
_t _"735., _
NASA Technical Memorand_105582 __

.................... Beams ................ Vibr/itiong of Delam]nated

7

= := M._-H,H_ Sh=en ....... :_

Ohio State University _, .____.. ::...... _.__: ....................
Ci_Iumbus, Ohio

and

J.E. Grady
___ .... :__-___Lew_isRese___._arc_h.C enter .......

Cleveland Ohio

"_:" (NASA-T_-'I.O55B2) FREE: VIa.RATIONS 0 r: N 9Z-257_t_ _ -

OFLAHINATr3 .... AMS (NAS 27 p

Uncl _s

G3/g4 0091273

......................... _. v,-i ........ _-_

https://ntrs.nasa.gov/search.jsp?R=19920016511 2020-03-17T10:55:38+00:00Z
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NASA Technical Reports Server

https://core.ac.uk/display/42812345?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




FREE VIBRATIONS OF DELAMINATED BEAMS

M.-H.H. Shen

Ohio State University

Columbus, Ohio 42310

and

J.E.Grady

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135

O_
Q
O_

ABSTRACT

Free vibration of laminated composite beams is studied. The effect of interply delaminations on

natural frequencies and mode shapes is evaluated both analytically and experimentally. A generalized

variational principle is used to formulate the equation of motion and associated boundary conditions for

the free vibration of a composite beam with a delamination of arbitrary size and location. The effect of

coupling between longitudinal vibration and bending vibration is considered. This coupling effect is

shown to significantly affect the calculated natural frequencies and mode shapes of the delaminated beam.

NOMENCLATURE

A

b

d

d 1

E

f

G

h

beam cross-section area

half breadth of rectangular beam

half depth of rectangular beam

delamination location along the thickness of tile beam

composite bending modulus

nodal displacement vector, f = (w,/_,u) T

composite shear modulus

laminate thickness
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w

P

_ij

cross-sectional area moment of inertia

functional integral

global stiffness matrix

element stiffness matrix

length of beam

left crack tip location

right crack tip location

length of subbeam (-= _/M)

number of subbeams

global mass matrix

element mass matrix

ply thickness

displacement components (= u, v, w)

longitudinal deflection amplitude

nodal longitudinal displacement vector

volume

bending deflection

bending deflection amplitude

nodal transverse displacement vector

shear angle

shear angle amplitude

nodal shear angle vector

Kronecker's delta, = 1 for i = j and

mass density

strain tensor component

=0 for i_.i



aij stress tensor component

wc natural frequency of delaminated beam

Wuc natural frequency of undelaminated beam

- x/_

_/ position coordinate along a subbeam

- a/at

' -- a/ax

INTRODUCTION

The use of composite materials has been increasing consistently in aerospace applications due to

their high specific stiffness and strength. However, the mechanical properties of composite materials may

degrade severely in the presence of damage. This damage may occur as a consequence of imperfections

introduced during the manufacturing process or it may result from external loads occurring during the

operational life, such as impact by foreign objects.

A considerable amount of research effort has been expended in attempting to understand and

model the failure processes of composite materials. Such a task is complicated by the fact that damage in

composite materials may grow as a combination of several failure modes such as matrix cracking, fiber

pullout, fiber fracture, or delamination. 1 Delamination is one of the most common failure modes of

composite materials, and can potentially be the most damaging. Numerous researchers 212 have studied

various aspects of the delamination process analytically and experimentally. Most of these studies were

focused on either the initiation or the propagation of delamination under in-plane static or fatigue

loadings. In comparision, little research has been done to determine the changes in dynamic response of

composite materials caused by delamination.

Recently, several studies have been conducted in the area of vibration behavior. The effect of

delamination on vibration properties of composite beams was studied by Grady and Meyn 13 and Lee

et al. 14 Their experimental measurements showed that the natural frequencies and damping of composite



IZI

test specimens were significantly affected by the introduction of an interfacial delamination. Due to the

difficulty of mathematical modeling, the results of these tests were compared to calculations from finite

element approach only. 13 The possibility of determining the integrity of composite beams from measured

dynamic behavior was also proposed. 14 Free vibration of a laminated composite beam with a one-

dimensional delamination was also studied by Ramkumar et al. Is Their analytical model predicted a

severe drop in the natural frequencies due to delamination, which was found to be inconsistent with

experimental results. They attributed this discrepancy to the effect of contact between the delamination

surfaces. However, this explanation has never been validated. Recently, Wang et al. 16 and Yin and

Jane 17 have improved this analytical model by including the effect of coupling between the longitudinal

and flexural motion in the delaminated plies. With the inclusion of coupling, the results were in good

agreement with experimental measurements.

