A(q -1) and B(q -1) are coprime, then - is

nonsingular, and vise versa.

and

R = E_,(_)er(._) = z/_z r (2.2.10)

= E_,(rn)_r(rn) (2.2.11)

So, R is positive definite if and only if _ is nonsingular and /) is positive definite.

If the system is unidentifible, which implies A(z) and B(z) are not coprime, then

we can not find the input which will guarantee to persistently excite the system•

Before going further, we will use the following definition:
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Define((k) : (VT(k - 1),VT(k - 2),...,VT(k - L)) T. V(k)is said to be persis-

tently exciting(p.e.) of order L if there exist o l, c_2 > 0, such that for all l , there

exist m, corresponding to which the following equation holds,

l+m

alI >_ _ ((k)(T(k) >_ a2I (2.2.12)
k=l

It is easy to show that/) > 0 if and only if V(k) is persistently exciting of order

2n- 1. Since the V(k) are composed of frequency coefficients of the input signal u(t),

it means that input signal should have a wide frequency band.

So for noise free systems, R > 0 if and only if A(z) and B(z) are coprime and V(k)

is p.e. of order 2n- 1.

Case 2. e(m) ¢ 0:

Assume that the signal and noise are not correlated, i.e.

EI/(i)eT(j) = 0 Vi,j (2.2.13)

Let

Then

R=E

z(m-1)

Z(m - n)

V(m- 1)

V(m n + 1)

B(q-') z"

A(q-') (2.2.14)

(ZT(m-- 1),...,ZT(m-- n),Vr(m-- 1),...,Vr(rn- n))

14



+E

e(m - 1)

_(_- _)

0

0

( _r(,_ _ 1),..., _(m- _), o,... ,o) = (Rz
RTzv Rv 0

It is obvious that the necessary condition for R > 0 is Rv > 0. If we assume

Re > 0, using the argument of algebra, it is easy to prove that Rv > 0 is the suffcient

condition for R > 0 as well because Rz >_ O.

So assuming Re > 0, then R > 0 if and only if V(k) is persistently exciting of

order n - 1.

The above analysis is very useful for system identification because the condition

of persistent excitation of V(k) only depends on the input signal u(k), not involving

any output signal y(t). For the nonlinear polynomial systems, quite same argements

can be advanced and similar results will be obtained. We omit the analysis here.

2.3 A Least Squares Algorithm for System

Structure Estimation

In this section, we consider to use the least squares algorithms to identify system

parameters and estimate the order of a system• The idea is to minimize the mean

square error by adjusting the system parameters and order based on the prediction

error modeling as depicted in Fig.2.1(a).

15



Suppose we choose n as the order of the system. With reference to equ.(2.2.3), we

have:

W(rn) = -anlW(m - 1) - an2W(rn - 2)-...- a,,_W(m - n)

+bnoV(m - 1)+... + b,_,n_iV(m - n) + e,_(m)

N _ m _ n (2.3.1)

Define:

Then, equ.(2.3.1) becomes:

X(k)=(W(k) Iv(k)]

[_';(/2),..., YcV(N)] = [On,l,...,On,n]

X(n-1) X(n-2)... X(N-1)

/

X(n-2) X(n-1)... X(N-2)

X(O) X(1)... X(N-n)

+[en(n). en(n...... + 1), , en(N)] 0 nTvnT-t- %T

where

0.,j = (-a.,j, b_,j_l)

o_ = [o.,,,o.,._2,..., o.,.]

T (n + 1), e_(N)]_, = [_,(,),_, ...,

X(n-l) ... X(N-1))

T • •
I" n

\ x(o) X(N ,_)

(2.3.2)

(2.3.3)

(2.3.4)

The parameter vector 0_ is determined by minimizing a weighted least squares

criterion:

N

E_ = _ _(k)_n(k) (2.3.5)
k_--n

16



By some algebraic calculation, the LS estimation of 0n can be specified by :

t?, r -a TI_ N=[r.rd r. .()

He(N) = + 1),..., W(N)] r

(2.3.6)

(2.3.7)

To determine an appropriate order of the model, the parsimony principle will be

a very useful rule. It says that given the input and output data, if several dynamic

models fit the data well, then the simplest model should be chosen, i.e., the model

with the smallest number of independent parameters will be desired. Consider the

situation here, we have a sequence of model structures of increasing dimensions. Given

observed input and output data {u(t), y(t)}, a better fit will be obtained if we increase

the complexity of the model structure, i.e., increasing the order n. The essential thing

is to investigate whether or not the improvement will be significant in some sense .

The problem considered in this context is using E_ as the criteria. The fact is

quite obvious. If the true order of the system is no, then for n < no, E_ will decrease

significantly for n increasing. When n approaches no . the rate of decrease of E,_ will

be slow and En will almost remain the same value for n > no • The typical function

E_ of n looks like Fig.2.1(b).

Assuming a maximal system order is No • we choose/z as an estimation of n based

on:

h=min{nlD,_<6,1_<n_<No}

Dn = k E,_ - En+i
i=, -E_ (2.3.8)

where i0 could be choosen as 1 ,-_ 3, and 5 > 0 is a preselected threshold.

Also for on-line identification and for decreasing computational burden, the lat-

17



rice filtering structure could be employed because of the Toeplitz structure of the

coefficient matrix in equation (2.3.3). See [Sode89] for more detail.
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2.4 Computer Simulation Results

2.4.1 Some Computational Considerations

There are several quantities associated with our identification scheme that need to be

chosen before setting up the algorithm. These include T, M and N. [0, T] is the finite

time interval of observed data. M is associated with maximal frequency components

of the input and output signals. N is the maximum order of the sinusoid modulating

functions.

For linear systems, we understand how the choice of T and M will affect the

identification procedure, thus, ,_0 = 27r/T essentially plays the role of a resolution

frequency. See [Pear85b]. From a heuristic notion, "_0 should be small enough to

distinguish the characteristic modes of the system. Also, if the resolution frequency

",'0 is small enough, we can choose M large without involving much high frequency

measurement noise. Then the available data in our discrete autoregressive model

(2.3.1) and (2.3.3) will increase and the estimation (2.3.6) will become much more

robust. All this means that T should be large, i.e., we should have enough available

input and output data. For linear system identification, the choice of T and M can

be guided by the frequency domain consideration, i.e., the frequencies retained in

the input and output signal (U, Y) should cover the system bandwidth. The highest

frequency coefficient in the modulating function M,_0 should be comparable to the

system bandwidth I4_ . Also, the Fourier based modulating functions act as a filter.

Too large M_oo sometimes is not desirable because it might give undue amplification

to the high frequency noise present in the input and output signals.
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Assuming that we know the bandwidth of the systemto be approximately H,'_,

a reasonableselectionof cz0and M could be Ma_0 "_ 1.25Wc, or a litter bit larger.

For nonlinear systems, the characteristic modes and system bandwidth are not well

defined concepts. But there do exist some intuitive physical meanings which relate

to above discussion.

The choice of N is very flexible . Here we let N = 2M to generate a scalar

discrete autoregressive model. That will simplify the calculation of the identification

algorithm.

The computational cost before constructing the discrete model for parameter es-

timation will be the integrals of the input and output data. Using the Fourier based

modulating functions not only gives us the direct frequency domain interpretation of

the algorithm, but also provides us with an efficient computational tool via the FFT

technique.

Let z(t) denote an observed input or output signal on the time interval [0, T]. The

basic computational costs are the following integrals for z(t):

fo T z( t )ejm_°* dt, re=O;1,..., M

First we can sample z(t) uniformly by sampling interval h in generating the dis-

crete signal zi = z(ih), h = T/Nf, i = 0,1,...,N I . Then the integration can be

approximated by the standard parabolic rule :

Nj-1 Nj-2

_o hTz(t)_J_°_et = _[_0+ zNj+ 4 E z_Wm'+2 Z z,win'+ °(h_)
i=1,3,.., i=2,4,...

rn = 0,1,...,M
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where W = e NI and o(h 4) is the order of the error as a function of the sampling

interval h .

Choosing Nf as a power of 2, neglecting the high order error term, the right-hand

side of above equation can be evaluated by using the usual FFT algorithm, yielding

the Fourier series coefficients for rn = 0, 1,2,..., Nf-1 •

Z = hFFT[z°+3 zu,,4zl,2z2,...,4ZN1-a ]

The computational savings of this algorithm for large Nf are significant , approx-

imately log 2 3,)/Nf . However, considering the fact that only M Fourier coefficients

are needed and Nf should be chosen much larger than M for good accuracy in tile

approximation, we need a special FFT-type pruning algorithm. The efficiency of such

a devised partial FFT algorithm can be demonstrated to be log 2 M/M.

2.4.2 Some Numerical Examples

Example 1. First we consider a low pass system defined by the Chevbyshev filter

with bandwidth approximately 0.8[rad/sec.]. The transfer function of the system is:

0.0438

H(s) = s4 + 0.6192s3 + 0.6140s2 + 0.2038s + 0.0492

The objective is to identify the five unknown system parameters O = [0.0438, 0.6192,

0.6140, 0.2038, 0.0492] and to estimate the order of the system.

Fig.2.2(a,b) show the input/output data on a 40 sec time interval with output

signal contaminated by 10% RMS additive white noise. The Fourier series coefficients

for the first M modes are calculated using the first M components of the parabolic

approximation with N I = 1024.
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Fig.2.2(b) Output signal y(t) contaminated by 10% white noise.
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For comparingthe estimatedparametersto the true valuesand checkingthe per-

formanceof the algorithm, wedefinethe following normalizederror criterion:

1 _ Oi- 0i)2]}100%_0 t= [_ (--U-,

where K is the number of parameters of the system and Oi, Oi are the true and

estimated parameters. Choosing M = 15 and the threshold 3 = 0.1, a plot of D_

verses n, and plots comparing the frequency response of the original system and

estimated system are presented in Fig.2.3 and Fig.2.4. The identified system is shown

below:

0.0451

/)(s) = 84 + 0.612283 + 0.621082 + 0.21678 + 0.0501

In the low SNR situations, the algorithm will not work as good as in the previous

case. But if we can get more information about input and output signal, i.e., choosing

a larger measuring time interval T, the algorithm will give good results as well. For

the Chevbyshev system, Table 2.1 shows tile performance measured by' I 2x0 I with the

different white noise percentage involved in the output signal and two different time

intervals. From the table we can see that increasing the time interval can improve

the accuracy of the estimates.

TABLE 2.1

LEAST SQUARES ESTIMATION OF THE CHEVBYSHEV SYSTEM

White noise percentage Measuring time interval T Normalized error ] A0 [

0 [0, 40] 1.245%

5 [0, S0] 1.835%

10 [0,40] 3.245%

20 [0, 40] 9.378%

20 [0, 80] 4.113%
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Example 2.

Consider a bandpass system with the transfer function:

s 5 + 0.994s 4 + 0.650s a + 0.210s-' + 0.0446s + 0.004
H(s) = sr + 3.238s 6 + 5.0456s5 + 4.9335s4 + 3.1943sa + 1.3146s2 + 0.3063s + 0.0304

We use the same binary input signal as used in example one to excite the system, the

output signal with 10% additive white noise is shown in Fig.2.4. Choosing M = 20,

Nf = 1024 and N = 2M. The quantity Dn as a function of n is illustrated in Fig.2.5.

In this case, if we select 5 = 5%, we can obtain the correct estimate fi = 7, the exact

order of the system. Fig.2.6 gives the comparison of the magnitude response of the

original system and estimated system. The identitied system is presented below:

1.056s 5 + 0.921s 4 + 0.621s a + 0.243._.2 + 0.0452s + 0.0043
H(s) = sr + 3.4501s6 + 5.0903sS + 5.100s 4 + 3.067s a + 1.3406s2 + 0.3281s + 0.031

For the band pass system, Table 2.2 presents the normalized estimation error with

various noise to signal percentages and two differenl time intervals.

TABLE 2.2

LEAST SQUARES ESTIMATION OF THE BAND PASS SYSTEM

White noise percentage Measuring time interval T Normalized error I _,x0 I

0 [0, 40] 2.567_

5 [0, 801 3.223%

10 [0, 40] 6.297%

20 [0, 40] 19.473%

20 [0, S0] 11.468_,

As in example one, increasing the time interval can improve the estimation accu-

racy and reduce noise effects. Also, based on several simulations, we have found that

the best selection of 5 is around 0.05 ,-_ 0.1 which gives quite good order estimation.
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Chapter 3

Frequency Analysis Using Short Time

Transient Data

3.1 Introduction

In this chapter, we present some algorithms for frequency response estimation by using

short time transient input-output data. The development of the complex sinusoidal

modulating functions from section 3.2 to section 3.5 follows [PearAE, Pear91], and

some of A. E. Pearson's unpublished notes.

In addition to direct sinusoidal steady state measurements, available algorithms

for frequency response determination are the direct DFT ratio, and the classical cross

correlation methodIAstr75 , Ljun87, Sode891. If a system is in the rest status initially,

the length of available input and output data is long enough , and the tail part of the

system impulse response vanishes dramatically, then the frequency response of the
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process can be estimated by the discrete Fourier analysis:

Y(J_) k = 1 ')
G(j_k ) - U(jwk) ' ,_, .... M

where,

V L-1 .. .2r,kAtY(j ) _ At _ y(,At)e -3 r
i=0

2_k L-1 .. .2.,kA,

U(j--/-) _ At _ u(zAt)e-' _-
i=0

(3.1.1)

k = 1,2,...,M (3.1.2)

At is a sampling interval, L is the length of input-output data and has to be large

enough to make equation(3.1.2) approximately hold.

If input-output data satisfies the stationarity assumption, we can use the cross

correlation method to estimate the transfer function by the following formulations.

where,

and

Rv_(j_zk) k= 1 2 .... M

2_'k
Wk--

L

L-1

Ry_,(J2r:k)= _ ry_(r)e_
L

T=-L+I

j2zrk L-I --j2.k,

v=-L+l

1 L-l-max(r,0)

rye(r) = _ y_ y(At(i + T))u(Ati),
i=- min(r,o)

1 L- 1-max(r,O)

r_(r) = _ y_ u(ht(i + 7)u(hti),
i=0

ruu(--T) _ ruu(T)

r = O,:kl,+2,...

"r = 0,1,2,...

(3.1.3)

(3.1.4)

(3.1.5)
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Using these approaches to estimate the spectral densities sometimes will give a

poor result even if noise is neglibible. The problem is that the error in calculating the

spectral estimates does not approach zero (in the mean square sense) as the number

of data points tends to infinity.

A critical situation is that the model is not at rest initially and the available length

of input and output signals is not large. Also the signals involve sensor noise. In this

case, the approximations will entail an even larger error.

Here, we deal with the general situation when the system is not at rest initially

and only short transient data is available. The data consists of the input and output

signals over a set of finite time intervals {[ti, ti + T], i = 1,2,..., Q}. The length of

each time interval is T = 27r/aJ0 and it is not necessary that these intervals be disjoint.

[Pear91] proposed a method which used a least squares algorithm to estimate the

frequency response at selected frequencies by only using short time transient data.

The advantage of the approach is that there are no assumptions of statistical station-

arity of the data or steady state operation. In order to get good estimates, the input

and output data should contain enough energy at the selected frequencies, or a reg-

ularized algorithm might be employed. The basis of the technique is the modulating

functional approach. We have constructed the complex sinusoidal modulating signals

for parametric frequency response estimation. Several formulations of the standard

normal regression form for the least squares estimation of frequency response related

parameters have been developed.

Here a review of the MFFM(Modulating Function Frequency Method) is presented.

An algorithm of applying the MFFM to MIMO systems frequency analysis is also
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proposed. Some computer simulation results will demonstrate the performance.

3.2 Complex Modulating Signal Construction

and the Modulating Property

We consider a stable linear system with a single input u(t) and single output y(t). The

system will be expressed in the differential operator format involving some modeling

errors and noise:

A(p)y(t) = B(p)u(t) + e(t) (3.2.1)

where,

A(p) = anp _ + an_lp n-1 + ... + alp 1 + ao

B(p) = bmp TM -4- b,_-ap m-1 +... + blp I + bo (3.2.2)

A(p) and B(p) are polynomials in the differential operator p = d/dt, rn < n. Modeling

errors and measurement noises will constitute the term e(t). Given the input-output

data [u(t),y(t)]over the finite time intervals { [/i,t,+T],i = 1,2,...,Q }, the problem

is to estimate the actual frequency response G(ja_) = B(ja_)/A(jaJ) at the frequency

knots {kw0, k = 0, 1,2,..., M}, where w0 = 2r/T is a user selected "resolving"

frequency and M a user chosen positive integer. The time intervals [ti, ti + T] need

not be disjoint, but experience suggests that twenty to rift), percentage independence

will be necessary in order to avoid singularity of the coefficient matrix for the normal

regression equations in the LS estimation. Generally, the degeneracies in the LS

estimation will not occur in normal operating records if the time intervals are more

than half disjoint.

In chapter 2, we have discussed that ¢(t) is a modulating function of order n over
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a fixed time interval [0, T] if ¢(t) is sufficiently smooth and satisfies the end point

conditions:

¢(0(0)=¢(0(T)=0, i=0,1,2,...,n-1.

Clearly, many modulating functions could be constructed which satisfy the condi-

tion. Here a specific set of complex sinusoidal modulating signals are built which is

conducive to solving the problem at hand.

