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ABSTRACT

The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed
Space Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called
constraint-based iterative repair. Using this technique, one encodes both hard rules and preference
criteria into data structures called constraints. GERRY repeatedly attempts to improve schedules
by seeking repairs for violated constraints. The system provides a general scheduling framework
which is being tested on two NASA applications. The larger of the two is the Space Shuttle
Ground Processing problem which entails the scheduling of all the inspection, repair, and
maintenance tasks required to prepare the orbiter for flight. The other application involves power
allocation for the NASA Ames wind tunnels. Here the system will be used to schedule wind
tunnel tests with the goal of minimizing power costs. In this paper, we describe the GERRY
system and its application to the Space Shuttle problem. We also speculate as to how the system
would be used for manufacturing, transportation, and military problems.

INTRODUCTION

Efficient scheduling is crucial for manufacturing companies that must balance limited production
resources against challenging order requests. Airlines and package delivery companies must
schedule large fleets of vehicles coordinating transportation goals with maintenance goals but must
also be adaptable to external forces such as weather and equipment failure. Thé DoD also faces
daulx)lting scheduling problems ranging from logistics transport problems to mission planning
problems.

NASA also faces complex scheduling problems including telescope observation scheduling,
spacecraft crew scheduling, and spacecraft mission planning. Our research is motivated by the
Space Shuttle Ground Processing problem. Ground processing entails the inspection, testing, and
Tepair activities required to prepare a Space Shuttle for launch at the Kennedy Space Center (KSC)
in Florida.

This paper describes a scheduling algorithm that is being used to schedule shuttle ground
processing but is also applicable to the other scheduling problems alluded to above. First we
present our definition of a scheduling problem and then describe our scheduling method. After
presenting the general approach we describe how it is used to solve the Space Shuttle problem and
then briefly describe how it can be adapted to other real-world problems.

SCHEDULING

In this section we define the scheduling problem beginnin g with a simplified version and evolving
to a more realistic definition.



General Problem

Generally scheduling systems are provided a set of activities, relationships between these activities
(such as predecessor-successor requirements), resource requirements for each task (i.e., how
much of what kind of resources are necessary), and a set of deadlines or milestones. With this
input, scheduling systems determine start and end times as well as an assignment of resources to
each activity such that: 1) the relationships between tasks are preserved, 2) no resource is over-
allocated (i.e., at no time does the demand for a resource exceed its supply), and 3) all milestones
are met.

For example, consider a Space Shuttle repair scenario where each Space Shuttle Main Engine
needs to be inspected, removed, repaired, re-installed, and tested, in that order. The tasks
associated with different engines are unrelated meaning that any task in support of one engine
could simultaneously occur with the tasks in support of a different engine. Assume that each task
requires 10 technicians, an engineer, and a safety inspector. Suppose there were only 15
technicians on call for each shift. In this case, no two activities would be able to occur in parallel
because together they require 20 technicians and there were only 15 available. If there were more
technicians the system would place tasks in parallel in order to meet the milestone.

Consequently, a scheduler would determine activity start times that sequence the activities
completely serially because any two activities' demand exceeds the supply of technicians.

In summary, scheduling systems search through the space of possible start times and resource
assignments with the goal of finding an assignment that satisfies all domain constraints. These
constraints include milestones, resource capacities, and temporal relationships.

Optimizin i Satisficin

Most scheduling systems simply find an acceptable schedule and then terminate. They are not
necessarily concerned with finding the best schedule that satisfies the constraints. In many
domains, there is great variability in the quality of schedules that satisfy constraints. For example,
an organization might want to find the schedule that uses the minimal amount of overtime labor, or
one that minimizes the overall flowtime of a schedule. Unfortunately, deriving the optimal
schedule is a time consuming process that requires a great deal of combinatoric search. In most
cases, near-optimal solutions are sufficient. The process of problem-solving with the goal of
finding near-optimal solutions is called satisficing"[Simon]. The satisficing algorithm presented in
the next section continues to search after finding a schedule that merely satisfies constraints, in
order to find better quality schedules according to stated optimization criteria.

