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ON THE GIBBS PHENOMENON I:

RECOVERING EXPONENTIAL ACCURACY FROM THE

FOURIER PARTIAL SUM OF A NON-PERIODIC ANALYTIC FUNCTION 1

David Gottlieb, Chi-Wang Shu, Alex Solomonoff and Herve Vandeven 2

Division of Applied Mathematics

Brown University

Providence, RI 02912

ABSTRACT

It is well known that the Fourier series of an analytic and periodic function, truncated

after 2N + 1 terms, converges exponentially with N, even in the maximum norm. It is

also known that if the function is not periodic, the rate of convergence deteriorates; in

particular there is no convergence in the maximum norm, although the function is still

analytic. This is known as the Gibbs phenomenon. In this paper we show that the

first 2N + 1 Fourier coefficients contain enough information about the function so that an

exponentially convergent approximation (in the maximum norm) can be constructed. The

proof is a constructive one and makes use of the Gegenbauer polynomials C_(x). It consists

of the following two steps.

In the first step we show that the first rn coefficients of the Gegenbauer expansion (based

on C_(x), for 0 _< n E rn) of any L2 function can be obtained, within exponential accuracy,

provided that both $ and m are proportional to (but smaller than) N.

In the second step we construct the Gegenbauer expansion based on Cnx , 0 _< n _< rn

from the coefficients found in the first step. We show that this series converges exponentially

with N, provided that the original function is analytic (thou gh non-periodic).

Thus we prove that : The Gibbs phenomenon can be completely overcome.
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1 Introduction

In this paper, we deal with a prototype of the Gibbs phenomenon and show how to eliminate

it. Consider an analytic but non-periodic function f(x) defined in [-1, 1]. Notice that f(x)

has a discontinuity at the boundary x = 4-1 if it is extended periodically with period 2. The

Fourier coefficients of f(x) are defined by

1 1

/(k) = -_ f_l f(x)e-'k"*dx . (1.1)

Assume that the first 2N + 1 Fourier coefficients /(k), Ikl _< N, are known but the

function f(z) is not. Our objective is to recover the function f(z) for -1 < x < 1 with

exponential accuracy in the maximum norm. The traditional Fourier partial sum using the

first 2N + 1 modes

N

= 'k-* (1.2)
k=-N

does a poor job; it produces a first order approximation to f(x) with an error O(_) away

from the boundary x = 4-1, and shows O(1) spurious oscillations near the boundary x = 4-1

known as the Gibbs phenomenon. Thus there is no convergence in the maximum norm.

When one uses a filter in the Fourier space,

N

C/(k), , (1.3)
k=-N

where a N = aN are suitably defined real or complex numbers which tend to zero when ]k]

tends to N, the situation becomes better. One can get exponential accuracy away from the

boundary x = 4-1 if akm are chosen as suitable real numbers [7, 9, 10, 12] or one can get

exponential accuracy up to one boundary x = -1 or x = 1 if a N are chosen as suitable

complex numbers [3]. In these cases the approximation is still in the space spanned by the

first 2N + 1 trigonometric polynomials and is a convolution of the original Fourier partial

sum with some filter kernel which is an approximate two-sided or one-sided * function; hence

it cannot be exponentially accurate in the maximum norm for -1 < x _< 1. For the one-

sided filters introduced in [3] one can use two different approximations in -1 < x < 0 and

in 0 < x < 1, right-sided for the former and left-sided for the latter, to obtain exponential

convergence globally.

In this paper we adopt a different point of view. The idea is the following: we realize

that the problem with the Fourier approximation is the non-periodicity of the function and

the fact that the functions e_k* are the solutions of a regular Sturm-Liouville problem. In



[6] it is shownthat expandingan analytic, non-periodicfunction f(x) by the eigenfunctions

of a singular Sturm-Liouville problem yields rapid convergence. For example, a Chebyshev

or Legendre expansion of f(x) converges exponentially. Thus if the first 2N + 1 Fourier

coefficients can provide enough information to reconstruct the coefficients of an expansion

based on a singular S-L problem, we might recover the accuracy. Unfortunately, one can

not recover the coefficients of the Chebyshev or the Legendre expansion within high enough

accuracy.