Define:

era(t) = eYing°t(1 - d_°') '_,
271"

0<t<To=m
_d o

m = 0,1,2,...,M (3.2.3)

Using the binomial expansion (a + b) _ = E _ ,-k k-_-kk=0 c,,,a o and changing the index

of summation, we can equivalently rewrite (3.2.3) as

¢,,,(t) = _ bke j(m+k)'_°t (3.2.4)
k=O

where bk relates to the binomial coefficient:

bk = (-1)kC_

Obviously, equations(3.2.3-4) define a set of modulating functions of order n over

a time interval [0, T]. One of the important motivating factors for building these

complex modulating signals is that modulating the input and output data by these

signals will entail calculating the Fourier series coefficients at the frequency knots

ka;o, k = 0, 1,2,..., M +n and automatically build some algebraic equations involving

the estimation of the system transfer function. This is the important modulating

property and will be discussed further below. Another factor is that equations(3.2.3-

4) comprise linear combinations of commensurable complex sinusoids and the FFT
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algorithm can be applied to computethe Fourier seriescoefficientsof input-output

data over the time intervals [t,, ti + T]:

Zk(i) = z(t + ti)e-J_'°tdt (3.2.5)

k=O, 1,2,...,M+n, i=l,2,...,Q

or in terms of sine and cosine transforms:

/0"Z_,(i) = z(t + ti)cosk._otdt

Zf,(i) = z(t + t,) sin k,_otdt

These Fourier transform series coefficients can be computed accurately and efficiently

because of the availability of the parabolic approximation and the FFT technique(see

chapter 2).

Modulation Property

Let P(p) be a differential operator of order at most n, i.e., a polynomial in p = d/dt

of degree <_ n, and z(t) any sufficiently smooth function defined on [0, r]. Then the

modulation of P(p)z(t) with ¢_(t) over [0, T] will satisfy

T rn+n

fo Cm(t)P(p)z(t)dt = _ bk-mP(-jk,Jo)Zk (3.2.6)
kmm

where Zk is the k th harmonic Fourier series coefficient of z(t), i.e. ,

_0 TZk = z(t)dk_°tdt

Proof: To prove the modulation property (3.2.6), we only need to verify the special

case of P(p) = pi for a fixed integer i _< n. Due to the superposition property of the

polynomial, the result for a general n th degree polynomial will follow immediately.
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For sufficiently smooth function z(t) defined on [0. T], the left side of (3.2.6) in this

special case is

oTCm(t)piz(t)dt = (--1) i foTz(t)piCm(t)dt (3.2.7)

Equation(3.2.7) is obtained by integration by parts n times over [0, T] taking into

account the end point value properties of the modulating functions. The crucial point

is that none of the initial point derivatives z(i)(0) and z(i)(T) will appear because of

the end point conditions. Substituting the expression (3.2.4) of ¢m(t) into (3.2.6),

using equation (3.2.7) and changing the index of summation, verifies the modulating

property for P(p) = pi.

In the following, we formulate several least squares algorithms to estimate the

system frequency responses at the frequency knots kco0, k = 0, 1,2,..., M + n using

the complex sinusoidal modulating functions.

3.3 Least Squares Estimation ( The First

Formulation)

Rewriting the linear model (3.2.1) in the equation error form, modulating both sides

by the modulating signals ¢m(t), we can obtain:

for Cm(t)[A(p)y(t) B(p)u(t)]dt = joTcm(t)e(t)dt (3.3.1)
[

Based upon the modulation property (3.2.6), the preceding equation could be repre-

sented by the form:

m+n m+n

bk_m[A(-jk_oo)}_- B(-jk_oo)Uk] = Y_ bk_mEk
]g_m k_m

(3.3.2)
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Define the real and imaginary parts of the polynomials A(jk_o), B(jk_o), }"k, Uk

by"

A(jkoJo) = ak + jflk

Also assume:

B(jkwo) = % + j_Sk (3.3.3)

(3.3.4)

Rewriting equation(3.3.2) in terms of the real and imaginary parts, we can obtain

the following equations:

m+n
R

k=--m

where,

m+n

-- _a m

k=m

m+n

C m

k=m

_ rrt

k=rn

(3.3.5)

Computing the Fourier series coefficients Yk(i) and Uk(i) corresponding to each

time interval [t,,ti + T], i = 1,2,...,Q,k = O, 1,...,M by the equations:

Yk(i) = y(t + ti)eJk'°tdt

}_(i) = Y_(i) + jY_(i)

/o"Uk(i) = u(t + ti)dk_°tdt

Uk(i) = U[_(i) + jU;(i) (3.3.6)
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and define a 2 x 4 data matrix ¢,k(i) in terms of these harmonic series by :

F }_c(i)

_,_(i)= /
L-_7(i)

Define a 4 x 1 parameter vector by :

}7(i) -U_(i) -U_(i) ]
!

Y[(i) U_(i) -U_(i)J

(3.3.7)

Ctk

Ok = (3.3.8)

"yk

. _k .

Then equation (3.3.5) could be represented by the 2 x 1 vector equation form as

follows:

bk-m'/'k(i)Ok= = _m(i)
k=m [e_(i)J

m = 0,1,2,...,M, i = 1,2,...,Q (3.3.9)

For each fixed i, we can collect all the 2 x 1 vector equations for rn = 0, 1,2,..., M

and form the following regression equations for serving the least squares estimation:

_(i)O--_(i) :-c(i)

i= 1,2,...,Q (3.3.10)

where,

q)(i) =

Ug(i) ba¢_(i) b:#,2(i)

0 bog, a(i) b,t/,2(i)

: : :

0 0 0

b,_n(i) 0

b,_-lg, n+l(i) b,_g,,_+l(i)

:

boOM(i) ba_bM+l(i)

0

0

b,_¢,_+M(i)

(3.3.11)
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and

- --7o

01

02 ,
0

.0

_7(i) = Y_(i)

Here we assume that or0 = 1 without loss of generality.

Collecting these equations for i = 1,2,...,Q, forming the standard regression

equation form and choosing the 0 to minimize the least squares criterion:

where,

I)

mine = min( _0 - _) T (<I,0 -- _ ) (3.3• 12 )
O 0

-,(1)

¢(M)

and _ =

_(1)

There are no disjoint requirements to these finite time intervals {[t,, t, + T], i =

1,2,..., Q}. Of course a certain degree of independence in the input and output data

over these time intervals is needed• The input and output data must contain a suffi-

cient energy at these frequency knots in order to avoid the degeneracy of solving the

least squares estimation (3.3•12), i.e., the matrix ¢ being composed of the harmonic

Fourier series coefficients of the input and output data should have full rank.

Also, one kind of " bootstrapping" least squares algorithm can be developed by
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stages according to the values assigned to m in order to avoid degenarices of _,' LS

algorithm due to the large number of unknown parameters.

Initial Stage (m = 0):

n

Y'o(i) = _ bk¢k(i)Ok (3.3.13)
k=0

i = 1,2,3,...,N

where the data-related quantities are defined by the following vector-matrix equations:

(7
The definitions of ek(i) and Ok for k _> 1 are exactly lhe same as (3.3.7) and (3.3.8).

00 : _0.

Stage m (m = 1,2,...,M):

Again a set of 2 dimensional vector equations are derived using (3.3.9) for the case

of m> 1:

Ym(i) = b,_,,_+m(i)O,_+r_ + em(i) (3.3.15)

i=1,2,...,Q, m=l,2,...,M

where }>re(i) is defined in terms of the parameters and data of the preceding stages

by:
n+m-1

I;'m(i)=- _ bk_m_l'k(i)Ok (3.3.16)

The residuals for all stages are given by:

_m(i)= _ b__m (3.3.17)
k=m El(i)
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From the equations(3.3.3)and (3.3.8), it is easyto seethat the transfer funtion

G(jkwo) = B(jkwo)/A(jka;o) relating to the parameter vector Ok is given by:

_(G(jkwo)) = ak% - flk_k
a_ + fl_ (3.3.18)

akSk -- flk_/k

_¢(G(jkwo)) = a_ + _8_ (3.3.19)

or equivalently by the magnitude-phase relation:

_ + _ (3.3.20)
IG(jk_°°)12 - a_ + fl],

/G(jkwo) = tan -1 _k tan_ 1 3___k (3.3.21)
_k ctk

Investigating this least squares estimation procedure leads to the following remarks:

1. The frequency knots ka_0, k = 0,1,2,...,M+n scatter in the frequency range

from 0 to (M + n),)0. Hence, if we know the bandwidth I4,_ of the system,

then a reasonable selection of w0 and M should satisfy M-;0 _ 1.25W_, or

a little bit larger if it is desired that the estimation of the system frequency

response cover a range 25_: larger than the bandwidth l,t_.

2. For bandpass or high pass systems, era(t) could be modified by:

era(t) = eJ(m+m°)_°°_(1 - e'J_°t) _

m =O, 1,2,...,M

In this case, the transfer function estimate covers the frequency range from

rnowo to (M + n + mo)wo. We are only interested in the frequency band above

the frequency mowo • The available information about the system cutoff

frequency and bandwidth could be utilized to de_ermine the choice of m0 and

M.
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3. The total number of unknown parameters,i.e., the size of 0 is 4(M + n).

Since the dimension of each • is 2Q(M + 1) x 4(n + M), the total number

of time intervals [ti, ti + T] should satisfy Q > 2(M+_) For good accuracy,-- M+I

the number of equations should be double the total unknown parameters, i.e.,

Q >
-- {M+I) "

4. If the resolving frequency w0 has to be small for some special practical appli-

cations, M should be large in order to cover the system bandwidth. In this

case, the total number of unknown parameters Ok is incremented. The matrix

orq_ tends to be singular and the least squares solution for the eqn.(3.3.12)

will be degenerate. There are two methods to solve this problem. One is to

try obtaining extra available data, i.e., increasing the total number of time

intervals. Sometimes this is expensive. Another one is to exploit a numer-

ical advantage of solving eqn.(3.3.12) which is based upon the fact that the

equations(3.3.9) and (:3.3.10) are partially decoupled with respect to the in-

dex m. Parameter Ok only depends on the Oi for i < k. Therefore, one kind

of "bootstrapping" of the least squares algorithm could be utilized to divide

estimating the parameter 0 into 5I+ 1 stages. (01,02, .... 0n) can be identified

at the first stage, corresponding to m = 0, which requires Q satisfying N _> 2n

for 4n unknown parameters. For good estimation, Q should be larger than

4n. For each succeeding stage (re = 1,2,... ,M), only 0,_+m (4 unknowns)

needs to be estimated, which only requires Q >__2. By this way, the number

of unknowns at each stage is kept to the lowest level and most likely the

degeneracy problem will be prevented during the least squares procedure.

5. Noting the fact that [0kl goes as k n as k increases for k = 1,2,...,M + n, a

nonlinear transformation might be necessary to scale 0 appropriately for good

W _numerical accuracy, or we can normalize all parameters by p _, where p is
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a scalar constant and W_ is the system bandwidth.

We have developed a scheme to estimate the original transfer function G(jkwo)

at frequency knots kw0, k = 1,2,...,M + n. The system does not have to be in

the rest status initially and the input and output data could be time limited and

transient. The data matrix Ok(i) in equation(3.3.7) comprising the k th harmonic

frequency series in the i th time interval, k = 1,2,...,M + n, i = 1,2,...,Q, is

mutually orthogonal. This reveals the maximum utilization of information contained

in the input and output data for our least squares procedure. Clearly it is a direct

result of the Fourier nature of the underlying formulation.

One numerical problem in our scheme might arise due to the highly nonlinear rela-

tions in the equations(3.3.18-21) which involves the difference between the estimated

parameters whose values may be large for large frequencies. In the next section,

we will develop other schemes, which have different structure from this one and will

alleviate the potential numerical error source mentioned above.

3.4 Least Squares Estimation (

Formulation)

The Second

For the original model described by equation(3.2.1), multiplying both sides by A(-p),

we can see that the input and output data also obey the following relation:

A(-p)A(p)y(t) = A(-p)B(p)u(t) + A(-p)e(t) (3.4.1)
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btilizing the complex sinusoidal modulating signals of order 2n defined by:

m+2n

C_2m(-1)k-md k_°'
k=m

(3.4.2)

to project the model into the algebraic equations, we get the result:

rn+2n

;k_=A(jk._o)[A(-jk_oo)Yk- P(-jk._0)Ud =gm

k=m

(3.4.3)

where,

ra+ 2n

-bk_mA(jk._o)Ek
k .= ra

Define:

A(jkwo)A(-jk¢oo) = ak

A(jkwo)B(-jkwo) = a_. + jl3k

(ak, ok,/3k) are real numbers.

(3.4.4)

Rewriting (3.4.3) in terms of real and imaginary parts of the equations, we obtain:

m+2n

F_. bk-m[amY_ c_kU_ _dl;]= -R
k _-- rlz

rn+2n

bk-m [akY£ okU k flkV_] -IE - s __ s __ __ gr n

k-m

(3.4.5)

Define a 2 x 3 data matrix #k(i) involving the k 'h harmonic series of input output

data in the i th time interval [ti, ti + T] by •

c_k(i) = [ Y,:(i) -U_(i) -U[,(i)J
(3.4.6)
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Define a 3 x 1 parameter vector by:

[a;]Ok _ C_k

k

(3.4.7)

Then we combine the real and imaginary parts of equation(3.4.5) into a 2 x 1

vector equation as follows:

m+2n

k=rn

m=0,1,...,M, i= 1,2 .... ,Q (3.4.8)

Collecting all these equation and rewriting it into a standard regression format,

which is analogous to eqn.(3.3.12), the least squares algorithm can be employed to

estimate the parameters (01,02 .... ,0M+2n). In this case, the relation between the

estimates of the parameters and the real and imaginary parts of the original transfer

function are:

_(a(jk_zo)) ak
ak

Bk
a(j k. o)) = ---

ak
(3.4.9)

or equivalently bv the magnitude and phase relations:

ak

zG(jkwo) = - tan -1 13k (3.4.10)
Ok

We make the following remarks by considering the implementation of this scheme:

1. The estimates of the frequency response of the original system cover the fre-

quency band from 0 to (M + 2n),,'0. An approprite choice of the parameter
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.

.

M and ca0 should satisfy the relation:

(M + 2n)wo "_ 1.25H_

The total number of unknown parameters in this case is 3(M+2n). Hence, the

number of time intervals Q should satisfy 2Q(M + 1) >_ 3(M + 2n). However,

in order to avoid the degeneracy of the least squares estimation, the number

of equations should be double the unknown parameters, i.e., Q > 3(M+2_
-- M+I

Employing the partially decouped nature of equation (3.4.8) might be nec-

essary to solve the least squares solution if a large number of unknown pa-

rameters need to be estimated. In this case, the number 6n of unknown

parameters (01,0_,...,02_) are involved in the first stage corresponding to

rn = 0. The choice of Q should satisfy Q >_ 6n. For each succeeding stage

(rn = 1,2,..., M), only 3 unknowns need to be estimated assuming the use

of the preceding estimate of the parameters. Comparing to the first formula-

tion presented before, the total number of unknowns at the first stage is 6n,

verses 4n unknowns. But only 3 unknowns are required to be estimated in

the succeeding stages, verses 4 unknowns for the first formulation.

One point we should mention is that the equations(3.4.9-10) avoids differencing

the large quantities associated with the estimated parameters to calculate the fre-

quency responses at high frequencies. This is a numerical advantage of the second

formulation.
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3.5 Least Squares Estimation ( The Third

Formulation )

We can develop a dual formulation to the previous one. Multiply the original model

(3.2.1) by B(-p) shows that input output data also should satisfy the relation:

B(-p)A(p)y(t) = B(-p)B(p)u(t) + B(-p)e(t) (3.5.1)

Again using the complex sinusoidal modulating functions of order 2n to project

model (3.5.1) into the algebraic equation:

rn+2n

-bk.,B(jkwo)[A(-jk_o)Yk - B(-jk_oo)Uk] = e._
k----m

(3.5.2)

m = 1,2,3,...,M

where,

m+2n

-bk_m B(j kwo )Ek
k=m

Similarly, define:

B(jkwo)B(-jk_zo) = bk >_ 0

A(jkwo)B(-jkwo) = ak + jflk

b_

Ok = otk

--ilk

(3.5.3)

Define a 2 x 3 data matrix _k(i) for the i th time interval by:

[U_(i) -Y_(i) Yks(i) ]_*(i)= U_(i) -Yk'(i) -Y[(i)J
(3.5.4)
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Then equation (3.5.2) can be rewritten into a 2 x 1 vector equation which is

analogous to eqn.(3.4.8):
m+2n

Y_ bk-m_k(i)Ok=em(i)
k=m

ra = 0,1,...,M, i = 1,2,...,Q (3.5.5)

A standard regression from could be constructed for setting up the least squares

estimation for the unknown parameters (01,0_,..., 0M+2,_).

Calculating the frequency responses in terms of the estimated parameters reveals

the following relation for the real and imaginary parts:

akbk

_(a(jkwo))- a_ + fl_,

fik bk

_(a(jk_o))- _ + fl_ (3.5.61)

or, equivalently for the magnitude and phase relation:

bk

Ia(jkwo)t
+ _

ZG(jkwo) = - tan -1 fl--2-k (3.5.7)
Ok

The data matrices defined in equations (3.4.6,3.5.4) have the same structures by

interchanging the direction of input and output flow. This reveals the dual property

between these two formulations.

