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Abstract

An edge-based finite element formulation with vector absorbing

boundary conditions is presented for scattering by composite struc-

tures having boundaries satisfying impedance and/or transition con-

ditions. Remarkably accurate results are obtained by placing the mesh

a small fraction of a wavelength away from the scatterer.



1 Introduction

Of generic interest in electromagnetic scattering is the modelling of composite

configurations comprised of metallic and non-metallic sections. In the case

of man-made structures, abrupt material discontinuities and metallic cor-

ners are also encountered along with resistive sheets and thin ferrite coatings

intended for controlling the scatterer's radar cross-section (RCS). Differen-

tial equation methods, especially the finite element method (FEM), with its

capability of handling arbitrary geometries and its versatility in modelling

inhomogeneities and material discontinuities has been a viable solution ap-

proach for bounded domain problems. However, for unbounded problems

as is the case with electromagnetic scattering, the solution is more involved

since the finite element mesh needs to be truncated artificially at some dis-

tance from the object with a suitable boundary condition. These boundary

conditions can be either global or local. Global boundary conditions are ex-

act but lead to fully populated submatrices thus spoiling the sparse, banded

structure of the finite element system. In contrast, local conditions such as

the absorbing boundary conditions(ABCs), are approximate but have the im-

portant advantage of retaining the sparsity of the matrix system. ABCs are

essentially differential equations enforced at the mesh truncation boundary

and are chosen to suppress all non-physical reflections from that boundary,

thus ensuring the outgoing nature of the waves.

A variety of ABCs have been derived and widely employed in FEM so-

lutions of open region two-dimensional scattering problems. However, the

method's implementation and performance for scattering by three dimen-

sional geometries using edge-based finite elements has not received simi-

lar attention. The only three-dimensional implementations of the FEM for

scattering has been a hybrid solution combined with the boundary element

method (BEM)[1,2] and a node-based formulation combined with ABCs[3].

The boundary element method, though exact, is equivalent to employing a

global boundary condition for terminating the mesh and consequently leads

to a full matrix, restricting the method's utility to small geometries. For

large-scale three-dimensional applications, it is necessary to employ an ABC

for terminating the mesh to retain the O(N) storage requirement, character-

istic of the finite element method. However, the use of traditional node-based

elements for solving electromagnetic problems complicates the enforcement of

the required boundary conditions at material discontinuities and impedance

boundaries or resistive transitions. Moreover, the inherent singularities of

the electromagnetic fields at metallic corners limits their use altogether.

To avoid these difficulties, we consider an implementation of the FEM

using vector basis functions whose degrees of freedom are associated with

the fields along the six edges of a tetrahedron. In contrast to the traditional

node-based elements, edge elements can treat geometries with sharp edges

and are divergencelcss. Moreover, they exhibit tangential continuity and

normal discontinuity across inter-element boundaries and material disconti-

nuities, thus making them ideal for representing electromagnetic fields. They
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do, however, lead to a higher number of unknowns but this is balanced by

the greater sparsity of the resulting finite element matrix. Thus the compu-

tation time required to solve such a system iteratively, with a given degree

of accuracy, is less than the traditional node-based approach[4]. Our imple-

mentation is further coupled with a mesh termination scheme based on the

vector ABCs derived in [5]. In contrast to the implementation proposed in

[6], the one presented here preserves the symmetry of the finite element sys-

tem, thus nearly halving the storage requirement and making it ideally suited

for solution via a conjugate gradient type of algorithm. Further, the edge-

based implementation discussed in [6] requires that the absorbing boundary

be placed nearly a wavelength away from the scatterer, whereas in our imple-

mentation remarkably accurate results are obtained with the ABCs enforced

a small fraction of a wavelength from the scattering body.

2 Formulation

Let us consider the problem of scattering by an inhomogeneous target asso-

ciated with possible material discontinuities. To solve for the scattered fields

via the FEM, it is necessary to enclose the scatterer- embedded inside the

volume V- by an artificial surface So on which the ABC is enforced (see figure

1). The ABCs to be considered in this paper are the Sommerfeld radiation

condition given by

fi x V x E s = -jkofi X fi x E s (1)

and the second-order ABC which can be written as

fixVxE * = aE_+flVx[fi(XTxE')n]+fl_Tt(V'E_) (2)

where a = jk,_ = 1/(2jk + 2/r), E s represents the scattered electric field,

fi is the unit normal to the surface So and the subscripts t and n denote

the transverse and normal component to So, respectively. When these ABCs

are employed on the artificial boundary So, they annihilate all field terms of

O(r -(2m+1)) and smaller, where m denotes the order of the ABC. The ABCs

outlined above were derived for spherical surfaces but in this work we have

extended their application to So which include flat sections. This permits

the construction of termination boundaries conformal to the scatterer, thus

reducing the size of the the computational domain.