State Condition

Most scheduling systems reason about the changing availability of resources over time but few
track the changes of arbitrary conditions. State conditions are attributes of the scheduling problem
that change with time. The tasks of a scheduling problem are constrained by these conditions and
occasionally the activities change the values of the conditions. Examples include the position of
switches and other mechanical parts, the readings of sensors, and the location of objects.
Schedulers that handle state conditions must provide a language to specify the additional staze
constraints and to specify the effects that tasks have on state conditions.

Examples of state conditions in the Space Shuttle scheduling problem include the position of the
payload bay doors, the status of the orbiter's hydraulics system, and whether an area adjacent to
the orbiter is hazardous. Examples of state constraints include the rule that no task may take place
in a hazardous area. Additionally, some activities require orbiter hydraulics while others require
the hydraulics to be off. Likewise, certain activities require the payload bay doors to be in one of



their three main positions. Activities also change these conditions. Some activities result in
opening or closing doors and turning hydraulics on or off. Similarly, hazardous operations cause
the areas surrounding their respective work areas to be considered hazardous thus delaying any
other operations that must share those areas.

Our system supports the modeling of state conditions and provides a language for state constraints
and task state effects however, details of this language are beyond the scope of this paper. It
suffices to say that the satisficing search mechanism presented below considers state constraints
and state effects as it schedules.

-emptiv hedulin

Pre-emption is the process of temporarily suspending activities and resuming them later. Pre-
emption can be caused for a number of reasons. In a telescope observation scheduler, the system
might interrupt an activity when a more important and rare astronomical event arises. Activities
could also be suspended to allow more contentious activities to execute in their limited windows of
opportunity. These are examples of flexible pre-emption. The Space Shuttle problem requires a
more restricted type of pre-emption called fixed pre-emption.

Fixed pre-emption is the suspension and resumption of activities according to a strict calendar. In
the Shuttle domain the calendar corresponds to work shifts. Some activities can be worked all
shifts, every day, while others have certain restrictions such as no weekends, only third shift, or
only first shift.

To handle this sort of pre-emption our system requires a calendar for each task that indicates how it
is to be pre-empted or split into smaller pieces. For example, suppose a task that requires 12 hours
work is assigned a first shift, no weekends calendar. If the task begins at 8:00 A.M. Monday, it
will be suspended at 4:00 P.M. that day, then resumed Tuesday morning at 8:00 A.M., and then
finally completed at noon. Thus the task spans two calendar days. Suppose however that the task
began Friday. It will then terminate Monday thus spanning four calendar days.

Pre-emption greatly complicates scheduling because of the way it interferes with resources and
state conditions. Whenever a new time is considered for a task, the task must be split according to
the calendar. However, it is sometimes inappropriate for the state and resource constraints to be
valid for the entire period of the pre-empted tasks. For example, the resource needs that
correspond to human labor should not be required during the suspended periods of the task's
duration. In other words, it makes no sense for employees to be standing around idle. In these
cases, the resource and state constraints must be inherited to the split tasks thus avoiding the idle
periods. Other constraints can remain active throughout the duration of the task. An example of
these include a resource request for a heavy piece of equipment that requires significant assembly.
The equipment usually remains in the work area, unavailable to others because of the overhead
required to set it up.

Our system allows the user to designate which resource requests and which state constraints and
effects are to remain valid throughout the suspended period and which ones are valid only during
active periods.

CONSTRAINT-BASED SCHEDULE REPAIR

In this section, we present the search method used by the GERRY scheduling system. The system
allows the user to specify a set of tasks, a set of state conditions, and a set of resources.



Tasks have start and end times, resource requests, resource assignments, work durations, and
calendars.