3.6 Computer Simulation Results

Here some typical numerical results are presented to demonstrate the performance of

the algorithm. We employ the first formulation for the following two simulations.
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Example 1. First we consider a low pass system with a bandwidth approximately

12[rad/sec.]. The transfer function of the system is

1.Ts 2 + 1736.8

Hi(s) = s3 + 19.1s2 + 257.48s + 1700.0

A random binary process was utilized as an input signal to excite the system because

it contains sufficient energy in a broad frequency band. Data was collected in 8

seconds. The plots of input signal and contaminated output signal with SNR=15(dB)

are shown in Fig.3.1(a) and Fig.3.1(b). The whole data set was divided into the six

time intervals Its, t, + 3] for i = 0, 1,..., 5. The sampling frequency f_ was 200(Hz).

A 1024-FFT was utilized in calculating the Fourier series coefficients on each time

interval. We estimated the frequency response H1 (j0:) at frequency knots {kWo, k =

0, 1,2,..., 18}, w0 = 2.09. The frequency knots cover the passband, transition band

and a part of the stop band of the system.

Fig.3.2(a-b) shows the results of the frequency response estimation for a noise-

free case, along with the results obtained by applying tile direct ratio of the Fourier

transforms and the standard cross correlation approaches to the same data.
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Fig.3.1(a) A random binary input signal collected in 8 seconds.
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Fig.3.1(b) Output signal contaminated by white gaussian noise with

SNR=IS(dB) and collected in 8 seconds.
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Fig.3.2(a) Estimated magnitude response at the frequency knots {kwo, k =

0, 1, 2,..., 18} in the noise-free case.
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Fig.3.2(b) Estimated phase response at selected frequency knots in the noise-free

case.

Also the simulation results are shown in Fig.3.3(a) and Fig.3.3(b) for the ouput

signal contaminated by white gaussian noise with SNR=15(dB).
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Fig.3.3(a) Estimated magnitude response at selected frequency knots for

SNR=15(dB) case.
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Fig.3.3(b) Estimated phase response at selected frequency knots for

SNR=15(dB) case.

From the graphs we can see that noise will not affect the algorithm at low fre-

quencies. But it does increase the estimation bias for high frequencies. The cross

correlation and direct ratio methods produce large oscillations.

Example 2. The second example we considered was a high pass system with the

transfer function:

s 3 + 22.02s

H2(s) = s3 + 22.24s 2 + 247.44s + 1943.23

The same random binary signal was used to excite the system. Again the data

was collected in eight seconds. Fig.3.4 shows the output signal contaminated by

white gaussian noise with SNR=20(dB). As in example 1, the whole eight second

data was divided into the six time intervals [ti,l_ i + 3], 1_ = 0, 1,... ,5. The sampling

time interval At was 0.005. A 1024-FFT was used to calculate the Fourier series

coefficients. Again we estimated the frequency response H2(ja:) at frequency knots
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{kay0, k = 0,1,2,...,18}, w0 = 2.094. Fig.3.5(a)(b) present the estimates of the

magnitude response as well as the phase response for the noise-free case along with

the results in applying the direct ratio and cross correlation methods to the same

data. Also the results are shown in Fig.3.6(a)(b) for the SNR=20(dB) case

2
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I I1 I
I 1 I I i
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; I ; I I

...... "I ...... T ....

1 '. 1
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...... i

'I 1 1: : i ! : .....
.... I .... ! ..................

1 2 4 S 6 7

Tune(second)

Fig.3.4 Output signal contaminated by white gaussian noise

with SNR=20(dB) and collected in 8 seconds.
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Fig.3.5(a) Estimated magnitude response at selected frequency knots in the

noise-free case.
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Fig.3.5(b) Estimated phase response at selected frequency knots in the noise-free

case.
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Fig.3.6(a) Estimated magnitude response at selected frequency knots for

SNR=20(dB) case.
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Fig.3.6(b) Estimated phase response at selected frequency knots for

SNR=20(dB) case.

In the noise-free case, our algorithm gives almost exact results. The direct ratio
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shows better performance than the cross correlation. Again, noise will not affect the

estimates for low frequencies, but it increases the estimation error for high frequencies.

The cross correlation and direct ratio gave large biases at high frequency knots.

From the above numerical simulations, we can see that if only short time transient

data is available, our parametric sinusoidal modulating functional method works bet-

ter than the classical cross correlation and direct ratio methods. If the system is not

at rest initially, our method will present much better performance. Here one thing we

need to point out is that if the order of modulating signal is larger than the order of

the actual system, our algorithm works well. But if the order of modulating signal is

less than the actual order of the system, our algorithm will fail to give good results.

3.7 Frequency Analysis for MIMO Systems

Assume a MIMO model is given by the following transfer function:

y(s) = H(s)u(s) (3.7.1)

where u is a pl input vector signal, y is a p2 output vector signal, H = (hi,z) is a

p2 x pl transfer function matrix.

Each transfer function element hia(s) is given by:

Bi,t(,s )

hi,z(s)- Aia(S)

Bia(s) and Ai,l(s) are coprime polynomials in s.

(3.7.2)

Given input-output data [u(t),y(t)] over the finite time intervals { [ti, ti + T],i =

1,2,...,Q }, the problem is to estimate the actual frequency response H(jaJ) =
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(hi,l(jw)) at the frequency knots {kwo, k = O,1,2,...,M} for each (i,l)th transfer

function, where w0 = 27r/T.

Based upon the transfer function structure (3.7.1), the problem can be decomposed

into P2 subproblems by processing each row individually. The i *h element of output

y corresponds to the MISO system:

=
721(8) )

l=l _ 12l(8)
(3.7.3a)

Let A,(s) be the least common multiple of {Ai.,(s),...,Ai,m(s)} and assume

A_,t(s)

Then, adding some modeling errors and measurement noise, the subsystem (3.7.3a)

can be rewritten as a differential operator equation form:

Pl

A,(p)yi(t) = _ [_i,l(p)ul(f) + ei(t) (3.7.3b)
/=1

Therefore, from now on we only consider the MISO systems without loss of gen-

erality. We also drop the subscript i for easy notation.

Hence, consider a stable linear MISO system:

r

A(p)y(t) = _], B_(p)ul(t) + e(t) (3.7.4a)
1=1

where,

A(p) = a,_p '_ + an_lp '_-1 + ... + alp _ + ao

z rnl --1 1
B1(p) = bt,_p m_ + ot,_t-lp + ... + bl.lp + bl,o,

I=1,2,3,...,r
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It is to be acknowledged that the pairs (A(p),Bt(p)), 1 = t,2,...,r will not

generally be coprime. However, this is not an issue for us because it is the ra-

tios Bt(j,z)/A(jw) that we seek to determine for knots k_0, k = 0, 1,..., M, rather

than the polynomial value (A(jw), Bt(jw)). This avoids a difficult issue of sufficient

parametrization and minimality for state space models which in our context is a

separate issue.

Let {era(t)} be the set of n 'h order modulating functions defined by (3.2.3). Rewrit-

ing the linear model (3.7.43) as the equation error form, modulating both sides by

the signal era(t), we can obtain:

m+n r m+n

bk-m[m(-jk,:o)Yk - _ B,(-jk_oo)b_,k] = _ bk-r, Ek (3.7.4b)
k=m 1=1 k=m

as:

Define the real and imaginary parts of the polynomials A(jk_oo), Bt(jkwo), }_, UL,k

A(jk,oo) = ak + jflk

Bt(jkaJo) = "_t,k + jSt,k

Yk = g_ + j_s = y(t)_jk_o'dt

Ul,k = Uf, k + jUt_k = ut(t)dk_°tdt (3.7.5)

Rewriting the equation (3.7.4b) in terms of the real and imaginary parts, we can

obtain the following equations:

l'tl -_-n r

zs Rb__m[_Y;+ _ - _(_,._u;._+ 5,,_uh] =_
k=m l=l

?Tt @ n "t"

" '¢ t (3.7.6)Y]_ bk-m[--akIk + flkY; + _(_,,kb,,k--6t,kUL:k] =e,.
k=m 1=1
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where,
rn+n

_ rn

k=m

rn+n
I_,,,= -_(Z bk-mEk)

k=rn

Compute the Fourier series coefficients Yk(i) and Ut,k(i) corresponding to each time

interval [ti, ti + T], i = 1,2,...,Q,k = 0,1,...,M, by the equations:

[Yk(i)= y(t + t,)eJk_°'dt

Yk(i) = rf,(i) + jY:(i)

[u_,,(i) = _'d¢+ t_)ejk_°'dt

U¢,k(i) = Ul:k(i) + jL_k(i) (3.7.7)

and define a 2 x (2 + 2r) data matrix ¢,k(i) in terms of these harmonic series by :

" i ... -_, (i) " l

}k(_) _tk( ) -Uf, k(i ) -U_,_(i) _,k
_,k(i) = ]-Y_(i) Y_(i) Uf,k(i) -Uf,_(i) ... U:,k(i) -U:,k(i)

Define a 2(r + 1) parameter vector by •

Ok = [ak, fib, "_,k, _,k,..., "_,,k, _,,k] T

(3.7.8)

(3.7.9)

Then equation (3.7.6) could be represented by a 2 x 1 vector equation form as follows:

__, bk-mg'k(i)G = = ¢m(i)
k=_ [e_(i)

m=0,1,2,...,M, i=1,2,...,Q (3.7.10)

In the same way as SISO systems, we can use a bootstrapping algorithm to form

a sequence of linear regressions for equation (3.7.10). We omit the algebraic detail

here. After getting the estimates of Ok, we can employ formulae similar to (3.3.20-21)

to estimate the frequency response function for each subsystem B_(j_z)/A(ja:) at the

frequency knots k,_o. Other formulations discussed in the previous sections could also

be applied to MIMO systems.
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3.8 Numerical Simulation Results

Here a numerical simulation result is presented to show the performance of the algo-

rithm. We utilize the first formulation.

We consider a two input, one output system. The first subsystem is a low pass

second order system with the transfer function given by:

2s + 160

Hi(s) = s2 + 20s + 160

The second subsystem is a high pass system with the transfer function given by:

s 2 + 50s + 54

H2(s) = s2 + 40s + 500

The input-output relation in the form of (3.7.4a) is

where

A(p)y(t) = B_(p)u,(t) + B:(p) + u2(t)

A(p) = (p2 + 20p + 160)(p: + 40p + 500)

B,(p) = (p2 + 40p + 500)(2p + 160)

B_(p) = (p2 + 50p + 54)(p 2 + 20p + 160)

Notice that the (A(p), BI(p)) and (A(p), B2(p)) are not pairwise coprime.

A random binary process was used as an input signal ul to excite the first subsys-

tem. The superimposed sinusoidal signal

u2 = sin(5t 3) + sin(20t _) + sin(6t) + sin(25t + 0.9434)

was used as an input signal to excite the second subsystem. Data was collected in

15 seconds. The whole data set was divided into the twelve time intervals [ti, t_ + 4]
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for ti = 0,1,2,...,11. The sampling frequency was 200(Hz). 1024-FFT was utilized

for calculating the Fourier series coeNcients on each time interval. We estimated the

frequency response Hl(ja,') (l -- 1,2) at frequency knots {k_o,k = 0,1,2,...,15}.

w0 = 1.57. The frequency knots cover a part of the passband, transition band and

stop band of the two subsystems.

For comparison, we use ul (t) to excite the first subsystem while holding us at zero

to get the output yl(t), and then in a separate simulation use u2(t) to excite the

second subsystem to get the output y2(t) while holding ul at zero. Then we apply

the direct ratio of Fourier transform and the standard cross correlation approaches

to the separate data [ul(t),yl(t)], [u2(t),y2(t)] to estimate the frequency response of

the subsystems. Although this comparison is favorable to the direct ratio and cross

correlation, the MFFM still gives better results.

Fig.3.7(a,c) give the magnitude response plots of the two subsystems by using the

MFFM for the data [ul,u2,9] in the noise free case along with the results obtained

by applying the direct ratio and the cross correlation approaches to the data [u_, yl],

[u2, Y2]. Fig.3.7(b,d) are the phase response plots.

Also the simulation results of the magnitude and phase responses are shown

in Fig.3.8(a-d) for the output signal contaminated by white gaussian noise with

SNR=ISdB.

As in the SISO system case, the MFFM gives almost exact results in a noise-free

situation. Again noise did not affect the estimates of the MFFM at low frequencies.

Comparing to the SISO case, noise causes larger estimation biases at high frequencies

for the MFFM. The direct ratio and the cross correlation estimates present a large
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oscillation and have large error, especially at high frequencies.
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Chapter 4

Schemes for Model Reduction and

Parameter Identification in the

Frequency Domain

Tile al)proximation of high-order linear models by lower ord< s\<c_l_ is a \,'_\ i,_-

portant problem involving a wide range of applications, s,l(]_ ;_s _igTlal t)ro(('_siT,,_ ,

and filtering , system synthesis, verification, and controller design..Ma_lv r(-s(:arcl,_'s

have been done in these and related areas [Sham75, LariS:J, .\lllllT(;. \Vahl_)(I]. Ill,'

mai_ task of model reduction is to find a simple model sttuclur(:, c}r_c_<'lcri×it_,g t l."

major behavior of an original high-order system and to simplify l lw ]l_Jldwi_r,' d('.,ig_

and system analysis. The accuracy of the reduced system really dcpcn<ls Ul)¢,l_ 1]k('

selection of the error criterion.

During the last. two decades, most of the work utilized llle classical al)l)r()xill_,_iol,

theory to match the state space realization, Markov paralllelers a part of lll(' ilJl-

pulse response sequence ), and etc. These algorithms are based ol lll_'classical i,_,,1,"
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approximation and continued fraction expansion which expand the original system

into a Taylor series about the origin. The disadvantages of these methods are a low

accuracy in the high frequency band and the possibility of losing stability for the

reduced model.

In order to avoid these problems, some new approaches have been investigated.

Current methods for model simplification and parameter estimation fall into two cat-

egories: deterministic and stochastic approaches, each approach adopts either a time

domain or frequency domain format. Some proposed algorithms in [Mull76, Inou83,

Wagi86] not only match a finite portion of the Markov parameters but also fit a finite

portion of the output covariance sequence. For dealing with non-minimum phase sys-

tem, [Tugn86] presented an optimization algorithm for matching the autocorrelation

sequence as well as the higher order statistics. Based up the principal component

analysis and singular value decomposition technique, [MoorS1] gives an algorithm

to transform an original system into a balanced state space realization and reduce

a high-order model into a lower one. [HuXi87] combines the Pad6 approximation

method and frequency fitting approach to acquire better accuracy in the middle and

high frequency ranges.

Most of the investigations mentioned above require some assumptions about the

original system, or availability of data before starting the algorithm. By deterministic

means, the usual assumption is that the original model is known in advance. If this

is not the case, then the first step is to identify it using the measurements of input-

output signals. By stochastic means, the usual assumption is statistical stationarity,

i.e., the system is working on a steady status. A long data length is required in order

to get good estimates of statistical quantities of the original system for acheiving good

accuracy of a reduced model, especially when the tail part of the impulse response of
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the original model doesnot vanishsignificantly.

One of main advantagesof using the modulating function technique is that we

can attack continuoustime modelsdirectly, which is much desiredin classicaland

adaptive model referencecontrol. By this means,it avoidsthe potentially significant

errors in approximating derivatives from noisy input and output signals, selecting

a sampling frequency, constructing a transformation for mapping a discrete time

systemto a continuoustime system,and etc. All theseprocesseswill bring distortion

to the model. Someare even much more noise sensitive. Another advantage of

using the modulating function approachis that there is no necessityto deal with the

complicated initial valueproblem.

This chapterfocuseson reducingthe linear continuousmodel usingonly transient

input and output data and concernswith the task of combiningthe model identifica-

tion and simplification processtogether. Apart from linearity, there are no assump-

tions of knowing the original modelor presumingstatistical stationarity of the input

and output data which are crucial to the previousmethods. The approachcould be

realizedby two steps. The first step is to set up a least squaresalgorithm for estimat-

ing the frequencyresponseof the original model at selectedfrequencypoints using

short input output data records. This issuehasbeen discussedin chapter 3. The

secondstep, which wewill develophere,is to selecta lowerorder systemto match the

frequencyresponsesat thesedominant frequencies.These frequenciesshould cover

the systembandwidth in order to characterizethe behaviorof the model. The orig-

inal model could be minimum or nonminimum phaseand our method can deal with

phaseand magnitude information flexibily. If the phaseresponseis not important,

wecanexploit this advantagefor further reducingthe structure of the modelutilizing

an error norm criterion only dependingon the magnitude.
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4.1 Scheme 1

Let an original high-order linear stable system be represented in the transfer function

form by :

bo + bls I + ... + bins TM

G(s) = (4.1.1)
ao + als 1 + ... + a,_s '_

where a, = 1, a0,..., an-l, bo,..., bm are polynomial coefficients and are probably all

unknown.

Let the corresponding reduced model be:

Co + c]s 1 + ... + cmos m°

where rn0 _< no < n.

(4.1.2)

The problem considered here is to set up a criterion for measuring the difference

between G(s) and Gr(s), and to select these coefficients Co, Cl,...,cm0,d0,...,d,_ o

to minimize the error norm. Here, we utilize the frequency fitting approximation.

Suppose {Wl, a,'2,..., wy} are selected as the fundamental frequency points ranging in

the system bandwidth. The choice of Co, Cl,..., Cmo. do ..... d,_o should ensure that the

model frequency response G_ (jw_)(k = 1,..., J) matches the original model frequency

response G(jwk) as closely as possible.

One simple approach for fitting the frequency responses at points (ah, w2,..., wy)

is to set up the following equation errors:

C(j_i) - D(jwi)G, = e,

i= 1,2,3,... ,J (4.1.3)
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or equivalently, rewriting the (4.1.3) into the equationsof real and imaginary parts:

co - c2_ + c4_4 +...