In this paper we show that from the first 2N + 1 Fourier coefficients of an analytic but

non-periodic function, one can get the first m ,,_ N coefficients in the Gegenbauer expansion

based on the Gegenbauer polynomials C_(x), provided that the parameter A, appearing in

the weight function (1 -x2)_-_, grows with the number of Fourier modes- N. We prove that

this yields exponential accuracy in the maximum norm.

Our proof consists of two separate and independent steps. The first step (Section 3) is to

show that given the Fourier partial sum of the first 2N + 1 Fourier modes, of an arbitrary L_

function f(x), it is possible to recover the partial sum of the first m terms in the Gegenbauer

expansion of the same function to exponential accuracy (in the maximum norm) by letting

the parameter A and the number of terms m in the Cegenbauer expansion grow linearly with

N. In this step f(x) need not be smooth; any L2 function will do. We denote the error

between the exact Gegenbauer coefficients and those obtained from the Fourier coefficients

- the Truncation error. The results of this Section are summarized i n Theorem 3.3.

In the second step (called the Regularization error), we prove the exponential convergence,

in the maximum norm of the Gegenbauer expansion of an analytic function when A grows

linearly with m. This is done in Section 4. The second step has its own interest; it is

an exponential convergence proof in the maximum norm for such Gegenbauer expansions of

analytic functions, where A increases with the number of the terms used in the approximation.

The results of this Section are summarized in Theorem 4.3.

In Section 2 we discuss some results concerning Gegenbauer polynomials that are relevant

to the proof and the computations. These are combined with the results of Sections 3 and

4 to yield the main theorem of Section 5 which demonstrates that one can construct an

exponentially convergent approximation to an analytic, non-periodic function, from its first

2N + 1 Fourier coefficients. Finally, in Section 6 we demonstrate the theory with some

numerical examples. Of special interest is Example 6.1, concerning the function f(x) = x.

This function was used originally (in 1898) to demonstrate the Gibbs phenomenon.

We will use A or .2. for a generic constant independent of all the growing parameters

throughout this paper. The actual value of A or ,_. may be different in different locations.
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2 Preliminaries

In this section we will introduce the Gegenbauer polynomials and discuss some of their

asymptotic behavior. We rely heavily on the standardization in Bateman [2], although for

our purpose a different scaling might have been more natural.

We start by defining the Gegenbauer polynomials C_(z) in the following definition.

Definition 2.1

The Gegenbauer polynomial C_(z) is the polynomial of order n that satisfies

(i- _)_-_c_(_)c_.(_)g_= o k# n (2.1)

and (for A > 0)

e_(1) = r("+2:x )
n!r(2A)

Note that the Gegenbauer polynomials thus defined are not orthonormal.

norm of C_(x) is given by the following lemma.

(2.2)

In fact, the

Lemma 2.1

The Gegenbauer polynomials defined above satisfy

where

f (1 - x2)_-_C2(x)C2(z)dx= h_
1

(2.3)

h._ = _c:(1) rB + _)
r(A)(n + A)"

For the proof see [2, page 174].

(2.4)

[]

We are ready now to deal with the asymptotics of the Gegenbauer polynomials for large

n and A. For this we need Lemma 2.2 and 2.3.

Lemma 2.2 (Stirling)

For any number x such that z _ 1 we have

r(x+l) < (2_)½x_+½e-_

r(_+l) > (2_)_+_e -_
(2.5)

(2.6)

3



Lemma _,3

There exists a constant A independent of A and n such that

_ c_(1)
h_ < A(n+_ )

A½ C_(1)
h_ >__ A-'(n+_--------_ .