The objective of the proposed work is to further develop an effective mathematical model for

determining the natural frequencies and corresponding mode shapes for composite beams with a

delamination. This model is based on cracked beam theories 18"2° derived using Timoshenko beam theory

and general kinematic assumptions which account for the coupling effects mentioned above. A

corresponding experimental study is also carried out to verify the analytical predictions. The use of this

new theoretical model to identify the delamination position and size from changes in the natural

frequencies and mode shapes of the beams is also discussed.

THEORETICAL DEVELOPMENT

The geometry of the delaminated beam is shown in Fig. 1. The delamination is assumed to be

uniform through the width of the beam, and located arbitrarily, as defined by the parameters {l, _2, and

d 1. The objective of the present theoretical model is to relate these parameters to the natural frequencies

and mode shapes of the delaminated composite. For clarity, the theoretical formulations for the

delaminated and undelaminated regions are derived separately, as follows.



Undelaminated Region

In the undelaminated regions, indicated by beams 1 and 3 in Fig. 1, only transverse vibration is

considered. The assumptions using the Timoshenko beam theory to include shear deformation effects are

summarized as follows:

uy = 0, uz = w(x,_),Ux= -z(w' + ,)

Px = O, py = O, p, = P(x,t)

SXX = at' _XZ = --_

_yy = Czz = Vfxx

6xy = 6y z = 0

"xx= .xx(X,Z,t), % : .x.(X,_,t)

ayy = azz = axy = ay z = 0

X x ffi Xy = X z 0

(1)

where u i are the displacements referring to Cartesian axes x, y, z; a and _ represent stress and strain,

is the angle due to shear force, and X i and Pi are the body forces and velocity components,

respectively.

In this work, the Hu-Washizu principle is modified to include the virtual work done by the inertial

forces. This yields the following functional:

[ 1 Uj,i)]ai j ]PPiPi - A(eij) + eij - _ (ui,j + + Xiu i dV + f $1 giuidS + f S_ gi(ui - _i)dS dt

(2)

where aij and eij are stress and strain components, and X i and Pi are the body forces and velocity

components, respectively. (The indices i_i = 1,2,3 refer to the orthogonal directions x,y,z, respectively.)

p is the mass density, A(eij ) is the strain energy density function, the gi are the respective surface

tractions, V is the total volume of the system, S is its external surface, S 1 is the traction prescribed



boundary, and S_ is the displacement prescribed boundary. The overbarred quantities gi and ui

denote the prescribed values of surface tractions and surface displacements, respectively.

The functional J of gq. (2) has stationary values for the actual solution for the independent

quantities ui, Pi' _ij' and aij. Therefore, from variational principle, for arbitrary independent variations

of 6u i (within conditions 6u(tl) = 6u(t2) = 0), 6pi , 6_i, and 6ai, the first variation of the functional J

vanishes, i.e., 6J = 0, and is listed as follows:

f::[ fv

I 1+  ij-  (uij

(_ij,j + Xi - P [_i)_Ui + (_ij - A'eij)_eij

+ uj,i)]/_aij /_Pi

+ _f (gi - gi)6ui dS + _J (ui - ui)6gi ds dt = 0
si Sa

dV

The kinematic assumptions (Eqs. (1)) are substituted into the above formation (Eq. (3)), whereby

the problem is reduced to a form corresponding to the beam model. The equations of motion can be

derived in terms of displacement w and shear angle fl by subsequently integrating by parts each term

of Eq. (7) and then integrating over the section. This gives

.... /_',') (4)E*I(w + + pA_r = 0

E*l(w"' + /_")- A_G*fl = 0 (5)

along with the associatedboundary conditions.Here,accordingto Ref.21, _(= 0.7715) isthe shear

correctionfactor,and E*, G* are the effectivebeam bending and shear moduli, respectively.



Delaminated Region

In Fig. 1, the delaminated region is divided into the upper plies (beam 2) and the lower plies

(beam 4). The governing equations of motion are the same as the equations (Eqs. (4) and (5)) for the

undelaminated region.