Resource pools are defined by the user and have a corresponding maximum capacity. For
example, in the Space Shuttle domain there might be a pool of 20 technicians or three pools of 5
forklifts.

State conditions are also provided by the user along with the initial values for each condition. For
example, the right-hand payload bay door with an initial value of closed.

Input

* Task Data - For each task, the following information is provided:
- work duration - amount of active work time required for the task to complete.
- calendar - the pre-emption times for the task.
- resource requests - the list of resource types and quantities necessary.

*» Resource Data - For each resource pool, the following information is provided:
- type - the name of the resource category that the pool is classified as.
- capacity - the maximum amount of the pool that can be simultaneously assigned.

» State Condition Data - For each state condition, the following information is provided:
-initial value - the value for a condition which persists until a task changes it.

Qutput

For each task, the following information is determined:
« start time - the beginning of the task.

» end time - the finish of the task.

* resource assignments - the actual resources chosen.

The rules and preferences that schedules must observe are captured by constraints. Constraints are
relationships that are desired by the user and are composed of the following items:

» Arguments - the tasks, resources, or state conditions that are related to each other. )
Example: a task and a resource pool are arguments to a resource capacity constraint.

* Penalty - a score of how poor the arguments are with respect to the constraint.
Example: if the resource pool argument were overallocated during the time of the
task, then the penalty of the resource capacity constraint would be high.

» Weight - a number reflecting the importance of the constraint. .
Example: resource capacity constraints for scarce resources such as expensive
equipment would have higher weights.

* Repairs - suggested schedule modifications that are intended to improve the penalty.
Example: move tasks that are involved in an overallocation to a time where
more of the resource is available.

Loosely speaking, the penalty is analogous to the amount of money one would have to pay with
respect to the current assignment of times and resources. The weight of the constraint reflects its



importance when compared to other constraints. Repairs are methods for changing the schedule,
either by substituting resources, or by moving, adding, or deleting activities.
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Figure 1: lterative R ir Schedulin

Figure 1. presents our simple iterative repair algorithm. See [Zweben et. al.][Zwebenl et. al.] for
details. The system begins with an initial schedule and then initiates a repair loop.! If the problem
posed to the system is a rescheduling problem then the initial schedule is the schedule with changes
imposed by the user. If the system is scheduling from scratch, then all tasks are placed at their
earliest possible start times while preserving temporal constraints. This is accomplished with a
well known polynomial (i.e., efficient) algorithm [Davis, Waltz].

In the repair loop, the system calculates the cost of the solution. This calculation is simply the
sum of each constraint's penalty multiplied by its weight. If the cost is below a threshold set by
the user, the search terminates.2 Otherwise, a cross-section of the highly penalized constraints are
repaired. We often refer to these constraints as the violated constraints because their penalties
exceed a certain threshold.

In short, the system simply starts with a schedule and isolates the violated constraints. Then it
moves tasks around and substitutes resources as suggested by the repairs embodied in the violated
constraints. It accepts the new schedule if the new cost is lower than the previous cost. If the
repaired schedule is worse than previous one, it is rejected and new repairs are attempted on the
previous schedule.3 The system continues this process until the cost of the solution is acceptable
to the user, or the system is terminated by the user. The system also terminates if a certain number
of iterations have been tried.

1Similar repair techniques are used in OMP [Biefeld, et. al.] and in the work on the MIN-CONFLICTS heuristic
[Minton, et.al.].

2The search also terminates if the system exceeds the iteration bound imposed by the user.

3Actually the system sometimes accepts worse schedules in order to break out of situations called local minima.. In
a local minimum, any repair leads to a worse schedule, but subsequent repairs could improve the schedule so that it
is eventually superior. This technique is called simulated-annealing and was originally reported in [Kirkpatrick].