The proof follows from (2.4) and the Stirling's formula (2.5)-(2.6).

Finally we would like to quote the Rodrigues'forrnula [2, page 175].

Lemma 2.4

The Gegenbauer polynomials are explicitly given by

(1 - x2):_-½C_(x) = (-1)_G(A d'_ z2) "+x-2°., [(i -
where G(A, n) is defined by

c(_,_) = r(_ + ½)r(n+ 2_)
r(2_)r(. + _ + ½)

[]

(2.7)

(2.8)

[]

(2.9)

(2.10)

[]

3 The Truncation Error

In this section we consider an arbitrary L2 function f(x) defined in [-i, 1]. We assume that

the first 2N + 1 Fourier coefficients ](k), as defined in (1.1), are given. We are interested

in recovering (within exponential accuracy in the maximum norm) the first m coefficients in

the Gegenbauer expansion of f(x),

OO

f(x) = y_ ])'(1)C}(x),
/=0

where the Gegenbauer coefficients are defined by

(3.1)



1 1

fX(l) = _/_1(1 - x2)_-½f(x)C_(x)dx (3.2)

with h_ given by (2.4).

Since we do not know the function f(x), but rather its truncated Fourier series fg(x)

(denned in (1.2)), we have only an approximation to/_(1) which we denote by 0:_(l), given

by

9_(l) = h_ f-11(1-x:)_-½ fN(x)C_(x)dx. (3.3)

Notice that 9_(1) depends on N. At this stage we would like to define the truncation error

I
)1 ( )TE()_,m,N) = max _-_(f_'(l) - Ox(1))C?(x . 3.4

-1<x<1 V; I

The truncation error is the difference between the Gegenbauer expansion (with m terms)

of the function f(x) and that of the truncated Fourier series fN(x). It measures the error in

the finite Gegenbauer expansion due to truncating the Fourier series.

In the next two theorems we bound the truncation error in terms of N, the number of

given Fourier coefficients, m the number of Gegenbauer polynomials, and X.

Theorem 3.1

If f(x) is an L2 function on [-1, 1], then there exists a constant A which is independent

of )% m and N, such that the truncation error defined in (3.4) satisfies the following estimate:

TE()_,m,N) < A (m + ,_)F(m + 2_)r(_) ( 2 ) _-1
- (3.5)

Proof:

As a first step we consider the special function f(x) = e i''_:_ with In[ > N. In this special

case fN(X) = 0 and we obtain

C_(1) '

(f_(1) - O:_(1))C?(1) -- : h-_t /_1(1 -- x2):'-½ei"'_=C?(x)dx . (3.6)

Roughly speaking, one can argue that this integral is rapidly decreasing when n increases.

This results from the fact that the integral is proportional to the n'th Fourier coefficient of

the function (1 - x2):'-½C_(x) which is analytic and has X periodic derivatives. It is nice to

know that an explicit expression of this integral appears in the literature [2, page 213]:



L 1
[2k

h_

where J.(x) is the Bessel function, Since Ia.(x)l _ 1forall • and. >_0 [1,page362],we
have, for 0 < 1 < m,

I(]_(O-Oa(O)c?(1)l __ c?(1)I'(_) _ (l+a)

= _r(2_) t, ]

<- m!r(2_) __ _ (3.s)

where in the second step we used the formula (2.2) for C_(1), and in the last step we used

(t+x)r(l+2_)
the fact that l! is an increasing function of l.

We now return to the general function f(x), which satisfies

f(x)- fg(x)= _ ](n)e i"_ •

I-I>N

Since f(x) is an L2 function, its Fourier coefficients ](n) are uniformly bounded,

(3.9)

I](n)l _<A.

We thus have, using the result for the special case e i'_ in (3.8),

l(]_(1)-_(0)c?(1)I_<

<

I_I>N

_(m + A)r(m + 2A)r(_) ( 2 )_-'m!r(2_) _-_

for all0<l<m.