-d01G, Icos(C,) + dllGila_i sin(¢i) + d2[diia.'] cos(¢i) +... = ¢in

Ca_i - c3_ + c5_ -...

-d01G_[ sin(C,) - dl [G'_[w_cos(C,) + d;IG,[a.,_ sin(¢i ) -...= e[ (4.1.4)

i= 1,2,3,...,J

where, Gi is a frequency response estimation at wi obtained through the algorithms

developed in the last chapter.

d, = IO_f_J¢'

and

I = a(ei)

Ei is the frequency fitting error.

Assume dno = 1, and

ay = N{(jw,)'_°[d:,l(cos(¢i)+ j sin(C,)}

a[ = "_{(j,z,)'°lG, l(cos(Oi) + j sin(¢i)}

Collecting all unknowns into the parameter vector:

co

C1

_ Crn 0

do

. dn o -- 1

(4.1.,5)

(4.1.6)
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and defining a dimension 2,/× (too + no + 1) data matrix as follows:

w
m

o ,_, o -_,_ o ... -IO_lsin(O_) -la_l_cos(O_) ...

: • : • : : :

1 0 -,<_ 0 ,_3 ... -Id'dlsin(,_d) I_dl'<_cos(¢'d) ...

.0 _d 0 --_ 0 ... --Id;dlsin('_d) --I_JI_jcos(_J)
(4.1.7)

Define:

0" _--

-_. _,_

,,,' d

. C= :

_ ey

.0/ d

(4.1.8)

Then we can combine the real and imaginary parts of equation(4.1.4) into a stan-

dard regression format for setting up the least squares estimation:

mine = min(--_ - cr)T(-_ -- a) (4.1.9)

A consideration of this procedure leads to the following remarks:

,

.

Estimating the unknown parameter set of the reduced model only involves

constructing and solving linear equations. Hence, the algorithm is simple and

the computational cost is low.

The reduced model may have large distortion in some frequency bands com-

paring with the original system because the selected error norm (4.1.3) differs

somewhat from fitting the true frequency response. Actually, (4.1.3) can be
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.

regarded as the true error criterion weighted by the denominator polynomial

D(jw). Thus there is a trade-off between the model accuracy and simplicity

of the algorithm.

The algorithm cannot guarantee the stability of the reduced system although

the original system is stable. The possibility of getting a reduced stable

model will be enchanced by picking up more middle and high frequencies in

the system bandwidth.

4.2 Scheme 2

Scheme 1 presents a biased result because it is equivalent to weighting the match

criterion by' the reduced denominator D(j,_). Here, the following iterative algorithm

can be employed to asymptotically remove the bias if it converges. The error criterion

at the k th iteration is defined as:

3 Wi [Ck(j,:;) - 0,Dk(j_oi)] 12 (4.2.1)
Ek = _l Dk_l(ja3i)

i=1

where Dk-l(j,_i), i = 1,2,...,d, are the estimates of D(j,:) at the (k- 1) eh iteration.

Another similar scheme is to utilize the following error criterion:

Ek

J

- F. w?l k,, i
i-----I

Ck-a (j_zl )

ek,i = Ck(j"_i) Dk_l(jcoi)[Dk(ja:i)- 1]-0i (4.2.2)

These recursive least squares algorithms update the estimates of the reduced sys-

tem at each iteration. If Ck(ja.') --, C(j,_) and Dk(j,_) _ D(ja3), the iterative
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algorithms will asymptotically produce a reduced order system which matches the

frequency response data without any bias.

One advantage of using equ.(4.2.1-2) as an error fitting criterion is that we can

use a linear least squares algorithm to update the estimation at each iteration be-

cause each error term is linearly related to the unknown parameters. Thus, nonlinear

optimization algorithms are not needed.

From the error criterion (4.2.1-2) we can see that at the k th stage of iteration the

error term ek,, has the general form:

ek,i = ,_k,iCk(jwi) + pk,iDk(jo.'i) -- G,i (4.2.3)

where for the error norm (4.2.1),

w,
-_k,i- Dk-l(j_i)

w, G
Pk,i= --Dk-l (jwi)

G,i = 0 (4.2.4)

For the error norm (4.2.2), we have:

)_k,i = Wi

Ck-l(jwi)

Pk,i = Dk-l(jwi)

Ck-l(j"_i)

G,i = Wi[ Dk_a(jwi )
G]

Define:

Tc_ = [c0k c2_c4k ...]

T
Cs = [Clk C3k CSk ...]
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dT = [dok d2k d4k ...]

d_ = [ dlk d3k ds_ ...]

a_ = [ 1o -_? o_ o ...1

_T.= [o - _ o - _ o_ .]
$,1 " "

(4.2.6)

Rewrite Ak,i, Pk,i, ffk,_, Ck(jwi), Dk(jwi) as the real and imaginary parts as:

Ak,i A(R) ;_(I)= k,i "_- J "'k,i

,,(R) . (i)
Pk,i = _'k,i q- 3 Pk,i

/.(It) • ,.(I)

Ck(jw,) = acT ice + jf_Ties

Dk(jcoi) = f_Tidc -l- jf_Tids (4.2.7)

Therefore, at the k th stage of iteration and at each frequency a,'i, we can represent

the error ek,i linearly in terms of unknown parameters:

(R),-,T A p_X._QTid s r(R)_(ek,i) = _g_)_Ticc- /_gl,_Ties-_ Pk,i 'tc,iuc- , , --Sk,i

.(n)_T c .(,),_,T c pin)fiT d s pil'.__idc /.(I) (4.2.8)_(ek,i) = Ak, { a_S, i S .qt- Ak,i_tc, i C -I- "1- -- Sk,i

Express the equations (4.2.8) as a matrix form:

( I(R)c_T k,i s,i I-'k,i *'c,i --_'k,i_'s,i)

"k,i "'c,i -A(x)f2T "_(n)c)T ,,(0c)T

_(1)oT _(n)nT ,,U)c_T ,,(n)c_T
"'k,/*'e,i "'k,i *°s,i I"k,i a_c,i I-'k,i "'s,i c'/ tcT / r(n)

= f _k,i

dTe \/.(I)
_k,i

d?

i= 1,2,3,... ,J (4.2.9)
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Collecting all these equations, we can construct a standard linear regression form

for the least squares solution. Without loss of generality we can assume d, 0 = 1. If

_'k = 0, we will get a trivial solution. In this case equation (4.2.9) can be modified

slightly to overcome this problem.

The following observation can be made for this scheme:

°

°

°

As in scheme 1, this procedure can be implemented via the linear least squares

algorithm, thus it is easy to realize. Also it might asymptotically eliminate

the matching bias if it converges.

Numerical simulation and analysis have shown that sometimes the matrix

adaptation (4.2.9) will be divergent. Also when noise is not neglectable, it

will not guarantee convergence to a desired reduced model.

At each iteration, we have to solve an overdetermined set of equations. The

computation cost is larger comparing to the first scheme.

In addition, the above algorithm lacks the flexibility of dealing with magnitude

and phase information. In the following, we develop a procedure matching a reduced

model and the frequency response data directly. The expense we will pay is by

employing a nonlinear optimization technique.

4.3 Scheme 3

We assume that the simplified model (4.1.2) is specified in terms of second order

cascade connections and a scalar constant, which is determined by a parameter set P.
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(G_,(_2,• -•, Ga) are treated as the original frequency responses at selected frequencies

(a_x, w_,... ,"_a). We choose the r th norm error criterion by:

J

E = [Z w, la ,, -
i=1

where,

G,,_ = G,(jw,) i = 1,2,...,a (4.3.1)

Our goal is to find optimal parameters P to minimize E, or equivalently E _. For

utilizing a nonlinear optimization algorithm, we need a formula for calculating the

gradient. Suppose q C P is a parameter, then it is easy to prove that the derivative

of E * with respect to q is given by the following equation:

OE _ a G_-_q = Y_rlG_,,-Oil_-2Wi_[ (G_,,- 0i)] (4.3.2)
i=1

where,

OG*
r,i

Oq

G_ is the complex conjugate of G_.

0G:(j )
- I_=_, (4.3.3)

Oq

For the second order cascade connection form of a reduced model G_, we have the

following:

L 1 + qk,18 "4- qk,2s 2 _. CF(s) (4.3.4)
Gr(s) = C YI 1 + qk,as +k=l qk,4S2

The advantages of choosing the form (4.3.4) are its relative lower parameter sen-

sitivity and direct relationships between the parameters and the location of zeros as

well as poles. Based upon (4.3.4), for each parameter q E P we can represent the

model G_(j,)) as a product of the two terms:

G_(j_o) = G_,s(w)g(q,w) (4.3.5)
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whereonly g(q, a_) involves the parameter q, Gr,,(_) does not depend on q. Parameter

q could be associated with the value of a real pole, a real zero, or complex conjugate

poles and complex conjugate zeros.

By substituting equation(4.3.5) into (4.3.3), a simple calculation will lead to the

following equation:

OE _

Oq

where,

J

Z r]Gr,i ai r-2 *- - I Olng'(q).]
i=1 Oq

(4.3.6)

(4.3.7)

If we select r to be 2, and take the derivative of E 2 with respect to the scalar pa-

rameter C and set the equation to zero, then the parameter C can be easily estimated

in terms of the other remaining parameters.

In fact, using (4.3.2) we can obtain:

OE 2 J J
- 2__.Wi_.[F:(G_,i-4i)] = 2__.W,[CIF, 12-_(F/(_,)] =0 (4.3.8)

OC _=, ,=_

where,

F_ = F(flo) I_=_,

Solving the equation for C, we get:

c = E J='
a 12_i=, Wi I Fi

In this way, we can reduce by one the total number of unknown parameters.

(4.3.9)

Another alternative is to represent the reduced model by taking the partial fraction

expansion. For each parameter q C P we can represent the model G_(s) as a sum of
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two terms:

G_(jw) = Gr,s(w) + gl(w)g2(q,_z) (4.3.10)

where G_,s(w) and gl(w) do not depend on the parameter q, only g2(q,w) invob,'es

the q. Similar to the previous case, q can associate with a real pole, a real zero, or

complex conjugate poles and complex conjugate zeros, g2(q,w) could be expressed

explicitly for all these different cases.

It is clear to see that the error norm criterion defined in equ.(4.3.1) takes care of

both magnitude and phase information of the original system. If only the magnitude

is important, we can further simplify the model structure and keep the quality of

matching magnitude response as good as the previous one. The error norm criterion

we can use is:
J

= [_-_W_IIG_,, [ -IG, tlr] _ (4.3.11)
i=l

It is easy to show in this case that the formula for calculating the differentiation

is given as follows:

0/) _ 1 J
Oq -- 2 v'_rtl,_sign(iar,i[_= ]Gil)I{G_,,I- ' ' ' ' _l&ill'-'lG_,_l_.(Olngi(q))JOq(4.3.12)

here, all the variables have the same meaning as the former equations.

It is well understood that it is not guaranteed for a nonlinear optimization scheme

to achieve the global minimum in the general case. Actually, it is most likely for

the algorithm to get into a local minimum if the initial value is arbitrarily selected.

Therefore, in order to get a good estimate of the optimal reduced model, it is necessary

to have a fairly accurate initial estimate. In the next section, we will present a quite

reasonable algorithm to estimate the initial value for the reduced system G_(j_,) which

will help the optimal algorithm obtain excellent results.
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The algorithm shownhere could be utilized to weight different frequencybands,

and forcethe systemto satisfy astability constraint. Usually,the deviation IG_._-0il

or IlG_,,I- IG,II differs siginificantly in different frequency ranges. The error at the

middle frequency band tends to be larger. Hence, utilizing adaptive weighting factors

Wi is preferred instead of using constant values. Corresponding to the criterion

(4.3.1), the usual selection of adaptive weighting factor is:

wi= IGr,,-0,1
j _ (4.3.13)

Ei----1IGr,i Oil

For the error norm (4.3.11), we choose:

wi = IIG,,,I-Id, lla (4.3.14)
Ei=l IIGr,il- IG,II

During the search, Wi will be modified adaptively according to (4.3.13-14) with the

updating of all the parameters q E P and Gr,i in each iteration.

It should be mentioned that the selection of the fitting frequencies is very im-

portant. Any inapproprite selection of dominate fitting frequency points will lead

to a bad accuracy in some frequency bands which might be crucial to the reduced

model. One thing obvious is that the selected frequency points should cover the

system bandwidth and the total number of fitting frequencies L: should satisfy :

L: > no + mo + l

Assuming that the estimated frequency response Gi is exact, a larger L: implies

the reduced model will be more accurate. The expense we pay is to increase the

computation cost.
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4.4 An Algorithm for Initial Value Estimation

In this section, a least squares algorithm is suggested to estimate the initial value

(co, Cl,..., Cmo, do,..., d_0-1 ) of the reduced system.

Construct the following equation error based upon the complex sinusoidal modu-

lating signals:
m+n

bk_m[D(-jka,'o)t_ - C(-jkwo)_rk] =em
k=m

(4.4.1)

where,

c(-jk_o) = co+ cl(-jk,_o) + c2(-jk_o)2+... + Cmo(-Jk_o)mo

D(-jkwo) = do + dl(-jk,)o) + d2(-jk,zo) 2 +... + d,_o(-jk',zo) '_° (4.4.2)

Rearranging equation (4.4.1) into real and imaginary parts, we get the forms:

rn + n m -t-n rn+n

"C _, P$doZ bk__ +all Z bk-m(k_o)t_-d2 Z b_-_(k_o)_W+""
k=m k=m k=m

rn+n m+n rn+7_
R

k=rn k=rn k=rn

m+n ra+n rn+n

do S, b_-mY__-d' _ bk-_(k_0)r;_-d' 22 b___(k_'0)'_:+...
k=ra k=m k=m

rn+n m+n m+n

-co __, b__mg;+ _ _2 b_-m(k_o)U;+ _ F_,b_-m(k_°)'U;+'.-= _=
k=m k=rn k=m

rn = 0, 1,2,3,...,M (4.4.3)
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Define:

Op

do

d,

dno - 1

Co

¢1

Cm o

For each time interval [ti, ti + T], we assume that:

ELo b_Y[(i)

ELo bkY_s(i)

rg(i) = Z._k=l_-_n+l bk_l]/_c(i) rf(i) =

E,+l bk-,W(i)k=l

2(M+l)

EL-ob_(k_o)_?(i)

- ELo bk(k_o)Y£(i)

k=l

_ _"_n+l Pc '__-1 bk__(k_o)_ (,)

2(M+_)

(4.4.4)

r_(i) =

Define:

- ELo bkUf(i)

- XLo bkV;(i)

V'-+1 bk_lU_(i)-- £-_k=1

v',n+l- _k=l bk_lU_(i)

2(M+l)

- ELo bk(k_o)U;(i)

+ ELo bk(k_o)V_(i)

_..+1

+ _k_-ib__,(k_o)V_(i)

r(i) = [rg(i),rf(i),.. r _•, .o_1,r_(i),..., r_o(i)]

2(M+1)

(4.4.5)

Assume:

m+n

g_ = _{ _ bk_m(-jkwo)'_°(}_(i) + jY_(i))
k=m
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m+n

k--m

m = 0,1,2,3,...,M (4.4.6)

and denote:

((i) =
i R

i..(i)

.p{u(i) J 2(M+_ )

(4.4.7)

Collecting all the equations for m = 0, 1,2,..., 31, we form the following matrix

equation for each time interval [ti, ti + T]"

e(i) = r(i)0p - ((i)

i 1,9,3,.. ,N (4.4.8)

Make the following definition:

• r(1) " " _(1)

r(2)
r= I (=:

[

.r(N)J .((A'I

(4.4.9)

Collecting all matrix equations (4.4.8) for each time interval [t,, ti+T], we construct

a standard linear regression equation for the least squares estimation:

mine0p = m_n(r0, - ()r(r0, -- _) (4.4.10)

Equation (4.4.10) can be used to estimate an initial value for a reduced system.

Again there is no promise for these initial values to satisfy the stability constraint.
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The initial reduced system matches the harmonic Fourier series coefficients of the

input and output data. The estimated initial values are fairly accuracy. These values

will be updated to satisfy the optimal criterion.

4.5 Some Numerical Examples

In this section we present some numerical examples to demonstrate the performance

of the algorithm by comparing with the existing approaches. Here we apply the

scheme 3 for model reduction. For the MFFM algorithm, there is no requirement of

knowing the actual high order system a priori. But we do need an input-output pair

generated from the original model. These data can be obtained from the real process.

If the original model is known, these data can also be produced by simulating the

system.

Example 1. Co and Ydsti[CoTB90] compared a Frequency Fitting Pad6 algorith-

m and the P-L Modulating Function method in reducing some high order models into

lower order systems. For easy comparison, we took the first example from [Xihe87]:

(s + 2)_(s + 5)_(., + 1000)
Hi(s) =

(s + 1)2(s + 10)2(s + 100) 2

The PL method which matches the Fourier series coefficients of input-output data

is quite similar to our scheme 1. An input signal for exciting the system used by

[CoTB90] consists of a positive unit step function followed by a negative step function.