SYSTEM FUNCTIONALITY
User Interface Overview

GERRY allows both manual and automatic scheduling thus requiring a sophisticated user interface.
The user instructs the interface to display a chart. The chart library is extensible and allows the
user to define different views of the schedule. For example, the user could ask for a time-line

(i.e., Gantt Chart) and a resource profile (i.e., a histogram of resource usage over time) to be
displayed for every task. Alternatively, the user could require a time-line and state condition
profile (i.e., a histogram of state conditions over time) for a specific set of tasks. Figure 2. is part
of a Space Shuttle schedule with a time-line and resource profile. Figure 3. shows the same
schedule (with hourly units) at a coarser level of resolution. Zooming in and out of different levels
of resolution is accomplished by clicking in the upper right hand boxes of the chart. This
convention was adopted from the COMPASS scheduling system of Barry Fox at McDonnell
Douglass in Houston, Texas.

When the chart is displayed each of the activities and histograms are mouse-sensitive. One can
drag a task to a new location, modify its status as pending, active, or complete, and ask for a the
list of resources that the task uses. The status of an activity is reflected by the shading of the
displayed bar. If the activity is shaded black, it is complete. Ongoing activities are outlined in
black (but not shaded). Unshaded activities that do not have an outline are pending.

In addition to status, shading is also used to reflect the danger level of the task. If an activity is
shaded with a cross-hatch pattern then it is considered hazardous.

The interface supports many task look-up methods. For example, one can scroll to a point in a
chart where a particular task begins, one can scroll to an over-allocation, or one could simply use
scroll bars. - '

Also included in the interface are a form editor and a temporal constraint grapher. The form editor,
shown in Figure 4., is simply a mechanism to enter new activities and constraints. The grapher,
shown in Figure 5., allows the user to inspect the complex temporal relationships between tasks.
The grapher works in a demand-driven manner instead of cluttering the display with the entire
schedule's graph. One clicks on a task and the graph expands from that point on.

1 itoring and Reschedulin

While GERRY can be used as a planning tool for future schedules, its strength is in its ability to
monitor schedule execution and adapt to the schedule changes imposed by elements outside the
system's control. Users modify tasks by changing their status, dragging them around, changing
their constraints, and by adjusting task durations. Users can also add and delete tasks.

One of the most important functions of the user interface is the ability to alert the user to the
ramifications of their changes. There are three main charts used to inform the user of what they
have done: 1) a before-and-after chart, 2) a constraint violation summary chart, and 3) a constraint
violation problem report. The before-and-after chart, shown in Figure 6., reports all the tasks that
have been changed by indicating their new position and their old position. The constraint violation
summary chart, shown in Figure 7., is a list of the current constraint violations. By clicking on one
of the violations in the constraint violation summary chart, a constraint violation problem report
appears that explains the conflict. For example, the constraint violation problem report shown in
Figure 8. explains why a particular resource capacity constraint is violated. Only the tasks that
request the resource during the interval of the violation are displayed and the interval is shaded in
color.



After changes are given to the system, the user can manually resolve the outstanding violations or
ask the system to use the iterative repair method. When the automated method terminates (or is
interrupted) it reports a before-and-after chart. If there are outstanding violations, then a constraint
violation summary chart is also displayed.

PROBLEM DOMAINS
Space Shuttle Ground Processing

In the Space Shuttle Ground Processing domain we start with schedules provided by an existing
project management tool used at the Kennedy Space Center. It uses the critical path method (CPM)
to schedule activities at the earliest possible times. These schedules are used by Flow Managers
who have the responsibility to prepare the orbiter in time for the designated launch date. The data
sets start with about 300-400 activities that expand into thousands of split tasks and constraints.
Our project team attends KSC schedule meetings and updates the schedule accordingly. Currently,
we are in the process of delivering new schedules to the flow managers and beginning to use the
constraint-based repair method to optimize the schedule. Below we enumerate the constraints used
for this application.

The constraints for this application include:

1. Resource Capacity Constraints

» Arguments; - Start of a task
- End of a task

- Resource Pool

* Penalty: - Constraint is violated when the pool is over-allocated during the task.
Example: 3 tasks in parallel all need a technician but only 2 are on call.