We can now estimate the truncation error (3.4) by

TE(A,m,N) <

<

m max max I(/_(0 - _x(0)cT'(_)l
OSl<m -l<x<1

m maxI(]_(0-_(0)IC:(1)
o_</<_m

< ._Afm+ _)rfm+ 2_)r(_)( 2 ]_-'
- m!r(2x) \_]

= A(m + _)r(m + 2_)r(_) ( 2 ]_-'
(m- 1)!r(2_) G-_:

(3.10)

(3.11)



where in the second step we used the fact that IC_(x)I

[2, page 206], and in the third step we used (3.11).

The theorem is now proven.

< CrY(l)for all-1 _< z < 1

[]

Remark 3.1 The approximate Gegenbauer coefficients 9_(l) in (3.3) can be explicitly

expressed in terms of the Fourier coefficients ](k) as

0<lkl<N --_ ](k). (3.12)

Equation (3.12) follows immediately from the definition (3.3) of _X(l) and the integration

formula (3.7).

[]

For fixed A, the truncation error (3.5) decays algebraically as O (N----_-,)- However, if both

A and m grow linearly with N, the truncation error can be made exponentially small. This

is stated in the following theorem.

Theorem 3.2

If A = aN and m = fiN where a and fl are positive constants, then the truncation error

defined in (3.4) satisfies

where

TE(o_N, fiN, N) < AN_q N (3.13)

In particular, if v_ = _ = 2,_ 1_ 3, then

q = e-_ ,_ 0.8 < 1 .

(3.14)

Proof:

We use Stirling's formula (2.5)-(2.6) to obtain, from the previous estimates on the trun-

cation error in (3.5) and some simple algebra,

7



_,,rr((f+2a)N)r(aN) 2

< itN2q N

with q defined by (3.14). If we take a = f in (3.14), we obtain

(27z '
q = \2_re]

which attains its minimum value q = e-_ at f - 2,,
-- _-_.

aN-1

[]

We would like to point out that we choose a = f in Theorem 3.2 simply to show that it

is possible to obtain exponentially small truncation errors. This may not be the best choice

in practice. We can easily verify that, for fixed a, (3.14) defines a q which is an increasing

function of f. This is not surprising since the truncation error should be bigger if there are

more terms in the Gegenbauer expansion to approximate. However we will see in the next

section that the regularization error will be smaller if m is bigger. In practice one might try

to choose m to maintain some balance between these two errors. For a fixed f, (3.14) defines

a q which attains its minimum at

a = 4 (3.15)

if f < _. For example, if/3 = 2_ and a _ 1.33 is chosen according to (3.15), then q given by-

(3.14) is approximately 0.49, much smaller than the minimum value 0.8 obtained with the

restriction a = f.

We summarize the results of this Section in the next theorem.

Theorem 3.3 The exponential decay of the truncation error

Let f(z) be an L2[-1, 1] function, and ](k),-g < k < N, its Fourier coefficients defined

in (1.1). Let ]:'(l) be the Gegenbauer expansion coefficients of f(x) defined in (3.2), and let

9_(I) be the Gegenbauer coefficients of the truncated Fourier series fn(z) defined in (1.2)

with 9_(l) are given explicitly in (3.12).

Then: if A = m = fiN, where fl < _, the truncation error decays exponentially with

the number of Fourier modes N, i.e.

TE(_N, fN, N) = max I_(]:_(l) - _(1))C_(x)] < AN2q N
--l<x<l

- - /=0

(3.16)



with

278
q = (2-_e) <1.

[]

4 The Regularization Error

In this section we would like to establish error estimates for approximating an analytic

function f(x) on [-1, 1] by its Gegenbauer expansion based on the Gegenbauer polynomials

C_(x). Since our goal is to remove the Gibbs phenomenon we will use the maximum norm.

In the last section we have shown that we can get the Gegenbauer partial sum of the first

m terms of any L2 function from its Fourier partial sum of the first 2N + 1 modes with

exponential accuracy in the maximum norm, if $ and m are both growing linearly with N.