However, the effect of in-plane displacement u 2 and u 4 on the location of the neutral planes of

beams 2 and 4, respectively, should be considered in order to achieve the matching conditions,

u2 = e2(w2'+ u4 = e4(wl + (6)

at the left and right crack tips, respectively. The distance between neutral planes of the upper plies

(beam 2) and undelaminated region is designated e2. Similarly, e4 is the distance between the neutral

plane of the lower plies (beam 4) and undelaminated region. In the delaminated region, longitudinal

motion is thereby coupled with bending motion, and the longitudinal vibration in the delaminated region

changes the bending vibration of the delaminated beam. In other words, in order to describe the bending

motion of the delamlnation region (beams 2 and 4), in addition to analyze Eqs. (4) and (5), the governing

equation for the longitudinal displacement u,

 *Au" - = 0 (7)

must also be included.

Two mathematical models are used in the present study. In the first model (model A), the crack

interfaces are assumed to be in contact along the delaminated region throughout the vibration, and the

coupling effect is accounted for in both the upper and lower plies of the _lelaminated region. Therefore,

coupling between in-plane and transverse displacements described occurs throughout the entire

delaminated region. In the second model (model B), contact between the delamination surfaces is

neglected. Therefore, in-plane motion is not affected by bending, and coupling only occurs at the

boundaries of the delamination (i.e., the crack tips). In addit ion, the effects associated with impact,

friction, and penetration between the two ;rack faces are neglected for simplicity.



APPLICATION TO CANTILEVERED COMPOSITEBEAMS

To test the accuracy of the present analytical model, the modes of free vibration of laminated

composite beams with uniform one-dimenslonal delaminations have been examined. Following the

diagram in Fig. 1, the example considered here is that of a rectangular, cantilevered beam with uniform

cross section, of depth 2d and breadth 2b. The delamination, of length 02 - 01, is located a distance

d 1 from the neutral axis. Assuming simple harmonic motion, we take w(x,t) = _'(x)e iwct,

_/(x,t) = _(x)e iwct, and u(x,t) = u(x)e iwct which give

, Iiii A_JtEi Ii(wi + _i ) - w PAi_ i = 0, i = 1,...,4 (8)

_F A JII ^_l

Ei Ii(wi + _i) - AgGi*_i ffi 0, i = 1,...,4 (o)

and

Jt

Ei*Aifi i - w_pAifi i = 0, i = 2,4 (10)

Results are thereby obtained for the natural frequencies and mode shapes in terms of delamination size

and location.

Test Specimen Fabrication

Seventeen laminated plates of dimension 6 by 12 in. were fabricated from T300/934 graphite/epoxy

prepreg, supplied by ICI/Fiberite. Each laminate was laid up in an eight-ply [0/9012 s construction and

cured using the supplierN recommended cure cycle, Individual test specimens, of nominal dimension

10 byO.5 by 0.0435 in.,were cut from the laminates with a water knife that has a tolerance of =i=0.005 in.

on all dimensions. Interply delaminations were simulated by inserting a 0.00i-in. thick teflon strip

between selected plies of each laminate prior to curing. For comparison, one laminate was fabricated

with no delaminatiom

Using a pair of calipers accurate to +0.0005 in., thickness measurements were taken of 120

indiv|dua[ test Specimens Cut from the 17 different laminates that Were fabricated for this study.

2 . _

Seventy-five percent of the specimens had thicknesses in the range 0.042 < h < 0.045 or a variation of

i



approximately4-3.5 percent from the average thickness of 0.0432 in. From Eq. (8), w varies with h 3/2,

so the variation in specimen thickness results in a 4-4.5 percent uncertainty in the natural frequencies.

Vibration Testing

The apparatus shown in Fig. 2 was used to measure the resonant frequencies for the fundamental

vibration mode of each of the test specimens. Each specimen was clamped along half of its span, as

shown in the figure, to simulate a 5-in. long, 0.5-in. wide cantilevered beam with a single, uniform,

through-width delamination centered at midspan. Within each laminate, a delamination of length 1, 2, 3,

or 4 in. was embedded along one of the four-ply interfaces shown in Fig. 3. Therefore, 16 different

specimen types were tested, each with a different delamination size/location combination. Three

replicates of each specimen configuration were tested, to determine the measurement variability.

An electrical resistance strain gage (type ED-DY-062AP-350) was mounted on each test specimen,

0.5 in. from the cantilevered support, and oriented longitudinally, to measure flexural strain. A single-

channel digital signal analyzer was used to record the transient strain response due to an impulsive force

applied at the free end of the specimen. The first 8 sec of the free vibration response was digitally

sampled at a rate of 5120 samples per second. The frequency response, calculated from a Fast Fourier

Transform of the time domain data, therefore had a resolution of 0.125 Hz, which corresponds to an

inherent measurement error of approximately 0.375 percent for the lowest mode. The fundamental

resonant frequency was identified by locating the first peak in the frequency response curve.