* Repair: - Strategy 1: Substitute
Assign a resource pool of the same type that is not over-allocated.

- Strategy 2: Move
Move one of the tasks contending for the resource to the next time
when there is a sufficient amount of the resource.

To decide which task to move the following heuristics are used:

-Heuristic 1: Fitness
Prefer to move tasks that use an amount of the resource that is
close to the amount over-allocated.
-Heuristic 2: Slack
Avoid moving tasks that have little slack between their
earliest and latest start times.4
-Heuristic 3: Dependents
Avoid moving tasks with temporal dependents
(e.g., postrequisites).
-Heuristic 4: Priority

4Slack time indicates the amount of time a task could slip before it affects the milestone. This measure is calculated
from the CPM algorithm mentioned earlier.



Avoid moving high priority tasks.
-Heuristic 5: In Process

Avoid moving tasks that have begun.
-Heuristic 6: Proximity

Avoid moving tasks that are to begin soon.

2. State Constraints

rguments; - Start of a task
- End of a task
- State Condition
- Required State

Penalty: - Constraint is violated when the condition does not reflect the required state
during the task.
Example: The payload bay doors are closed for a task that requires them to
be 160 degrees open.

Repair: - Strategy 1: Move
Move the task to the next time where the state condition reflects the
desired state.

3. Milestone Constraints

Arguments: - End of a task

- Due Date
Penalty: - Constraint is violated when the end of the task is completed later than the
given date.
Repair; - Strategy 1: Move

Move the task back earlier, before the given time.

Currently we lack the domain knowledge that would distinguish between the importance of these
constraints so they all have the same weight. The system uses these constraints (and their
corresponding repairs) to minimize missed launch dates (via milestone constraints) and to minimize
over-allocation of KSC personnel (via resource constraints) while maintaining the correct orbiter
configurations (via state constraints).

In the near future we intend to include another constraint that demonstrates the flexibility of our
system. This new constraint will inform the system to minimize labor costs by avoiding overtime
labor on the weekend.

4. Weekend Constraints
Arguments: - Global constraint.

Penalty: - Constraint is violated when a large number of tasks intersect the weekend.

Repair; - Strategy 1: Move
Move the tasks with sufficient slack time off the weekend.



Manufacturing Problems

In job-shops, there are resources such as machines and human operators. Similar to pre-
determined launch dates in the NASA domain, job shops have order due dates. In job shops, each
machine has to be set up correctly depending upon the task at hand. Typically jobs follow a
process plan that is fairly well known in advance. There are very similar optimization criteria in
this domain as there are in the Space Shuttle domain. In fact, the constraints described above are
usually applicable. Additional constraints would also be written that would modify the schedule to
minimize the number of machine set-ups required thus minimizing flow time. Additionally,
constraints that minimize the amount of work-in-process inventory would be incorporated. We
claim that a knowledge engineer could easily do this without writing another program but rather
simply writing new constraints.

irline, Truckin Parcel Service Problem

In the transportation sector, large fleets of vehicles must be scheduled on a daily basis. These
operations are stricken with unexpected events such as unpredicted malfunctions and malevolent
weather. When these events occur, it is crucial to get back on track minimizing impact to the
original schedule.

In transportation problems there are additional decision variables that constrain the schedule which
include the start and end locations of any task and the speed that one will travel between those
locations. Constraints would be added that relate the locations, speed, and duration of the task.
Additionally the quantity of certain resource requests must be constrained by the duration. For
example, the amount of fuel required by an aircraft is dependent upon how long the plane will
travel. Constraints that serve to minimize fuel and delays, while observing safety constraints
would be added to the constraints discussed above.

Military Problems

Many military problems resemble transportation problems but with targeting and probability of
success factors added. The tasks are generally trips from one's bases to the enemy's targets (and
hopefully back home again). In addition to the transportation constraints discussed above,
constraints that model the appropriateness of various aircraft and ordnances for targets would be
required.