Thus in this section we will consider the case of large )_ and m.

We will assume that f(z) is an analytic function on [-1, 1] satisfying the following as-

sumption.

Assumption 4.1

There exists constants p > 1 and C(p) such that, for every k :> 0,

max < c(p) . (4.1)

This is a standard assumption for analytic functions. Here p is actually the distance from

[-1, 1] to the nearest singularity of f(x) in the complex plane (see for example [S]). The

assumption can be modified using the techniques in [5].

Let us consider the Gegenbauer partial sum of the first m terms for the function f(x)

given by (3.1), with the Gegenbauer coefficients ]:_(l) defined by (3.2). We want to estimate

the regularization error in the maximum norm,

I,:0
We start by estimating the Gegenbauer coefficients ]:_(1).

(4.2)

Lemma 4.1

The Gegenbauer coefficient ]_'(1), as defined in (3.2), of an analytic function satisfying

the Assumption (4.1), can be bounded by

9



c(p)r(_ + ½)r(l+ 2_)
If)'(l)[ <- Ah__)-ff_- -A + 1) " (4.3)

Proof:

We start by using the definition (3.2) for f_(1). We replace the term (1 - x2)_-]C_(x)

by the Rodrigues' formula (2.9)-(2.10) to get

(-1),a(A,l) l d' x_),+__½]]_(_)= h_2'_ /_, :(x)_ [(1- d_

where G()_, l) is defined in (2.10). Integrating by parts I times we get

G(A,I) 1 dtf x2)l+:__½d x]_(0- h_2,1!f-1 _v_'(_)(1-

We now use the Assumption (4.1) to estimate the derivative d_ (x), thus obtaining

i]_(1)l< a(_,z)c(p) [1 _ x_)_+_-
_ h_2tpl j_1(1 ½dx .

Since C_o(X) = 1, the remaining integral is simply hto+_ and can be obtained from (2.3)-(2.4):

a(_,Oc(p)v"_r(l+ _ + ½)I]_(z)l<
h_2'p'(l + A)F(/+ )_)

and finally using the definition of G(A,I) from (2.10) we get (4.3).

[2

i

The estimate (4.3) can be used naturally to get an estimate in the weighted L2 norm.

This would have been more transparent if we had adopted an orthonormal Gegenbauer basis

rather than (2.2). However the aim of this paper is to establish estimates in the maximum

norm. This is stated in Theorem 4.1.

Theorem 4.1

If f(x) is an analytic function on [-1, 1] satisfying the Assumption (4.1), then the regu-

larization error defined in (4.2) can be bounded by

RE(A,m) <_ AC(p)F(A + ½)F(m + 2A + 1)
m_(2p)mr(2_)r(m + _)

Proof:

By (4.3) and (2.8) we obtain

(4.4)

10



If wedefine

_ AC(P)r(_+ ½)rq+ eA) (4.5)

B(l) = AC(P)F(A+ })r(_+ 2_)
v_(2p),r(2A)r(z+ _)

then clearly for m _ I

B(l + 1)
B(0

/+2A 1+ 2_ 1+-_

2p(l+ _) < p(2+ -_) - 2+

We can thus sum (4.5) for m + 1 _< I < c_ to obtain

RE( )_, m)
_- ] max _ ^ II-'-<*<-',_-m+,Ey(l)c_(x)

oo

<- E I]_(l)lC?(_)
/=m+l

co

- E B(0
l=m+l

< B(m+l) 2(m+A)
m

< AC(P)F(_ + ½)r(m + 2A + 1)

- mvq(2p)_r(2_)r(m+ _)

where we have used again the fact that [C_(x)l _< Cp(1) for all -1 <_ x _ 1 in the second

step. This finishes the proof.

[]

About the size of the regularization error (4.4) when A depends linearly on m, as is the

case in Theorem 3.2 for truncation errors, we can state the following.