The vector ABCs (1) and (2) can be combined and more conveniently

written as

fixVxE * = P(E *) (3)

for the scattered field formulation in which E _ is the working variable and

fixVxE = P(E)+U _"* (4)



for the total field formulation wherethe unknown is the total electric field .
In (4),

'°°) (51

where E = E s + E i'_C is the total field and E i'_¢ is the incident electric field.

Considering (4) to be the boundary condition employed at So, we can express

the functional for the total electric field as

]F(E) = _-7(VxE).(VxE)-ko2erE .E dV

+/so [E. P(E)+ 2E. U '"_] dS (6)

where ¢r and pr are the relative permittivity and permeability, respectively.

The above functional can be generalized to account for the presence of

impedance and resistive sheets or other dicontinuous boundaries. In the case

of a resistive card, the transition condition[7]

fix(fixE)=-Rfix (H +-H-) (7)

must be enforced, where H + denotes the total magnetic field above and below

the sheet, R is the resistivity in Ohms per square and fi is the unit normal

to the sheet pointing in the upward direction (+ side). For an impenetrable

impedance surface, the appropriate boundary condition on that surface is

fix (fix E) = -r/fi x H (s)

where fi is the unit normal to the surface and r/is the surface impedance. Tak-

ing into consideration these boundary/transition conditions, the functional

for the total electric field can be more explicitly written as

F(E) /v [ I (v × E) " (V × E) - k2oe,E" E] dV

+jkoZo k -K (fixE)'(fixE)dS

[E.P(E)+2E. (9)

where K is the surface resistivity(R) when integrating over a resistive card

and equals the surface impedance(r/) for an impedance sheet.

The formulation presented above is in terms of the total field but we can

easily revert to a scattered field formulation by setting E s = E - E i'_c and

noting that the scattered field satisfies the wave equation inside the domain

of interest. The functional F(E s) is given by
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fs 1+jkoZo ,, -_.( (fix E')-(fi x E')dS

+ _iSo E'. P(E')dS

is.±"' ×"''')
#.

+2 L [ I (V x E') . (VZ x Ei") - k_,.E" . Ei'_'] dV

+2jkoZo /sk 1 .7((n × EO-( × E'" )dS

+f(E i"') (10)

where Vd is the volume occupied by the dielectric (portion of V where _r or

#r are not unity), Sd encompasses all dielectric interface surfaces and

when the second order ABC is employed. The function f (E i'_') is solely
in terms of the incident electric field and vanishes when we take the first

variation of F(ES). We remark that the scattered field formulation was

implemented in our code; however, we expect that the total field formulation

would yield comparable results.

3 Finite element discretization

To discretize the functional given in (10), the volume V is subdivided into a

number of small tetrahedra, each occupying the volume V" (e = 1, 2,..., M),
where M denotes the total number of tetrahedral elements. Within each

element, the scattered electric field is expressed as

E _ = _ E;W; = {w'}T{E e} = {E_}T{w e} (11)
j=l

where W_ are the edge-based vector basis functions[4], E_ denote the expan-

sion coefficients of the basis and represent the field components tangential

to the jth edge of the eth elernent, m is the number of edges making up

the element and the superscript stands for the element number. The basis

functions used in our implementation have zero divergence and constant curl.

The system of equations to be solved for E_ is obtained by a Rayleigh-

Ritz procedure which amounts to differentiating F with respect to each edge

field and then setting it to zero. On substituting (11) into (10), taking the

first variation in F and assembling all M elements, we obtain the following

augmented system of equations

{OF}M _,t, Mp= _-_[A_]{E_} + _'_[B']{E'} + __,{CP} = O (12)
e-=l s----1 p----1
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In this, Ms denotes the number of triangular surface elements on Sk and So

and Mp is equal to the sum of the surface elements on Sk, Sd and the volume

elements in I_. The elements of the matrices [ac], [B _] and {C p} are given

by

; [1e = koe*w i • W dVaij . (V x W_). (V x W._)- 2 .