Power Utilizati

Ames Research Center is also deploying GERRY to minimize power consumption of the Ames
wind tunnels. The rates that local utilities charge NASA are based upon the season, time of day,
and quantity of power used. Therefore the wind tunnel test schedule can greatly affect energy
costs. Ames will use GERRY to adjust the wind tunnel test schedule to minimize its power costs
but maintaining the deadlines imposed by those who need the tunnels. Constraints are used to
penalize schedules of high cost while repairs move tasks to lower these costs.

SUMMARY

We have developed a framework for scheduling called constraint-based iterative repair. This
framework supports complex scheduling problems where satisficing is required. GERRY, the
system based upon this framework, is operational and is being deployed at the Kennedy Space
Center in Florida in support of Space Shuttle Ground Processing. The system uses the
optimization criteria encoded as constraints to find near-optimal schedules. We claim that our



approach is amenable to other problems faced within industry and government and welcome others
to apply it.
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NASA AMEs RESEARCH CENTER MaRrcH 1992
FIA-91-27

Constraint-Based Scheduling

MONTE ZWEBEN September 1991

The GERRY scheduling system developed by NASA Ames with assistance from the Lockheed Space
Operations Company, and the Lockheed Artificial Intelligence Center, uses a method called constraint-based
iterative repair. Using this technique, one encodes both hard rules and preference criteria into data
structures called constraints. GERRY repeatedly attempts to improve schedules by seeking repairs for
violated constraints. The system provides a general scheduling framework which is being tested on two
NASA applications. The larger of the two is the Space Shuttle Ground Processing problem which entails
the scheduling of all the inspeciton, repair, and maintenance tasks required to prepare the orbiter for flight.
The other application involves power allocation for the NASA Ames wind tunnels. Here the system will be
used to schedule wind tunnel tests with the goal of minimizing power costs. In this paper, we describe the
GERRY system and its application to the Space Shuttle problem. We also speculate as to how the system
would be used for manufacturing, transportation, and military problems.

FIA-91-28

Introduction to INY) and Recursive Partitioning
WRAY BUNTINE ANR RicH CARUANA October 1991

This manual describes t%‘gﬂ IND package for learning tree classifiers. from data. The package is an integrated
C and C shell re-implementgtion of tree learning routines such as’CART, C4, and various MDL and Bayesian
variations. The package inclides routines for experiment cor;,t*t/ol, interactive operation, and analysis of tree
building. The manual introdubes the system and its mafny options, gives a basic review of tree learning,
contains a guide to the literature’and a glossary, lists the’manual pages for the routines, and instructions on
installation.

FIA-91-29 N\ S

/-
Acquistion and Improvement of Human Mofor Skills: Learning Through Observation and Practice
WAYNE IBA AN November 1991

N

/

y
Skilled movement is an integral part‘,‘dlf the hu
development is a prerequisite to the construction
a computational model of humédn motor behavior,
through observation and the improvement of skills
effector interface, a memo;}y“ of movements, and a s
it recognize and generate motor skills. The system in
performed by another agent and constructing a concept thierarchy. Given a stored motor skill in memory,
MZEANDER will cause an effector to behave appropriatel} All learning involves changing the hierarchical
memory of skill concepts to more closely correspond to either'pbserved experience or to desired behaviors. We
evaluate MEANDER empirically with respect to how well it agquires and improves both artificial movement
types and ha.ndwr/i,ften script letters from the alphabet. We Also evaluate MJEANDER as a psychological
model by comparing its behavior to robust phenomena in humgns and by considering the richness of the
predictions it mai\(es.

existence. A better understanding of motor skills and their
truly flexible intelligent agents. We present MZEANDER,
that uniformly addresses both the acquisition of skills
hrough practice. MEANDER consists of a sensory-
of performance and learning mechanisms that let
ially acquires such skills by observing movements
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