Theorem 4.2

If ,k = ")'m where 7 is a positive constant, then the regularization error defined in (4.2)

satisfies

where q is given by

RE(Tm , m) < Aq m (4.6)

11



which is always less than 1.

constant, then

(1+ 2_,)1+_
q = + (4.7)

In particular, if _' = 1 and m = fiN where f is a positive

RE(fiN, fiN) <_ Aq N (4.8)

with

( 27_ (4.9)
q= \32p]

Proof:

We use Stirling's formula (2.5)-(2.6) to replace the Gamma functions in (4.4). A little bit

of algebra brings us to (4.6)-(4.7) if A = 0'm. Notice that the constant A in (4.6) contains

the contribution of p related terms. It is easy to verify that q defined by (4.7) is an strictly

1 < 1 when tends to infinity. Hence we have q < _ _< 1increasing function of 7 and tends to _ _ 7 I

for all 7 > 0. As for the proof of (4.8)-(4.9), we simply plug in 7 = 1 and m = fiN into

(4.6)-(4.7).

[]

Finally we summarize the results of this Section in the following theorem.

Theorem 4.3 The exponential decay of the regularization error

Let f(x) be an analytic function on [-1, 1] satisfying assumption (4.1). Let f (1), 0 < l <

m be its Gegenbauer coefficients defined in (3.2). Furthermore assume that A = m = fN.

Then

max If(x ) - _-_ff_(1)C;(x) < Aq N (4,10)
-1_<x_<1 1=0 --

where

v1

12



5 The Main Theorem

In this Section we bring the main theorem demonstrating that one can construct an ex-

ponentially convergent (in the maximum norm) approximation to an analytic, non-periodic

function, from its first 2N + 1 Fourier coefficients. The method is indicated in the last two

sections. Namely, first we get, from the Fourier coefficients, an approximation to the first

m = fiN Gegenbauer coefficients. This approximation, by virtue of the discussion in Sec-

tion 3, converges exponentially fast to the true coefficients, provided that A grows with N.

We then construct the partial Gegenbauer expansion which converges exponentially to f(x)

by virtue of the discussion in Section 4.

We are ready to state our main theorem.

Theorem 5.1 Removal of the Gibbs Phenomenon

Consider an analytic and non-periodlc function f(x) on [-1, 1], satisfying

m xl"F-1<_<i -_xk(x) <- C(p) p > 1 . (5.1)

Assume that the Fourier coefficients

1 f'_ y(x)e_ik_dx/(k) = 5 1

are known for -N < k < N.

Let ._x(1), 0 < I < m be the Gegenbauer expansion coefficients of fg(x) = _,N=_ y ](k)e ik'_

explicitly given by

_x(I) = 80,/(0) + P(A)i'(/+ A) _E] J,+x(rrk) _ ](k). (5.2)
o<lkl_<N

Then for A = m = fiN where fl < _, we have

max f(x)- Ox(1)C_(x < AN2qf + Aqg. (5.3)
-I<_<I

Here

Proof:

qT \2re] < 1, qn \32p] < 1.

We start by noting that formula (5.2), for the approximate Gegenbauer coefficients 9x(t),

follows from Remark 3.1.

In order to establish (5.3), we introduce the Gegenbauer coefficients of the function f(x)

and denote them by ]a(l), they are defined in (3.2).

13



We have

I:<> <,>.:<>]max x -- _ x <
-l<x<l l=o

I:() )max x -- _ x +
-l<x<l /=0

max f_'(l)C x)- O_'(l)C2(x)
-l<x_<l 1=o

The first term is the regularization error and has been estimated in Theorem 4.3. The

second term is the truncation error and has been estimated in Theorem 3.3. The theorem is

thus proved.

rq

A few remarks are in order:

Remark 5.1 The proof is constructive. Given 2N + 1 fourier coefficients ](k),

-N < k < N, one gets explicitly the approximate Gegenbauer coefficients _X(l) , 0 < l < m

and the Gegenbauer series can be explicitly constructed.