Bi_ = jkoZo[fs 1 ^ ]77(n x w_). (fi x W;)dS

+ [ [_w_,. w;, + _(v x w_).. (v × w;). - B(v. w,',)(v, w;,)] dS
dSSoL

C r = 2jkoZo 1W_'- (fix H'"_)dS +/s_ _-_(n x W_). (fi × EinC)dS

• -- k oerwi .E inc

where Vf is the volume of the pth tetrahedron inside the dielectric, S" and

S p represent the surface area of the sth and pth triangular surface element

and the subscripts t and n denote the tangential and normal components of

a vector, respectively. The boundary condition fix E" = -fi x E i'*c must

be imposed a priori on metallic boundaries; however, no special treatment is

required at material discontinuities. Only the identification of the edges on

material discontinuities or inhomogeneities is required to kick in the contri-

bution from the surface integrals in (10).

The biconjugate gradient algorithm was used to solve the sparse, sym-

metric system of equations. The residual norm was usually set to less than

0.1% of the solution norm as a criterion for convergence since lower tolerances

did not appear to offer significant improvement on the far-field values. The

data structure was constructed such that only the non-zero elements of the

upper triangular part of the symmetric, sparse matrix were stored in a N= x k

complex array. In our case, N= was typically 1.1 x N_,, where N_ denotes the

number of unknowns and k was equal to 12. The corresponding addresses

were stored in a separate N_ x k integer array. The storage required in this

scheme was about 25N_ and the number of distinct non-zero elements was

typically 9N_.

4 Results

A computer program was written for implementing the proposed FE-ABC

formulation. This implementation was validated by computing the scattering

for several configurations including metallic and dielectric bodies as well as

structures satisfying resistive and impedance boundary conditions.

Figure 2 compares the measured[8] bistatic cross-section (0 i'_c = 180 °,

¢i,_c = 90 o) of a metallic cube having an edge length of 0.755,_ with the

corresponding pattern computed by the three-dimensional FE-ABC code.

6



The second-ordervector ABC wasemployedon a spherical mesh truncation

boundary which was placed only 0.1)` from the edge of the cube. About

33,000 unknowns were used for the discretization of the computational do-

main and the [A] matrix contained a total of 264,000 distinct non-zero entries.

The storage requirement of this matrix was consequently much smaller than

that of the 1400 unknown moment method system (assuming the same sam-

piing rate as the FEM of 14 points/)`) which had 2 million non-zero entries.

In figure 3, we plot the normal incidence backscatter RCS of a perfectly

conducting cube as a function of its edge length. The meshes constructed

for this experiment were terminated on conformal boundaries, i.e, on an-

other cube placed a small distance (more than 0.15)`) from the scatterer. As

seen, the agreement with measured data[9] is remarkably good over a 50dB

dynamic range.

Figure 4 presents backscatter data for a cylinder of radius 0.3_ and height

0.6)`. The data from the three-dimensional finite element code again compare

well with that obtained from a moment method-body of revolution code. The

mesh was terminated on a spherical boundary at a distance of 0.3)` from the

edge of the scatterer and the system consisted of nearly 33,000 unknowns.

Convergence was achieved within about 350 iterations when the Sommerfeld

radiation condition was imposed on the spherical mesh termination boundary.

Each iteration took approximately 0.3 seconds on a Cray YMP and on the

average it was found that for N > 25,000, the number of required iterations

were approximately N/100. The agreement was quite good even on enclosing

the metallic cylinder in figure 3 with a rectangular outer boundary placed

0.3)` from the edge of the scatterer.

The results presented till now have been for perfectly conducting ge-

ometries. However, the real advantage of the FEM over integral equation

techniques is the ease with which the former can handle material inhomo-

geneities and transition conditions. With this in mind, the remaining figures

show backscatter and bistatic patterns for scatterers comprised of resistive

cards, dielectric material and combinations of these. One of the test cases

was a prolate spheroid shown in figure 5 filled with lossy dielectric having

a permittivity of 4 - jl, koa = 7r/2 and a/b = 2, where a and b are the

major and minor axes of the spheroid, respectively. The bistatic pattern

(Oinc = 180o; ¢i,_c = 90 o) obtained from the FE-ABC solution agree reason-

ably well with those obtained via the hybrid finite element-boundary integral

method presented in [2]. However, the corresponding convergence rate for

non-metallic bodies and resistive/impedance sheets was found to be slower

than that observed for metallic scatterers. A diagonal preconditioner was,

therefore, used to accelerate the convergence of the blconjugate gradient al-
gorithm with encouraging results.