The first mode shape of each specimen type was measured photographically. Uninstrumented test

specimens were centrally clamped to the actuator of a 100-1b capacity shaker, which divided the 10-in.

long specimens into two identical cantilevered beams of dimension 5 by 0.5 by 0.0435 in. The frequency

of the sinusoidal forcing flmction was manually increased until the test specimen vibrated in its

fundamental mode, as shown in Fig. 4. Because of the symmetrical displacement shape of the test

specimen, an effectively "clamped" boundary condition is maintained at the central support point.



The mode shape was photographed with a black-and-white polaroid camera by choosing a shutter

speed such that the film was exposed for approximately one cycle of motion; that is, the shutter was open

for a time At given by

At = _1 (11)
w

While tile shutter was open, the test specimen was illuminated by awhere w is the resonant frequency.

strobe light that cycled on and off at a frequency fl, chosen such that

= Nw (12)

where N is the approximate number of multiple exposures of the mode shape that are required. In this

case, N = 6 was used, which gave typical results like that shown in the photograph in Fig. 5 for a test

specimen with no delamination. Due to symmetry, only one-half of the vibrating test specimen is

photographed.

Local Rayleigh-Ritz Method

Numerical integration of the mode shapes for the undelaminated beam are normally used to

generate the mass and stiffness coefficients used in the Calerkin procedure. In this case, however,

numeric a] integration is c0mputationally intractable, because these mode shapes =include hyperbolic

functions. This makes the Galerkin procedure impractical, particularly when many modes are required.

To circumvent this problem, a local Rayleigh-Ritz Method is used, to calculate a piecewise

continuous fit to the deflection shape. The displacements, v_(x), _(x), and u(x) are approximated by

using cubic and linear polynomials defined over specific segments of the structure, here it is called

subbeam. The coefficients of the polynomials are determined uniquely in terms of the displacements at

ith subbeam are approximated asthe end points. The displacements at a point within the

_¢i(r}) = FT(/t)wi,

=

(13)

(14)

10



and

Qi(r/) = I-IT(_/)ui, 0 _< r/ _< _ (15)

where F_ = [F1, F2, F3, F4] T and t_I = [Itx, H2] T are vectors of prescribed (shape) functions of position

and wi, ]_i, and u i are vectors of end transverse deflection and its slope, shear angle, and longitudinal

displacement for the ith subbeam. The shape functions (Fj)j=I,..., 4 and (Hj)j=I, 2 are listed in the

Appendix. This piecewise polynomial interpolation amounts to a finite element solution of the

differential equations (Eqs. (8) to (10)) for the delaminated beam. In this analysis, a local Rayleigh-Ritz

model with six shape functions, M identical subbeams, M d subbeams in the delamination region, and a

total of 3(M- 1) + 2(M a - 1) degrees of freedom is used.

The free vibration eigenvalue problem is expressed as

[Ke]f - w2[Me]f = 0 (16)
- C

where f = (w,//, u)T is the vector of nodal displacements, and [Ke], [Me] are the global stiffness and

mass matrices for the entire beam.

described by

The assembly process used to obtain these matrices is symbolically

M

(f,[Ke],[Me]) = _ (fi,[ki],[mi])
i=1

(17)

where -fi, [ki] and [mi] are the nodal displacement, stiffness and mass matrices, respectively, for the ith

subbeam, and the summation extends over all M + M d subbeams. The mass and stiffness matrices of

the ith subbeam, in the local coordinate system are:

0!][mi] = pAi m i

0

(18)

11



and

[: lk e 0 0

[ki] -- (E;;Ii) kl ks

k3 k4

(19)

where the individual elements of tile stiffness and mass matrices are given in the Appendix.

The stiffness and mass matrices have dimension 6 by 6 for tile subbeams located in the

undelaminated region and 8 by 8 in the delaminated reg!on. _: : :: _ _ ...........

_ The eigenva!ue problem, Eq. (16), is then solved foran increasing number of subbeams, M, until a

frequency convergence test was satisfied.

max ,( 6
(20)

where Aw M is the change in the first frequency from the M-subbeam to the (M + 1)-subbeam

M is the M-subbeam estimate of the first frequency of the delaminated beam, andcalculation, we

small real number. For all cases presented in this paper, 100 subbeams were necessary to achieve

isa

convergence with • -- 2.0×10 -5.