Remark 5.2 The reconstruction is not optimal, since no effort has been spent to optimize

the parameters.

6 Numerical Results

In this section we demonstrate the theory using numerical examples. We implement the

method in the following way. Assume that the first 2N + 1 Fourier coefficients of f(x), ](k)

for -N < k < N, as defined in (1.1), are given. We compute the approximate Gegenbauer

coefficients _x(1), for 0 < l < m, defined in (3.3), using the following formula given in Remark

3.1:

Oh(t)= ,_o,](o)+ r(A)i'(/+ A) _] J,+_(_rk) ](k) .
O<lkl<g

(6.1)

We compute the Bessel function J,,(x) using an IMSL routine. Once the approximate

Gegenbauer coefficients _x(I) are obtained, we can compute the approximation to f(x) by

directly summing

m

gL(x) = Eg'(t)c_(x) (6.2)
I=0

as long as we can compute the Gegenbauer polynomial Cp(x) accurately. The formula we

used to compute Cp(x) is

14



' r(k + r(l- k +
C_(cos0) = E klr(_) _L--)_)-!F(_-)) cos(/- 2k)O (6.3)

k=0

which can be found in [1, page 175].

We remark that the implementation described above are subject to round off effects for

large _ and m. We use a Cray-YMP to carry out all the computations. Our implementation

can give accurate result only when the error is no smaller than 10 -9 . And we will show results

only in those cases. A better way to implement this method might be through Chebyshev

polynomials.

For the purpose of testing we consider the following examples.

Example 6.1 f(x) = x

This is the original example used in 1898 to show the famous Gibbs phenomenon. For

this particular function there is no regularization error as long as m >_ 1, hence all the errors

observed result from the truncation error.

In Figure 1, we show the exact function f(x) = x in the solid line, the Fourier partial sum

fg(x) with N = 4 in the short dashed line, and the approximation through the Gegenbauer
1

polynomials g_(x), as defined in (6.2), with N = 4 and m = _ = _N in the long dashed

line. We can clearly see that the Fourier partial sum fN(x) shows the Gibbs oscillations,

while the approximation g_ (x) through the Gegenbauer polynomials is uniformly accurate.

In Figure 2 we draw the errors in the maximum norm, with a logarithmic scale, versus N

1 (squares)(recall that 2N + 1 is the number of Fourier modes given), both with m = )_ = _N

1 and _ determined by (3.15) (circles). This picture confirms our estimatesand with m = _N

in (3.13) through (3.15) for the exponential convergence of the truncation errors.

1 forNext, we show the point-wise errors of the approximations with m = )_ = _N

1 and )_ determinedN = 4,8, 16,32 in Figure 3, and the point-wise errors with m = _N

by (3.15), for N = 4, 8, 16, in Figure 4, again both in logarithmic scales. We can observe ex-

ponential convergence both inside the interval and near the boundary, although the absolute

error is several magnitudes smaller inside the interval than at the boundary.

We have also run the test for f(x) = x'* with n = 2 through 9, obtaining similar results

(not shown here).

Example 6.2 f(x) = cos[1.41r(x- 1)1.

This function satisfies the Assumption (4.1) with arbitrary p > 1. Both truncation

1 gives exponentialerror and regularization error will be present. The choice m = _ = _N
2

convergence as expected. The choice m = _ = gN gives better results in this case.

15



In Figure 5 wedraw the errors in the maximum norm versus N, with a logarithmic scale,

both with m = _ = _Na (squares) and with m = )_ = gN2 (circles). The choice of m = _N1

and _ determined by (3.15) does not converge in this case, indicating that (3.15) is probably

a bad choice for the Regularization errors.