Data was collected in five seconds. The reduced third order model is:

3.811182 + 21.78538 + 38.7277

HPL(s) = s 3 + 49.983682 + 548.59008 + 381.0047

They found that the PL method works better than the FFP algorithm.
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For the purposeof comparison,we also utilized the classicalbalancedrealization

method to reducethe system. Using functions provided by MATLAB, weobtain a

reducedmodel:

5.4156s2+ 30.9466s+ 58.5745
H_ zn(s) = ,._3+ 65.4461s 2 + 793.1840s + 585.7454

For simulating our MFFM algorithm, we selected the same random binary input

signal as used in chapter 3 to excite the system. Data is collected in 8 seconds. The

whole data set is divided into the six time intervals [ti, ti + 3] for ti = 0, 1,..., 5. The

sampling time interval At is 0.005. 1024-FFT is utilized in calculating the Fourier

series coefficients on each time interval. We first estimated the frequency response

HI(j,:) at frequency knots {k,_0, k = 0, 1,2,... ,30}, w0 = 2.094.

The reduced third order system by matching the first twelve frequency knots is:

H1MFFM = 4.5233s _ + 30.6739s + 45.2871
s a + 51.2456s 2 + 710.2395s + 453.6771

Fig.4.1 (a)(b) present the Bode plots of above system along with the simulation results

obtained by applying the balanced realization method and PL procedure, Fig.4.1(c)

shows the corresponding Nichols plot.

The Iow order model achieved by matching the last fifteen frequency knots is:

1.4952s _ + 863.1844s + 5334.4197

[-I_FFM(s) = S3 + 187.4456S 2 + 11304.2301.s + 141250.0129

The Bode plots of the above system along with other results are shown in Fig.4.2(a)(b).

Fig.4.2(c) gives the corresponding Nichols plot.
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Simulation results indicate that the PL method and the balanced realization tech-

nique weight the low frequency modes more heavily. The MFFM algorithm gives

results similar to the PL and balanced realization by picking more low frequency

knots. If we sacrifice the DC response and the frequency band lower than 10(Hz),

then the MFFM alogrithm gives a reduced model which approximates the original

system much better in the frequency band larger than 10(Hz). The tradeoff depends

upon real applications. The MFFM has this flexibility.

Example 2. The second example we consided here is a six order model:

4.5000s _ + 16.8750s 4 + 1.2474 × 10% 2 + 8.0454 × 10% + 3.6556 × 107

H2(s) = s6 + 66.85s 5 + 2778.9s4 + 7.1963 × 10% 3 + 1.0168 × 10%-" + 9.8011 × 10% + 4.7306 × 10'

The same random binary signal is used to excite the system as in Example 1.

Data was collected in 8 seconds. The whole data set is divided into two disjoint

time intervals for using the PL reduction. The parameter L was selected as 12. The

reduced system is:

0.1372s 2 + 124.0337s + 315.1078

HPL(s) = s 3 + 10.6977s 2 + 145.0830s + 453.2253

Using the balanced realization, we obtained:

-5.5419s 2 + 170.4683s + 872.5521

HffU_(s) = s 3 + 15.4064s 2 + 207.4581s + 1129.1082

For using the MFFM method, we divided the whole data set into the six time

intervals [ti, ti + 3], t, = 0, 1,..., 5. We first estimated the frequency response H2(j_.')

at knots {kwo, k = 0, 1,2,... ,30}, w0 = 2.094. We picked five low frequencies, five
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middle frequencies near the valley and five high frequency knots. We put a slightly

heavier weight on the middle frequencies. The reduced third order system is:

3.8121s 2 - 59.6845s + 6913.6012

HMFFM(s) = S3 -q-42.7534S 2 + 389.3838S + 8388.2031

Fig.4.3(a)(b) present the Bode plots of obtained results. Fig.4.3(c) is the correspond-

ing Nichols plot.
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The MFFM achieves considerably better results in this example. The PL algorithm

produces a large bias in the high frequency band. The balanced realization cannot

track the valley. Only the MFFM gives almost an exact match for low frequency and

high frequency modes, as well as tracks the rapid change in the frequency band near

the valley.
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Fig.4.3(c) Nichols plots.
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Chapter 5

High Resolution Frequency Estimation in

the Presence of Noise Using Complex

Sinusoidal Modulating Signals

5.1 Introduction

In this chapter, we focus on the problem of estimating the angular frequencies -:1, -:2,

...,wK for given superimposed harmonic signals over a set of finite time intervals

{[ti,ti + T],i= 1,2,...,Q} "

where,

y(t) = yd(_)+ _(t) (5.1.1)

K

yd(t) = _ Ai sin(w,t + ¢i) (5.1.2)
i=1

In equations(5.1.1-2), e(t) is a stationary white Gaussian noise, K is the number

of superimposed sinusoids and is not necessarily known. Ai and ¢i are unknown am-
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plitudes and phases of the signal yd(t). T, the length of the time intervals, is actually

a frequency resolution related parameter. The time intervals need not necessarily be

disjoint.

The problem has many practical applications and has received considerable atten-

tion[KayS84, OhSG91, Sher91]. Although traditional FFT and periodogram methods

work well in a high signal-to-noise ratio case, they are nonparametric algorithms and

the resolution is not high enough for small data sets, nor for low SNR's.

This has spurred interest in developing high resolution parametric algorithms.

Some approaches, like the maximum likelihood estimation, nonlinear optimization al-

gorithms, etc., work well in the low SNR situation[Fraz88, Scha91, Tuft82]. However,

they require either long data lengths or sophisticated computing and time costly algo-

rithms. MUSIC is a typical algorithm for frequency estimation and direction finding.

But it is quite computationally demanding[Stoi91, LeeH91]. The Yule-Walker equa-

tion approach has been widely utilized for frequency estimation and spectrum analysis

because of its effectiveness and the availibality of fast lattice algorithms. Recently,

some researchers have proposed a HOYW algorithm for improving the frequency res-

olution [Chan82, MoseS8, Stoi91]. But the problem is l hat sometimes it is difficult

to separate " spurious zeros " from signal frequencies.

In contrast to the previous methods, here we focus on the problem of high reso-

lution frequency estimation employing a simple linear least squares algorithm. We

use a continuous time model for the analysis. The method we utilize is to construct

an autoregressive differential equation model to fit the received signal. Then com-

plex sinusoidal modulating signals are utilized to convert the differential equation

into simple algebraic equations. The parametric least squares algorithm can be de-
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signed to detect the frequencies. One advantageof our method is that there is no

requirement of a long data length record, i.e., the algorithm works well for short time

observation data. Numerical simulation results will demonstrate the performance of

the algorithm.

5.2 Overview of the High Order Yule-Walker

Estimation

The HOYW estimation utilizes the discrete time samples of the sinusoidal signal

(5.1.1) for t = 0,1,...,N-1. Assumewi #wj, and the phases ¢i, i = 1,2 .... ,K

are mutually independent random variables obeying a uniform distribution on [0, 2rr],

with frequency _k E [0, 2rr]. It is assumed that the signal ya(t) and the white Gaussian

noise e(t) are uncorrelated for all t,t, i.e., E{yd(t)e(D } = O.

Define a whitening filter as:

K

A(z -1) : rI(1 - z-leJa_k)(1 _ z-le-Jwk)

k=l

K

= ri(1- 2z -1 cos(wk)+ z -2) (5.2.1)
k=l

Then it is easy to verify that the received sinusoidal signal y(t) obeys the following

discrete ARMA model:

A(z-1)y(t) = A(z-a)e(t) (5.2.2)

The filter has zeros on the unit circle eeJ_k, k = 1,2,..., K, from which we can get

the frequency estimates of the signal once the zeros of A(z -1) have been estimated.

It is easy to verify from equation (5.2.2) that the signal y(t) also satisfies the

94



following high order ARMA model:

C(z-')y(t) = c(:-')_(t) (5.2.3a)

where,
L

C(z-') = _ ciz-'= B(z-a)A(z-') (5.2•3b)
s=O

and where B(z -1) is a polynomial of degree L - 2K:

L-2K

B(z-')= _ b,z-' (5.2.3c)
i=0

It has been shown from theoretical analyses and numerical experiments that using

the high order ARMA equation (5.3.3a) for frequency estimation can decrease the

variance of the estimator and improve the frequency resolution. But the problem is

that sometimes it is not easy to separate the " spurious zeros " of B(z -1) from th, _

signal frequency zeros of A(z -1).

Define {r(k)} to be the autocorrelation sequence of the signal, i.e.,

_(_-): E{y(t)y(t + k)} (5.2.4)

Without loss of generality, co can be constrained to be 1. It is well known that the

following high order Yule-Walker equation holds for solving the coefficients of the

whitening filter:

( r(L + 1) r(L) ... r(1)

J

r(L +2)" r(L+ 1) ... r(2)

. • •

\r(L+L1) r(L+LI-1) ... r(L1)

co_

Cl

= 0,

gL )

L, L1 >_ 2K (5.2.5)

The number of equations La, and the order L of the polynomial C(z) can be

selected flexibly for improving the resolution and accuracy of the frequency estimates•
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But the larger L is to be chosen, the more diffficult it is to separate the roots of B(z)

and A(z).

Rewrite (5.2.5) into the following standard linear regression equation(co = 1):

(c, c_ ... c,_)R(L, L1)=-(r(L+I) r(L+2)...r(L+L1)) (5.2.6)

where,

R(L, L1) = r(L)

\ r(1)

Numerical experiments have shown that the covariance matrix R(L, L1) is very

likely to be ill conditioned, especially for large (L, L1 ). For achieving a good robust

estimator, some regularization procedures have to be taken. It has been proven that

a much better frequency estimate can be obtained by first approximating R(L, L1) in

the subspace of rank 2K in the Frobenius norm sense, and then taking the Moore-

Penrose pseudoinverse. See [Stoi91, Chan82] for more details.

The HOYW equation has some advantages. The efficient lattice Levison algorithm

can be utilized to solve equation(5.2.5), and computation time can be saved. The

selection of (L, L1) is flexible. In the next section we present a method of using

complex sinusoidal modulating signals to estimate the frequencies. Comparing with

the YW equation method, our approach gives high frequency resolution estimates,

especially for short data lengths. The proposed algorithm is very robust and shows

outstanding performance in high SNR circumstances. Conversely, it also works well

in the low SNR case.
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5.3 The Parametric Least Squares Estimation

For the received signal (5.1.1-2), we assume e(t) is a real stationary Gaussian white

noise with zero mean, and variance _2. Our estimation algorithm is based upon the

fact that the signal ya(t) t_= _i=1 sin(wit + ¢) satisfies a differential continuous time

autoregressive model of order 2K. The coefficients of this model only depend on

the angular frequencies and not on the amplitudes nor phases. More specifically, I(

imaginary zeros of the autoregressive model are exactly the K angular frequencies to

be estimated.

Define:

H(p) h 2 2 = p2h" )= I'Im=l(P +"m) + alp 2(h-I + ... + oh'-lp 2 + oh"

where.

01_ 02,

p = d/dl(differential operator),

/'%"

j=l

K'" 2 ,2
02 = 2-_ aljO_k

K

(5.3.J)

,2 (5.3.2)OK = 1-I a;j

j=l

• •, OK are elementary symmetric functions of _1, O-12, . •., aJK.

Then it follows that on each time interval [ti, ti+T], the received signal y(t) satisfies

the differential equation model:

n(p)y(t) = y2K + oly2(K-1) + ... + c_h._ly2 + o_K = e(t) (5.3.3)

where_

=
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and e(t) is the noise term. From (5.3.1) we can see that II(p) has imaginary zeros at

-t-j,:m,m = 1,2,...,K.

Define a set of modulating functions:

era(t) = dm_°t(1 - d'°°t) n (_ -> 2K) (5.3.4)

77/ _ ?T/0_ ?IZl_ rg/2_ .... _31M

where _0 = 2rr/T. The appropriate selection of these mi will make the modulating

signals more flexible and work in different situations. Taking the binomial expansion

of (5.3.4) and changing the index of summation, era(l) can be written as the form:

7l

k=O

bk = (-1)kC_ (5.3.,5)

where C_ is the binomial coefficienl.

Multiplying both sides of equation(5.3.3) by era(t) and using the modulating prop-

erty, we can construct the following equation formal for the observed signal on each

time interval [ti,t; + T], i = 1,2,...,Q:

m+n

bk-mIl(-jkwo)Yk(i) = (:_(i)
k=m

(5.3.6)

77/--_ rrlo_rr/l_...,rDM.

where

_0 T= y(t, +

m.+-n

era(i) = _ bk-mEk(i)
k=m

Ek(i) = e(t, + t)¢m(t )dr (5.3.7)
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The best selection of too, ml,..., mM is to make [rnjw0, (rnj + n)w0] cover, or at least

be close to, the signal frequencies. In this way eqn.(5.3.6) will most reveal and utilize

the signal information.

From equation (5.3.1), we have:

n(-jkwo) = OK -- (kwo)2OK-1 +... + (jkwo)2(K-1)al q- (jkwo) 2." (5.3.8)

and hence rearranging equation (5.3.6) into a linear form relating the unknown pa-

rameters oi, we obtain:

m+n m+n

o,_ _ __m_(i)- o,__1_ b__m(k_0)_;(i)+...
k=m k=-m

rn+n m+n

+(-1)*"-'cq _ bk_=(kwo)'(K-1)}_(i) + y_ bk__(-1)l"(kwo)2K}_(i) = era(i)
k=rn k=m

rtl _ rrlO_ TFII _ t7"12_ . . . _ 7"0 M

i= 1,2,...,O (5.3.9)

Define:
OK

OK-1

0_

O2

OL1 ]

m+n m+n

-'-_(i) = [Y_ bk_mYk(i), - Y_ bk-m(kWo)2I_(i)...]
k=m k=rn

(  til)p_(i) = (-1)" _ b___(k_0)_
k=_ Y_(i)

(5.3.10)

Collecting all equations for m = m0, ml,..., rnM and constructing a standard
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regressionmatrix-vector format for least squaresestimation:

, Zo(i) , oo(i),

p,(i)
a + = 4i)

_---M(i)) pM(i) J

i= 1,2,...,Q (5.3.11)

where

co(i)

q(i)
=

_M(i)

Using standard least squares estimation, we can get estimates of the coefficients

all, 52,.. • dK for the autoregression model• Then we can easily obtain the frequency

estimates using the following procedure: Construct the polynomial equation:

x/" - 6_x k-' + 6_x k-: - ... + (--1)u_K = 0 (5.3.12)

and solve this equation to get K roots, say Xl, X 2 .... , x_-. Then we obtain the fre-

quency estimates by taking the square root of these roots: £i = x/_i (i = 1,2,..., K).

The polynomial (5.3.12) is called the Prony polynomial in numerical analysis.

The accuracy of the frequency estimates will depend upon the estimates of the model

coefficient 6i and the root estimates of equation (5.3.12). The former is more essential.

If any roots of (5.3.12) are negative or complex, they are regarded as outliers. In this

case, the whole procedure fails to give the good results. In the next section we prove

that the variance of the estimation error goes to zero as the signal-to-noise ratio goes

to infinity.
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5.4 Performance Analysis for Large SNR

Circumstances

In the last section, we have proposed a parametric least squares algorithm for esti-

mating frequencies of a received signal. Here, we will give the performance analysis

for the parametric least squares method in large SNR cases. For large SNR assump-

tion, we mean Ak >> a for each k. So, the noise term e(t) in the received signal

y(t) = yd(t) + e(t) is a very small component. Also, we make an assumption here

that there is no numerical calculation error involved. Estimation bias is only caused

by noise. In our analysis, we will approximate the original autoregression model and

discard some high order small terms relating to noise e(t) whenever appropriate.

If there is no noise, i.e., e(t) = 0, the received signal y(t) will obey the au-

toregressive model II(p) exactly. When a noise e(t) exists, but the SNR is very

large, the linear regression equation will give a coefficient, estimate 5, and a - 6

is a small term due to the least squares estimation property. Solving the roots

of the polynomial equation (5.3.12) and taking the squares root of _ will give the

frequency estimates &k, k = 1, 2,..., K. The estimates will involve a small error

6k = co_ - dk, k = 1,2,..., K. Thus in the general case we can say that the estima-

tion errors 6k are random variables depending upon the noise and are small terms

comparing to the signal.

In the following analysis we define:

K K
2

fl(P) = 1"I (P: +&_)= II (P_ +"_m +G_) (5.4.1)
m----1 rn=l

Based upon the above argument, we can claim that the following equation approx-
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imately holds:

fi(p)[y(t)] _ 0 (5.4.2)

Taking the Taylor expension of (5.4.1) and neglecting the high order small terms,

we have:

where,

K

fl(p) = II(p) + _., 5kIIk(p) (5.4.3)
k=l

K

j=l

Discarding the high order small terms relating to e and 5k, we obtain the following

equation:
K

fi(p)[y(t)] = _ 5UIk(p)[yd] + II(p)[e] = 0 (5.4.4)
k=l

Using the parametric least squares method, we multiply both sides of (5.4.4) by

the modulating function ¢,_(t) and employ the modulating property:

K rn+n

E[E bk-mIIt(--jka;o)/3kl6k + / II[e(t)lCm(t) = 0
/=1 k=m

(5.4.5)

where

Define:

flk = Ai sin(wit + ¢i)eJk_'°tdt = __, Aifi,k
i=1

1.ii(_jkcoo) .._ i] rK=l (_32 _ k2z)02) de_ r]k, l (5.4.6)
tel

Ek = e(t)eJ_°*dt (5.4.7)

We can see that the Ek are complex Gaussian random variables with E(Ek) = O,

Var(Ek) = a2T.
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Assume:

rn+n

_,_ = __, bk_mrl(-jka_o)Ek
k=m

Utilizing these notations, equation (5.4.5) can be expressed by the format:

K m+n

E =
l=1 k=m

Pt"t : F/20_ 'D't1 _ 97Z2_ . . . _ Fr//_4 (5.4.8)

We can represent the equation(5.4.8) as a standard linear vector-matrix form. If we

choose rrt i = i, then the regression form is very simple•

Define:

and assume:

def
B=

def
qJ=

bo3o b1_1 ... bnfl,

bo81 ... b,__13,_

bo3M

I 71o,1 rio,2

def 1"/1,1 i'll ,2
F=

_M+n,1 TIM+n,2

o..