For our last example, we compute the scattering from an inhomogeneous

geometry with embedded resistive cards. Particularly, the scatterer shown in

figure 6 consists of an air-filled resistive card block (0.5), × 0.5_ × 0.25)Q joined

to a metallic block (0.,5)` × 0.5)` × 0.2.5)`). In figure 7, we compare a principal

plane backscatter pattern obtained from our 3D FE-ABC implementation
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with data computed using a traditional moment method code[10]. For the

FE-ABC solution, the scatterer was enclosed within a cubical outer boundary

placed only 0.3A away from the scatterer. This resulted in a 30,000 unknown

system which converged to the solution in about 400 iterations when using

the Sommerfeld radiation condition and in 1600 iterations when the second

order ABC was used. For this geometry, the second order ABC did not

provide a significant improvement in accuracy (only about 0.1dB) over the

first order condition. The same case was run with a higher discretization

resulting in a system of 50,000 unknowns; however, there was no significant

difference in the far-field values with the earlier case. The geometry for the

backscatter pattern shown in figure 8 is the same as in figure 6 with the

air-filled section now occupied by a lossy dielectric having er = 2 - j2. The

backscatter echo-area pattern for the ¢¢ polarization as computed by our

FE-ABC code is again seen to be in good agreement with corresponding

moment method data[10].

5 Conclusions

In this paper, we have shown that the finite element technique with vector

basis functions, when coupled with ABCs for mesh termination and the bi-

conjugate gradient algorithm for the solution of the resulting system, is a

viable procedure for computing the scattering by three-dimensional targets.

We have found that these ABCs can be enforced only a small fraction of

a wavelength from the scatterer's surface. This is probably due to the fast

(l/r) decay of the scattered fields. As a result, in addition to the sparsity

of the matrix, the total number of unknowns is kept under control. Fur-

ther, due to the use of edge elements, the program can easily handle sharp

conducting edges and tips, inhomogeneous dielectric and/or magnetic ma-

terials, resistive sheets and impedance surfaces. These, in conjunction with

the well-known advantages of the finite element method, results in low O(N)

storage requirement, making the computation of large body scattering possi-

ble. These capabilities along with the ease in modelling arbitrary geometries,

makes this formulation, to the best of our knowledge, one of the first suitable

for solving practical three-dimensional scattering problems.

6 Appendix

6.1 Anisotropic case

In order to deal with anisotropic scatterers, the functional outlined in (9)

undergoes a slight modification since the material properties of the scatterer

(permeability and permittivity) are now second rank tensors rather than

scalars. Equation (9) can therefore be written as
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fs 1 (fixE).(fixE)dS+jkoZo k 7(

+]so[E.P(E)+2E.u'o ] (13)

where

#_= #y_ /luu #v_ (14)

#zz _zv #zz

and

Cxx _xy exz
_ = _yx (yy _yz (15)

£zx £zy ezz

The changes in the scattered field functional (10) and in the elements of the

matrices [A_], [B s] and {C p} can also be easily incorporated by replacing

1

"-:--X • Y with X • [_--]-1. y
#r

and

erX" Y with X'_-Y

where X and Y are arbitrary vectors.
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Figure captions

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Illustration of a scatterer enclosed by an artificial surface, So, on which

the absorbing boundary condition is imposed.

Bistatic pattern of a metallic cube having an edge length of 0.755_.

The dotted circles and squares are measured data.

Backscatter RCS at normal incidence for a metallic cube of side a. The

dots indicate measured data.

Backscatter pattern of a perfectly conducting cylinder of radius 0.3A

and height 0.6A. The axis of the cylinder coincides with the z-axis of

the cartesian coordinate system. The dotted circles and squares are

data obtained from a moment method code.

Bistatic pattern of a lossy prolate spheroid (e_ = 4 -jl; koa = r/2;

a/b = 2), where a and b are the major and minor axis of the spheroid,

respectively. The dotted circles are data computed from a hybrid

FEM/MoM solution.

Geometry of a cube (a=b=0.5A) consisting of a metallic section and

an air-filled section, where the latter is bounded by a resistive surface

having R = Zo. The outer cube drawn with dashed lines represents the
surface on which the ABC was enforced.

RCS patterns in the x-z plane for the geometry in figure 6 with/_/_nc ._

0(solid curve is the FE-ABC pattern; circles are MOM data) and E_ "c =

0(dashed curve is the FE-ABC pattern; black dots are MOM data).

RCS pattern in the x-z plane for the geometry in figure 6 with the

air-filled section replaced with dielectric having cr = 2 - j2. The solid

curve is the FE-ABC pattern and the black dots are MoM data for the

E_ _c = 0 polarization.
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Figure 1. Illustration of a scatterer enclosed by an artificial
surface, So, on which the absorbing boundary

condition is imposed.
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