RESULTS AND DISCUSSION

The validity of this theoretical model is now demonstrated by applying it to a composite beam

structure with embedded internal delaminations of varying size and at several different locations.

Specifically, the material is a graphite fiber/epoxy matrix composite with ply properties as given in

Table 1. The test specimens are cut from eight-ply laminates, laid up in a cross ply, [0/9012 s

configuration. It is important to note that, the thickness of the beam used in the following theoretical

analysis was 0.04 in., which was determined by adding the nominal thickness (0.005 in.) of the individual

plies.

12



Natural Frequencies

Calculated results presented in Figs. 6 to 9 and Tables 2 to 5 show the effect of delamination size

and interface location on the fundamental natural frequencies of the beam. Model A (solid llne) is based

on the assumption that longitudinal/flexural coupling exists along the entire length of the delamination,

and model B (dashed line) assumes that coupling exists only at the two delamination crack tips. Data

points indicate the average measured frequency from vibration tests of three different experimental

specimens, which were tested as described earlier. The error bars indicate the measurement variation for

the three tests. Data scatter increases slightly for the longer delaminations.

The results shown in Figs. 6 to 9 and Tables 2 to 5 indicate that model A gives relatively good

agreement between the calculated frequencies and test results at three of the four interfaces. When the

delamination lies along the outermost interface, model B gives the best agreement with test data. This

indicates that the longitudinal/flexural coupling in the delaminated region is insignificant when the

delamination lles between the outermost plies of the laminate. In all other cases, coupling significantly

increases the vibration frequency. For short delaminations, the frequencies are relatively insensitive to

delamination size; particularly for delaminations shorter than 1 in. (20 percent of the span). Both

analysis and test results indicate that the sensitivity (i.e., slope) of the frequencies to delamination size

increases with the length of the delamination, for all interracial locations. Figures 6 and 8 show excellent

agreement between the calculated frequencies and the experimental results for delaminations along the

midplane and interface 3, respectively. Figures 7 and 9 show that theoretical model slightly

overestimates the measured frequencies when the delamination lies along interfaces 2 and 4.

The theoretical results from Figs. 6 to 9 are plotted together in Fig. 10. This figure shows clearly

that the natural frequency is most sensitive to delaminations near the midplane of the laminate_ and that

the sensitivity generally decreases as the distance between the, delamination and the midplane increases.

This could be a result of the higher degree of coupling between the longitudinal and bending motion when

the delamination lies closer to the midplane. For delaminations very close to the outer surface of the

13



laminate (interface 4), however, the frequencies are more sensitive to delamination size, due to the lack of

a longitudinal/flexural coupling effect, as discussed earlier.

Mode Shapes

The mode shapes of composite beams are also affected by the size and location of embedded

delaminations. In this section, the calculated mode shapes are compared with those measured

photographically for each of the 16 different combinations of delamination size/interface location

examined in this study.

Delaminations less than 3 in. long did not measurably affect the mode shapes. Figures 11 to 14

show the effect of the 3-in. delaminations at each of the four-ply interfaces. If the delamination is off the

laminate midplane (interface 1), the deformation of the laminate depends on whether the delaminated

plies are in longitudinal tension or compression. This is illustrated by the mode shapes shown in Figs. 12

to 14, which are unsymmetric about the line y _- 0 because the delamination opens under compression,

but not under tension. The vibration amplitude is therefore higher during the %ompressive" part of the

cyclic motion because the delaminated plies do not contribute much bending stiffness to the laminate

when they are in compression.

To compare the photographic results with theoretical calculations, the amplitude of the calculated

mode shape was normalized such that the free-end displacement of the beam was the same as that

measured experimentally. The maxlmum-amplltude deformed shape of each test specimen was then

manually traced from multiple-exposure photographs of the fundamental mode shape similar to that

shown in Fig. 5 for an undelaminated test specimen. The resulting comparisons are shown in Figs. 15

to 18.

The calculated mode shapes are in close agreement with the experimental measurements for the

%ompressive" part of the vibration cycle. When the delamination is along a ply interface other than the

laminate midplane (interfaces 2 to 4), a measurable crack opening forms in the delaminated region. This

is evident in the experimental results shown in Figs. 16 to 18, and also appears in the calculated mode

14



shapesfor interface4 (Fig. 18}althoughto a lesserextent. Thecalculationsdid not showa significant

crack opening for the other interface locations. Experimental observations indicated that the relative

magnitude of the crack opening displacement is dependent on the magnitude of the sinusoidal forcing

function.