I Eo

E1

EM+n

bn _n

boOJM

bnfln+l

bn _I/n+1

".o

b,_SM+,_

qo,K

TIM +n,K

bn OJM+n

(5.4.9)
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where

Thus, equation (5.4.8) can be written as a standard matrix-vector regression form:

Br5 = -,e (5.4.1o)

Here,

5

51

52

5t,-

It is easy to prove that B has full rank. So if F has full rank, we can solve for 5

explicitly:

= -[(Br)T(Br)]-I(B_,_)( (5.4.11)

5 is a frequency estimation error and Equation (5.4.11) reveals an approximate

relationship between the estimation error and the noise. It is easy to see that E(5) =

0. Thus our estimation algorithm gives unbiased estimates.

Also from above analysis we can see that r is a constant matrix. The elements of

B depend upon the amplitudes Ai. The variance of ¢ is O(cr2). Thus, for large SNR,

i.e., Ak/a _ ec for k = 1, 2,..., K, the variance of _ will approach the zero matrix,

i.e., Vat(5) -* O.

The analysis up to now demonstrates that the frequency estimation errors are

random variables depending upon the noise ¢. The SNR will determine the variance
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of 6. When the SNR is very large and approaches infinity, the variance of 6 is small

and goes to zero.

5.5 Some Numerical Examples

Here we present some numerical examples which compare the modulating signal ap-

proach with the HOYW equation method, and evaluate the utility of the proposed

algorithm for improving frequency estimation in various SNR circumstances.

Example . In this example, the analog angular frequencies, amplitudes and pha

ses are given by: a,'a,1 = 50,,.'_.2 = 55,0-'_,3 = 100; A1 = A2 = Aa = 6; ¢1 = 0.123.

¢2 = 0.541, ¢3 = 0. The sampling frequency fs is 100(Hz), measuring time T = 0.64

seconds. So we have a total of N = 64 points. The normalized frequencies are

fl = 0.079Hz, f2 = 0.0875tlz, fa = 0.1592Hz respectively. The "_i represent the

normalized angular frequencies, i.e., ,vl = 0.5, w2 = 0.55, _v3 = 1.0. For testing

and comparing the performance of the algorithms, we select the noise variance a 2

for producing the different signal-to-noise ratios. SNRi is defined for each frequency

component fi as SNRi = 101ogl0(A_/2a2).

K is chosen to be 3. a.'0 = 2rc/T = 9.82. We use one short time estimation and

make the very common selection rni = i. The integration(3.7) is approximated by

the standard parabolic rule. Each mi corresponds to a complex equation. Real and

imaginary equations basically reveal similar frequency information of the data. So

we can think them as one equation. The number of unknowns is 3. The minimum M

needed is 3. The selection of M is important. Based upon the numerical experiments

and our experience in using the modulating signal approach, we have found that the
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optimal choiceof M is around 6, i.e., making the number of equations double the

total unknown parameters. This can be explained by the fact that as M increases

from the minimum value needed for solving the equations, more data information is

utilized until up to a certain frequency value beyond which frequency more noise will

be involved in the data causing a deterioration of the LS estimator, see[Pear85]. The

algorithm gives unbiased estimates in the case of SNR = +oc.

The normalized error criterion for the frequency estimates is defined as:

N" Io

- )
VOE3(dB ) = lOlog_o(_ ° y_'(a.,._ A 2

i=1

where N is the total number of sampling points, j indicates the jth frequency, w_

is the true frequency and &i,j is the estimate for the i ¢h Monte-Carlo run. I0 is the

total number of runs. Based upon the theoretical analysis, the asymptotic normal-

ized Cram_r-Rao lower bound(CRLB) is governed by the equation (24a2)/(A_N2),

see [Stoi91]. The CRLB can be utilized to test the performance of the proposed

algorithms.

Tables 5.1 and 5.2 show the normalized variance of O51, 033 estimates for several

selected values of M and SNR based upon the tola] of 50 Monte-Carlo runs. From

the tables we can see that the optimal selection of M is 6. As M becomes larger than

9, the VOEi increases dramatically. For large SNR cases, the sensitivity in choosing

the different M is low. From the tables, we can see that there is less than a 10(dB)

difference in picking M = 6 and M = 9 for the SNR=30(dB) or SNR=40(dB) cases.
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TABLE 5.1

NORMALIZED VARIANCE OF £'1 (IN DECIBELS)

M S N R1 = 0(dB ) 10(dB ) 20( dB ) 30(dB ) 40( dB )

3 -5.7335 -7.9588 -21.9382 -28.4797 -49.9441

6 -11.4818 -23.3867 -27.5682 -35.8743 -54.6284

9 -11.3892 -15.9320 -19.3961 -30.4661 -48.8173

12 -9.8970 -13.9034 -16.6418 -27.7312 -46.661

14 -6.3752 -12.7231 -16.0842 -27.6992 -45.551

TABLE 5.2

NORMALIZED VARIANCE OF £'3 (IN DECIBELS)

M S N R1 = 0(dB ) 10(dB ) 20( dB ) 30(dB) 40(dB )

3 7.6042 4.9103 2.5681 -6.3952 -10.7561

6 -11.3122 -26.1734 -32.8596 -38.6037 -57.4839

9 4.0824 -12.3958 -20.6769 -30.2958 -48.5842

12 10.5268 7.4328 -14.5609 -20.5128 -39.4813

14 13.6248 12.9028 9.5663 -3.9128 -21.4812

Regarding the HOYW algorithm, the fact. that we only have 64 points and 3

unknown frequencies will lead to a poor autocorrelation estimate and increase the

difficulty in attaining frequency root separation if L and L1 are too large. We selected

L = 18, L1 = 20 in using the HOYW equations. This is a fairly good selection in

this case. Fig.5.1(a-c) and Fig.5.2(a-c) present the normalized variance and bias of

d.h, d-,2, &3, using the proposed modulating signal approach and HOYW equations

based upon the total of 50 Monte-Carlo runs. The theoretical Cram_r-Rao lower

bound is also shown for easy comparision. From the simulations we can see that

our algorithm is much more robust and gives reasonable results even for negative
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SNR(dB). Comparing to the HOYW equation method, lhe varianceof the frequency

estimatesof our modulating signalapproachis muchcloseto the CRLB in most cases.

For the caseof SNR=-10(dB), approximatelyoneout of eight runs failed becauseof

complexor negative roots. These were regarded as outliers and were removed from

the least squares estimation. For SNR=-5(dB), roughly one out of fifteen runs failed

to give a good result. For SNR=0(dB), only one run broke up.
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The HOYW equation method cannot identify the normalized frequencies 0.5 and

0.55 for SNR smaller than 5(dB). Fig.5.3 demonstrates the power spectrum of the

identified whitening filter(mean value) for SNR = 0(dB). From the graph we can see

that there is only one peak around the middle of the 0.5 and 0.55 frequencies. The

HOYW algorithm mixes the two frequencies and only gives one frequency estima-

tion. Also, there are several spurious frequencies having larger power than the true

frequencies, which makes the root separation of A(z) and B(z) much more difficult

and even impossible.
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Fig.5.3. Power spectrum of the estimated filter 1/C(z -a) using the HOYW

equations for SNR=0(dB).
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If the FFT or periodogram is utilized to identify the frequencies, the minimum

resolving frequency is guided by the formula Af = .fs/N, which is 1.56(Hz) or

9.8(rad./sec.) in our case. So the frequencies 50 and 55 will be recognized as one

frequency and cannot be distinguished.

From our simulations, we have also found that the selection of cv0 is important.

As discussed earlier, _-'0 is actually a frequency resolution related parameter. Suppose

we know the minimum distance between two frequencies is Aco. co0 should not be

too much larger than &co otherwise the resolution will not be high enough and closer

frequencies may not be distinguished by the algorithm, coo is related to the length

of each shot. So the above argument means that the measuring time interval should

not be too small. Selection of coo should not be too small either. Too small coo will

cause the algorithm to require picking a large M for covering a sufficiently large

frequency band which will not help in increasing the frequency resolution. Based

upon our simulation we have found that the optimal choice of coo is around the range

of 0.4Aa,' ,-- 2.,SAco.

Therefore the time interval used for each shot formulation should not be too large.

If we get a large measuring time interval T, the best way to utilize this large data set

is to divide it into several shots for making the length of each shot appropriate. So

we can construct a more robust algorithm as well as obtaining the optimal resolving

frequency coo.

For testing the performance of using different resolving frequencies, we sampled the

signal up to T = 3 seconds. We divide this three second signal into i disjoint sections.

i = 1 means that we use whole data set as one shot; i = 2 means that we separate the

whole data set into two shots, and etc. The resolving frequencies utilized for i disjoint
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separations is equal to 2rri/3. We chose i = 1,2,..., 7 and tested the algorithm in the

different SNR circumstances. Fig.5.4(a-c) show the simulation results for frequency

w2 and _z- From the figures we can see that the best result is obtained by selecting wo

around 8.5(rad./sec.), i.e., dividing the whole data set into four disjoint shots. Also,

the selection of w0 is not very sensitive, especially in high SNR cases.
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Example 2. In the second example, the received signal is composed of four

sinusoids. The analog angular frequencies, amplitudes and phases are given by:

-_a,1 = 40, -_.,2 = 50, w_,3 = 60, a.'_,4 = 70; A1 = ,42 = ,4a = A4 = 5; ¢1 =

0, ¢_ = 0.872, Ca = 1.537, ¢4 = 1.975. The sampling frequency fs is 100(Hz). The

measuring time T is 1.28 seconds. So we have total of N = 128 points. The nor-

malized frequencies are 0.06366(Hz), 0.07958(Hz), 0.09549(Hz) , 0.11141(Hz). K is

selected as 4. w0 = 27r/T = 4.91. We utilize one-shot time estimation and let mi ---- i

for simplicity. There are four unknown parameters. M is chosen to be 8. Reasoning

the same as before, we select L = 20, L1 = 25 for using the HOYW equations. It is

very good selection for the HOYW algorithm.

Fig.5.5(a-d) give the plots of normalized variances of estimates &i, i = 1,2, 3,4

using the modulating signal method and the HOWY equations based upon the total

of 50 Monte-Carlo runs. Also the theoretical Crambr-Rao lower bound is presented for

easy comparison. Same as example 1, the HOYW equations cannot identify the four

frequencies for SNR lower than 5(dB). Fig.6 shows the power spectrum of estimated

predictive filter for SNR=0(dB). From the graphs we can see that there are only two

high peaks around frequencies 0.4 to 0.7. Also there are two high spurious peaks at

other frequencies. These high spurious peaks will increase the difficulty in recognizing

the true frequencies.
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5.6 Concluding Remarks

We have proposed a new algorithm for high resolution frequency estimation using the

Fourier based sinusoidal modulating function technique. A continous autoregressive

differential equation model was used for the analysis. The complex sinusoidal modu-

lating signal was constructed for projecting the model into linear algebraic equations.

Comparing with the HOYW equations, the new algorithm gave better performance,

especially for short time observation and low SNR data.
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Chapter 6

Deconvolution and Parameter

Identification for Noncausal

Nonminimum Phase ARMA Systems

Using Inverse Cumulants

6.1 Introduction

Linear time-invarant system modeling, nonminimum phase system deconvolution and

identification play a very important role in adaptive process control, system theory,

signal processing and data communication. Methods abound for system modeling

and identification via the second order statistics, i.e., autocorrelation and power spec-

trum [Sode89, Ljun87, BoxG70], and inverse autocorrelations can be used to estimate

the coefficients of MA models driven by random Gaussian input processes [Chat79,

Clev72]. Although the first and second order statistics which characterize a random
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Gaussianprocessarequite usefultools in manypractical applications,the problemof

using only secondorder momentsis that it is phaseblind. Henceonly the minimum

phase,power spectral equivalentmodesof the systemcan be identified.

Recently,someresearchershaveusedhigherorder statistics ( bispectrum, trispec-

trum, etc. ) for estimating the parametersof linear rational transfer functions [Bri167,

Gian89, Niki87, Frie89]. It is well-known that high order statistics are phase sensitive,

and contain information of the true phase response as well as magnitude response of

the linear system. Also, the high order statistics are insensitive to Gaussian noise,

which is a very important property and has many practical applications, e.g., signal

detection in large Gaussian white noise background. Comparing to the second order

moments, the high order statistics can be employed for identifying and reducing non-

minimum phase systems, estimating the parameters of non-Gaussian processes, and

modeling nonlinear systems.

In this chapter, we focus on the issues of system deconvolution and parameter

identification. Currently, Chiang and Nikias [Chia90, Niki87] use a noncausal AR

process to approximate a finite FIR system and construct certain linear equations

with respect to the parameters of an AR process based upon the third order cumu-

lants. They invoke some adaptive gradient-type algorithms to solve these equations

in obtaining estimates of the parameters. The problem is that their method cannot

be applied to infinite IIR systems.

Here we are interested in the deconvolution and parameter identification of a gen-

eral SISO noncausal nonminimum phase ARMA system driven by a random non-

Gaussian process. Although in system theory and signal processing, causal system

modeling is commonly used, noncausal ARMA system will also be necessary for char-
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acterizing many processes in practice. Except for tile very special case of a symmetric

noncausal system, the high order statistics will play a crucial rule in identifying the

system ( phase response as well as magnitude response ).

We introduce the inverse polyspectra and inverse cumulants which are reciprocals

of the polyspectra and cumulants of an original process. It is a natural generaliza-

tion of the definition of inverse power spectrum and inverse autocorrelation [Chat79,

Clev72]. It will be demonstrated that there is duality between cumulants and inverse

cumulants which corresponds to the duality between the AR modes and MA modes

of the system. For a general noncausal ARMA system, the inverse filter has been

constructed by utilizing a noncausal AR model to approximate the original process.

Then a relationship can be established between the inverse cumulants and the param-

eters of the inverse filter which is unique to within a scale factor. For achieving good

numerical performance, we use a gradient type nonlinear optimization algorithm to

minimize an error function for matching the inverse cumulants and the parameters of

the AR model.

The algorithms are proposed to estimate the inverse cumulants using both fre-

quency domain and time domain formulations. The advantage of estimating the

inverse cumulants in the frequency domain is that the numerically efficient FFT tech-

nique is available and no equations need to be solved. But the price we pay is that

the algorithm is less robust in the low signal-to-noise ratios(SNR) situation. For es-

timating the inverse cumulants in the time domain, some linear equations in terms

of inverse cumulants have been derived for using the least squares technique. We use

the forward regression orthogonal algorithm suggested in [Bi1189] to solve the least

squares problem because only part of the unknowns need to be estimated. The algo-

rithm can be used to estimate a subset of the paramelers, and computation time can
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be saved. With adoption of the steepestgradient type optimization algorithm, the

parametersof the AR filter can be identified adaptively.

This chapter is arranged as follows. In section 6.2, we review the background

about cumulants and polyspectraand give the problem statements. In section 6.3,

the definitions aregivenof the inversepolyspectraand inversecumulants. Section6.4

providessomealgorithms for estimatingthesequantities,deconvolvingand identifying

the nonminimum phasesystembasedon the inversecumulantsestimated both in the

frequency and time domain. In section 6.5, somecomputer simulation results are

presented.Section6.6 is concluding remarks.

6.2 Background and Problem Statements

In this section, we give the problem statements and present some preliminary defini-

tion and results related to the cumulants and polyspectra before giving the definition

of the inverse cumulants. For a rigorous definition of the cumulants, we recommend

[Rose85] to the reader.

The scalar output signal {y(t)} is assumed to be a zero mean stationary, discrete

time process, described by the following noncausal linear ARMA model:

M + N +

(6.2.1)
k=-M- k=-N-

where u(t) satisfies the condition (6.2.4) specified below.

Equation (6.2.1) can also be expressed equivalently by the impulse response ver-
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sion:
k=-l-e_

y(t) = _ h(k)u(t - k) (6.2.2)

The third and fourth order cumulants contain sufficient information to characterize

the magnitude and phase of the system. For a zero mean stationary process y(t), the

kth order cumulants of y(t), k = 1,2, 3, 4, can be computed via the following equations:

4 = E{y(i)} = 0

4(m) = E{_(i)y(i + ,_)}

c_(m,,rn2) = E{y(i)y(i + ml)y(i + m_)}

(6.2.3)

cY4(ml,.i2, TTI3) = E{y(i)y(i + m,)y(i + m2)y(i + m3)}

-4(,., - - - ml)

-4(,.3)4(.,1 -

Suppose the system (6.2.1) satisfies the following modeling assumptions. The input

driving signal u(t) is stationary, non-Gaussian, zero mean i.i.d. , Eu(t)u(t + r) =

a26(r), and with the kth order cumulants 7_, 0 < < o_, k > 3:

c_¢('Yr_l,Trt2, . . . , _k_l) = "/_(rr/1)_(,r/2)... _(r/lk_l) (6.2.4)

where 6(m_) is the Kronecker delta function, u(t) has a kth order flat polyspectra,

and is not accessible in the identification scheme.