Finally, again in logarithmic scales, we show the point-wise errors of the approximations
1

with m = )_ = _N for N = 24, 36, 52, 76 in Figure 6, and the point-wise errors with m =
2

= gN for N = 16, 24, 36, 52 in Figure 7. We again observe exponential convergence both

inside the interval and at the boundary, and the several magnitudes difference in the absolute

errors inside the interval and at the boundary.

7 Concluding Remarks

We considered in this paper a prototype of the Gibbs phenomenon and demonstrated that

this effect may be overcome. We show that if f(x) is an analytic but non-periodic function

then the knowledge of its first 2N + 1 Fourier coefficients provides accurate enough infor-

mation so that the first m ,,_ N coefficients in the expansion of f(x) by the Gegenbauer

polynomials C_(x) (,X ,',, N) may be obtained. In equation (5.2) the formula that relates the

Gegenbauer coefficients to the Fourier coefficients is presented.

There are several topics which are not addressed in this paper and will be discussed in a

future paper:

(1) Other choices of polynomials such as the Laguerre polynomials and Hermite polyno-

mials;

(2) Algebraic convergence for C k but not analytic functions;

(3) The case with exponential recovery in a sub-lnterval [a, b] of [-1, 1]. That is, given

the first 2N + i Fourier modes for a function defined on [-1,1], find its Gegenbauer partial

sum of the first m terms based on the scaled Gegenbauer polynomials on [a,b], in which

the function f(x) is analytic. This would allow one to handle multiple discontinuities and

discontinuities of unknown location;

(4) The procedure realized in the Fourier space as a convolution, similar to the approach

used in [3];

(5) Efficient and stable numerical implementation of those methods;

(6) Extension to Collocation techniques and other than the Fourier basis functions.
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Figure 1: The function f(x) = x (background solid line); the Fourier partial sum fN(x)

defined in (1.2) with N = 4 (short dashed line), and the approximation g_(x) defined in

(6.2)through the Gegenbauer polynomials with N = 4 and m = A = ¼N in the long dashed
line,
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Figure 2: For the function/(x) = x, the errors in the maximum norm, max-l<_<l If(x) -

g_ (x)l where g_ (x) is defined in (6.2), in a logarithmic scale, versus N (2N + 1 is the number
1 and the circles are

of Fourier modes given). The squares are for the case with m = A = xN,

1 and A determined by (3.15).for the case with m = gN
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Figure 3: For the function f(x) = x, in a logarithmic scale, the point-wise errors If(x) -

g_(x)jwhereg_(x)is de_nedin (6.2),of thecasem= _ = IN forN = 4,S,16,3a.

10-2

10-5

10-40

•_ 10-5

0

.,a 1 0 -6

.w,,_

10-7
O

i0-8

10-9

10-10

]V=4

N=16

N=32

J I t I f

-1.0 -0.5 0.0 0.5 1.0

x-axls

20



Figure 4: For the function f(x) = x, in a logarithmic scale, the point-wise errors If(x) -
1

g_(x)l where g_(x) is defined in (6.2), of the case m = _N and _ determined by (3.15), for

N = 4, 8, 16.
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Figure 5: For the function f(x) = cos[1.4zr(x- 1)], the errors in the maximum norm,

max-l<x<l If(x)- g_(x)l where g_(x)is defined in (6.2), in a logarithmic scale, versus

N (2N -t- 1 is the number of Fourier modes given). The squares are for the case with
1 . 2

-- _N.m = _ _N, and the circles are for the case with m = A =

f_
O
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Figure6: For thefunction f(x) = cos[1.4_r(x-1)], in a logarithmic scale, the point-wise errors

[f(x)-g_(x)[ where g_(x)is defined in (6.2), of the case m = A = ¼U for N = 24,36,52,76.
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Figure 7: For the function f(x) = cos[1.4_'(x- 1)], in a logarithmic scale, the point-wise errors
2

If(x)-g_(x)l where g_(x) is defined in (6.2), of the case m = _ = gg for N = 16,24,36,52.
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