CONCLUSIONS

A formulation for the flexural motion of a composite beam containing a one-dimensional

delamination is presented. It is based on a key kinematic assumption made to satisfy the compatibility

requirements in the vicinity of the delaminated region. The idea is to include the coupling between

longitudinal vibration and bending vibration in the modes of vibration. This coupling effect significantly

increases the flexural stiffness of the laminate.

The equation of motion and associated boundary conditions are derived under the generalized

variational principle. The derivation procedure can be used for the cases of short beams where the effect

of a shear stress concentration near the crack tips becomes important. The validity of the theory is

established by examining the dynamic response of a cantilevered composite beam. The analytical

solutions show excellent agreement with experimental results, which indicate that the flexural frequencies

are relatively insensitive to delaminations of length less than 20 percent of the beam length.

15



, APPENDIX

The shape function for the subbeams Eqs. 18 to 20 are given by:

F1 = I - 3. _ +2 F2 = t/- 2__ +
t2

and

F 3 = 3 ._ - 2 F 4 = -_ +

The elements of the mass matrix, Eq. (23), for the individual subbeams are given by:

[ml]= j_ FTFdt/, [m_]= Jo_ I-ITHdr/

and the elements of the stiffness matrix, Eq. (24), are given by:

[kl]= (E;:Ii)J_ BTBdt/, [k,]--(L;Ii)j_ BTpdt/

[k3] = E;Iij _ pTBdT/, E*A. ft, pTpdt/[k6] = i 'Jo

[k4]= E;IiJ0_ pTpdt/ + _G;jo_ HTHdt/

where P = d/d_/tt and B = d2/d2_F__.

16
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TABLE 1.--PROPERTIESOF

THE COMPOSITEBEAMS

(EACH PLY)

Ell : 19.5)<106 psi

E22 = 1.5)<106 psi

G12 = 0.725)<106 psi

V12 _ 0.33

p = 1.38)<10 -4 lb-sec2/in. 4

TABLE 2.--FUNDAMENTAL RESONANT FREQUENCY

e2" |1'
in. a

A1 A2 A3 A

0.0

1.0

2.0

3.0

4.0

(IN HERTZ) FOR DELAMINATION

ALONG INTERFACE

Specimen designation Analyticalmodel

79.875

78.376

74.375

68.250

57.623

aDelamination length.

79.875

79.126

75.000

66.250

57.502

79.750

77.001

76.751

66.375

 ?.5Ol

82.042

80.133

75.285

66.936

57.239

B

82.042

67.363

56.479

47.898
40.586

TABLE 3.--FUNDAMENTAL RESONANT FREQUENCY

(IN HERTZ) FOR DELAMINATION

ALONG INTERFACE 2

-|1, Specimen designation Analytical model
in. a

B1 B2 B3 A B

0.0

1.0
2.0

3.0
4.0

79.875

79.375

75.126

64.001

45.752

79.875

78.375

75.250

70.001

49.751

79.750
76.626

75.001

69.876

49.502

82.042

81.385

78.103

71.159

62.121

82.042

68.776

59.438

51.180

43.860

aDelamination length.
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TABLE 4.--FUNDAMENTAL RESONANTFREQUENCY

(IN HERTZ) FOR DELAMINATION
ALONG INTERFACE3

02- I1, Specimendesignation Analyticalmodel
in. &

C1 C2 C3 A B

0.0

1.0

2.0

3.0

4.0

79.875

79.625

79.500

75.625

73.376

79.875

80.125

81.875

77.125

73.627

79.750

80.625
77.875

78.125
70.376

82.042

81.461
79.932

76.712
71.663

82.042

75.137
70.416

65.058
59.131

aDelamination length.

TABLE 5.--FUNDAMENTAL RESONANT FREQUENCY

(IN HERTZ) FOR DELAMINATION

ALONG INTERFACE 4

{2 - fl, Specimen designation Analytical model
in. a

D1 D2 D3 A B

0.0

1.0

2.0

3.0

4.0

79.875

75.375

69.376

65.375

52.750

79.875

75.25O

68.001

59.625

57.876

79.750

77.250

69.375

N.A.

56.251

82.042

81.598

80.383

77.698

73.147

82.042

75.834

71.881
67.181

61.704

aDelamination length.
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Figure 1 ..--Geometry of a composite laminated beam wlth
a one-dlmenslonal delamlnatlon.
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measurement.
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Figure 5.--Rrst bending mode shape of an undelaminated
cantilevered beam.
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Figure 9.--Rrst bending frequency for delamlnation along
interface 4.
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