Also, we assume that the ARMA model (6.2.1) with parameters 0 = {a-M-,..., aM+,

b-N-,..., bN+ } is generally nonminimum phase, i.e. the system has some zeros inside

and outside the unit circle, free of pole zero cancellations. The system may have some

poles outside the unit circle. These poles correspond to the noncausal modes.
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The transfer function of the system(6.2.1) is

k--+_ E_j_N_b_z-_ B(z)
H(z)= _ h(k)z-k= - (6.2.5)

k=-_z Ey2_M_akz-k A(z)

The region of convergence is a ring including the unit circle p0 < Izl < Pl. p0 is the

maximum amplitude of the poles inside the unit circle, pl is the minimal amplitude

of the poles outside of the unit circle. We assume that the system does not have any

poles and zeros on the unit circle, i.e. A(z)B(z) # 0 for Iz] = 1 .

The problem is to identify the system transfer function H(e j_) ( phase response as

well as magnitude response ) and reconstruct the input signal u(t) using only output

data y(t). The method we utilize here is to introduce the inverse cumulants and

approximate the original noncausal ARMA system via the AR model. There exists

a direct relationship between the inverse cumulants and the parameters of the AR

model, and the inverse cumulants can be estimated easily in the frequency domain

using an FFT algorithm and in the time domain by solving a least squares problem

using an efficient forward regression orthogonal algorithm. By this means, the original

system can be characterized exactly by the AR model, and the input signal can be

estimated by deconvolving this inverse filter with output signal y(t). In the following,

we present some basic facts about cumulants for later use.

Denoting the kth order cumulants of y(t) by c_(ml, m2,..., rnk_a), and assuming

that E_i ....._k-, [c_(rn_, m2,..., mk_a)[ < +ee, then the kth order polyspectra exists

and is defined as:

-._OC

s_(_,,_,...,__,) = E
_i ,..._"n k-- 1 =- -- (X._

_,m. (6.2.6)
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Because u(t) is a kth order white, it is easy to verify from (_3.2.4) that •

s_ (_.,,, _2, . . . ,_k-, ) = "_ = con_ta,_t (6.2.7)

The kth order cumulants c_(ml, rn2,..., ink_l) can be calculated in terms of the kth

order polyspectra:

4(ml,...,m_-,)- (2_)k-1 ... _(_"_""'_-1)

e j _,_-_ ,o,m, dwl dw2.., d_k-i (6.2.8)

From equ.(6.2.5), the kth order cumulants can also be represented in terms of the

system impulse response as :

_(-_1,-_,...,,_k-1) = ,_ y_ h(i)h(i + ma)...h(i + ink-l) (6.2.9)

Taking the Z-transform of equ.(6.2.9), we can gel the following expression •

S_(21,Z2, .,2k-1) _ .,, . ..•. =')kH(_a)H(z2) ..H(zk_l)H((zxz2. zk_a)-1) (6.2.10)

So,

B(ZI )B(z2). . .B(zk_] )m((ZIZ2...zk_I)-1)
S#(z,,z2,... ,zk_,)= *t_.A(z,)A(z2) .A(zk_1)A((zaz2 zk_1)-I) (6.2.11)

It will be seen in the next two sections that equation (6.2.11) is important in the role

of the inverse cumulants.

6.3 The Inverse Cumulants

In this section, we give the basic definition of the inverse cumulants and describe

the relations between the inverse cumulants and the original ARMA system. Its
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application with deconvolution and parameter identification will be presented in the

next section.

For the system (6.2.1) or (6.2.2), with kth order cumulants (6.2.9) and kth order

polyspectra (6.2.10) (6.2.11), we define the inverse cumulants and inverse polyspectra

by simply looking for the inverse of expression (6.2.10) or (6.2.11). Thus the kth order

inverse polyspectra SI_(zl, z2,..., zk-1) is defined as :

Y = 1 (6.3.1)

The coefficient of z_-'_1 z_"m2 .-mk_l of SIk(zl,_ :. • zk-1) will be called the kth. . .,ak_ 1 _'' ,

order inverse cumulants at lag ml, rn2,..., rnk-1 , and will be denoted by ci_(rnl, rn2, ....

v zk-1 ) are related by the Z-transform.?T/k_l). C/'_(V/'/1,7Tt2,...,ink_l)arid _. Ik(z,,z=,. .. ,

Noting equations (6.2.8) and (6.2.11), the following equation holds.

e-J E _=-,'_,m, d,w_dw2.., daok_, (6.3.2)

Because we assume that the ARMA model (6.2.1) does not have zeros and poles on

the unit circle, the righthand sides of (6.2.8) and (6.3.2) are integrable. The inverse

cumulants based on equ. (6.3.2) are well-defined.

For the ARMA model (6.2.1), by interchanging MA modes with AR modes, we

can construct another noncausal ARMA process:

N + M +

bkw(t- k)= _ ake(t- k) (6.3.3)
k=-N- k=-M-
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where the input driving signal c(t) is an i.i.d., zero mean, non-Gaussian process.

has the flat kth order polyspectra.

1

-

The U h order cumulants are:

C;(ml,7122,...,tr_k_l) = @'_(T/ZI)_(/F/2) . . ._(r/2k_l)

It

(6.3.4)

(6.3.5)

The output signal w(t) is a stationary, zero mean , ergodic process. It is easy to

verify that the kth order cumulants of w(t) are the kth order inverse cumulants of

y(t),i.e. ,

, .. = czk(rnl,m2,..-,mk-1) (6.3.6)

wk--1

A_,(e3'Vl if3 )
Also, w(t) has the kth order polyspectra equal to

• _Bk (e :_1 ,eJ_2 ..... 0 _k-' )"

are the denominator and numerator of the r.h.s, of equ.(6.2.11) .

Ak and Bk

Model (6.3.3) shows the important dual property between the cumulants and in-

verse cumulants. It demonstrates that reversing the signal flow through the ARMA

system will generate the kth order cumulants which are the inverse cumulants of the

original system.
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6.4 Inverse Cumulants Based Algorithms for

System Deconvolution and Parameter

Identification

In the previous section we introduced the inverse cumulants. Here we use the non-

causal autoregressive model to approximate the original system. Also, algorithms

are presented for estimating the inverse cumulants, identifying and deconvolving the

system both in the frequency domain and time domain. We demonstrate more details

in the following.

Given the output stationary signal {y(t), t = 0, 1,2,...} generated from the model

(6.2.1), we can always design a noncausal AR process for characterizing the original

model and deconvolving the received signal y(t):

-1 -Foe

u(t)= t3oy(t) + y_ /3iy(t- i)+ _-_/3iy(t- i) (6.4.1)
i=-o_ i=1

Denoting:

O(z)= y_ _;z -_ (6.4.2)
i=--o_

Assuming/30 = 1.0, ¢(z) is the deconvolution filter. The original model (6.2.1) will

be rewritten as a noncausal AR filter:

1 B(z)

,(zi- A(z) (6.4.3)

Noting the equations (6.2.11, 6.3.1, 6.4.3), we have:

1

,-,¢I_(zl,z2,...,zk-1) = _-_¢(z,)q)(z2)... ¢k((zlz2... Zk-1) -1 )
(6.4.4)

Eqution (6.4.4) reveals the fact that within a scale ambiguity the k th order inverse
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cumulants of y(t) are the same as the k th order cumulants of w(t) generated by the

deconvolution filter q_(z).

q_(z) has to be truncated for practical realization. So define:

N

,(z) = E _,z-'
-M

( Z-M # 0, Bo= 1 ) (6.4.5)

_(z) will approximate the deconvolution filter. Generally speaking, the choice of

M and N will depend upon the location of the zeros of the ARMA system (6.2.1).

The closer the zeros to the unit circle, the larger the M and N will have to be chosen

for a good approximation.

It follows immediatly that the parameters t_i obey the following equation"

1

cig (ml, m2, . . . , ink-l) - "r_

N--ink_ 1

8i_,+,_, ... _+___
i=-M

0 < m l < m_ < ... < ink-1 < (M + N) (6.4.6)

Using the symmetric properties, we can refer to the cumulants at other lags. For

the third order cumulants, the following symmetric condition holds:

= C3(Yn 2 -- Tytl,--TYtl) = C3(TY/1 -- yy/2 --}'yt2) = C3(--_Tt2,?Y/1 -- ry/2)

-(M + N) _< rn_, m2 <_ (M + N) (6.4.7)

The nonredundant cumulant samples lie on the triangle described by 0 _< ml _< rn_ _<

M+ N.
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To minimize numerical sensitivity and achievegoodperformancein estimating the

parameters/3i of the inversefilter usingequation (6.4.6), we construct the following

objective function for matching the inversecumulants:

_(M+N) rn2

g(o)= _ ... _ e(m,,m2 .... ,ink_,) 2 (6.4.8)
mk_l=O ml=O

where,

N--mk_]

1 E /3&+m,.../3i+__,
e(m,,m_,..., ink-l) = ci3(ml,m_,..., ink_,)- -_ ,---,

here,/3o = 1, 0 = [/3-M,...,/3-1,81,..., _N, 7_] r. The character y has been omitted

for easy notation. Here, we only use a center part of the inverse cumulants for our

matching because a larger error will be involved for the estimates of the inverse

cumulants close to the boundary due to the boundary effects.

Let _qj = 0 for j < -M or j > N. For the case of using third order inverse

cumulants, e.i., k = 3, the derivative of J with respect to/_2 (-M < I < N, l # 0),

is:

2(M÷ N_

m2=O ml=O

(3t+_, _31+m_+ 3t-_, Zl-._ +_ +/31-m_3z+._,-m_) (6.4.9)

where 7 = 1/?_.

Taking the derivative of J with respect to % and setting the equation to zero, ?

can easily be estimated in terms of other parameters:

_rnl=O C/3(ml, m2 wv'N-m2
._ = Em2_0 -_2 /tZ-.i=-U flifli+_/3i+_2) (6.4.10)

2(M+_0
V.,rn2 {v.,N-m2 /3i_i+rnl/3i+m2)2_rn2=30 Z,.dml=Ok/-._i=-M

By this means, we can reduce the total number of unknowns by one dimension.

Also, the initial value guess is important for gradient based schemes to achieve
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good results. Basedon (6.4.6), very roughly wehavethe followingequation:

cia(M + N, M + j) ,,_ 13_Mt3N3 j
"7£

(6.4.11)

So, it is easy to see that:

cis(M + N, M + j)

_'_ "_ cz-3(M + N,O) fl-M = fciz(M + N,M + j) (6.4.12)

j = -M,-M + 1,...,0 .... ,N

fl0 = 1 can be utilized to determine the unknown constant f. Thus, we can use the

following form to guess the initial values although sometimes it is not quite satisfac-

tory:

/3}o} = ci3(M + N, M + j)
ci3(M + N,M) (6.4.13)

j = -M,-M + 1,...,0 ..... N

We comment that the problem of stability does not arise because the deconvolution

AR filter is basically noncausal. We can always identify any unstable causal poles as

the stable anticausal poles. The only assumption about the underlying system is that

it has no poles or zeros on the unit circle.

In the above development, it has been assumed that the inverse cumulants are

already available. In practice, what we can get at hand is the received signal y(t) or

sampled cumulants. We need to estimate the inverse cumulants using these quantities.

In the following two subsections, we provide the algorithms to calculate the inverse

cumulants both in the frequency and time domains.
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6.4.1 Inverse Cumulants Estimation in the Frequency

Domain

Suppose we are given the measurements of the signal y(t) for 0 < t < L - 1, where L

is the sample length. Practically, we use the sample cumulants 5k(rnl, m2,..., ink-l)

being the estimates of theoretical cumulants of the random process.

up to the fourth order are given by the following equations:

] L-m-1

_:(m) = -i _ y(i)y(i+ m), o < ,_ < L- 1
i=0

1 L-m2-1

_3(_1,_2) = Z _ y(i)v(i+ _,)y(i + _2) 0 _<,., _<_: _<L - 1 (6.4.14)
i=0

1 _-.,L-m_l
C4(Y/_'1, 7T/2, rr/3) ----- _ z-,i=0 y(i)y(_ --}- .'tl )y(i + /B2)y(i -_- irn3)

-_:(_1)_:(_: - _3) - _2(_2)_(_3 - _,) - _:(_3)_:(m, - _)

0 _< rnl _< rn2 _< m3 < L-1

The estimates

Generally speaking, we can directly use the FFT algorithm to estimate the inverse

cumulants by noting the equations (6.2.6),(6.3.1) and (6.3.2). The basic steps are as

follows.

First we construct the k th order spectrum estimates:

L-1

_(f_,f_,...,f___) =
m 1 ,...,rnk_ l =-L+I

-_EL;_
N!Ck (_Ttl, m2_... : rnk_ 1 )e (6.4.15)

where N/ is a sufficient large positive integer of power 2 , Nj >_ 2L - 1, fj =

2z j = 1,.. k- 1, n.i = 0,1 . N]- I. Let 5k(rnl,m2,...,rnk__) = 0 if any

variable m_ is outside of the range (-L + 1, L - 1). Obviously, we can set up a k - 1

dimensional FFT algorithm to calculate ,-_k(fl, f2 .... ,fk-m). Thus, we can get the
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estimatesof the inversepolyspectra:

SIk(fl,f2,...,fk-,)= ^ i (6.4.16)

Because the system does not have any poles or zeros on the unit circle, equation

(6.4.16) will not cause any existence problem.

The k th order inverse cumulants then can be estimated by calculating:

cik(ml, m2, . . . , mk-_ ) =

N! -1

( ._,.rj. ) k- 1 nl...nk-1

• k-1 2_n,m_

¢SIk(fl, f2,''', fk-1 ).1 _,=1 ml (6.4.17)

where, ¢ is the phase shift depending on ni. Surely, equation (6.4.17) can be computed

by using a k - 1 dimensional IFFT algorithm.

A variational procedure can be employed to estimate the inverse cumulants, which

uses the received signal y(t) directly. There is no necessity to estimate the sampled

cumulants in advance. In this approach, we split the data into segments and estimate

the polyspectra in each segment, then average the whole estimate to achieve numerical

robustness. The details are as follows.

Divide the data y(t), 0 < t < L- 1, into K segments, each containing L, samples,

so, L = KL,. Each segment is formed as:

y(i)(t) = y(t + (i - 1)L_)

0<t<L_-l, I<i<K (6.4.18)

Suppose w(i)(t) is a selected window function, L_ is an integer of power 2.

Fourier transform of y(i)(t) is :

Ls-1 , .22.p.K

= t)w(')(t)e-J L, 1 < i < KY(i)(f,) _ y(')(
t=O

The

(6.4.J9)
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where, fl = _ nl =0,1, L_-I
L, ".-, .

the Y(i)(fz) in each segment.

The FFT algorithm can be used to calculate

Taking the average, we obtain the form of the bispectrum estimates as:

1 t,"

S3(fx,f2)- KL_ _-'Y(O(fa)Y(O(f2)YO)(-fa - f2) (6.4.20)
i=1

Thus, the third order inverse cumulants can be calculated using the IFFT as:

cia(ma,m2) 1 L,-1 1 .2^ -- C 3 Zt=_ LS (6.4.2_)
(L_)_ _ _(k, k)

nl ,n2=O

For estimating the fourth order inverse cumulants, we calculate the periodogram

for each segment:

1 12
I(O(ft) = _ I r(o(fl)

(6.4.22)

and computing:

L,-1 sin(2L_ - 1)rfl
X(f,) = _ e-3>w"' =

i-=-Ls +1 sin 7rf_

a(,l(f,,f_,£) = _y(O(fl)y(,)(f.)yI'l(f3)Y.l(-f, - f.- f3)
Ls

(6.4.23)

(6.4.24)

Taking the average for all segments:

1 K

I(fi) = -f_ y_ I(O(ft)
i=1

1 K

a(k, f_, f_) = -K__,a(')(.f_,f:, £)
i=1

(6.4.25)

(6.4.26)

Then the trispectrum takes the form:

S4(f_, f2, fa) = G(f,,f2,fa) - I(f_)I(f2)X(f2 + fa)

-I(f2)I(fa)X(fa + fa) - I(fa)I(f_)X(f_ + k) (6.4.27)

Finally, the fourth order spectrum will be estimated and the fourth order inverse

cumulants can be calculated via the IFFT algorithm.
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All these FFT based algorithms are simple, efficient and easy to implement. No

linear equations need to be solved of any kind.

6.4.2 Inverse Cumulants Estimation in the Time Domain

Noting equation (6.3.1), and taking the inverse Z transform on both sides, we have:

-t-OQ

E
ll,...,lk_l=-oo

Ck(t'r/1 -- I1, rrl2 -- 12,... , trek-1 -- lk-,)cik(ll,12,...,Ik_,)

_- _(rr?l,?T/2,... ,ink_ 1) (6.4.28)

In practice, we have to approximate the infinite summation by truncation. Based

upon the third order inverse cumulants, let

S= {(i,j) I-(M + N) < i < M + N, -(M + N) _< j _< M + N}

S c= {(i,j) li<-(M+X)ori>(M+N) orj <-(M+N) orj>(M+N)}

Define the truncation error:

_(rn,n)= y_ c3(m-i,n-j)ci3(i,j)-_(m,n)

(i,j)ES

= - _ c3(m - i,n-j)ci3(i,j) (6.4.29)
(i,j)es c

Because of the symmetrical property, the total unknowns of ci3 is (M+N+I)(M+N+2)
2

We choose the range of (rn,n) as S = {(rn, n) I -(M + N) <_ rn < n <_ (M + N)}, so

we have a total (M + N + 1)(2M + 2N + 1) equations. The estimation criterion now

is defined as the sum of the least squares of the truncation error for (m, r_) E S •

(6.4.30)
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Define:

Rl(trt, tt,/) _- c3(_ - l,n) --t- c3(m, rt - l)-_- c3(r/l --_ l, tt -3v [) (6.4.31)

n=(,_,,_,l) = c3(,_- l,,_ - l) + c3(m+ l,,_) + cz(m,, + l)

n3(_,n,_,l) = c3(m - k,,_ - t) + _(,_ - t,,_ - k)+

cz(,. + k,,_+ _ - l) + cz(m+ k - t,n + k)+

(6.4.32)

(6.4.33)

By utilizing the symmetrical property of the inverse cumulants, we can write equa-

tion (6.4.29) in the form:

M+N

_(rn, n) = c3(m,n)ci3(O,O) + y_ R,(rn, n,i)ci3(i,O)+
i=1

M+N M+N i-1

R2(m,n,i)ci3(i,i) + _ _ Ra(m,n.i,j)cia(i,j)-_(rn, n)
i=1 i=2 j=l

(re,n) C S (6.4.34)

Divide all unknowns into two parts:

2(M+N) 2(M+N)),
(_ = [ci3(0,0),ci3(1,0),ci3(1,1),...,ci( 3 ' 3

ci3(M + N,O),ci3(M + N, 1),...,ci3(M + N,M + N)]T;

(b = [ci3( 2(M + N) ciz(2(M + N)
3 + 1,0), 3 + 1,1),...,

(6.4.35)

ci3(M + N- 1,0),...,ci3(M + N- 1,M + N- 1)] r (6.4.36)

Now collecting all the equations for (rn, n) E o5 and constructing the standard

norm regression form for a least squares solution, we obtain:

E, = (Zc( -- a_)T(¢_-- a_) (6.4.37)
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where ( = [(bT, (T] T and ¢ and ac can be formed by using the equ.(6.4.34). Denoting

the integer P by P = M + N + 1, we note that q_ is P(2P - 1) x ½P(P + 1), ( and

a¢ are ½P(P + 1).

Actually we are only interested in ¢'_ for the AR parameter matching and initial-

ization. The length of _'b and G are roughly the same, i.e., only half of the total

unknowns needs to be estimated. Also, only one element of the constant vector ac is

1 , all others are zero. In order to take advantage of this part, the forward regressional

orthogonal algorithm proposed in [19] has been utilized because of its simplicity and

effectiveness. It can be used as a pruning least squares algorithm and it also can take

the numerical advantage of special structure of the constant vector ac.

The algorithm can be realized in the following steps:

1. Step 1: Writing the qJ as:

0:1,1 01,2 ... O1,p 2

/

(_2,1 _2,2 " " ° {_2_P 2

qJ__--

°,.. ....... , ............

O pa ,1 O_p_ ,2 ... O p_ ,p_

l(M q- N 1)(M N 2),whereP1 = (M+N+I)(2M+2N+I), P2 = _ + + +

ac = [1,0,0,...,0] T, [(T,_/]T= [(1,_2,...,(p2]T.

2. Step 2. Denoting and calculating:

71,1 _ 1

Aj,1 = aj,1 (j = 1,2, .... P_)

)_1,1

gl -- Ep:l ,_2,1
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3. Step 3. Computing:

,,,k = E 'al
k-1

Aj,k = e_j,k - _ qi,kAj,i

ha,k

gk -- Zfl.l= 1 ,_2, h

k=2,3,...,P:, i=1,2,...,k-1, Vk,k=l

4. Step 4. Estimating:

_P2 = gP2

P2

_' = g' - E rl', k_k
k=i+l

i= P2- I,P2- 2,...,P_- r_ + I

Where r_ is the length of G.

We make the following comment that if the matrix q, has full rank then the esti-

mates of the inverse cumulants ci3(m, n) will satisfy the normal equation of (6.4.37)

and are the least squares solution. Also the procedure can be modified as an adaptive

algorithm easily.

6.5 Numerical Simulation Results

In this section, some typical numerical results will be shown to demonstrate the per-

formance of our approach. For simulating our algorithms, the independent identical

one-sided exponential distributed input driving process with zero mean and random

antipodal input sequences are generated for using the third order and fourth order

inverse cumulants. In each example, 8300 random input samples are produced which
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convolvewith the true LTI model to generatethe output signals.The first 54and last

54 output samplesarediscardedto removethe transient effectsof the response.Zero

meanwhite i.i.d. Gaussiannoise,or colorednoiseu(t) are added to the output signal

y(t) to generate the various signal-to-noise ratios. The signal-to-noise ratio(SNR)

• ,E{_2(t)},
is defined as 10iogl0L_ ). The colored noise was produced by passing the i.i.d.

white Gaussian noise through an MA filter T(z) = 1 + 0.57 -1 - 1.57 -2.

Example 1. (Noncausal ARMA(2,2) model)

The model we simulated in our first example is the second order noncausal ARMA(2,2):

0.3752(1 + 0.8z-a)(1 + O.lz)
H(z) =

(1 - 0.27257 -a )(1 + 0.63597)

The system has one stable causal pole at 0.2725, one stable anticausal pole at -1.5725,

one minimum phase zero at -0.8 and one nonminimum phase zero at -10. The

true coefficient values (_-2,/3-1,/30,/31,/32,_3,_4) of the deconvolution AR filter are

(-0.1595, 1.5948, 1.000,-1.5263, 1.2210,-0.9768, 0.7815). One-sided exponential i.i.d.

input sequences are generated with cr2 = 0.630, "_3 = 1.000 for estimating the in-

verse cumulants. Fig.6.1(a) shows the true third order inverse cumulants ci3(i,j) for

-12 < i,j < 12 of the model.

• I__..,.. V"_,---..I,._ I "

, 9

g

..- - - -" ;-.<.. - ,. ..

_,. ,I,

Fig.6.1(a) The true third order inverse cumulants eis(i,j) for -12 < i,j <_ 12.
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For using the frequency domain formulation, we divide the output samples into

16 segments, each containing 512 points. White i.i.d. Gaussian noise, or colored

Gaussian noise are added to the output signal to produce the various signal-to-noise

ratios for testing the performance of the algorithm. Equations (6.4.19), (6.4.20) and

(6.4.21) are used to calculate the inverse cumulants via ,512 points 1-D FFT and

512 x 512 points 2-D FFT algorithms. Weight signals w(t) are selected as rectangular

windows for simplicity. For the output signals contaminated by the i.i.d, white

Gaussian noise with SNR=30dB, Fig.6.1(b) demonstrates the estimated third order

inverse cumulants ci3,F(i,j) for --12 _< i,j, <_ 12 in the frequency domain (averaged

over 20 Monte Carlo runs). Fig.6.1(c) presents the estimated error Di3,F(i,j) =

ci3(i,j) -- ci3,F(i,j).

oP

Fig.6.1(b) The estimated third order in-

verse cumulants cia,F(i,j) in the fre-

quency domain via the FFT algorithms.

+.+_ + o
II K

.- ,. _;.,',. '',_: _,.-÷.._!

¢2. .2 :l: ' p.._ . _ _-..

<+. _ .-_<. ?.---L.

Fig.6.1(c) The error for the estimated

third order inverse cumulants using the

frequency domain formulation.

For estimating the inverse cumulants using the time domain least squares formu-
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lation, we need to estimate the third order cumulants. We average the estimates over

all 16 segments for reducing the numerical sensitivity, i.e.,

k=l

= _ 5]2 ¢_(i)¢k_(i + m)¢_(i + _)
k=l "=

We choose M = 5, N = 20. The i.i.d.white Gaussian noise is added to produce

the SNR=30dB. Fig.6.1(d) gives the plot of estimated inverse cumulants ci3,T(i,j)

for --12 < i,j < 12 (averaged over 20 Monte Carlo runs ). Fig.6.1(e) shows the

estimation error Dia,T(i,j) = cia(i,j) -- cia,T(i,j).

6

!

!

!

O.

.!

,$

8

" ".+i

i +"'i i':,! r

Fig.6.1(d) The estimated third order in- Fig.6.1(e) The error for the estimated

verse cumulants ci3,T(i, j) in the time do- third order inverse cumulants in the time

main via the least square algorithm. domain via the LS algorithm.

Based upon the simulation, we have found that for a large signal-to-noise ratio case,

there is not much difference from the estimates of the inverse cumulants calculated via
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the FFT algorithms usingthe frequencydomain formulation or via the least squares

algorithm using the time domain formulation. But for the small SNR situations, LS

algorithm doesa better job than the FFT algorithm.
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Fig.6.2(a) The true parameters of the de-

convolution filter and the estimated pa-

rameters using the inverse cumulants cal-

culated via the FFT algorithms.
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Fig.6.2(b) The true parameters of the AR

deconvolution filter and the estimated pa-

rameters via the third order inverse cumu-

lants calculated in the time domain.

After obtaining the estimates of the inverse cumulants, we use the Fletcher and

Powell optimization algorithm to minimize the matching error function (6.4.8) and get

the estimates of the AR parameters. In the situation of SNR=20dB for the additive

colored noise, the mean and the standard deviation of the parameter estimates we got

( from the total 20 Monte-Carlo runs ) via the third order inverse cumulants calculated

in the frequency domain are (/)-2,/)-l,D1,/)2,A,/)4) = (-0.2342 + 0.0925,1.3679-I--

0.3482,-1.7762 + 0.4419, 1.0189 -t- 0.3827,-0.6820 + 0.2523,0.6794 + 0.1836). The

estimates we obtained via the third order inverse cumulants calculated in the time
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domain are (fl-2, fl-1,/31,f12,fla, f14)= (-0.2178 + 0.0784, 1.4623 + 0.3215,-1.7298 :t:

0.3764, 1.0787:1: 0.3521, -0.7219 4- 0.3621,0.6932 + 0.1832). Fig.6.2(a) and 2(b) give

the plots of the true deconvolution parameters and the estimated parameters. So

the time domain least squares inverse cumulant estimation slightly outperforms the

frequency domain FFT estimation.

Example 2.(Noncausal ARMA(2,3) model)

The second example we are going to simulate is the noncausal nonminimum phase

H(z)=

ARMA(2,3) system:

1.2013(1 + 0.55z)(1 + 0.6z-')

(1 + 0.37z)(1 -0.62z-a)(1 + 0.35z -x)

The system has two stable causal poles at (0.62, -0.35), one stable anticausal

pole at -2.70, one minimum phase zero -0.6 and one nonminimum phase zero 1.82.

The true coefficient values of the approximate noncausal deconvolution filter are

(fl-2, fl-1, f3o, ill, f12, f13, f14) = (0.1331, -0.2420, 1.0000, -0.7920, 0.2946, -0.1767, 0.1060).

In this example, the input driving process u(t) is a binary random i.i.d, signal

taking the values {-1, 1} with the equal probability 0.5. "y_'= 0.0 and "_' = 1.0. The

skewness of u(t) is zero so we utilize the fourth order cumulants and fourth order

inverse cumulants. Fig.6.3(a) and Fig.6.3(b) present the true fourth order inverse

cumulant lags ci4(i,j,O) and ci4(i,j, 1) for -8 _< i,j <_ 8.
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Fig.6.3(a) The true fourth order inverse Fig.6.3(b) The true fourth order inverse

cumulants ci4(i,j,O) for -8 < i,j < 8. cumulants ci4(i,j, 1) for -8 _< i,j < 8.

The M and N have been selected as 12. For the output signals contaminated by

the i.i.d, white Gaussian noise with SNR= 30dB, Fig.6.4(a,b) show the fourth order

inverse cumulants ci4.F(i,j,O) and ci4,F(i,j, 1) for --8 _< i,j _< 8 estimated in the

frequency domain via the FFT algorithms (averaged over 20 Monte-Carlo runs).

Fig.6.4(c) and Fig.6.4(d) demonstrate the estimation error Di4.F( i, j, O) = ci4( i, j, O)--

ci4.1_(i,j,O) and Di4,F(i,j, 1) = ci4(i,j, 1)-ci4,F(i,j, 1).

Fig.6.5(a,b) plot the fourth order inverse cumulants ci4,T(i,j,O) and ci4,T(i,j, 1)

calculated in the time domain using the least squares algorithm. Fig.6.5(c)(d) give

the difference Di4,T(i,j,O) = ci4(i,j,O)--ci4,T(i,j,O) and Di4,T(i,j, 1) = ci4(i,j, 1) -

ci4,T(i,j, 1).
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Fig.6.4(a) The estimated fourth order in-

verse cumulants ci4,F(i,j, 0) for -8

i,j _ 8 in the frequency domain via the

FFT algorithms.

Fig.6.4(b) The estimated fourth order in-

verse cumulants ci4,F(i,j,l) for --8

i, j < 8 using the FFT algorithms.
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Fig.6.4(c) The error for the estimated

fourth order inverse cumulants ci4(i, j, O)

for -8 < i, j < 8 in the frequency domain

via the FFT algorithms.

Fig.6.4(d) The error for the estimated

fourth order inverse cumulants ci4(i,j, 1)

for -8 < i,j < 8 using the FFT algo-

rithms.
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Fig+6.5(a) The estimated fourth order in-

verse cumulants ci4,T(i,j, 0) for --8 _<

i, j < 8 in the time domain via the least

square algorithm.
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Fig.6.5(b) The estimated fourth order in-

verse cumulants ei4,T(i,j,l) for --8 _<

i, j < 8 using the least square algorithms.
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Fig.6.5(c) The error for the estimated

fourth order inverse cumulants ci4(i, j, O)

for -8 _< i, j 5 8 in the time domain via

the LS algorithms.

Fig.6.5(d) The error for the estimated

fourth order inverse cumulants ci4(i, j, 1)

for -8 _< i, j _< 8 using the LS algorithms.
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In the case of SNR=15dB for additive white noise, the mean and standard de-

viation of parameter estimates of the AR filter obtained from a total of 20 Monte-

Carlo runs via the fourth order inverse cumulants calculated in the frequency do-

main are (/)-2,/)-,,/),,/)2,A,/)4) = (0.0547 4-0.0253,-0.3243 + 0.0863,-0.6250 -t-

0.2328, 0.3669 + 0.1429, -0.2450 + 0.0953, 0.049 + 0.022). The parameter estimates we

got using the inverse cumulants computed via the LS algorithm are 00_2,/)-1,/)1,/)2,/)3,

/)4) = (0.2178+0.0965, -0.1353-t-0.0826, -0.9483+0.3544, 0.21014-0.0673, -0.0924 -t-

0.0556, 0.0628 + 0.0338). Fig.6.6(a) and Fig.6.6(b) plot the actual AR parameters

and the estimated parameters.
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Fig.6.6(a) The true parameters of the de-

convolution AR filter and the estimated

parameters using the fourth order inverse

cumulants calculated via the FFT algo-
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Fig.6.6(b) The true parameters of the

deconvolution AR model and the esti-

mated parameters using the fourth order

inverse cumulants computed via the LS

rithms, algorithm.

Also in this example, we deconvolve the output signals with the estimated AR

filters to reconstruct the input driven process. For the i.i.d, random binary input
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sequence {- 1, 1}, we choose zero as the threshold value for detecting the input signals.

If the data coming out from the deconvolution filter is larger than zero, we classify it

as 1, otherwise we classify it as -1. The probability error P(e) of the classification

is defined as the total number of the errors in the detection of the input signals

divided by the length of the driven input data. For 8000 input data and various SNR

cases of a total of 40 Monte-Carlo runs, Fig.6.7 demonstrates the effectiveness of our

deconvolution scheme. For small SNR situations, there are some differences between

the frequency domain estimation and time domain estimation. The performance of

the latter is slightly better than the former. Also, for additive i.i.d, white gaussian

noise and colored gaussian noise the results will change slightly. For large SNR cases,

all these differences vanish and both estimation procedures give the same performance.

%-."

4_

/

-2
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Fig,6.7 The probability error of recon-

structing the input random binary antipo-

dal signals for noncausa] ARMA(2,3) sys-

tem of ex&rnple 2 versus SNR of white and

colored Gaussian noise.
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The simulation results have shown that it is possible to identify the deconvolution
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model accurately in the presence of moderate additive noise based upon the method

proposed in this paper. Similar to other nonminimum phase system identification

schemes, a long length of sample data is required in order to get good estimates of

the cumulants and the inverse cumulants. Short data records and low SNR will give

a large estimate variance.

6.6 Concluding Remarks

In this chapter we have introduced the inverse cumulants and inverse polyspectra

for parameter identification and system deconvolution. The inverse polyspectra and

inverse cumulants are generalizations of the inverse power spectra and inverse auto-

correlation proposed in [Chat79, Clev72]. It has been shown that there is duality

between cumulants and inverse cumulants which relates to the AR modes and MA

modes of the system. The basic scheme is that we use the noncausal AR filter to ap-

proximate the original system and identify this deconvolution filter directly using the

inverse cumulants. Unlike the approach specified in [Chia90, Niki87], which can only

be used for finite MA systems, our method can apply to the more general noncausal

nonminimum phase ARMA systems. There is no necessity to know the order of the

system. The only assumption about the model is that it does not have any poles or

zeros on the unit circle.

Also, we have presented a procedure for estimating the inverse cumulants both in

the frequency domain using an FFT algorithm and in the time domain using a least

squares algorithm. It is hard to make the claim relating to the issue of consistency

of the parameter estimation because of the inverse cumulants involved. The Monte-

Carlo numerical simulation results demonstrate the performance of our approach. We
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point out here that it is easy to modify our algorithm to an adaptive scheme so that

we can track the magnitude and phase response of the system and reconstruct the

input signals in time.
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